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Abstract. The aim of this paper is to propose an extension of the MOORA method to use the 
triangular fuzzy numbers. In this paper, several methods for defuzzification and calculation of the 
distance between two fuzzy numbers, are discussed. By applying these methods, the Ratio system 
and the Reference point approach of the MOORA method can be used in fuzzy environment. Thanks 
to the proposed modification, the MOORA method can be used to solve a greater number of real 
world problems. To demonstrate the applicability and effectiveness of the proposed approach, an 
example of grinding circuits design selection is considered. 
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introduction

Multiple criteria decision making (MCDM) provides an opportunity for selecting the most 
acceptable alternative, based on conditions that are stated using the criteria. MCDM is a very 
popular and commonly used approach for selecting the most acceptable alternative from a 
wide range of available alternatives. 

This approach has been used to solve various problems in many fields, which have been 
published in numerous professional and scientific journals. Some of them are supplier selec-
tion (Chen et al. 2006), new product launch strategy evaluation (Chiu et al. 2006), training 
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aircraft evaluation (Wang, Chang 2007), plant layout selection (Yang, Hung 2007), sustainable 
development strategy evaluation (Saparauskas 2007; Zavadskas et al. 2007), banking perform-
ances evaluation (Wu et al. 2009), solving many decision making problems in construction 
(Kaklauskas et al. 2006; Podvezko et al. 2010; Zavadskas et al. 2010a), and so on.

A number of methods have been proposed in the field of MCDM, such as Compromise 
programming (Zeleny 1973; Yu 1973), AHP (Saaty 1980), TOPSIS (Hwang, Yoon 1981), 
PROMETHEE (Brans, Vickine 1985), ELECTRE (Roy 1991), COPRAS (Zavadskas et al. 
1994), VIKOR (Opricovic 1998) and ARAS (Zavadskas, Turskis 2010).

The Multi-Objective Optimization, on the basis of Ratio Analysis (MOORA) method, 
is a newly proposed method introduced by Brauers and Zavadskas (2006). Although the 
MOORA is a newly proposed method, it is applied to solve many economic, managerial and 
construction problems. For example, Brauers and Zavadskas (2010a, 2008) and Brauers and 
Ginevicius (2010, 2009) use the MOORA method for solving decision making problems in 
various fields of economy. Kracka et al. (2010) applies the MOORA method in construction 
in order to solve problems related to energy loss in heating buildings while, Chakraborty 
(2011) uses the MOORA method to solve different decision making problems in the real-
time manufacturing environment. Based on Ratio system approach of the MOORA method, 
Gadakh (2011) proposed an optimization of the milling process, Karande and Chakraborty 
(2012) proposed the selection of the ERP system, and Dey et al. (2012) proposed both supplier 
selection and warehouse location selection.

Brauers and Zavadskas (2010a) also presented the MULTIMOORA method, as an ex-
tension of the MOORA method with a full multiplicative form. Like the MOORA method, 
MULTIMOORA method is also widely used for solving numerous problems, such as regional 
development (Brauers, Zavadskas 2010b, 2011a; Brauers, Ginevicius 2010), choice of bank 
loan (Brauers, Zavadskas 2011b) personnel selection (Balezentis et al. 2012a, b), and forming 
a multi-criteria decision making framework for prioritization of energy crops (Balezentiene 
et al. 2013).

The MOORA method, as well as many other ordinary MCDM methods, is based on 
the use of crisp numbers. Unfortunately, many real-world problems cannot be adequately 
represented using crisp numbers.

Many complex real-world problems, such as problems associated with uncertainty and 
problems which include some types of prediction, can be more adequately expressed by using 
grey or fuzzy numbers. Therefore, a lot of ordinary MCDM methods are also extended for 
using the interval grey of fuzzy numbers. Some proposed extensions of ordinary MCDM 
methods are: Grey TOPSIS (Zavadskas et al. 2010b; Chen, Tzeng 2004), COPRAS-G (Za-
vadskas et al. 2008, 2009), COPRAS-F (Zavadskas, Antucheviciene 2007), ARAS-G (Turskis, 
Zavadskas 2010a), ARAS-F (Turskis, Zavadskas 2010b), SAW-G (Zavadskas et al. 2010b; 
Medineckiene et al. 2010) and many extensions of the Fuzzy TOPSIS method (Wang, Elhag 
2006; Wang, Chang 2007; Saremi et al. 2009).

Similar to other MCDM methods, for the MOORA and the MULTIMOORA have pro-
posed some extensions. Brauers et al. (2011) proposed first fuzzy extension of the MOORA 
method, or more precisely MULTIMOORA method. In this extension the MULTIMOORA 
method was updated with the fuzzy number theory, and all three parts of the MULTIMOORA 
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method: Ratio system, Reference point and Full multiplicative form were modified to enable 
the usage of triangular fuzzy numbers. Balezentis et al. (2012a, b) further modified the fuzzy 
MULTIMOORA, and proposed the fuzzy extension, named MULTIMOORA-FG, which in-
clude the use of linguistic variables and the group decision making. Balezentis and Zeng (2013) 
also proposed an extension of MULTIMOORA based on interval-valued fuzzy numbers.

Karande and Chakraborty (2012), and Dey et al. (2012) proposed the fuzzy extensions 
of Ratio system approach of the MOORA method. Both of these extensions enabled the use 
of fuzzy triangular numbers. The extension proposed by Dey et al. (2012) also included the 
group decision making, but in this approach decision matrix was defuzzified at the initial 
stage, and then the crisp MOORA was further employed.

 Stanujkic et al. (2012a, b) considered a grey extension of the MOORA method. Stanujkic 
et al. (2012b) proposed a simple to use grey extension of the Ratio system part of the MOORA 
method. In Stanujkic et al. (2012a) the grey extensions of both approaches of the MOORA 
method, Ratio system and Reference point approaches, were discussed in details. In this 
paper significant attention was given to the transformation of grey into the crisp numbers.

Brauers and Zavadskas (2012) provided a comprehensive comparison of prominent 
MCDM methods. Based on this comparison, and the use of MOORA method that are pub-
lished in journals, it can be concluded that the MOORA method is very efficient and relatively 
easy to use. Therefore, in this paper an extension of MOORA methods is proposed in order 
to allow the use of triangular fuzzy numbers, and thus ensure its application to solve a great 
number of decision making problems.

Stanujkic et al. (2012b) state that more benefits from the use of fuzzy numbers can be 
achieved if they are transformed into crisp numbers in the later stages of the MCDM process. 
Therefore, in this paper the particular attention is given to the use of different methods for 
defuzzification as well as calculation of the distance between fuzzy numbers, in the later stages 
of the MCDM process. Although there are significant similarities with Brauers et al. (2011) 
and Balezentis et al. (2012a, b), this paper differs in terms of normalization and distance 
measurement techniques.

Because of all above mentioned reasons, the rest of this manuscript is organized as follows. 
In section 1, the basic elements of the fuzzy system theory are considered. In Section 2, the 
ordinary MOORA method is presented, and in Section 3 the fuzzy extension of MOORA 
method is presented. In Section 4, a case study is considered with the aim to explain in details 
the proposed methodology. Finally, the conclusions are given.

1. fuzzy set theory

The classical MCDM methods are based on the use of the classical set theory, where an element 
can belong or does not belong to the set. Let A  be a classical set of objects, called the universe, 
whose generic elements are denoted by x . The belonging to a set A can be represented by 
membership functions Aµ , which has the following form (Jahanshahloo et al. 2006):

 
1 ,

( )
0 .A

x A
x

x A
∈µ =  ∉

 (1)



S231Technological and Economic Development of Economy, 2013, 19(Supplement 1): S228–S255

Unfortunately, many real-world decision making problems are often related to the impact 
of uncertainty, which cannot be easily expressed using the classical sets.

Zadeh (1965) introduced the Fuzzy sets theory, which allows a partial membership in a 
set. As a result, instead of the exclusive use of crisp numbers, the fuzzy set theory allows the 
use of other forms of numbers, such as triangular, trapezoidal, and bell-shaped numbers. In 
addition, an approach for the formalization of natural language specification, called compu-
tation with words, was established as an extension of the fuzzy set theory.

1.1. The triangular fuzzy numbers

A triangular fuzzy number (TFN), shown in Figure 1, is fully characterized by a triplet of 
real numbers ( , , )l m u , where parameters l, m, and u, indicate the smallest possible value, 
the most promising value, and the largest possible value that describe a fuzzy event (Dubois, 
Prade 1980; Ertugrul, Karakasoglu 2009). The most promising value of TFN is often called 
mode or core.

Fig. 1. Triangular fuzzy number

The membership function of the TFN is defined as:

 

0
( ) / ( )

( )
( ) / ( )
0,

x l
x l m l l x m

x
u x u m l x u

x u

<
 − − ≤ ≤µ =  − − ≤ ≤
 >

. (2)

As important characteristics of a TFN there can also be specified: mode m, support (u – l), 
left spread (m – l) and right spread (u – m). TFN with equal left and right spread is known 
as a symmetrical TFN (STFN).

Let A  and B  be two triangular fuzzy numbers, parameterized by a triple (al, am, au) and 
(bl, bm, bu) respectively. Then, the basic operations on these fuzzy numbers are defined as 
(Dubois, Prade 1980; Wang, Chang 2007):

 ( ,   ,   )l l m m u uA B a b a b a b+ = + + +  ; (3)

 ( ,   ,   )l u m m u lA B a b a b a b− = − − −  ; (4)

 ( ,  ,  )l l m m u uA B a b a b a b× =  ; (5)

 , ,l m u

u m l

a a a
A B

b b b
 

÷ =   
 

  . (6)
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The following unary operations on triangular fuzzy numbers are also important:

 ( ,  ,  )l m uk A ka ka ka× = ; (7)

 1 1 1 1, ,
u m l

A
a a a

−  
=   
 

 . (8)

1.2. linguistic variable

In a series of papers, Zadeh (1975a, b, c) introduced the concept of linguistic variables. Ac-
cording to Zadeh, the linguistic variables are defined as variables whose values are words or 
sentences in a natural or artificial language.

The concept of linguistic variable is very suitable for dealing with many real-world prob-
lems, which are usually complex, slightly defined and related with uncertainties. The exclusive 
use of crisp numbers to represent responses of alternatives on objectives (also known as 
performance ratings of alternatives, in some other MCDM methods) and/or significance 
coefficients (also known as weights of criteria or criteria weights, in other MCDM methods) 
when solving complex real-world problems requires some kind of averaging. In contrast, the 
use of linguistic variables, which are represented with corresponding fuzzy numbers (Fig. 2), 
in such case is more appropriate.

Fig. 2. The membership functions of linguistic variables

In literature, numerous studies have considered the use of numerous linguistic scales. 
Unlike many other approaches, in this paper it has been proposed the use of same scale for 
assigning significance coefficients and responses of alternatives. The proposed linguistic 
scale is shown in Table 1.

Table 1. Linguistic scales for significance coefficients and responses of alternatives

Linguistic variable Corresponding TFN TFN support

Very low (VL) (0.00, 0.00, 2.00) 2

Low (L) (1.00, 2.25, 4.00) 3

Medium (M) (3.00, 5.00, 7.00) 4

High (H) (6.00, 7.00, 9.00) 3

Very high (VH) (8.00, 1.00, 1.00) 2

VHVL
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In this approach, fuzzy numbers have different supports and therefore they provide 
a higher significance to the moderate attitudes. About the proposed approach it can 
be discussed, but it is estimated that it provides a positive impact on decision makers 
behaviour, during evaluation of significance coefficients and responses of alternatives, 
because the use of different supports stimulate decision makers to perform evaluation 
more carefully.

1.3. defuzzification

As a result of performing an operation on fuzzy numbers,  the obtained result is also a fuzzy 
number. Therefore, in order to rank alternatives in fuzzy environment using MCDM meth-
ods, these methods must be able to perform the ranking based on overall fuzzy responses, or 
must transform overall fuzzy responses into  crisp responses before they perform ranking.

Over time, a number of different methods for ranking fuzzy numbers and/or defuzzifica-
tion are proposed. The first method for ranking fuzzy numbers was proposed by Jain (1976). 
Since then, a number of methods, with different complexity, have been proposed. 

From these methods, in this subsection, a few simple, understandable and easy to use 
defuzzification methods have been considered.

For mapping a fuzzy into a corresponding crisp number, Kaufmann and Gupta (1988) 
proposed Eq. (9):
 ( ) ( 2 ) 4.gm A l m u= + + , (9)

with ( )gm A  as a resulting crisp number, i.e. the generalized mean of fuzzy number A .
In Kaufman and Gupta’s approach, if two fuzzy numbers have the same value of resulting 

crisp number then fuzzy number with the larger mode will be ranked higher. Also, if they 
have the same mode, the higher-ranked fuzzy number will be the one which has a smaller 
left spread.

Liou and Wang (1992) proposed the Interval Value method for ranking fuzzy numbers, 
and for calculating the generalized mean of fuzzy number they suggested Eq. (10):

 1( )  [(1 )  ]
2

gm A l m u= −l + + l , (10)

with l  as a coefficient which represents the decision maker risk-taking attitude, also denoted 
as an index of optimism, and [0,1]l∈ .

For mapping a fuzzy into a corresponding crisp numbers Chiu and Park (1994) proposed 
Eq. (11):
 1( ) ( )

3
gm A l m u m= + + + l , (11)

with l  as a coefficient by which the decision maker can express his opinion about the nature 
and importance of the TFN mode, and 0.l ≥

And finally, to determine the generalized mean of fuzzy number, Opricovic and Tzeng 
(2003) proposed Eq. (12):

 ( ) ( )( )
3

m l u lgm A l − + −
= + , (12)
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which can be also expressed by Eq. (13):

 ( )
3

l m ugm A + +
=  . (13)

1.4. The distance between fuzzy numbers
In order to rank alternatives, in some cases, it is necessary to determine the distance 

between two fuzzy numbers. One of the probably most prominent methods for determining 
the distance between fuzzy numbers is the Vertex method (Chen 2000).

Let ( , , )l m uA a a a= and ( , , )l m uB b b b= be two triangular fuzzy numbers, then the Vertex 
method is defined to calculate the distance between them, as follows:

 

1
22 2 21( , ) [( ) ( ) ( ) ]

3vert l l m m u ud A B a b a b a b = − + − + − 
 

  . (14)

In addition to the known Vertex method in this paper the use of the maximum distance 
between fuzzy numbers is also proposed. Let ( , , )l m uA a a a=  and ( , , )l m uB b b b= be two 
triangular fuzzy numbers, then the maximum distance is defined to calculate the distance 
between them, as follows:

 max l( , ) max  ,   ,   l m m u ud A B a b a b a b
 

= − − − 
 

  . (15)

2. The MooRA method

The MOORA method is introduced by Brauers and Zavadskas (2006) on the basis of previous 
researches (Brauers 2004a, b).

In comparison to other MCDM methods, the MOORA method is specific, because it 
consists of two components: the Ratio system and the Reference point approach. 

2.1. The ratio system approach of the MooRA method

In the Ratio system approach, the normalized responses are added in the case of maximization, 
i.e. benefit criteria1, and subtracted in the case of minimization, i.e. cost criteria2. In other 
words, the overall performance of each alternative is calculated as a difference between the 
sum of normalized responses which belongs to benefit and the sum of normalized responses 
which belongs to cost criteria, which can be expressed by Eq. (16):

 * * *

1 1

g i n

j ij ij
i i g

y x x
=

= = +
= −∑ ∑ , (16)

where: *
ijx as a normalized response of alternative j on objective i; i = 1, 2, ..., g as the objectives 

to be maximized; i = g + 1, g + 2, ..., n as the objectives to be minimized; j = 1, 2, ..., m as the 
alternatives; and *

jy  as the overall ranking index of alternative j.

1 criteria to be maximized, i.e. the larger the better type.
2 criteria to be minimized, i.e. the smaller the better type.
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For further simpler presentations, the Eq. (16) is proposed: 
 *

j j jy y y+ −= −  , (17)
where:

 
max

*
j ij

i
y x+

∈Ω
= ∑ ; and  (18)

 
min

*
j ij

i
y x−

∈Ω
= ∑  , (19)

where: jy+ as a sum of normalized response of alternative j on objectives to be minimized; 
jy− as a sum of normalized response of alternative j on objectives to be minimized; maxΩ  as 

a set of objectives to be minimized; and minΩ  as a set of objectives to be minimized.
Based on the Ratio system approach of the MOORA method, the optimal alternative *

RSA  
can be determined using Eq. (20):

 * * maxRS j jj
A A y

 
=  
 

. (20)

2.2. The reference point approach of the MooRA method

After a brief review of the most prominent reference point approaches, Brauers and Zavad-
skas (2006, 2009), Brauers et al. (2008) and Brauers (2008) emphasize that the Tchebycheff 
Min-Max metric (Karlin, Studden 1966) is the most appropriate.

Therefore, for optimization based on the Reference Point approach Brauers and Zavadskas 
(2006) proposed Eq. (21):
 *min max i ijj i

r x
  − 
  

, (21)

where: ri as ith coordinate of the reference point, i.e. the most desirable response of all altern-
atives with respect to objective i; *

ijx  as the normalized response of alternative j on objective 
i; i = 1, 2, ..., n as the objectives; and j = 1, 2, ..., m as the alternatives. 

For further simpler presentations, it can be marked the distance from an alternative to 
the reference point with d and transform the Eq. (21) in the following form:

 maxmin jj
d , (22)

where: 
 max *max i ijj i

d r x= − ; and (23)

 

*
max

*
min

max ; ,

min ; .

ijj
i

ijj

x i
r

x i

 ∈Ω
= 

∈Ω


 (24)

where: max
jd as a maximum unsigned distance of alternative j to the reference point.

Based on equations (21) and (23), the optimal alternative in the Reference point approach 
of the MOORA method *

RPA  can be determined by Eq. (25):

 * max minRP j jj
A A d

 
=  
 

. (25)
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2.3. The normalization procedure

Equations (16) and (21) use normalized responses of alternatives. Brauers and Zavadskas 
(2006) proved that the most robust choice for the denominator is the square root of the sum 
of squares of each alternative per objective, and therefore the use of the vector normalization 
method is recommended in order to normalize responses of alternatives. As a result, the 
following equation proposed by Van Delft and Nijkamp (1977) was used:

 *

2

1

ij
ij m

ij
j

x
x

x
=

=

∑
, (26)

where: *
ijx as a normalized response of alternative j on objective i; and * [0, 1]ijx ∈ .

2.4. The importance given to objectives

When solving the real-world problems using MCDM methods, objectives mainly do not 
have the same significance, i.e. some objectives are more important than the others. However, 
Eqs. (16) and (21) do not give a possibility to express a different significance of objectives.

Therefore, to include different significance of objectives (Brauers, Zavadskas 2009, 2012; 
Chakraborty 2011) introduced the Significance Coefficient.

To include the significance coefficient in the Ratio system approach of the MOORA 
method, Brauers and Zavadskas (2009) adapted the Eq. (16), and to calculate a overall ranking 
index of alternatives they proposed the Eq. (27):

 * * *

1 1

g i n

j i ij i ij
i i g

y s x s x
=

= = +
= −∑ ∑ , (27)

where: is  as the significance coefficient of objective i; and *
jy  as an overall ranking index of 

alternative j  with respect to all objectives and their significance coefficients, * [–1, 1]jy ∈ .
A simple way to include the different significance given to objectives into the Ratio sys-

tem approach of the MOORA method is to use the Eq. (17), and instead of the Eq. (18) and 
Eq. (19), use their adapted forms, as follows:

 
max

*
j i ij

i
y s x+

∈Ω
= ∑ ; and  (28)

 
min

*
j i ij

i
y s x−

∈Ω
= ∑  . (29)

By using equations (28) and (29), instead of equations (18) and (19), when objectives 
have a different significance, the remaining part of the Ratio system of the MOORA, shown 
using the equations (17) and (20), remains the same.

To include the significance coefficient in the Reference Point approach of the MOORA method, 
Brauers and Zavadskas (2009) adapted the equation (21), and introduce it in the following form:

 { }*min max i i i ijj i
s r s x− . (30)
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A simple way to include the different significance given to objectives into Reference point 
approach of the MOORA method is to use the Eq. (22), and instead of the Eq. (23) use Eq. (31):

 { }max *max i i ijj i
d s r x= − . (31)

After that, the Eq. (25) still remains without changes for determining the most appropriate 
alternative based on the Reference point approach of the MOORA method.

3. The proposed methodology

A systematic approach to extend the MOORA method to solve decision making problems 
in fuzzy environment is proposed in this section. The first part covers the steps that are 
common for both approaches. After that, the second and the third parts deal with the steps 
that are related to the Ratio system and Reference point approaches of the MOORA method.

3.1. The common steps of the fuzzy MooRA method

As initial steps in solving decision making problems by using MCDM methods can be 
identified: 

 – Identify alternatives, which can be used to solve problem; and 
 – Select objectives, on which basis the evaluation of alternatives will be done.
 – Next usually follow the typical steps, such as:
 – Determine the responses of alternatives on objectives, and construct a decision matrix;
 – Determine the significance of the objectives; and 
 – Normalize the responses of alternatives. 

In relation to the steps in ordinary MCDM methods, the use of fuzzy numbers and lin-
guistic variables has certain specificities, and these will be discussed below.

3.1.1. determine the responses of alternatives on objectives, and construct a fuzzy 
decision matrix

A fuzzy MCDM selection problem, which involves m alternatives, n objectives and K decision 
makers, can be expressed in the following matrix form:

 [ ]k k
m nijD x ×=

 , (32)

where: kD as a fuzzy decision matrix formed by decision maker/expert k; k
ijx as a fuzzy 

response of alternative j on objective i given by decision maker k, using linguistic variables 
from Table 1; i = 1, 2, ..., n as the objectives; j = 1, 2, ..., m as the alternatives; and k = 1,2, …, 
K as the decision makers and/or experts. 

As a result of the use of the Eq. (39) we have a k decision matrix. To form the resulting 
fuzzy decision matrix D :

 [ ]ij m nD x ×=  , (33)
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the following equation was used:

 
1

1 K
k

ij ij
k

x x
K =

= ∑  , (34)

where: ijx as a fuzzy response of alternative j on objective i.
While forming the resulting fuzzy decision matrix, the linguistic variables are also trans-

formed into the corresponding triangular fuzzy numbers.

3.1.2. determine the significance of objectives

In MCDM, the significance coefficient is very important, because it has a great impact on the 
selection of the most acceptable alternative. Consequently, in literature, there is proposed a 
number of different approaches for its determination, such as pairwise comparisons taken 
from the AHP method, the Entropy method and so on. 

To determine the significance coefficient more realistic often is necessary to take into account 
the opinions of several experts. In such cases, the use of linguistic variables can be very appropriate.

For a decision making problem which involves n objectives and K decision makers, the 
fuzzy significance coefficient can be calculated using the Eq. (35): 

 ,

1

1 k
k
ii

k
s s

K =
= ∑  , (35)

where: ,
is  as the non-normalized fuzzy significance coefficient of objective i; k

js  is the fuzzy 
significance coefficient i given by decision maker k using data from Table 1; i = 1, 2, ..., n as 
the objectives; and k = 1, 2, …, K as the decision makers and/or experts.

In ordinary MCDM methods the significance of objectives expressed by using significance 
coefficients satisfy the following condition:

 1 1n
ii s= =∑ . (36)

Fuzzy significance coefficients obtained by using the Eq. (35) do not satisfy the condition 
(36), and therefore they must be scaled, i.e. normalized. If we denote ,

is  as , , ,( , , )im im ius s s  then 
the procedure proposed for scaling (normalizing) non-normalized significance coefficients 
obtained by using Eq. (35) can be represented as follows:

 ,1
i i

i m
s s

s Σ
= ×  , (37)

where:
 ,

1
n

i m imis sΣ ==∑ . (38)

where: i ms Σ as a sum of modes of non-normalized fuzzy significance coefficients of objective i.
The scaling procedure presented by using the Eq. (37) and the condition (38) is a modified 

version of the well known Linear Transformation – Sum Method, which is adapted for use 
when significance coefficients are expressed by using triangular fuzzy numbers, and its use 
ensures the satisfaction of the following condition:

 1 1n
imi s= =∑ , (39)

where sim as a mode of the triangular fuzzy significance coefficient of objective i.
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3.1.3. normalize responses of alternatives

The next step in the proposed methodology, is to normalize fuzzy responses and construct 
a normalized fuzzy decision matrix, as follows:

 * *[ ]ijD x=

 , (40)

where *
ijx  as a normalized fuzzy response of alternative j on objective i .

The MCDM methods uses a normalization procedure to transform responses of altern-
atives with different data measurement units into comparable dimensionless values, which 
are in the interval [0,1]. For normalization, the Eq. (41) was proposed:

 * , ,ijl ijm iju
ij

i i i

x x x
x

x x x+ + +

 
=   
 

 , (41)

where: 

 

1
2

2

1

m

i iju
j

x x+

=

 
 =
 
 
∑ . (42)

3.2. The fuzzy extension of the ratio system approach of the MooRA method

In relation to the ordinary, the selection of the most appropriate alternative based on the Ratio 
system approach of the MOORA method, is more complex when significances of objectives 
or responses of alternatives are expressed using the triangular fuzzy numbers. Therefore, the 
proposed fuzzy extension will be presented using the following steps:

stage 1: Determine fuzzy overall performance index, for each of considered alternatives;
stage 2: Defuzzification, i.e. transform a fuzzy into a crisp overall performance index; and
stage 3: Select the optimal/most appropriate/most desirable alternative.
stage 1: Determine fuzzy overall performance index, for each considered alternative. 

To expand the approach proposed in subsections 2.1. and 2.4, to determine the overall fuzzy 
performance index when fuzzy numbers are used, based on Eq. (17), the following equation 
has been proposed:
 *

j j jy y y+ −= −   , (43)
where:
 

max

*
j i ij

i
y s x+

∈Ω
= ×∑   ; and  (44)

 
min

*
j i ij

i
y s x−

∈Ω
= ×∑    , (45)

where: jy+  as a sum of normalized responses of alternative j on objectives to be maximized; 
jy−  as a sum of normalized responses of alternative j on objectives to be minimized; maxΩ  

as a set of objectives to be maximized; and minΩ  as a set of objectives to be minimized.
Results obtained by using the Eq. (43) are triangular fuzzy numbers. To enable evaluation 

and ranking of considered alternatives, these triangular fuzzy numbers is necessary to translate 
into a form suitable for ranking.
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stage 2: Defuzzify the fuzzy overall performance index into crisp overall performance 
index, for each alternative. The conversion from a fuzzy overall into a crisp overall perform-
ance index can be performed by using any of methods described in subsection 1.3., which 
can be represented by the Eq. (46):

 * *( )j jy gm y=  . (46)

If a decision maker has no risk-taking attitude, then the crisp overall performance in-
dexes can be calculated using the equations (9) or (13). In contrast, if a decision maker has a 
risk-taking attitude then the Eq. (10) can be much more appropriate, because it enables the 
decision maker to assign greater significance to the mean of the fuzzy number.

stage 3: Select the optimal alternative. Based on the results obtained using the previous 
steps, alternatives can be ranked according to the descending order of *

jy , and the one with 
the maximum value of *

jy  is the best, which is  expressed by Eq. (20).
If two or more alternatives have the same rank, but decision maker still wants to determine 

which of them is most appropriate, Kaufmann and Gupta’s method, can be used.

3.3. The fuzzy extension of the reference point approach of the MooRA method

Optimization procedure based on the Reference point approach, when fuzzy numbers are 
used, can be also divided into the following three stages, as follows:

stage 1: Determine the fuzzy reference point;
stage 2: Calculate the distances between fuzzy ratings and fuzzy reference point, for each 

alternative, and determine the maximum distances;
stage 3: Select the optimal alternative.
stage 1: Determine the fuzzy reference point. When responses of alternatives are ex-

pressed using a fuzzy numbers, the use of the fuzzy instead of ordinary reference point is 
suggested, as follows:
 1 2( , , , )nR r r r=   

 ,  (47)

where: ir  as ith coordinate of the fuzzy reference point, and ( , , )i il im iur r r r= .
The smallest possible value, the most promising value, and the largest possible value of 

ith coordinate of the fuzzy reference point are determined using the following equations:

 

*
max

*
min

max ;

min ;

ijlj
il

ijlj

x i
r

x i

 ∈Ω
= 

∈Ω


; (48)

 

*
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*
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ijmj
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x i
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ijuj
iu
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x i
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

. (50)
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stage 2: Calculate distances between fuzzy ratings and the fuzzy reference point, for 
each alternative, and determine the maximum distances. In this step it is necessary, for each 
alternative, to determine its maximal distance to the reference point.

However, because the normalized responses of alternatives and the coordinates of the 
reference point are fuzzy numbers, the obtained distances are fuzzy numbers, too. In order 
to provide the efficient but still easy to use, fuzzy Reference point approach, there have been 
proposed four approaches to determine maximum distances between alternatives and the 
fuzzy reference point. 

The first approach. In the first approach, the distance dij between the fuzzy normalized 
response of alternative j on objective i and ith coordinate of the fuzzy reference point is 
defined as a distance between its generalized means, as follows:

 *( ) ( ) ( )ij i i ijd gm s gm r gm x= −   . (51)

where: ijd  as an unsigned distance of alternative j to the ith coordinate of the fuzzy reference 
point.

In the Eq. (51), fuzzy significance coefficients, normalized fuzzy responses and coordinates 
of the fuzzy reference point are transformed into appropriate crisp numbers. For the sake 
of transforming from fuzzy into crisp numbers, i.e. defuzzification, there can be used any of 
the procedures discussed in the subsection 1.3, but there have been proposed the use of the 
Eq. (13), because of its simplicity.

The second approach. In the second approach to determine dij there have been proposed 
the proven Vertex method, as follows:

 *( ) ( , )ij i vert i ijd gm s d r x=    . (52)

The Third approach. In the third approach, the calculation of unsigned distance dij is 
based on the use of the Eq. (15), as shown below:

 *
max( )  ( , )ij i i ijd gm s d r x=    . (53)

In our opinion, this approach is very appropriate for use in the Reference point approach 
of the MOORA method.

The fourth approach. Because the reference point approach of the ordinary MOORA 
method is based on the Min-Max metric, then instead of ( ) igm s in the Eq. (53)  ius  is 
used, which ensures that dij really represents the maximum distance of alternative j to the 
ith coordinate of the fuzzy reference point. After that, the Eq. (53) has the following form:

 *
max  ( , )ij iu i ijd s d r x=    . (54)

After the use of any of the above four approaches, the maximum unsigned distance of 
alternative j to the reference point can be determined as follows:

 max max ijj i
d d= . (55)

stage 3: Select the optimal alternative. After applying one of four proposed approaches 
and determining the maximum unsigned distance of any alternative to the reference point, 
the determination of the most appropriate alternative remains the same as in the ordinary 
MOORA method, and it is performed by using the Eq. (25).
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4. case study and discussion

To demonstrate the proposed extension of the MOORA method, its use in solving a particular 
problem has been shown in this section. Suppose that a Mining company XYZ from Serbia 
plans to start exploitation of a new mine with surface mining. Its geographical location, i.e. 
the distance of the new mine from the existing flotation, does not provide a cost-effective 
transportation of the excavated ore. Therefore, the team of experts was formed with the aim 
to evaluate the grinding circuit designs and propose the most appropriate one.

They consider three alternatives A1, A2, and A3, i.e. three typical grinding circuit designs. 
The first typical grinding circuit design is based on a two-stage grinding, where rod mills 

are used for primarily grinding and ball mills are used for a secondary grinding. It is also the 
most conventional design of all considered. It takes advantage of both types of mentioned 
mills, but also requires a greater amount of heavy equipment.

In contrast to the previously described, the second typical design uses a single-stage 
grinding process and ball mills. 

Finally, the third grinding circuit design also uses a two-stage grinding process, but it 
also has its own characteristic, out of which the use of autogenous or semi-autogenous mills 
for primarily grinding is highlighted. These mills have a number of advantages, but there are 
some limitations on their use. 

At the beginning of the evaluation, each expert evaluates the objectives, using the lin-
guistic variables from Table 1. Assigned linguistic variables and the significances of objectives, 
obtained by using Eq. (35) and  Eq. (37), are shown in Table 2.

Table 2. Significances of objectives

Criteria E1 E2 E3
,
is is

Grinding efficiency C1 VH H H (6.67, 8.33, 9.33) (0.19, 0.24, 0.27)
Economic efficiency C2 H M M (4.00, 5.83, 7.67) (0.11, 0.17, 0.22)
Technological reliability C3 VH M VH (6.33, 8.33, 9.00) (0.18, 0.24, 0.26)
Capital investment costs C4 M H VH (5.67, 7.50, 8.67) (0.16, 0.21, 0.25)
Envionmental impact C5 L H M (3.33, 5.00, 6.67) (0.10, 0.14, 0.19)

In the next step, experts evaluate the performance ratings of considered alternatives to 
the selected criteria, also by using linguistic variables from Table 1. Assigned linguistic vari-
ables for responses and corresponding quantitative values, obtained by using the Eq. (34), 
are shown in Table 3.

Table 3. Ratings of objectives

Criteria E1 E2 E3 ijx

C1 A1 VH H H (6.67, 8.33, 9.33)
C1 A2 H M M (4.00, 5.83, 7.67)
C1 A3 VH M VH (6.33, 8.33, 9.00)
C2 A1 M M M (3.00, 5.00, 7.00)
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Criteria E1 E2 E3 ijx

C2 A2 H M M (4.00, 5.83, 7.67)
C2 A3 VH M H (5.67, 7.50, 8.67)
C3 A1 VH H VH (7.33, 9.17, 9.67)
C3 A2 H H H (6.00, 7.50, 9.00)
C3 A3 VH H VH (7.33, 9.17, 9.67)
C4 A1 VH H H (6.67, 8.33, 9.33)
C4 A2 VH M M (4.67, 6.67, 8.00)
C4 A3 M H H (5.00, 6.67, 8.33)
C5 A1 VH M VH (6.33, 8.33, 9.00)
C5 A2 H L VH (5.00, 6.58, 7.67)
C5 A3 M L H (3.33, 4.92, 6.67)

Based on the data from Table2 and Table 3, the fuzzy decision matrix, shown in Table 4, 
was formed.

Table 4. Fuzzy decision matrix

C1 C2 C3 C4 C5

is (0.19, 0.24, 0.27) (0.11, 0.17, 0.22) (0.18, 0.24, 0.26) (0.16, 0.21, 0.25) (0.10, 0.14, 0.19)

Opt. max max max min min

A1 (6.67, 8.33, 9.33) (3.00, 5.00, 7.00) (7.33, 9.17, 9.67) (6.67, 8.33, 9.33) (6.33, 8.33, 9.00)

A2 (4.00, 5.83, 7.67) (4.00, 5.83, 7.67) (6.00, 7.50, 9.00) (4.67, 6.67, 8.00) (5.00, 6.58, 7.67)

A3 (6.33, 8.33, 9.00) (5.67, 7.50, 8.67) (7.33, 9.17, 9.67) (5.00, 6.67, 8.33) (3.33, 4.92, 6.67)

The norm +
ix , for any objective, are determined using the Eq. (42) and these values are 

shown in Table 5.

Table 5. Normalization factors (norms) 

C1 C2 C3 C4 C5

ix+ 15.06 13.52 16.37 14.85 13.57

Based on data from Tables 4 and 5, using the Eq. (41), the normalized fuzzy decision 
matrix was formed. The normalized fuzzy decision matrix is shown in Table 6.

The Ratio system approach. Based on data from Table 6, the fuzzy performance rating 
obtained on the basis of objectives to be maximized jy +

 , for each alternative, was calculated 
by using the Eq. (44). On the basis of same data, the fuzzy performance rating  obtained on 
objectives to be minimized jy −



 
was determined using the Eq. (45), for each alternative as 

well. These performance ratings are shown in columns I and II of Table 7.

Continued Table 3
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Table 6. Normalized fuzzy decision matrix

C1 C2 C3 C4 C5

is (0.19, 0.24, 0.27) (0.11, 0.17, 0.22) (0.18, 0.24, 0.26) (0.16, 0.21, 0.25) (0.10, 0.14, 0.19)

Opt. max max max min min
A1 (0.44, 0.55, 0.62) (0.22, 0.37, 0.52) (0.45, 0.56, 0.59) (0.45, 0.56, 0.63) (0.47, 0.61, 0.66)

A2 (0.27, 0.39, 0.51) (0.30, 0.43, 0.57) (0.37, 0.46, 0.55) (0.31, 0.45, 0.54) (0.37, 0.49, 0.56)

A3 (0.42, 0.55, 0.60) (0.42, 0.55, 0.64) (0.45, 0.56, 0.59) (0.34, 0.45, 0.56) (0.25, 0.36, 0.49)

Table 7. The overall fuzzy performance indexes

jy +
 jy −



*
jy

I II III
A1 (0.19, 0.33, 0.43) (0.12, 0.21, 0.28) (-0.09, 0.12, 0.31)

A2 (0.15, 0.27, 0.4) (0.09, 0.17, 0.24) (-0.09, 0.11, 0.32)

A3 (0.21, 0.36, 0.45) (0.08, 0.15, 0.23) (-0.02, 0.21, 0.37)

The overall performance indexes of considered alternatives, calculated using the Eq. (43), 
are shown in column III of Table 7.

Finally, by using the Eq. (10), or the Eq. (11), and different values for the parameter l, 
the decision maker can determine the ranking order of alternatives, and select the most 
appropriate one. Also, by using different values of the coefficient l , decision makers can 
consider different scenarios, such as pessimistic, moderate and optimistic.

The ranking results obtained by using the Eq. (10) and some characteristic values of 
coefficient l , are shown in Table 8.

Table 8. Ranking results obtained for characteristic values of l

l = 0 l = 0.5 l = 1
*
jy *

jy Rank *
jy Rank *

jy Rank

A1 (–0.09, 0.12, 0.31) 0.014 2 0.115 2 0.216 3

A2 (–0.09, 0.11, 0.32) 0.009 3 0.110 3 0.212 2

A3 (–0.02, 0.21, 0.37) 0.093 1 0.192 1 0.292 1

According to the opinion of experts, who were involved in the evaluation, the ranking 
orders shown in Table 8 are correct, although it is a bit surprising because that the dominance 
of alternative A3 is very obvious.

The transformation from the fuzzy into crisp overall performance indexes can be made 
using any of methods discussed in subsection 1.3, as well as many other defuzzification 
methods, which are not considered in this paper.

Results obtained by defuzzification methods discussed in subsection 1.3, are shown in 
Table 9.
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Table 9. Ranking results obtained by using different defuzzification methods

Kaufmann and 
Gupta

Chiu and Park
l = 0

Liou and Wang
l = 0.5

Opricovic and 
Tzeng

*
jy *

jy Rank *
jy Rank *

jy Rank *
jy Rank

A1 (–0.09, 0.12, 0.31) –0.004 2 0.173 2 0.115 2 0.114 2

A2 (–0.09, 0.11, 0.32) –0.006 3 0.165 3 0.110 3 0.111 3

A3 (–0.02, 0.21, 0.37) 0.033 1 0.291 1 0.192 1 0.187 1

In this case, all methods have the same ranking order of alternatives, however, many 
authors warn that different defuzzification methods may give different results.

In the considered example, the symmetrical TFNs have been used. A more realistic 
consideration of applied defuzzification methods for obtaining ranking orders is shown 
in appendix A, where the example with non-symmetrical fuzzy numbers is also dis cussed.

The Reference point approach. The pwrocess of determining the most appropriate 
alternative based on the Reference point approach, is started from Table 6. Using data 
from Table 6 and Eq. (47), or more precisely equations (48), (49) and (50), coordinates 
of the fuzzy reference point are determined.

Table 10 shows the coordinates of the fuzzy reference point.

Table 10. Fuzzy reference point

C1 C2 C3 C4 C5

R (0.44, 0.55, 0.62) (0.42, 0.55, 0.64) (0.45, 0.56, 0.59) (0.31, 0.45, 0.54) (0.25, 0.36, 0.49)

Based on the data from Tables 10 and 6, using the first approach proposed in Section 
4.3, i.e. using Eq. (52), distances between the considered alternative and the fuzzy reference 
point, are calculated. Mentioned distances, the maximum distances between alternatives and 
reference point and ranking order of alternatives, are given in Table 11.

Table 11. Distances and rank of alternatives based on the first fuzzy Reference point approach

C1 C2 C3 C4 C5 max Rank

A1 0.00 0.03 0.00 0.02 0.03 0.03 2

A2 0.04 0.02 0.02 0.00 0.02 0.04 3

A3 0.00 0.00 0.00 0.00 0.00 0.00 1

Based on data shown in Table 12, it can be seen that, by using the Ratio system 
approach of the MOORA method, the best ranked alternative is also the alternative A3. 

Distances of considered alterantives to the reference point and the rank of alternat-
ives, obtained using the second, third and fourth approaches, are shown in Tables 12, 
13 and 14.
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Table 12. Distances and rank of alternatives based on the second fuzzy Reference point approach

C1 C2 C3 C4 C5 max Rank

A1 0.00 0.03 0.00 0.02 0.03 0.03 2
A2 0.04 0.02 0.02 0.00 0.02 0.04 3

A3 0.00 0.00 0.00 0.00 0.00 0.00 1

Table 13. Distances and rank of alternatives based on the third fuzzy Reference point approach

C1 C2 C3 C4 C5 max Rank

A1 0.00 0.03 0.00 0.02 0.03 0.04 2
A2 0.04 0.02 0.02 0.00 0.02 0.04 2

A3 0.00 0.00 0.00 0.00 0.00 0.00 1

Table 14. Distances and rank of alternatives based on the fourth fuzzy Reference point approach

C1 C2 C3 C4 C5 max Rank
A1 0.00 0.04 0.00 0.03 0.05 0.05 2
A2 0.05 0.03 0.03 0.00 0.02 0.05 2

A3 0.01 0.00 0.00 0.01 0.00 0.01 1

Using a more precise calculation, i.e. by using a larger number of decimal places, a different 
ranking order of alternatives is obtained, which is shown in Table 15.

Table 15. Distances and rank of alternatives based on the fourth fuzzy Reference point approach

C1 C2 C3 C4 C5 max Rank

A1 0.000 0.043 0.000 0.033 0.048 0.048 3
A2 0.047 0.027 0.026 0.000 0.023 0.047 2
A3 0.006 0.000 0.000 0.006 0.000 0.006 1

However, more precise calculation, based on the third proposed Reference point approach 
has not caused any changes in the rank order of alternatives. This confirms that the use of 
different approaches may have an influence on the rank order of alternatives and that the 
selection of fuzzy Reference point approach is also very important, as shown in appendix B. 

conclusion

In order to rank alternatives in fuzzy environment, MCDM methods must be able to 
perform ranking based on overall fuzzy responses, or must transform overall fuzzy re-
sponses into crisp responses before they perform ranking. Also, greater benefits from the 
use of fuzzy numbers can be obtained if the defuzzification is done in the later stages of 
MCDM methods.
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In order to enable the use of MOORA method in fuzzy environments, in this paper, we 
have proposed an extension which is based on the transformation of overall fuzzy responses 
into exact values, before ranking.

This paper discusses the use of several methods for defuzzification and several methods 
for calculation the distance between two fuzzy numbers. These methods allow the use of the 
Ratio system and the Reference point approach of the MOORA method in fuzzy environment, 
as in the considered example is confirmed.

Methods offered for defuzzification and methods offered to calculate the distance between 
two fuzzy numbers have their own specificities and advantages. However, in this paper no 
preference is given to any of them. Our goal has been to provide more opportunities because 
we believe that the proposed fuzzy extension of the MOORA method can be used as a basis 
for future researches, and that their authors may, depending on the problem being solved, 
choose the most appropriate one.
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APPEndix A: considERAtion of thE EffEcts obtAinEd  
by using A diffEREnt dEfuzzificAtion in thE RAtio systEM 
APPRoAch of thE MooRA MEthod

In this section, the effects of using various defuzzification methods on the ranking order of 
alternatives in Ratio system approach of the MOORA method have been discussed.

Suppose two fuzzy numbers A~ and B~  with equal upper and lower bounds, but the fuzzy 
number B~ has a slightly smaller mode, as shown in Figure A1.

Fig. A1. The relationships between  two TFNs.

In this case, it is completely obvious that the fuzzy number A is greater than the fuzzy 
number B . 

Table A1 shows four fuzzy numbers 1A , 1B , 2B  and 3B , and also there ranking orders 
obtained by using defuzzification methods discussed in the subsection 1.3. 

Table A1. Ranking results obtained by using different defuzzification methods

Kaufmann and 
Gupta

Chiu and Park 
l = 0

Liou and Wang 
l = 0.5

Opricovic and 
Tzeng

Sj Rank Sj Rank Sj Rank Sj Rank

1A (0.3, 0.5, 0.7) 0.500 1 0.500 1 0.500 1 0.500 1

1B (0.3, 0.4, 0.7) 0.450 2 0.467 2 0.450 2 0.467 2

2B (0.2, 0.4, 0.7) 0.425 3 0.433 3 0.425 3 0.433 3

3B (0.1, 0.4, 0.7) 0.400 4 0.400 4 0.400 4 0.400 4

Fuzzy numbers 1A  and 1B  have same lower and upper bounds, but the 1A  has a higher 
mode, and therefore it is also ranked higher. Fuzzy numbers 2B  and 3B  have the same mode 
and upper limits as a fuzzy number 1B , but their lower bounds are less which also has an 
effect to their ranks.

In the considered example, all defuzzification methods gave the same ranking order of 
alternatives. However, the increase of the lower bound of a triangular fuzzy number B  from 
l  to lB ′′ , or a variation of its upper bound between  uB ′  and uB ′′ ; makes the ranking of fuzzy 
numbers A  and B  much more complex, as it is shown in Figure A2.
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Fig. A2. The relationships between two TFNs.

The changes of upper limits of fuzzy numbers 1B , 2B and 3B , from 0.7 to 0.8, in Table A2, 
and to in 0.9, in Table A3, have a significant effect on their ranking orders, as can be seen in 
Tables A2 and A3.

Table A2. Ranking results obtained by using different defuzzification methods

Kaufmann and 
Gupta

Chiu and Park
l = 0

Liou and Wang
l = 0.5

Opricovic and 
Tzeng

Si Rank Si Rank Si Rank Si Rank

1A (0.3, 0.5, 0.7) 0.500 1 0.500 1 0.500 1 0.500 1

1B (0.3, 0.4, 0.8) 0.475 2 0.500 1 0.475 2 0.500 1

2B (0.2, 0.4, 0.8) 0.450 3 0.467 3 0.450 3 0.467 3

3B (0.1, 0.4, 0.8) 0.425 4 0.433 4 0.425 4 0.433 4

From Tables A2 and A3, it can be concluded that different  defuzzification methods give 
the different ranking orders.

Table A3. Ranking results obtained by using different defuzzification methods

Kaufmann and 
Gupta

Chiu and Park
l = 0

Liou and Wang
l = 0.5

Opricovic and 
Tzeng

Si Rank Si Rank Si Rank Si Rank

1A (0.3, 0.5, 0.7) 0.500 1 0.500 2 0.500 1 0.500 2

1B (0.3, 0.4, 0.9) 0.500 1 0.533 1 0.500 1 0.533 1

2B (0.2, 0.4, 0.9) 0.475 3 0.500 2 0.475 3 0.500 2

3B (0.1, 0.4, 0.9) 0.450 4 0.467 4 0.450 4 0.467 4
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APPEndix b: how to dEtERMinE thE distAncE in thE fuzzy 
REfEREncE Point APPRoAch of thE MooRA MEthod

In this section, the effects of methods proposed for determining the distance between nor-
malized fuzzy responses and the reference point are considered. 

Suppose four alternatives, denoted as A1, A2, A3, A4 , whose fuzzy responses are shown 
in Table B1. In this table there are shown some elements relevant to determine the distances 
between the alternatives and the reference point.

Table B1. Data for selecting the optimal alternative based on the reference point approach

gmj rl – ajl rm – ajm ru – aju

A1 (0.3, 0.5, 0.7) 0.500 0.10 0.00 0.10
A2 (0.4, 0.5, 0.6) 0.500 0.00 0.00 0.20
A3 (0.3, 0.5, 0.6) 0.467 0.10 0.00 0.20
A4 (0.3, 0.4, 0.8) 0.500 0.10 0.10 0.00
R (0.4, 0.5, 0.8) 0.567

In Table B2, there are shown distances between the alternatives and the fuzzy reference 
point obtained by using three approaches discussed in the subsection 3.3. As it can be seen, 
the proposed approaches give different ranking results.

Table B2. Ranking results obtained by using approaches proposed in the subsection 3.3

1st approach 2nd approach 3rd approach

dj Rank dj Rank dj Rank

A1 (0.3, 0.5, 0.7) 0.067 1 0.082 1 0.100 1
A2 (0.4, 0.5, 0.6) 0.067 1 0.115 3 0.200 3
A3 (0.3, 0.5, 0.6) 0.100 4 0.129 4 0.200 3
A4 (0.3, 0.4, 0.8) 0.067 1 0.082 1 0.100 1

To compare the effects obtained by using different approaches, in Table B3 are shown 
results obtained by applying the third approach, but different reference points. In this case, 
except for the fuzzy reference point, the ordinary reference point was used, which is determ-
ined by using Eq. (56):
 *max  i ijui

r x= , (56)

when maxi∈Ω .
As it can be seen from Table B3, the obtained ranking orders of considered alternatives 

are also different.
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Table B3. Ranking results obtained by using different approaches and different reference points

dmax Fuzzy dmax Crisp

dj Rank dj Rank

A1 (0.3, 0.5, 0.7) 0.100 1 0.90 2

A2 (0.4, 0.5, 0.6) 0.200 3 0.90 2

A3 (0.3, 0.5, 0.6) 0.200 3 1.00 4
A4 (0.3, 0.4, 0.8) 0.100 1 0.90 1
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