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abstract. In this paper, we consider the forecasting power, both in- and out-of-sample, of 11 financial 
variables with respect to the growth rate of Indian industrial production over the monthly out-of-
sample period of 2005:4–2011:4, using an in-sample of 1994:1–2005:3. The financial variables used 
are: M0, M1, M2, M3, lending rate, 3-month Treasury bill rate, term spread, real effective exchange 
rate, real stock prices, dividend yield and non-food credit growth. We observe that that, at times, 
in-sample and out-of-sample predictive ability of the financial variables tend to coincide. We find 
relatively strong evidence of out-of-sample predictability for at least one of the horizons for M0, 
M1, M2, M3, the lending rate and real share price growth rate. The term-spread and dividend yield 
are added to the list when weaker versions of the out-of-sample test statistics are considered as well. 
Given that we consider a large number of financial variables, when we checked the significant results 
by accounting for data mining across the 11 financial variables, majority of these results ceases to 
be significant, with only M0, M1 and M2 retaining some of its predictive ability.
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introduction

There exists a large international literature dealing with the role of financial variables in 
forecasting real output growth1. However, as far as India is concerned, there is virtually no 
studies dealing with this issue. The four papers, distantly related to this topic that we could 
come across are the recent works by Ray and Chatterjee (2001), Biswas et al. (2010), kar 
and Mandal (2011) and Bhattacharya et al. (2011). Biswas et al. (2010), used a three-vari-
able Bayesian vector autoregressive (BVaR) model, comprising of industrial production, 
whole sale price index and M1, to forecast inflation and industrial production growth. 
They showed that the BVaR model outperformed its classical counterpart in forecasting 
both inflation and output growth, but the study did not emphasize the role M1 plays in 
the forecasting performance of the two key macro variables. While Ray and Chatterjee 
(2001) indicated financial variables (stock price inflation, broad money (M3) growth 
rate, call money rate, gold price inflation and exchange rate) did not Granger-cause gross 
domestic product (GDP) growth2, kar and Mandal (2011) indicated that non-food credit 
and stock prices did Granger-cause the growth rate of industrial production. Bhattacharya 
et al. (2011) used financial variables, such as deposits, non-food credit growth and the 
national stock exchange turnover, in their bridge-equation3 for now casting the GDP. In 
general, as can be seen, the little evidence, at times conflicting, that exists regarding the 
role of financial variables in forecasting Indian output growth is mainly in-sample. and 
as is well-known, it is possible for a variable to carry significant in-sample information 
even when it is not the case out-of-sample (Rapach et al. 2005; Rapach, Wohar 2006). 
also, Beck et al. (2000, 2004) points out that, forecasting is at the root of inference in 
time series analysis. Further, as argued by Clements and Hendry (1998), in time series 
models, estimation and inference essentially means minimizing of the one-step (or mul-
ti-step) forecast errors. Hence, establishing a model superiority boils down to showing 
that it produces smaller forecast errors than its competitors. In other words, one needs 
to analyse whether adding financial variables over and above the information already 
contained in the lagged output growth improves predictability of the latter over an out-
of-sample, besides within-sample.

against this backdrop, we consider the forecasting power of 11 financial variables 
with respect to the growth rate of Indian industrial production over the monthly out-
of-sample period of 2005:4–2011:4, using an in-sample of 1994:1–2005:3. The length of 
our entire sample period is governed by data availability, while, the starting point of the 
out-of-sample period is motivated by the fact that the growth rate of the Indian industrial 
production became more volatile ever since, as can be seen from Figure 1. Note that, we 
use industrial production as a measure of output rather than the GDP, simply because of 
the fact that quarterly values of the latter are only available from the beginning of 1994. 
Given this, we felt that around seventy data points covering eighteen years (1994–2011) 

1 Refer to Stock and Watson (2003) and, more recently, Rossi and Sekhposyan (2010) and Espinoza et al. (2012), for 
a detailed literature review in this regard.

2 The study found that barring the gold price inflation and the exchange rate, the three other financial variables 
Granger-caused commodity price inflation.

3 a bridge equation is generally designed to “bridge” early releases of monthly indicators with quarterly GDP.
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or so, would be too small a sample to yield statistically significant results, and hence, fail 
to yield credibility to our analysis. Further, even in the current scenario where services 
are undertaking an increasing weight in economies around the world, forecasting the in-
dustrial production index is an important task for short-term economic analysis. In fact, 
because some of the services activities (such as business services) are closely linked to the 
industrial ones, the industrial sector is still important in explaining aggregate fluctuations. 
In addition, forecasts of industrial production can be useful in more general forecasting 
models. For example, Bhattacharya et al. (2011), use the industrial production index in 
the bridge-equation for forecasting the quarterly Indian GDP. In this case, reliable three-
month ahead forecasts would be extremely helpful. Furthermore, the industrial produc-
tion index series could be used to derive cyclical indicators of the manufacturing sectors, 
which, in turn, requires signal extraction techniques, and, hence, accurate forecasts of the 
industrial production that needs to be filtered are essential4.

4 See Bruno and Lupi (2004) for further details regarding the importance of forecasting industrial production.

Fig. 1. Industrial production in levels and growth rates
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The 11 financial variables used in this study, namely, M0, M1, M2, M3, lending rate, 
3-month Treasury bill rate, term spread, real effective exchange rate, real stock prices, 
dividend yield and non-food credit growth, are quite popular in the extant literature 
(Rapach, Weber 2004). For each financial variable, we construct recursive out-of-sample 
forecasts of industrial production growth over the 2005:4–2011:4 period based on an 
autoregressive distributed lag (aRDL) model that includes a given financial variable 
as an explanatory variable. We use the Harvey et al. (1998) and Clark and McCracken 
(2001) statistics to test the null hypothesis that the out-of-sample forecasts of industrial 
production growth from a benchmark autoregressive (aR) model encompass the fore-
casts from the aRDL model that includes a given financial variable. To understand better 
the idea of forecast encompassing, consider two sets of out-of-sample forecasts of the 
industrial production: one from an aRDL model that includes a financial variable and 
one from the benchmark aR model, and consider forming an optimal composite forecast 
as a convex combination of the forecasts from the two models. If the optimal weight 
attached to the forecast from the aRDL model is greater than zero (equal to zero), then 
the aRDL model does (does not) contain information that is useful for forecasting the 
output growth apart from the information already contained in the aR model. Clark and 
McCracken (2001, 2005) indicates that there are a number of econometric issues that 
arise when comparing forecasts from two nested models, as is obviously the scenario in 
our applications. Hence, following the recommendations of Clark and McCracken (2005), 
we base our inferences on a bootstrap procedure similar to the one in kilian (1999). 
Furthermore, given that we consider a large number of financial variables, we check 
the robustness of our results using a version of the Inoue and kilian (2005) bootstrap 
procedure that explicitly controls for data mining. The rest of the article is organized 
as follows: We lay out the basics of the approaches used to testing for forecasting ability 
in Section 1. Section 2 presents that data, and discusses forecasting test results. In this 
section, we also check whether the significant results can be attributed to data mining. 
The final section contains concluding remarks.

1. econometric methodology

Let us define: 1t t ty y y −∆ = − , where ty  is the log-level of industrial production at time t . 

also let 1
h

t h t iiz y+ +== ∆∑ . Given this, the aRDL model can be defined as follows:

 
1 21 1

0 0
,

q q

t h i t i i t i t h
i i

z y x
− −

+ − − +
= =

= α + β ∆ + γ ∆ + ε∑ ∑  (1)

with h, the forecasting horizon; tx , the financial variable and t h+ε , the disturbance term. as 
the t hz + observations will be overlapping in this case, the disturbance term is serially correlated 
when 1h > . To account for the serial correlation in the disturbance term, a Newey and West 
(1987) – type heteroscedasticity and autocorrelation-consistent (HaC) covariance matrix is 
be used. although we are primarily interested in out-of-sample tests, it is straightforward 
to conduct an in-sample test of the forecasting ability of tx by using all of the available ob-
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servations to conduct a Wald test of the null hypothesis that 
20 1... 0q −γ = = γ = . If we reject 

this null hypothesis, this is evidence that the financial variable tx  has in-sample forecasting 
ability with respect to future output growth.

To assess the simulated out-of-sample forecasting ability of a given financial variable with 
respect to output growth, we use a recursive scheme. This allows us to simulate the situation 
of a forecaster in real time. We divide the total sample of T observations into an in-sample 
(first R observations) and an out-of-sample (remaining P observations). We compute out-
of-sample forecasts from the unrestricted version of equation (1) and also from a restricted 
version that excludes the financial variable (Eq. (1) with 

20 1... 0q −γ = = γ = ). our recursive 
scheme continuously updates the parameter estimates of the models by adding one ob-
servation at a time from the out-of-sample to the expanding in-sample, and forecasting 
h-steps ahead. This results in two sets of T−R−h+1 recursive out-of-sample forecast 
errors, one each for the unrestricted and restricted regression models ( 1,ˆ{ }T h

t h t Ru −
+ =  and

0,ˆ{ }T h
t h t Ru −
+ = , respectively)5 .

The next step is to compare the simulated out-of-sample forecasts from the unres-
tricted and restricted models. and we do this by using the Theil’s U metric, which, 
in turn, is defined as the ratio of the root mean squared forecast error (RMSFE) for 
the unrestricted model forecasts to the RMSFE for the restricted model forecasts. So, 
if the RMSFE for the unrestricted model forecasts is less (more) than the RMSFE for 
the restricted model forecasts, then ( )1U < > . To test whether the MSFE for the un-
restricted model forecasts is statistically less than the MSFE for the restricted model 
forecasts, we use the Diebold and Mariano (1995) and West (1996) statistic, as well 
as a variant of this statistic due to McCracken (2004). Both statistics are based on the 

loss differential: 2 2
0, 1,

ˆ ˆ ˆt h t h t hd u u+ + += − . Let  1
0 1

ˆ( 1) T h
t ht Rd T R h d MSFE MSFE−−
+== − − + = −∑

and ˆ ˆ( / ) ( )J
dd ddj JS K j J j=−= Γ∑ ,  where  1 2

1 ,ˆ( 1) ( 0,1)T h
i t ht RMSFE T R h u i−−

+== − − + =∑ ,

1 ˆ ˆˆ ( ) ( 1) ( )( )T h
dd t h t h jt R jj T R h d d d d−−

+ + −= +Γ = − − + − −∑ , and ˆ ˆ( ) ( )dd ddj jΓ − = Γ , the Diebold 

and Mariano (1995) and West (1996) statistic can be expressed as:

 
0.5 0.5ˆ( 1) .ddMSE T T R h d S−− = − − + ⋅ ⋅    (2)

Under the null hypothesis of equal forecasting ability, MSFE0 = MSFE1, so that d and 
MSE-T are equal to zero. We test this null hypothesis against the one-sided (upper-tail) 
alternative hypothesis that the MSFE for the unrestricted model forecasts is less than the 
MSFE for the restricted model forecasts (MSFE0> MSFE1), so that MSE-T > 0. We follow 
Clark and McCracken (2005) and use the Bartlett kernel, ( / ) 1 [ / ( 1)],K j J j J= − +  and we set

[1.5 ]J h=  for 1h > , where [•] is the nearest-integer function; for 1h = , we use ˆ ˆ (0)dd ddS = Γ .
The McCracken(2004) variant of the MSE-T statistic is given by:

 


1( 1) / .MSE F T R k d MSFE− = − − + ⋅   (3)

5 For further details, refer to Rapach and Weber (2004).
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an alternative way to judge forecasting ability is based on the notion of forecast 
encompassing. Consider forming an optimal composite out-of-sample forecast of t hz +  
as a convex combination of the out-of-sample forecasts from the unrestricted and re-
stricted models:

 , 1, 0,ˆ ˆ ˆ(1 ) ,c t h t h t hz z z+ + += l + − l   (4)

where 0 1≤ l ≤ . If 0( 0)l = l > , the restricted model forecasts are said to encompass 
(not encompass) the unrestricted model forecasts, because the latter model does not 
contribute any valuable information, over and above that is already contained in the 
restricted model. Harvey et al. (1998) develop a statistic that can be used to test the 
null hypothesis that 0l =  in Eq. (4) against the one-sided (upper-tail) alternative hy-
pothesis that 0l > :

 0.5 0.5ˆ( 1) ,ccENC T T R h c S−− = − − + ⋅ ⋅  (5)

where: 0, 0, 1,ˆ ˆ ˆ ˆ( ),t h t h t h t hc u u u+ + + += −  1 ˆ( 1) ,T h
t ht Rc T R h c−−
+== − − + ∑  

ˆ ˆ( / ) ( ),J
cc ccj JS K j J j=−= Γ∑  

1ˆ ˆ ˆ ˆ ˆ( ) ( 1) ( )( ),T h
cc t h t h jt R jj T R h c c c c−−

+ + −= +Γ = − − + − −∑  and ˆ ˆ( ) ( ).cc ccj jΓ − = Γ  We again use 

( / ) 1 [ / ( 1)],K j J j J= − +  [1.5 ]J h=  for 1h > , and ˆ ˆ (0)dd ddS = Γ  for 1.h =

Clark and McCracken (2001) propose a variant of the ENC-T statistic:

 


1( 1) / .ENC NEW T R k c MSFE− = − − + ⋅   (6)

Clark and McCracken (2001) showed that these four forecast comparison statistics have a 
non-standard asymptotic distribution for 1.h =  Furthermore, Clark and McCracken (2004) 
also showed that these statistics have a nonstandard asymptotic distribution and is not 
asymptotically pivotal for 1h > , when comparing forecasts from nested models, as is our case. 
Hence, Clark and McCracken (2004) recommend basing inferences for the MSE-T, MSE-F, 
ENC-T and ENC-NEW statistics on a bootstrap procedure, given that the statistics are not in 
general asymptotically pivotal. The bootstrap procedure we employ is similar to the one in 
Clark and McCracken (2004), which is a version of the kilian (1999) bootstrap procedure, 
and is discussed in detail in Rapach and Weber (2004). Based on Monte Carlo simulations, 
Clark and McCracken (2001, 2004) indicate that ENC-NEW is the most powerful statistic, 
followed by the ENC-T, the MSE-F and the MSE-T. These rankings suggest that the forecast 
encompassing statistics, especially ENC-NEW, can have important power advantages over 
test statistics based on relative MSFE.6

6 For further details regarding the intuition of these rankings and the potential gains associated with the ENC-type 
statistics over the MSE-types, refer to Rapach and Weber (2004).
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2. data description and empirical results

2.1. data description

The monthly data used in this study, covering the period of 1994:1–2011:4, are obtained 
from the Handbook of Statistics on the Indian economy provided by the Reserve Bank of 
India (RBI),Global Financial Database (GFD) and International Monetary Fund’s (IMF) 
International Financial Statistics (IFS). as discussed before, we use the industrial produc-
tion index as a proxy for Indian output, while, 11 financial variables are used as possible 
predictors of the growth rate of industrial production. Besides, the real non-food credit 
growth, the financial variables used include four monetary aggregates, three interest rate 
variables, two stock market variables and the real effective exchange rate. The monetary 
variables are the monetary base (M0), M1, M2 and M3.The interest rate variables comprise 
of the lending rate, 3-month Treasury bill rate and the term spread, with the latter calcu-
lated as the difference between annualized returns on the long-term government bonds 
(average maturity of 10 years) and 3-month Treasury bills. The two stock market variables 
are real stock prices and dividend yield. Note, the real values of the non-food credit and 
stock prices are obtained by dividing the respective nominal values by the Consumer Price 
Index (CPI)7 . Data on industrial production, M0, M3, lending rate, 3-month Treasury bill 
yield,10-year government bond yield, dividend yield and real effective exchange rate are 
drawn from GFD, and M1, M2, and the CPI data are from the IFS, with the non-food credit 
coming from the RBI. To work with stationary variables, industrial production, the four 
monetary aggregates, real share price, the real effective exchange rate and the real non-food 
credit is transformed into growth rates. While the dividend yields, lending rate and the 
3-month Treasury bill rate are measured in first differences8. We consider horizons h = 1, 
3, 6, 9 and 12 months over a volatile out-of-sample period of 2005:4–2011:4, using an in-
sample of 1994:1-2005:3. Tables 1 and 2 report the results of the forecasting exercise with 
the growth rate of industrial production appearing as the dependant variable in Eq. (1). For 
the out-of-sample period, we use the Schwarz Information Criterion (SIC) and in-sample 
data to determine the lag structure of Eq. (1). We consider values of 1q  from zero to twelve, 
while, we considered values of 2q  from one to twelve to ensure that the financial variable 
appears in the unrestricted model.

Table 1. Forecasting test results for the out-of-sample period

Horizon(h) 1 month 3 months 6 months 9 months 12 months
M0 growth
q

1 11 9 6 3 0
q

2 11 11 11 8 1
Wald 105.02(0.00) 70.57(0.00) 26.86(0.00) 35.25(0.00) 0.53(0.65)

7 Note that our data sources provide a series for the real effective exchange rate on its own, hence, it was not necessary 
for us to convert the nominal effective exchange rate to its real counterpart.

8 The stationarity of the variables were tests using standard unit root tests. These results are available upon request 
from the authors.
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Horizon(h) 1 month 3 months 6 months 9 months 12 months
U 0.89 0.90 0.99 0.99 1.00
MSE-T 1.97(0.01) 0.93(0.06) 0.12(0.22) 0.15(0.24) –0.19(0.46)
MSE-F 18.40(0.00) 16.81(0.00) 1.71(0.01) 1.35(0.03) –0.08(0.44)
ENC-T 3.24(0.00) 1.76(0.05) 0.89(0.13) 0.91(0.15) –0.03(0.58)
ENC-NEW 16.25(0.00) 16.61(0.00) 5.70(0.00) 3.84(0.00) –0.01(0.57)
M1 growth
q

1 12 12 6 3 1
q

2 1 1 10 7 5
Wald 0.43(0.56) 0.38(0.54) 18.64(0.01) 9.22(0.02) 7.10(0.04)
U 1.01 1.01 1.05 1.09 1.14
MSE-T –0.44(0.39) –0.52(0.39) –0.56(0.48) –0.89(0.58) –1.36(0.78)
MSE-F –0.94(0.68) –0.88(0.75) –5.85(0.97) –10.00(0.99) –14.35(0.99)
ENC-T 0.72(0.16) 0.75(0.15) 1.28(0.09) 0.17(0.36) –0.26(0.48)
ENC-NEW 0.71(0.11) 0.65(0.07) 6.13(0.00) 0.93(0.04) –1.29(0.98)
M2 growth
q

1 12 12 6 3 1
q

2 1 1 1 1 1
Wald 8.62(0.02) 5.44(0.03) 1.65(0.26) 0.34(0.64) 1.58(0.25)
U 0.98 0.99 1.01 1.01 1.01
MSE-T 1.76(0.00) 1.97(0.00) –0.82(0.58) –1.79(0.90) –0.96(0.61)
MSE-F 2.51(0.01) 1.92(0.01) –1.18(0.82) –0.86(0.76) –1.05(0.81)
ENC-T 2.77(0.00) 2.27(0.01) –0.30(0.52) –1.24(0.82) –0.29(0.51)
ENC-NEW 2.41(0.01) 1.13(0.04) –0.21(0.71) –0.26(0.78) –0.17(0.67)
M3 growth
q

1 12 12 6 3 0
q

2 1 1 1 1 1
Wald 5.49(0.06) 3.90(0.09) 0.01(0.94) 0.07(0.78) 0.01(0.94)
U 0.99 0.98 1.01 1.00 1.00
MSE-T 0.96(0.04) 2.11(0.00) –1.22(0.75) –1.38(0.79) –1.81(0.89)
MSE-F 1.63(0.05) 2.55(0.02) –0.88(0.75) –0.29(0.46) –0.58(0.72)
ENC-T 1.46(0.05) 2.20(0.01) –1.14(0.81) –1.22(0.82) –1.75(0.91)
ENC-NEW 1.24(0.08) 1.40(0.05) –0.40(0.86) –0.12(0.59) –0.28(0.82)
Lending rate, first difference
q

1 12 12 6 3 0
q

2 1 1 1 1 1
Wald 4.06(0.10) 2.92(0.18) 2.37(0.27) 4.87(0.10) 0.00(0.98)
U 1.04 1.00 1.00 0.99 1.01
MSE-T –1.21(0.73) –0.33(0.35) 0.53(0.20) 0.75(0.15) –0.91(0.57)
MSE-F –5.46(0.97) –0.49(0.54) 0.37(0.18) 0.95(0.07) –1.00(0.76)
ENC-T 0.88(0.15) 0.52(0.24) 0.81(0.24) 0.78(0.26) –0.80(0.67)
ENC-NEW 1.19(0.08) 0.60(0.13) 0.30(0.24) 0.52(0.15) –0.43(0.84)
3-month Treasury bill rate, first difference
q

1 12 12 6 3 1

Continued Table 1
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Horizon(h) 1 month 3 months 6 months 9 months 12 months
q

2 1 1 1 1 1
Wald 1.83(0.20) 2.17(0.20) 1.12(0.36) 0.43(0.59) 0.34(0.61)
U 1.01 1.00 1.00 1.00 1.02
MSE-T –0.56(0.43) 0.10(0.25) –0.13(0.33) 0.37(0.22) –1.18(0.70)
MSE-F –1.56(0.84) 0.20(0.20) –0.05(0.31) 0.07(0.28) –2.31(0.92)
ENC-T –0.02(0.36) 0.71(0.20) 0.31(0.31) 0.42(0.32) –0.96(0.70)
ENC-NEW –0.03(0.38) 0.70(0.12) 0.06(0.34) 0.04(0.40) –0.82(0.93)
Term spread
q

1 12 12 6 3 1
q

2 3 1 1 2 1
Wald 1.67(0.23) 0.27(0.65) 3.09(0.19) 4.74(0.12) 0.46(0.61)
U 1.06 1.06 0.98 0.99 1.00
MSE-T –2.38(0.99) –1.73(0.84) 1.14(0.07) 0.71(0.14) –0.50(0.46)
MSE-F –8.09(0.99) –7.66(0.97) 2.56(0.08) 1.39(0.13) –0.53(0.44)
ENC-T –1.24(0.83) –1.34(0.79) 1.24(0.13) 0.96(0.20) –0.18(0.48)
ENC-NEW –1.92(0.98) –2.70(0.97) 1.54(0.14) 1.00(0.20) –0.09(0.48)
Dividend yield, first difference
q

1 12 12 6 3 0
q

2 1 1 1 1 1
Wald 1.83(0.25) 1.19(0.36) 0.00(0.95) 2.94(0.17) 1.85(0.26)
U 1.00 1.00 1.01 0.99 1.00
MSE-T 0.76(0.09) 0.15(0.22) –1.94(0.95) 0.84(0.13) 1.07(0.11)
MSE-F 0.52(0.14) 0.15(0.22) –0.88(0.70) 0.95(0.09) 0.37(0.17)
ENC-T 0.90(0.14) 0.27(0.31) –1.80(0.95) 0.91(0.21) 1.11(0.19)
ENC-NEW 0.31(0.24) 0.13(0.31) –0.40(0.81) 0.52(0.15) 0.20(0.26)
Real effective exchange rate, first difference
q

1 12 12 6 3 0
q

2 3 1 1 1 1
Wald 2.49(0.18) 2.86(0.16) 0.14(0.74) 0.45(0.60) 2.05(0.26)
U 1.03 1.02 1.01 1.01 1.00
MSE-T –1.99(0.92) –1.47(0.80) –2.01(0.95) –1.37(0.77) –0.33(0.44)
MSE-F –4.60(0.97) –2.74(0.92) –0.86(0.69) –0.88(0.72) –0.33(0.55)
ENC-T –1.02(0.73) –0.54(0.57) –1.69(0.93) –1.06(0.75) 0.26(0.38)
ENC-NEW –1.13(0.94) –0.48(0.82) –0.35(0.76) –0.32(0.75) 0.12(0.34)
Real share price growth
q

1 12 12 6 3 1
q

2 1 1 1 1 1
Wald 4.91(0.08) 8.41(0.01) 1.72(0.26) 4.19(0.10) 3.45(0.15)
U 0.99 0.98 1.00 0.99 0.99
MSE-T 1.08(0.04) 0.75(0.09) 0.61(0.14) 1.01(0.09) 0.64(0.18)
MSE-F 1.90(0.04) 2.33(0.03) 0.54(0.17) 1.86(0.04) 0.82(0.16)
ENC-T 1.55(0.05) 1.33(0.07) 0.71(0.22) 1.25(0.13) 1.21(0.18)
ENC-NEW 1.40(0.08) 2.33(0.03) 0.33(0.25) 0.23(0.08) 0.73(0.19)

Continued Table 1
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Horizon(h) 1 month 3 months 6 months 9 months 12 months
Real non-food credit growth
q

1 12 12 6 3 1
q

2 1 1 1 1 1
Wald 0.11(0.79) 0.42(0.64) 0.11(0.81) 1.94(0.26) 0.09(0.78)
U 1.01 1.02 1.02 1.00 1.01
MSE-T –1.09(0.69) –1.87(0.91) –1.16(0.68) 0.43(0.17) –0.85(0.59)
MSE-F –0.88(0.62) –2.27(0.84) –2.28(0.86) 0.29(0.20) –1.11(0.75)
ENC-T –0.63(0.63) –1.44(0.90) –1.00(0.73) 0.46(0.30) –0.64(0.62)
ENC-NEW –0.25(0.63) –0.87(0.91) –0.99(0.92) 0.15(0.32) –0.42(0.80)

Notes: The out-of-sample period is 2005:4–2011:4. q
1 
and q

2 
are the lags of the aRDL equation. Wald is computed 

using data over 1994:1–2011:4 period. Boot strapped p-values are given in parentheses. 0.00 signifies < 0.005. 
Bold numbers indicate significance at the 10% level according to the bootstrapped p-values.

Table 2. Least squares estimations of l

Horizon(h) 1 month 3 months 6 months 9 months 12 months

M0growth
l 0.9056 0.9124 0.2350 0.2124
U 0.8891 0.8958 0.9507 0.9508
M1growth
l 0.2614 0.1048 0.1044
U 0.9898 0.9542 0.9506
M2growth
l 0.9631 0.9688
U 0.9645 0.9588
M3growth
l 0.9047 0.9450
U 0.9691 0.9278
Lending rate, first difference
l 0.1745
U 0.9849
Real share price growth
l 0.9493 0.9515 0.9218
U 0.9740 0.9763 0.9458

Notes: l is the estimated weight attached to the unrestricted model out-of-sample forecast in an optimal 
composite out-of-sample forecast; the weight is estimated using a regression model with an intercept term.

Continued Table 1
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2.2. empirical results

Table 1 presents forecasting test results for the four out-of-sample test statistics for Indian 
industrial production growth corresponding to the 11 financial variables at horizons 1, 3, 6, 9 
and12 months over the 2005:4–2011:4 out-of-sample period. Table 1 further presents values 
of 1q  and 2q  determined by the SIC criterion, the in-sample Wald statistic and Theil’s U. 
Following Rapach and Weber (2004), a bootstrap procedure is used to generate the p-values 
given in parentheses for the Wald and four out-of-sample statistics. We find evidence of in-
sample forecasting power for M0, M1, M2, M3, the lending rate and real share price growth 
rate for at least one of the 5horizon-lengths considered. The strongest evidence is obtained 
for M0. Further, when compared to the existing literature, unlike Ray and Chatterjee (2001), 
we find that stock price, M3 and an interest rate variable (lending rate) do have in-sample 
predictability for output growth. our results corroborate the findings for Ray and Chatterjee 
(2001) regarding the exchange rate, but fail to find in-sample predictability of non-food credit 
growth, unlike kar and Mandal (2011).

When we move to the relative MSFE metric, we find that barring few cases (six-months, 
nine-months and twelve-months ahead forecast horizons for M1 and one-month ahead forecast 
horizon for the first-differenced lending rate), the value of the Theil’s U is less than one for all the 
cases where we found in-sample predictability. However, there are also three cases (six-months 
and nine-months ahead for the term-spread and nine-months ahead for the dividend yield), 
where the Theil’s U is less than one even when there is no in-sample predictability. Now, when 
we turn to the significance of the four out-of-sample statistics for the cases where in-sample 
and out-of-sample predictabilities coincide, we find that at least one of MSE-T, MSE-F, ENC-T 
and ENC-NEW statistics are significant. In fact, barring the nine-months ahead horizon of the 
lending rate, for which the MSE-F statistic is significant at the 10 percent level, the most power-
ful of the out-of-sample statistics, namely ENC-NEW, is significant at least at the ten percent 
level for all the cases where the Theil’s U less than one, and there exists in-sample predictability. 
However, in the case of the nine-month ahead forecast resulting from the term-spread, where 
there is no in-sample predictability, but the Theil’s U is less than one, none of the forecast com-
parison statistics are significant. also note that, for the two cases (six-months ahead for the 
term-spread and nine-months ahead for the dividend yield), where the Theil’s U value is less 
than one without any evidence of in-sample predictability, at least one of the weaker (MSE-T 
and MSE-F) out-of-sample test statistics are significant.

There are four interesting cases, namely, three-months, six-months and nine-months 
ahead forecast horizons for M1, and one-month ahead forecast horizon for the first-differ-
enced lend ingrate, where the Theil’s U is greater than one, but out-of-sample predictability 
is obtained based on the ENC-NEW test statistic. Note that, for the case of three-months 
ahead forecast for M1, there is no evidence of in-sample predictability. at this stage, it is 
important to highlight what the ENC statistics mean, since it might seem counterintuitive 
to have out-of-sample forecasting ability from a specific variable, even when the Theil’s U 
exceeds one. Intuitively, the significance of the ENC statistics reflects the fact that the aR 
(restricted) model forecasts have little explanatory power for the aRDL (unrestricted) 
model forecast errors, so that the aRDL model forecasts must contain information not 
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found in the aR model forecasts. That is, if the aR model forecast errors contain little 
information for predicting the aRDL errors, the aR model does not forecast encompass 
the aRDL model, even if the two model yield forecast errors with very similar variances. 
In addition, the ENC statistics are also likely to be significant when the aR and aRDL 
model forecast errors have strong negative correlation. In this case, aR model forecast 
errors of a given sign are associated with aRDL model forecast errors of the opposite 
sign, so that the optimal composite forecast should incorporate information from both 
the aR and aRDL models. In general, we find relatively strong evidence (based on the 
ENC-NEW statistics) of out-of-sample predictability for at least one of the horizons 
considered for M0, M1, M2, M3, the lending rate and real share price growth rate. The 
term-spread and dividend yield are added to the list when weaker versions of the out-
of-sample test statistics are considered as well. overall, eight out of the eleven financial 
variables considered contain some form of out-of-sample predictability for the Indian 
industrial production growth rate.

our results point to at least six financial variables, where, for at least one of the five 
out-of-sample horizons considered, we can reject the null hypothesis that forecasts of 
industrial production growth generated by a benchmark aR model encompass forecasts 
generated by a more general aRDL model that includes a financial variable. However, 
such tests of statistical significance fail to provide us information about by how much 
these financial variables improve forecasts, i.e. these tests do not inform us of economic 
significance of our results. Given this, Table 2 reports the estimated weight, l , attached 
to the aRDL model forecast in forming the optimal composite forecast. We only consider 
the cases in Table 1, for which the ENC-T and/or the ENC-NEW statistics are signific-
ant at the 10 percent level. Following Granger and Ramanathan (1984), we report the 
estimates of l  that are obtained with an intercept term included in Eq. (4). Note that, 
as l  increases the unrestricted model forecast is relatively more important in gener-
ating the optimal composite forecast. Though all the estimates of l  are significant at 
the 10 percent level, as is known from Table 1, its estimates vary considerably in Table 
2. Barring the equations involving M1 growth, the first-difference of the lending rate, 
and longer horizons of M0 growth, where the values of l  lie between 0.1044 to 0.2614, 
the other estimated values of l  are exceptionally high and all over 0.9056. In the latter 
cases, forecasts formed from using the aRDL model, i.e. including financial variables, 
play a quantitatively important role in generating the optimal composite of the growth 
rate of the Indian industrial production. also in number of cases, as can be seen from 
the U measures reported in Table 2, there is considerable reduction in the relative MSFE 
for the optimal composite forecasts relative to the benchmark aR forecasts.

In Figure 2, we analysed the ability of the 11 financial variables in predicting the turning 
points of the growth rate of industrial production over the seventy-three months out-of-sample 
period of 2005:4 to 2011:4. In this regard, we plot the one-step-ahead forecasts obtained 
from the recursive estimation of the aR and the 11 individual aRDL models over the out-
of-sample period. The recursive scheme allows us to simulate the situation of a forecaster in 
real time. as can be seen from Figure 2, all the financial variables tend to behave similarly in 
predicting the turning points of the growth rate of industrial production. and, in general, 
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Fig. 2. out-of-sample one-step-ahead recursive forecast plots (2005:4–2011:4)
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barring the end of the sample where the aR and aRDL models predicted a slowdown in the 
growth rate of the industrial production when the same actually witnessed an increase in the 
growth rate, all the models perform equally well for the other turning points. In sum, it is 
difficult to differentiate between the role played by the individual financial variables relative 
to each other and also the aR model based on the turning point exercise.

We have indicated that majority of the 11 financial variables considered evince ability to 
forecast and predict the turning points of industrial production growth over the out-of-sample 
period of 2005:4–2011:4. But, given that we consider a large number of financial variables, it is 
fair to wonder, as suggested by Gupta and Modise (2012), if our significant results reported in 
Table 1 are due to data mining across the 11 financial variables, even though it is believed that 
out-of-sample tests are, in general, immune to data mining. Inoue and kilian (2005), however, 
suggest that both in-sample and out-of-sample tests are equally susceptible to data mining. 
For this reason, we implement a version of the data-mining bootstrap procedure developed 
by Inoue and kilian (2005). In our case, the null hypothesis posits that none of the 11 finan-
cial variables considered has out-of-sample predictive ability over the out-of-sample period, 
with the alternative hypothesis being that at least one of the financial variables has forecasting 
power over the out-of-sample. Inoue and kilian (2005) recommend using the maximal out-of-
sample test statistic to implement this test, whereby we test the null hypothesis that the largest 
specific out-of-sample test statistic (MSE-T, MSE-F, ENC-T or ENC-NEW) concerned for the 
11 financial variables is equal to zero against the alternative that the same is greater than zero. 
Table 3 reports the data-mining-robust critical values corresponding to Table 1 for the out-of-
sample period forecasting exercise of the industrial production growth rate. Given the ranking 
of the out-of-sample test statistics, we are most interested in checking whether the significant 
ENC-T and ENC-NEW tests reported in Table 1, continue to remain significant after we use 
data-mining-robust critical values. Comparing the results in Table 1 with that of Table 3, it is 
clear that a majority of our positive out-of-sample results suffer from data mining. as can now 
be seen, only M0 (one-month, three-months, six-months and nine-months), M1 (six-months) 
and M2 (one-month) retain some of its predictive ability with respect to industrial production. 
Three-months ahead forecasts from M2and M3 is added to this list, if we consider the relat-
ively weaker MSE-T statistic. Interestingly, the forecasting ability of the real stock price growth 
rate completely disappears. our results, thus, highlight the importance of accounting for data 
mining, since if ignored, one could be led to falsely over emphasizing the ability of financial 
variables in predicting the growth rate of Indian industrial production.

Table 3. Data-mining-robust boot strap critical values for the maximal out-of-sample statistic

Hori zon 
(h) 1 month 3 months 6 months 9 months 12 months

Sig.
Level 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%

MSE-T 1.64 1.88 2.28 1.85 2.21 2.76 2.29 2.56 3.11 2.49 2.72 3.39 2.85 3.28 4.04
MSE-F 3.42 4.45 6.48 3.68 4.64 7.26 4.14 5.62 11.13 5.46 8.12 12.42 5.41 6.90 12.20
ENC-T 2.22 2.44 2.77 2.40 2.67 3.74 2.83 3.10 3.78 3.11 3.46 4.92 3.60 4.18 5.54
ENC-
NEW 3.44 4.55 6.60 3.56 4.96 7.33 4.26 6.14 10.86 5.60 9.06 16.79 4.70 7.00 11.68
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conclusions

The little evidence, at times conflicting, that exists regarding the role of financial variables in 
forecasting Indian output growth is mainly in-sample. against this backdrop, we consider the 
forecasting power, both in- and out-of-sample, of 11 financial variables with respect to Indian 
industrial production growth rate over the monthly out-of-sample period of 2005:4–2011:4, 
using an in-sample of 1994:1–2005:3. The financial variables used in this study, namely, M0, 
M1, M2, M3, lending rate, 3-month Treasury bill rate, term spread, real effective exchange rate, 
real stock prices, dividend yield and non-food credit growth, are quite popular in the extant 
literature. We observe strong evidence of out-of-sample predictability for at least one of the 
horizons for M0, M1, M2, M3, the lending rate and real share price growth rate. The term-
spread and dividend yield are added to the list when weaker versions of the out-of-sample test 
statistics are considered as well. We also observe that, at times, in-sample and out-of-sample 
predictive ability of the financial variables tend to coincide. Given that we consider a large 
number of financial variables, when we checked the significant results by accounting for data 
mining across the 11 financial variables, majority of these results are found not to be robust 
to data mining. once, we control for data mining only M0, M1 and M2 retain some of its 
predictive ability. In light of this result of limited predictability of the Indian output growth 
based on financial variables in a linear framework, future research would aim to analyse the 
same in a non-linear framework along the lines of Peel and Paya (2004).
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