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Abstract. In this paper, we present the induced uncertain Euclidean ordered weighted averaging 
distance (IUEOWAD) operator. It is an extension of the OWA operator that uses the main character-
istics of the induced OWA (IOWA), the Euclidean distance and uncertain information represented 
by interval numbers. The main advantage of this operator is that it is able to consider complex 
attitudinal characters of the decision-maker by using order-inducing variables in the aggregation 
of the Euclidean distance. Moreover, it is able to deal with uncertain environments where the in-
formation is very imprecise and can be assessed with interval numbers. We study some of its main 
properties and particular cases such as the uncertain maximum distance, the uncertain minimum 
distance, the uncertain normalized Euclidean distance (UNED), the uncertain weighted Euclidean 
distance (UWED) and the uncertain Euclidean ordered weighted averaging distance (UEOWAD) 
operator. We also apply this aggregation operator to a group decision-making problem regarding 
the selection new artillery weapons under uncertainty.
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Introduction

A wide range of aggregation operators are found in the literature (Beliakov et al. 2007; Calvo 
et al. 2002; Torra, Narukawa 2007; Yager et al. 2011). One common aggregation method is 
the ordered weighted averaging (OWA) operator (Yager 1988). It provides a parameterized 
family of aggregation operators that include as special cases the maximum, the minimum 
and the average. Since its appearance, the OWA operator has been used in a wide range of 
applications (Chang, Wen 2010; Liu, Jin 2012; Merigó, Gil-Lafuente 2010; Wei 2012; Yager 
2007; Yu 2013; Zarghami, Szidarovszky 2009; Zhang, Xu 2013; Zhou et al. 2012).

An interesting extension of the OWA operator is the induced OWA (IOWA) operator 
(Yager, Filev 1999). The difference is that the reordering step is no longer determined only 
by the values of the arguments, but could be induced by another mechanism, such as the 
ordered position of the arguments; in other words, the reordering can depend on the values 
of their associated order-inducing variables. In the last few years, the IOWA operator has 
received increasing attention, e.g. Chen and Zhou (2011), Liu et al. (2013), Chiclana et al. 
(2007), Merigó and Casanovas (2011a), Su et al. (2013), Xu and Wang (2012), Yu and Xu 
(2013), Wei and Zhao (2012, 2013), Yager et al. (2011).

When using the IOWA operator, it is assumed that the available information is exact num-
bers. However, this may not be the real situation found in the specific problem considered. 
Sometimes, the available information is vague or imprecise and it is not possible to analyze it 
with exact numbers. Therefore, it is necessary to use another approach that is able to assess the 
uncertainty such as the use of interval numbers (Moore 1966; Xu, Da 2002). By using interval 
numbers we can consider a wide range of possible results between the maximum and the 
minimum. In order to extend the IOWA operator to accommodate these uncertain situations, 
Xu (2006) developed the uncertain IOWA (UIOWA) operator. Basically, it is an aggregation 
operator that deals with uncertain information represented in the form of interval numbers. 
Since its introduction, several authors have developed further improvements. For example, 
Merigó and Casanovas (2011d) generalized it by using generalized and quasi-arithmetic 
means and developed the uncertain induced quasi-arithmetic OWA (Quasi-UIOWA) opera-
tor. Based on the heavy OWA (HOWA) operator, Merigó and Casanovas (2011e) developed 
the uncertain induced heavy OWA (UIHOWA) operator. Merigó et al. (2012) developed the 
uncertain induced ordered weighted averaging-weighted averaging (UIOWAWA) operator.

A further interesting extension is the one that uses OWA and IOWA operator in dis-
tance measures. Recently, motivated by the idea of the OWA operator, Xu and Chen (2008) 
defined the ordered weighted distance (OWD) measure whose prominent characteristic is 
that they can alleviate (or intensify) the influence of unduly large (or small) deviations on 
the aggregation results by assigning them low (or high) weights. Merigó and Gil-Lafuente 
(2010) developed the ordered weighted averaging distance (OWAD) operator by using the 
OWA operator in the Hamming distance. Zeng and Su (2011) extended the OWD and the 
OWAD operator to intuitionistic fuzzy sets and developed the intuitionistic fuzzy ordered 
weighted distance (IFOWD) operator. On the basis of the idea of the IOWA operator, Merigó 
and Casanovas (2011a) presented an induced ordered weighted averaging distance (IOWAD) 
operator that extends the OWA operator by using distance measures and a reordering of 
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arguments that depends on order-inducing variables. The IOWAD generalizes the OWAD 
operator and provides a parameterized family of distance aggregation operators between the 
maximum and the minimum distance. Going a step further, Merigó and Casanovas (2011b) 
presented the induced Euclidean ordered weighted averaging distance (IEOWAD) operator, 
which uses the IOWA operator and the Euclidean distance in the same formulation. It gener-
alizes the Euclidean ordered weighted averaging distance (EOWAD) operator and provides 
a parameterized family of distance aggregation operators between the maximum and the 
minimum distance based on a complex reordering process that reflects the complex attitudinal 
character of the decision-maker. The IEOWAD operator is very useful for decision-making 
problems because it can establish a comparison between an ideal, though unrealistic, alterna-
tive and available options in order to find the optimal choice. As such, the optimal choice is 
the alternative closest to the ideal one. The main advantage of the IEOWAD operator is that 
it is able to deal with complex attitudinal characters (or complex degrees of orness) in the 
decision process by using order-inducing variables. In doing so, we are able to deal with more 
complex problems that are closer to real-world situations. For further research on the use of 
the OWA and IOWA in distance measures, e.g. Karayiannis (2000), Merigó and Casanovas 
(2011c), Peng et al. (2013), Zeng (2013), Zeng and Su (2012).

Usually, when using the IEOWAD operator, it is assumed that the available information 
is clearly known and can be assessed with exact numbers. The aim of this paper is to present 
a new uncertain decision-making model by using the IEOWAD operator. To do so, we will 
develop an induced uncertain Euclidean ordered weighted averaging distance (IUEOWAD) 
operator, which is an extension of the IEOWAD operator with interval numbers. Therefore, 
it is an extension of the OWA operator that uses the main characteristics of the induced 
OWA (IOWA), the Euclidean distance and uncertain information represented by interval 
numbers. It is also a unified model that uses the uncertain IOWA (UIOWA) operator and the 
Euclidean distance in the same formulation. By using distance measures in the IUEOWAD 
operator, we can compare the real-world information with ideal information and see which 
alternative better fits with the interests of the decision-maker. For example, in human re-
source selection, we can establish an ideal candidate that would perfectly fit the company 
and compare it with the real-world alternatives that we have in the market and select the 
candidate with closest results to the ideal one. The main advantage of the IUEOWAD is that 
it can deal with uncertain environments represented in the form of interval numbers and 
with complex reordering processes of the information. In decision-making problems, this 
means that we are considering complex attitudinal characters of the decision-maker that re-
flect psychological aspects, pressure, utility, and a lot of other aspects. Furthermore, this new 
operator generalizes a wide range of uncertain distance measures and aggregation operators 
such as the uncertain maximum distance, the uncertain minimum distance, the uncertain 
normalized Euclidean distance (UNED), the uncertain weighted Euclidean distance (UWED) 
and the uncertain Euclidean ordered weighted averaging distance (UEOWAD) operator. We 
study some of its particular cases. 

We study the applicability of the IUEOWAD operator and we see that it is very broad 
because all the previous studies that use the induced aggregation operators or the Euclidean 
distance can be revised with this new approach. For example, we can apply it to statistics, eco-
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nomics, engineering, physics and medicine. In this paper we focus on a group decision-making 
problem of a military unit purchasing new artillery weapons. Thus, we are able to consider a 
wide range of aggregation operators that could be used in the aggregation. We can see that, 
depending on the aggregation operator used, the results may lead to different decisions. 
Therefore, the decision maker is able to consider a wide range of scenarios and select the one 
that is in accordance with his interests. Moreover, by using several experts in the analysis, 
we obtain information that it is more robust because the opinion of several experts is always 
better than the opinion of one.

This paper is organized as follows. In Section 1 we briefly review some basic concepts. 
Section 2 presents the IUEOWAD operator and Section 3 analyzes different families of 
IUEOWAD operators. Section 4 briefly describes the decision-making process based on the 
developed operator and we give a numerical example in Section 5. The final section sum-
marizes the main conclusions of the paper.

1. Preliminaries

In this section, we briefly review some basic concepts about the interval numbers, the IOWA 
and the IEOWAD operator.

1.1. Interval numbers

The interval number (Moore 1966; Xu, Da 2002) is a very useful and simple technique for 
representing the uncertainty, which has been used in an astonishingly wide range of applica-
tions. The interval numbers can be expressed in different forms. For practical reasons, we use 
the notation introduced by Xu and Da (2002). According to this notation, an interval number 
a  can be noted as: ,L Ua a a =   , where L Ua a≤ . Especially, a  is a real number, if L Ua a= .

In the following, we are going to review some basic interval number operations as follows: 
Let ,L Ua a a =    and ,L Ub b b =  

  be two interval numbers, then:

 1) [ , ]L L U Ua b a b a b+ = + +

 ; 

 2) ,L Ua a a λ = λ λ  , where 0λ ≥ . 

Different approaches have been developed for dealing with interval number such as Chen 
and Zhou (2011), Liu et al. (2012), Pei (2013), Xu (2013), Xu and Cai (2012), Yue (2013). In 
order to measure deviation between interval numbers, Xu (2008) introduced a distance for 
each pair of interval numbers as following:

Definition 1. Let ,L Ua a a =    and ,L Ub b b =  
  be interval numbers, then

 ( ) ( )1,
2

L L U Ud a b a b a b a b= − = − + −  

  , (1)

is called the distance between a  and b . Obviously, the smaller the value of ( ),d a b 

 , the closer 
between a  and b .
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1.2. The Induced OWA Operator

The IOWA operator was introduced by Yager and Filev (1999) and it represents an extension 
of the OWA operator. The main difference is that the reordering step of the IOWA is carried 
out with order-inducing variables, rather than depending on the values of the arguments. 
The IOWA operator also includes the maximum, the minimum and the average operators, 
as special cases. It can be defined as follows: 

Definition 2. An IOWA operator of dimension n  is a mapping IOWA: n nR R R× →  that 

has an associated weighting vector W with [0,1]jw ∈ and 
1

1
n

j
j

w
=

=∑  such that:

 ( )1 1
1

, ,..., ,
n

n n j j
j

IOWA u a u a w b
=

=∑ , (2)

where jb  is ia  value of the IOWA pair ,i iu a  having the j th largest iu , iu  is the order 
inducing variable and ia  is the argument variable.

1.3. The IEOWAD operator

The IEOWAD (Merigó, Casanovas 2011b) operator is a distance measure that uses the IOWA 
operator in the normalization process of the Euclidean distance. Then, the reordering of the 
individual distances is developed with order inducing variables. For two sets { }1 2, ,..., nA a a a=  
and { }1 2, ,..., nB b b b= , the IEOWAD operator can be defined as follows:

Definition 3. An IEOWAD operator of dimension n  is a mapping f : 
n n nR R R R× × →  

that has an associated weighting vector W with [0,1]jw ∈ and 
1

1
n

j
j

w
=

=∑  such that:

 ( ) ( )( )
1 2

2
1 1 1

1
, , ,..., , ,

n

n n n j j
j

f u a b u a b w d
=

 
 =
 
 
∑ , (3)

where jd  is the i ia b−  value of the IEOWAD triplet  ( ), ,i i iu a b  having the j th largest iu , 

iu  is the order-inducing variable, i ia b−  is the argument variable represented in the form 
of an individual distances.

When using the IEOWAD operator, it is assumed that the available information is rep-
resented in the form of exact numbers. However, this may not be the real situation found in 
the decision-making problems. Sometimes the available information is vague or imprecise 
and it is not possible to analyze it with exact numbers. In this case, it is more suitable to use 
interval numbers to assess the uncertainty. In the following, we shall develop the uncertain 
induced Euclidean OWA distance (UIEOWAD).
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2. Induced Uncertain Euclidean OWA Distance (IUEOWAD) operator

The induced uncertain Euclidean OWA distance (IUEOWAD) operator is an extension of the 
IEOWAD operator that uses uncertain information in the aggregation. The main difference 
between the IUEOWAD and IEOWAD operators is that the IUEOWAD operator addresses 
uncertain information represented using interval numbers, while the IEOWAD operator uses 
exact numbers. The reason for using this operator is that the uncertain factors that affect our 
decisions are sometimes not clearly known; thus, in order to assess the problem, we must 
use interval numbers in order to consider the range of uncertain results that could occur in 
the future. By using interval numbers, we obtain a more complete aggregation operator that 
considers the maximum and minimum results that could occur for a given problem. Moreover, 
by using the IUEOWAD, we obtain a generalization that includes a wide range of uncertain 
distance measures and uncertain aggregation operators such as the uncertain maximum 
distance, the uncertain minimum distance, the uncertain normalized Euclidean distance 
(UNED), the uncertain weighted Euclidean distance (UWED) and the uncertain Euclidean 
ordered weighted averaging distance (UEOWAD) operator. It can be defined as follows.

Definition 4. An IUEOWAD operator of dimension n  is a mapping f : n n nR R×Ω ×Ω →  

that has an associated weighting vector W with [0,1]jw ∈ and 
1

1
n

j
j

w
=

=∑  such that:

 ( )
1 2

2
1 1 1

1
, , ,..., , ,

n

n n n j j
j

f u a b u a b w d
=

 
 =
 
 
∑  

 
, (4)

where jd  is i ia b−   value of the IUEOWAD pair , ,i i iu a b  having the j th largest iu , iu  is 
the order inducing variable and i ia b−   is the argument variable represented in the form 
of an individual distances.

Example 1. Let ( )[0.1,0.5],[0.2,0.6],[0.1,0.7],[0.4,0.5]A =  and ([0.2,0.8]B = , [0.2,0.7], 
[0.4,0.5], )[0.3,0.7]  be two set of interval numbers, then

 ( ) ( )1 1
1, 0.1 0.2 0.5 0.8 0.2
2

d a b = − + − = 

 . 

Similarly, we have

 ( )2 2, 0.05d a b = 

 , ( )3 3, 0.25d a b = 

 , ( )4 4, 0.15d a b = 

 . 

Assume the following weighting vector (0.2,0.4,0.1,0.3)W =  and the order-inducing 
variables (2,3,9,6)U = . If we calculate the distance between A  and B  using the UIEOWAD, 
then we have:

 ( )1 22 2 2 2( , ) 0.2 0.25 0.4 0.15 0.1 0.05 0.3 0.2 0.18f A B = × + × + × + × =  . 

From the above example, we can see that, compared with existing kinds of uncertain in-
duced aggregation operators (Xu 2006; Merigó, Casanovas 2011d, 2011e), the distance of two 
interval numbers adopted in the IUEOWAD operator can reduce computations for interval 
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numbers operations. Second, final evaluation values of uncertain induced aggregation oper-
ators are interval numbers. There are many methods to compare and rank interval numbers, 
and different methods employed may generate different and inconsistent results. The results 
of our proposed operator are crisp numbers, which can avoid inconsistent results by using 
an interval ranking method to rank the alternatives’ final evaluation values. 

From a generalized perspective of the reordering step, we can distinguish between the des-
cending IUEOWAD (DIUEOWAD) operator and the ascending IUEOWAD (AIUEOWAD) 
operator by using wj = w*n-j+1, where wj is the jth weight of the DUIEOWAD and w*n-j+1 the 
jth weight of the AUIEOWAD operator.

Note that if the weighting vector is not normalized, i.e. 1 1n
jj w

=
≠∑ , then, the IUEOWAD 

operator can be expressed as:

 ( )
1 2

2
1 1 1

11

1, , ,..., , ,
n

n n n j jn
jjj

f u a b u a b w d
w ==

 
 =  
 
 

∑
∑

  

  . (5)

Similar to the IEOWAD operator, the IUEOWAD operator is also commutative, mono-
tonic, bounded and idempotent. A further interesting issue is the problem of ties in the 
reordering process of the order inducing variables. In order to solve this problem, we re-
commend following the policy explained by Yager and Filev (1999) about replacing the tied 
arguments by their average. Note that in this case, it would mean that we are replacing the 
tied arguments by their uncertain normalized Euclidean distance.

Another interesting issue to consider is the measures for characterizing the weighting 
vector W of the IUEOWAD operator such as the attitudinal character, the entropy of disper-
sion, the divergence of W and the balance operator (Yager 1988; Merigó, Casanovas 2011a). 
The entropy of dispersion is defined as follows:

 ( ) ( )
1

ln
n

j j
j

H W w w
=

= −∑ . (6)

The balance operator can be defined as:

 ( )
1

1 2
1

n

j
j

n jBAL W w
n=

+ − =  − 
∑ . (7)

And the divergence of W :

 ( ) ( )
2

1 1

n

j
j

n jDIV W w W
n=

− = −α − 
∑ . (8)

The degree of orness can be defined as follows:

 ( )
1 22

1 1

n

j
j

n jW w
n=

 −  α =   −  
∑ . (9)
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3. Families of IUEOWAD Operators

By choosing a different manifestation of the weighting vector in the IUEOWAD operator, 
we are able to obtain different types of distance aggregation operators. For example, we can 
obtain the uncertain maximum distance, the uncertain minimum distance, the uncertain 
normalized Euclidean distance (UNED), the uncertain weighted Euclidean distance (UWED) 
and the uncertain Euclidean ordered weighted averaging distance (UEOWAD) operator. The 
main advantage of using these families is that they can be very useful for the decision-maker 
in some specific situations. However, each family is just one particular case. Therefore, they 
can only be used in some particular cases, but they cannot be seen as a general model that can 
be used in all possible frameworks. Thus, the best way to assess all these particular cases is 
by using a general formulation such as the IUEOWAD operator that includes them all. Note 
that the particular case to be used will depend on the interests of the decision-maker in the 
specific problem at hand.

Remark 1. The uncertain maximum distance is obtained by setting 1 1w = , 0pw = , for all 
1p ≠ , { }Maxj iu u= and { }Maxj j i ia b a b− = − 

  , and the uncertain minimum distance by 
setting 1 1w = , 0pw = , for all 1p ≠ , { }Maxj iu u= and { }Minj j i ia b a b− = − 

  . More gen-
erally, if 1kw = , 0jw = , for all j k≠ , we get the Step-IUEOWAD operator. If 1/jw n=  , we get 
the UNED. The UWED is obtained if 1i iu u +>  for all i . The UEOWAD operator is formed 
if the ordered position of iu  is the same as the ordered position of jd  such that jd  is the j
th largest of i ia b−  .

Remark 2. Other families of IUEOWAD operators can be constructed by choosing a 
different weighting vector. For example, when 1jw m= for 1k j k m≤ ≤ + − and 0jw =  for 
j k m> + and j k< , we obtain the window-IUEOWAD operator. Note that k  and m  must 

be positive integers such that 1k m n+ − ≤ .
Example 2. (Window-IUEOWAD). Assume a weighting vector of dimension 

7( 7)n = . If 2k =  and 4m = , then the weighting vector to be used in the aggregation is 
(0,0.25,0.25,0.25,0.25,0,0)W = . 

Remark 3. Another particular case is the olympic-IUEOWAD. This operator is found 
when 1 0nw w= =  and for all others 1 ( 2)jw n= − . Note that if 3n =  or 4n = , the olympic- 
IUEOWAD is transformed in the median- UIEOWA and if 2m n= −  and 2k = , the window- 
IUEOWAD is transformed in the olympic-IUEOWAD.

Example 3. (Olympic-IUEOWAD). Assume a weighting vector of dimension 7( 7)n = . Then 
the weighting vector to be used in the aggregation is (0,0.2,0.2,0.2,0.2,0.2,0)W = .

Remark 4. Note that the generalized median can also be used as a particular case of the 
IUEOWAD. If n  is odd we assign ( 1) 2 1nw + =  and 0jw =  for all others. If n  is even we assign 
for example 2 ( 2) 1 0.5n nw w += = .

Example 4. (Median-IUEOWAD). Assume 7n = . Then the weighting vector to be used 
is: (0,0,0,1,0,0,0)W = .

Remark 5. Using a similar methodology, we could develop numerous other families of 
IUEOWAD operators. For more information, refer to Beliakov et al. (2007), Merigó and 
Casanovas (2011a, 2011b), Merigó and Gil-Lafuente (2010), Xu and Chen (2008), Yager 
(2007), Zeng and Su (2011).
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4. Group decision-making with the IUEOWAD operator

In this section, we will propose a procedure for group decision-making problems with interval 
preference information by application of IUEOWAD operator. The main motivation for using 
this model is that the representation of the information is very complex and we need to use 
interval numbers and the opinion of several decision makers (experts) in order to correctly 
assess the problem. Moreover, the attitudinal character of the decision maker is very complex 
and we need to use order-inducing variables in order to assess it. This can be useful in a lot of 
situations, for example, when the board of directors of a company wants to take a decision. 
Obviously, the attitudinal character of the board of directors is very complex because it in-
volves the decision of different persons and their interests may be different. Consider a group 
decision-making problem with uncertain preference information. Let { }1 2, ,..., mX x x x= be a 
discrete set of alternatives, and { }1 2, ,..., nS s s s= be the set of attributes. Let { }1 2, ,..., tE e e e=

be the set of decision makers (whose weight vector is ( )1 2, ,..., tV v v v= , 0kv ≥ ,
1

1
t

k
k

v
=

=∑ ). 

Assume that ( )( )( ) kk
ij m n

A a
×

=   is the interval decision matrix, where ( ) ( ) ( ),k L k U k
ij ij ija a a =      is 

a preference value, which takes the form of interval argument, given by the decision maker

ke E∈ , for the alternative ix X∈  with respect to the attribute is S∈ .
In general, there are benefit attributes and cost attributes in the multiple attribute de-

cision-making problems. In order to measure all attributes in dimensionless units and facil-
itate inter-attribute comparisons, we introduce the following Eqs (10) and (11) (Xu 2011) to 
normalize each decision matrix ( )( )( ) kk

ij m n
A a

×
=   to ( )( )( ) kk

ij m n
R r

×
=  :

 
{ } { }

( ) ( )
( ) ( ) ( )

( ) ( )
, ,

max max

L k U k
ij ijk L k U k

ij ij ij U k U k
ij iji i

a a
r r r

a a

 
  = =   
  

 

  

 

, for benefit attribute js ; (10)

 
{ } { }( ) ( )

( ) ( ) ( )
( ) ( )

min min
, ,

L k L k
ij ijk L k U k i i

ij ij ij U k L k
ij ij

a a
r r r

a a

 
  = =   
  

 

  

 

, for cost attribute js . (11)

Then the process to follow in decision making based on the UIEOWAD operator can be 
summarized as follows (Zeng, Su 2011):

Step 1. Normalize each decision matrix ( )kA  to ( )kR  by Eqs (10) and (11).
Step 2. Fix the ideal levels of each attribute to form the ideal strategy (see Table 1), where 

I  is the ideal strategy expressed by a fuzzy subset, is  is the i th characteristic to consider.

439Technological and Economic Development of Economy, 2013, 19(3): 431–447



Table 1. Ideal strategy

1s 2s  is  ns

I 1a 2a  ia  na

Step 3. Calculate the order-inducing variables ( )ij m n
u

×
 to be used in the decision matrix 

for each alternative i  and attribute j . Calculate also the weighting vector of the UIEOWAD 
operator.   

Step 4. Use the uncertain weighted averaging (UWA) operator (Xu 2008) to aggregate 
the information of the decision-makers E  by using the weighting vector V . The result is 

the uncertain unified decision matrix ( )ij m n
R r

×
=  , where ( )

1

t
k

ij k ij
k

r v r
=

=∑  .

Step 5. Calculate the distance between the ideal values and the aggregated results by us-
ing the UIEOWAD operator. Note that it is possible to consider a wide range of IUEOWAD 
operators, such as those described in Sections 4.

Step 6. Adopt decisions according to the results found in the previous steps. Select the 
alternative/s that provides the best result/s. Moreover, establish an ordering or a ranking of 
the alternatives from the most to the least preferred alternative to enable consideration of 
more than one selection.

5. Illustrative example

In this section, we utilize a practical group decision-making problem to illustrate the ap-
plication of the developed approaches. A military unit is planning to purchase new artillery 
weapons and there are four feasible artillery weapons (alternatives) ( 1,2,3,4)ix i =  to be 
selected (adapted from Xu 2011). When making a decision, the attributes considered are as 
follows: (1) 1s , assault fire capability indices (m); (2) 2s , reaction capability indices (evaluated 
using 1–5 scale); (3) 3s , mobility indices (m); (4) 4s , survival ability indices (evaluated using 
0–1 scale); and (5) 5s , cost ($). Among these five attributes, ( 1,2,3,4)js j =  are of benefit type 
and 5s  is of cost type. An expert group that consists of three experts ( 1,2,3)ke k =  (for which 
the weighting vector is (0.4,0.3,0.3)V = ) has been set up to provide assessment information 
on ( 1,2,3,4)ix i = . These experts evaluate the alternatives ( 1,2,3,4)ix i =  with respect to the 
attributes ( 1,2,3,4,5)js j =  and construct three uncertain decision matrices (see Tables 2–4).

Table 2. Uncertain decision matrix (1)A

s1 s2 s3 s4 s5 

x1 [26,000, 26,500] [2, 3] [19,000, 20,000] [0.7, 0.8] [14,000, 15,000]

x2 [65,000, 70,000] [3, 4] [15,000, 16,000] [0.2, 0.3] [26,000, 28,000]

x3 [50,000, 55,000] [2, 4] [16,000, 17,000] [0.7, 0.9] [24,000, 25,000]

x4 [40,000, 45,000] [1, 2] [26,000, 28,000] [0.5, 0.6] [14,000, 16,000]
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Table 3. Uncertain decision matrix (2)A

s1 s2 s3 s4 s5 

x1 [27,000, 28,000] [4, 5] [18,000, 20,000] [0.7, 0.9] [16,000, 17,000]

x2 [60,000, 70,000] [2, 4] [16,000, 18,000] [0.3, 0.5] [26,000, 27,000]

x3 [55,000, 60,000] [1, 3] [14,000, 16,000] [0.7, 1.0] [24,000, 26,000]

x4 [40,000, 45,000] [2, 3] [28,000, 30,000] [0.4, 0.5] [15,000, 17,000]

Table 4. Uncertain decision matrix (3)A

s1 s2 s3 s4 s5

x1 [27,000, 29,000] [3, 4] [20,000, 22,000] [0.6, 0.8] [17,000, 18,000]

x2 [60,000, 80,000] [4, 5] [17,000, 18,000] [0.4, 0.5] [26,000, 26,500]

x3 [40,000, 60,000] [2, 5] [15,000, 17,000] [0.8, 0.9] [26,000, 27,000]

x4 [50,000, 55,000] [2, 3] [29,000, 30,000] [0.4, 07] [17,000, 19,000]

Since the attributes ( 1,2,3,4,5)js j =  have different dimension units, then we utilize (10) 
and (11) to transform the decision matrices ( )kA  into the normalized decision matrices ( )kR  
(see Tables 5–7).

Table 5. Normalized uncertain decision matrix (1)R

s1 s2 s3 s4 s5

x1 [0.37, 0.38] [0.50, 0.75] [0.68, 0.71] [0.78, 0.89] [0.93, 1.00]

x2 [0.93, 1.00] [0.75, 1.00] [0.54, 0.57] [0.22, 0.33] [0.50, 0.54]

x3 [0.71, 0.79] [0.50, 1.00] [0.57, 0.61] [0.78, 1.00] [0.56, 0.58]

x4 [0.57, 0.64] [0.25, 0.50] [0.93, 1.00] [0.56, 0.57] [0.88, 1.00]

Table 6. Normalized uncertain decision matrix (2)R

s1 s2 s3 s4 s5

x1 [0.39, 0.40] [0.80, 1.00] [0.60, 0.67] [0.70, 0.90] [0.88, 0.94]

x2 [0.88, 1.00] [0.40, 0.80] [0.57, 0.60] [0.30, 0.50] [0.56, 0.58]

x3 [0.78, 0.86] [0.20, 0.60] [0.47, 0.53] [0.70, 1.00] [0.58, 0.63]

x4 [0.57, 0.64] [0.40, 0.60] [0.93, 1.00] [0.40, 0.50] [0.88, 1.00]
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Table 7. Normalized uncertain decision matrix (3)R

s1 s2 s3 s4 s5 

x1 [0.34, 0.36] [0.60, 0.80] [0.67, 0.73] [0.60, 0.80] [0.94, 1.00]
x2 [0.75, 1.00] [0.80, 1.00] [0.57, 0.60] [0.40, 0.50] [0.64, 0.65]
x3 [0.50, 0.75] [0.40, 1.00] [0.50, 0.57] [0.80, 0.90] [0.63, 0.65]
x4 [0.63, 0.69] [0.40, 0.60] [0.97, 1.00] [0.40, 0.70] [0.90, 1.00]

According to the objectives of the experts, they establish a consensus ideal levels that an 
artillery weapon should have. The normalized results are shown in Table 8.

Table 8. Ideal artillery weapon

s1 s2 s3 s4 s5 

I [0.90, 1.00] [0.85, 0.95] [0.90, 1.00] [0.90, 1.00] [0.85, 0.95]

To analyze the attitudinal character of the group of experts, we consider that they use 
order-inducing variables shown in Table 9, which represents the complex attitudinal character 
in the decision process. Note that in this example, the decision-maker assumes a different 
attitudinal character for each alternative because the results given by each alternative are not 
equal. The main advantage of using order inducing variables is that we can represent complex 
decision processes that include psychological factors such as time pressure, personal affects 
to each alternative and other related aspects.

Table 9. Order-inducing variables

s1 s2 s3 s4 s5 

x1 17 13 9 12 7
x2 12 6 24 17 30
x3 16 14 12 10 8
x4 14 17 20 12 8

With this information, we can make an aggregation to make a decision. First, we aggregate 
the information of the three experts to obtain a collective uncertain decision matrix. We use 
the uncertain weighted averaging (UWA) operator to obtain this matrix while assuming that 

(0.2,0.5,0.3)V = . The results are shown in Table 10.

Table 10. Collective normalized uncertain decision matrix R

s1 s2 s3 s3 s4

x1 [0.37, 0.38] [0.62, 0.84] [0.65, 0.70] [0.70, 0.80] [0.92, 0.98]

x2 [0.86, 1.00] [0.66, 0.94] [0.55, 0.59] [0.30, 0.43] [0.56, 0.59]

x3 [0.67, 0.80] [0.38, 0.88] [0.52, 0.57] [0.76, 0.97] [0.59, 0.62]

x4 [0.59, 0.66] [0.34, 0.56] [0.94, 1.00] [0.46, 1.00] [0.89, 1.00]
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With this information, we can use the proposed decision-making method based on the 
IUEOWAD operator to get the best alternative(s). In order to provide a complete analysis 
of the different potential results that may occur depending on the interests of the decision 
makers, we present a wide range of particular cases of IUEOWAD operators such as the 
uncertain maximum distance, the uncertain minimum distance, the UNED, the UWED, 
the UEOWAD, the IUEOWAD, the Step-IUEOWAD ( 2)k =  and the Olympic-UIEOWAD. 
Note that for the UEOWAD and the UIEOWAD operators we assume the following vector 

(0.1,0.2,0.2,0.2,0.3)W = , formed as a consensus agreement between the three experts where 
they evaluate the ordered argument that should have more importance in the analysis. The 
aggregated results obtained by using the previous particular cases of IUEOWAD operators 
are shown in Tables 11. The optimal choice would be the alternative closest to the ideal. 

Table 11. Aggregated results

Max Min UNED UWED UEOWAD UIEOWAD Step (k= 2) Olympic

x1 0.275 0.05 0.155 0.155 0.129 0.155 0.17 0.195
x2 0.38 0.02 0.23 0.252 0.196 0.208 0.38 0.229
x3 0.405 0.085 0.275 0.282 0.245 0.282 0.27 0.285
x4 0.45 0.02 0.268 0.248 0.227 0.268 0.45 0.289

As we can see, for most of the cases 1x  is the optimal choice excepting for an extreme 
pessimistic situation where 2x  is optimal. A further interesting issue is to establish an ordering 
of the alternatives. This is very useful when we want to consider more than one alternative. 
The results are shown in Table 12.

Table 12. Ordering of the alternatives

Ordering Ordering

Max 1 2 3 4x x x x   UEOWAD 1 2 4 3x x x x  

Min 2 4 1 3x x x x=   IUEOWAD 1 2 4 3x x x x  

UNED 1 2 4 3x x x x   Step (k = 2) 1 3 2 4x x x x  

UWED 1 4 2 3x x x x   Olympic 1 2 3 4x x x x  

As we can see, we get different orderings depending on the aggregation operator used.  Note 
that the main advantage of using the IUEOWAD operator is that we can consider complex 
reordering processes in an uncertain framework that can be assessed with interval numbers. 
Another main advantage of the IUEOWAD operator is that it gives a complete view of the 
decision-making problem by considering different particular types of IUEOWAD operat-
ors. Thus, depending on the interests of the decision maker, he will select a different type of 
IUEOWAD operator that will lead him to different results and decisions. In addition, our 
approach is more flexible than the existing uncertain induced aggregation operators because it 
can provide the decision makers more choices as the ideal levels are assigned different values 
according to the features of the specific situations.
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Conclusions

We have introduced the IUEOWAD operator as an aggregation operator that uses the main 
characteristics of the IOWA operator, the Euclidean distance and uncertain information 
represented in the form of interval numbers. The main advantage of this operator is that it 
provides more complete information because it represents the information in a more com-
plete way considering the maximum and the minimum results that can occur. Moreover, it 
includes many different types of uncertain distance measures and aggregation operators, 
such as the UNED, the UWED and the UEOWAD operator. 

We have also presented an application of the new approach to a group decision-making 
problem concerning the selection of artillery weapons. We have seen that the IUEOWAD is 
very useful because it represents very well the uncertain information by using interval num-
bers. The main advantage of the IUEOWAD operator in decision-making is that it shows a 
lot of different scenarios that could happen depending on the particular type of IUEOWAD 
operator used in the problem. Thus, the decision maker gets a more complete view of the 
decision problem and is able to select the alternative that is closest to his interests. Moreover, 
by using order-inducing variables, it is possible to consider different scenarios according to 
complex attitudinal characters.

In future research we expect to develop further extensions by adding new characteristics 
in the problem such as the use of probabilistic aggregations. We will also consider other de-
cision making applications such as human resource management and product management.
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