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abstract. The paper defines the notions of point, interval and triangular intuitionistic fuzzy num-
bers expressing the degree of membership and non-membership in the fuzzy set. The generalized 
fuzzy weighted average function is introduced according to operation rules on intuitionistic fuzzy 
numbers. In special cases, the generalized weighted average coincides with an arithmetic average 
or a geometric average. The generalized fuzzy weighted average function could be applied for 
solving problems in multiple criteria decision making. research on the stability of the generalized 
weighted averaging operator of ranking alternatives was performed applying the Monte Carlo 
method. The aim of the conducted research is to establish the types of intuitionistic fuzzy numbers 
and the exponent values of the generalized weighted averaging operator having the least error 
probabilities considering alternatives ranking. Computations were performed involving 3, 4 and 5 
experts. In the case of 5 experts, initial decision matrices having high, middle and low separability 
alternatives were examined. Decision matrices created by the experts were modelled generating 
random intuitionistic fuzzy numbers according to uniform and normal distribution. The example of 
applying such methodology was shown to solve a real problem of ranking possible redevelopment 
alternatives for derelict rural buildings.
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introduction

The current paper mainly deals with Multiple Criteria Decision Making (MCDM) in a fuzzy 
environment. MCDM is a branch of operations research (or) aimed at making the best 
decision according to several criteria. The quality of the reached decision relates to maxim-
izing profit or utility and minimizing loss or cost.

In MCDM, we have a finite set of alternatives or projects to select the best one according 
to their adequacy to a finite set of attributes. each attribute has its importance expressed by 
weight. In the decision matrix, project adequacy to attributes is expressed by crisp numbers. 
There are many methods for determining the order of alternatives in terms of a set of at-
tributes or criteria. several well-known methods for dealing with multiple criteria decision 
making problems are, for example, Multiplicative exponential Weighting (MeW), simple 
additive Weighting (saW), Technique for ordering Preference by similarity to Ideal solu-
tion (ToPsIs), a method of multiple criteria Complex Proportional assessment of Projects 
(CoPras), additive ratio assessment method (aras), Multi-objective optimization by 
ratio analysis method (Moora), eleCTre, etc. MCDM methods were overviewed and 
classified according to available information and their application for solving economical 
decision problems (Hwang, yoon 1981; Figueira et al. 2005; Zavadskas, Turskis 2011).

Under real conditions, vague or imprecise information creates difficulties in assigning a 
crisp value of a subjective judgment – an element of the decision matrix. such information 
is better determined using fuzzy numbers. sometimes the subjective judgment is defined 
as a linguistic variable, i.e. the variable the values of which are expressed in linguistic terms 
(Zimmermann 1985). Fuzzy numbers appropriately express linguistic variables. a fuzzy 
multiple criteria decision making (FMCDM) theory is an appropriate solution in such 
circumstances. Fuzzy numbers in the fuzzy multiple criteria decision making approach (in 
our case, intuitionistic fuzzy numbers) are the elements of the decision matrix (Deng 2009). 
other approach is to deal with attribute weights as intuitionistic fuzzy numbers (liu 2009). 
The ordered weighted averaging (oWa) operator was introduced by yager (1988). Zhao 
et al. (2010) developed some new generalized aggregation operators such as a generalized 
intuitionistic fuzzy ordered weighted averaging operator. Merigo and Wei (2011) investigated 
an uncertain probabilistic ordered weighted averaging (UPoWa) operator. Han and liu 
(2011) were solving unknown attribute weights and hybrid multiple attribute decision-making 
problems under risk. Zavadskas and Turskis (2011) presented a comprehensive overview of 
multiple criteria decision making methods in an uncertain environment along with their 
classification and applications.

a methodology of fuzzy sets introduced by Zadeh (1965) has been extended and enriched 
and nowadays is being widely applied in many fields of scientific research such as knowledge 
management systems, project management, manufacturing and organizational strategy, 
evaluating investment direction and magnitude, etc. MCDM is one of the branches where 
the fuzzy set theory has been found a wide application area.

atanassov (1986) formulated a concept of an intuitionistic fuzzy set (IFs) as the gene-
ralization of the notion of the fuzzy set. He stated that IFss had essentially higher describing 
possibilities than fuzzy sets. The IFs has gained wide recognition as a useful tool for modelling 
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uncertain phenomena. atanassov and Gargov (1989) extended the IFs to the interval valued 
intuitionistic fuzzy set (IvIFs) and defined operation rules for intuitionistic fuzzy numbers 
(IFNs). Xu (2007a) proposed some methods for aggregating interval valued intuitionistic fuzzy 
information that can be applied for reaching a solution to decision making problems. Zhang 
and liu (2010) used the triangular intuitionistic fuzzy number and weighted arithmetic and 
geometric averaging operators for decision making. Wei et al. (2012) investigated multiple 
attribute group decision making problems where both attribute weights and expert weights 
take the form of real numbers and attribute values take the form of interval intuitionistic 
trapezoidal fuzzy numbers.

In fuzzy MCDM (FMCDM), the values of fuzzy information aggregation operators are 
the set of intuitionistic fuzzy numbers (one for each alternative). Thus, we obtain the problem 
of ranking fuzzy alternatives. Due to the fact that fuzzy numbers are not linearly ordered, 
ranking them is one of the fundamental problems of fuzzy decision making. This problem 
is still important in the case of intuitionistic fuzzy numbers. The widely used approach to 
compare fuzzy numbers is their defuzzification into crisp numbers. Then, ranking based on 
these crisp numbers is done.

The purpose of our research is to compare various methods of aggregating fuzzy inform-
ation in multiple criteria decision making. For this purpose, the Monte Carlo simulation 
method was applied. Zanakis et al. (1998) employed this technique for comparing various 
MCDM methods. The tasks we intended to accomplish included:

 – comparing alternative ranking results obtained with the help of the weighted arithmetic 
averaging operator and weighted geometric averaging operator in cases of various types 
of intuitionistic fuzzy numbers (point intuitionistic fuzzy numbers, interval valued 
intuitionistic fuzzy numbers and triangular intuitionistic fuzzy numbers);

 – comparing the stability of the generalized weighted averaging operator of ranking 
alternatives obtained from different types of intuitionistic fuzzy numbers, initial de-
cision matrices and exponent values of the generalized weighted averaging operator. 

1. intuitionistic fuzzy numbers

The notion of an intuitionistic fuzzy set was introduced by (atanassov 1986).
Definition 1.1. let X  be a finite non empty set. an intuitionistic fuzzy set on X is an ex-

pression given by { }, ( ), ( ) |A AA x x x x X= < µ ν > ∈  where ( ) : [0;1], ( ) : [0;1]A Ax X x Xµ → ν →  
and 0 ( ) ( ) 1A Ax x≤µ + ν ≤  for all x X∈ . ( )A xµ is the membership degree and ( )A xν is the 
non-membership degree of element x A∈ . ( ) 1 ( ) ( )A A Ax x xπ = −µ − ν is the degree of uncer-
tainty (indeterminacy) associated with the membership of element x  in A .

In the special case of ( ) 1 ( ) ( ) 0,A A Ax x x x Xπ = −µ + ν = ∀ ∈ we have fuzzy set A instead 
of the IFs. We will restrict our consideration to intuitionistic fuzzy numbers, henceforth our 
set X would be real line X R= . Burillo et al. (1994) defined an intuitionistic fuzzy number 
as follows.
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Definition 1.2. The intuitionistic fuzzy subset { }, ( ), ( ) |A AA x x x x R= < µ ν > ∈
 

  of the real 
line is called the intuitionistic fuzzy number if: 

 i) A  is normal, i.e. 0x R∈  that 0( ) 1A xµ =


 (so 0( ) 0A xν =


) exist;

 ii)  membership function ( )A xµ


 is fuzzy convex: 

1 2 1 2 1 2( (1 ) ) min( ( ), ( )) , , [0;1]A A Ax x x x x x Rµ λ + −λ ≥ µ µ ∀ ∈ λ∈
  

;

 iii)  non membership function ( )A xν


is fuzzy concave: 

1 2 1 2 1 2( (1 ) ) max( ( ), ( )) , , [0;1]A A Ax x x x x x Rν λ + −λ ≤ ν ν ∀ ∈ λ∈
  

.

Fig. 1 shows two intuitionistic fuzzy numbers, the degree of the uncertainty of the 
first number (on the left figure) is ( ) 1 ( ) ( ) 0A A Ax x xπ = −µ − ν ≡ ; thus, it is a special case 
of the fuzzy number. The figure on the right depicts an intuitionistic fuzzy number with 
0 ( ) 1,A x x A≤ π < ∀ ∈ .

For simplicity, the IFN is denoted by ( , )a b  where , ,  1a b R a b∈ + ≤ . let 1 1 1( , )A a b= , 

2 2 2( , )A a b=  be two intuitionistic fuzzy numbers. The operation rules of IFss are defined as 
follows (atanassov, Gargov 1989):

 1 2 1 2 1 2 1 2( , )A A a a a a b b+ = + −  ; 

 1 2 1 2 1 2 1 2( , )A A a a b b b b= + −  ; 

 1 1 1(1 (1 ) , ), 0A a bλ λλ = − − λ > ; 

 1 1 1( ,1 (1 ) ), 0A a bλ λ λ= − − λ > . 

Fig. 1. Intuitionistic fuzzy number A with its membership function ( )A xµ


 
and non membership function ( )A xν


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atanassov and Gargov (1989) introduced the notion of an interval valued intuitionistic fuzzy 
number. Bustince and Burillo (1995) presented a theorem that allows constructing interval 
valued intuitionistic fuzzy sets from intuitionistic fuzzy sets and to recover intuitionistic fuzzy 
sets used for constructing the interval valued intuitionistic fuzzy set from different operators.

Definition 1.3. let X  be a finite non empty set. The interval valued intuition-
istic fuzzy set on X is an expression given by { }, ( ), ( ) |A AA x M x N x x X= < > ∈ , where 

( ) [ ; ] [0;1], ( ) [ ; ] [0;1]A AL AU A AL AUM x M M N x N N= ⊂ = ⊂  and 0 ( ) ( ) 1AU AUM x N x≤ + ≤  
for all x X∈ . Intervals ( )AM x and ( )AN x denote the degree of membership and the degree 
of non-membership of element x A∈  respectively.

Zhang and liu (2010) used triangular fuzzy numbers to express membership degree 
( )A xµ  and non-membership degree ( )A xν of element x A∈ . The triangular intuitionistic 

fuzzy set is the generalization of the notion of the intuitionistic fuzzy set. The general form 
of the triangular intuitionistic fuzzy number is ([ , , ],[ , , ]),0 1,L M U L M U U Ua a a b b b a b≤ + ≤
where ( , , )L M Ua a a  and ( , , )L M Ub b b  are triangular fuzzy numbers. In this case, ,L La b are 
lower extreme values, ,M Ma b  – mean values and ,U Ua b – upper extreme values of the 
membership degree and non-membership degree of element x A∈ respectively.

let   1 1 1 1 1 1 1 2 2 2 2 2 2 2([ , , ],[ , , ]), ([ , , ],[ , , ]),L M U L M U L M U L M UA a a a b b b A a a a b b b= =   be two triangular 
intuitionistic fuzzy numbers operation rules on which are defined as follows:

 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2([ , , ],[ , , ]);L L L L M M M M U U U U L L M M U UA A a a a a a a a a a a a a b b b b b b+ = + − + − + −   

 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2([ , , ],[ , , ]);L L M M U U L L L L M M M M U U U UA A a a a a a a b b b b b b b b b b b b⋅ = + − + − + −   

 1 1 1 1 1 1 1([1 (1 ) ,1 (1 ) ,1 (1 ) ],[( ) ,( ) ,( ) ]), 0;L M U L M UA a a a b b bλ λ λ λ λ λλ = − − − − − − λ ≥  

 1 1 1 1 1 1 1([( ) ,( ) ,( ) ],[1 (1 ) ,1 (1 ) ,1 (1 ) ]), 0;L M U L M UA a a a b b bλ λ λ λ λ λ λ= − − − − − − λ ≥  

Xu (2007a) defined aggregation operators of IFNs as follows.
Definition 1.4. suppose ( 1,2,..., )iA i n=  is a set of triangular intuitionistic fuzzy numbers 

and : nfω Ω →Ω , Ω  is a set of all triangular intuitionistic fuzzy numbers. If 

 1 2
1

( , ,..., )
n

n i i
i

f A A A Aω
=

= ω∑    , (1)

where 1 1
1

( , ,..., ) , [0;1], 1
n

T
n i i

i=
ω= ω ω ω ω ∈ ω =∑  is the weight vector of ( 1,2,..., )iA i n= . Then, 

function fω  is called the weighted arithmetic averaging operator of triangular intuitionistic 
fuzzy numbers.

Definition 1.5. Under conditions described in Definition 1.4., function : ngω Ω →Ω can 
be defined as follows:

 1 2
1

( , ,..., ) ( ) i
n

n i
i

g A A A A ω
ω

=
=∏    , (2)
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where 1 1
1

( , ,..., ) , [0;1], 1
n

T
n i i

i=
ω= ω ω ω ω ∈ ω =∑  is the weight vector of ( 1,2,..., )iA i n=  and is 

called the weighted geometric averaging operator of triangular intuitionistic fuzzy numbers.
Two formulas for aggregation operations in a set of triangular intuitionistic fuzzy numbers 

have been established (Zhang, liu 2010). The proof of these formulas follows immediately 
from formulas (1)–(2) and operation rules on triangular intuitionistic fuzzy numbers. sup-
pose ([ , , ],[ , , ]),

i i i
L M U L M U

i i i iA a a a b b b=  ( 1,2,..., )i n=  is a set of triangular intuitionistic fuzzy 
numbers. Then, the result of the arithmetic averaging operator is a triangular intuitionistic 
fuzzy number and
 1 2

1
( , ,..., )

n

n i i
i

f A A A Aω
=

= ω =∑     

 
1 1 1 1 1 1

([1 (1 ) ,1 (1 ) ,1 (1 ) ],[ ( ) , ( ) , ( ) ])i i i i i i
n n n n n n

L M U L M U
i i i i i i

i i i i i i
a a a b b bω ω ω ω ω ω

= = = = = =
− − − − − −∏ ∏ ∏ ∏ ∏ ∏ . (3)

suppose ([ , , ],[ , , ]),L M U L M U
i i i i i i iA a a a b b b=  ( 1,2,..., )i n=  is a set of triangular intuitionistic 

fuzzy numbers. Then, the result of the geometric averaging operator is a triangular intuition-
istic fuzzy number and

 1 2
1

( , ,..., ) ( ) i
n

n i
i

g A A A A ω
ω

=
= =∏   

 
1 1 1 1 1 1

([ ( ) , ( ) , ( ) ],[1 (1 ) ,1 (1 ) ,1 (1 ) ])i i i i i i
n n n n n n

L M U L M U
i i i i i i

i i i i i i
a a a b b bω ω ω ω ω ω

= = = = = =
− − − − − −∏ ∏ ∏ ∏ ∏ ∏ . (4)

2. ranking intuitionistic fuzzy numbers

a number of researchers have analyzed the problem of comparing fuzzy numbers. Intu-
itionistic fuzzy weighted averaging operators are used for aggregating individual opinions of 
decision makers to have a combined opinion. as a result, intuitionistic fuzzy numbers (one 
for each alternative) are obtained. one of the most frequently used comparison methods is 
the defuzzification of fuzzy numbers, i.e. transforming them to crisp numbers can be easily 
compared. Chen and Tan (1994) provided a score function to defuzzificate intuitionistic 
fuzzy numbers.

Definition 2.1. let ( , )A a b= be an intuitionistic fuzzy number. The score function S  of 
intuitionistic fuzzy number A  is represented as follows: 

 , [ 1;1]A AS a b S= − ∈ −
 

. (5)

The larger is the score of AS


, the greater is intuitionistic fuzzy number A .
Hong and Choi (2000) proposed improved comparison technique based on the score 

function and accuracy function.
Definition 2.2. let ( , )A a b= be an intuitionistic fuzzy number. The accuracy function H 

of intuitionistic fuzzy number A  is represented as follows: , [0;1]A AH a b H= + ∈
 

. 
If the score function values of two IFNs coincide, then, the larger is the accuracy of AH

 , 
the greater is intuitionistic fuzzy number A .

Xu (2007b) generalized these definitions for interval valued intuitionistic fuzzy numbers.
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Definition 2.3. let ([ , ],[ , ])L U L UA a a b b= be an interval valued intuitionistic fuzzy num-
ber. The score function AS



 of A  is represented as follows: 

 ( ) / 2, [ 1;1]L L U U
A AS a b a b S= − + − ∈ −
 

. (6)

Definition 2.4. let ([ , ],[ , ])L U L UA a a b b= be an interval valued intuitionistic fuzzy num-
ber. The accuracy function AH



 of A  is represented as follows:
( ) / 2, [0;1]L L U U

A AH a b a b H= + + + ∈
 

.
according to Zhang and liu (2010), the score function and accuracy function of the 

triangular intuitionistic fuzzy number are defined in a similar way.
Definition 2.5. suppose ([ , , ],[ , , ])L M U L M UA a a a b b b= is a triangular intuitionistic fuzzy 

number. Then, [ 1;1]AS ∈ −


 is called the score function of A : 

 ( ) / 3L L M M U U
AS a b a b a b= − + − + −


. (7)

Definition 2.6. suppose ([ , , ],[ , , ])L M U L M UA a a a b b b= is a triangular intuitionistic fuzzy 
number. Then, [0;1]AH ∈



 is called the accuracy function of A : 

 ( ) / 3.L L M M U U
AH a b a b a b= + + + + +


 (8)

Based on score function AS


 and accuracy function AH


 Xu (2007b) proposed an order 
relation between two intuitionistic fuzzy values defined as follows.

proposition 2.1. let 1 1 1( , )A a b=

 and 2 2 2( , )A a b=  be two intuitionistic fuzzy numbers,

1AS


, 
2AS


– the scores of 1A  and 2A  and 
1AH


, 
2AH


 – the accuracy degrees of 1A  and 2A re-
spectively. Then,

1. if 
1 2A AS S<
 

,then 1A is smaller than 2A  denoted by 1 2A A 

 ;

2. if 
1 2A AS S=
 

, then

2.1. if 
1 2A AH H<
 

, then 1A is smaller than 2A denoted by 1 2A A 

 ;

2.2.  if 
1 2A AH H=
 

, then 1A  and 2A represent the same information denoted by 

1 2A A=  .
as an example, compare two triangular IFNs: 

1 ([0.4,0.5,0.65],[0.2,0.25,0.3])A =  and 2 ([0.45,0.5,0.55],[0.15,0.25,0.3])A = . 

score functions of these IFNs coincide with
1 2

0.8 0.2667
3A AS S= = ≈

 

; thus, accuracy 

functions 
1 2

2.3 2.20.7667, 0.7333
3 3A AH H= ≈ = ≈

 

 must be compared. according to propo-

sition 2.1., intuitionistic fuzzy numbers 1A and 2A  can be ranked as follows: 1 2A A 

 . 

3. multiple criteria decision making by aggregated fuzzy functions

The fuzzy multiple criteria decision making approach implies that 1 2( , ,..., )mS s s s= is a finite set 
of alternatives from which decision makers have to select the best one, evaluate or rank altern-
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atives according to the weights of the finite set of attributes 1 2( , ,..., )nR r r r= . The weight vector 

of attributes is 1 1
1

( , ,..., ) , [0;1], 1
n

T
n i i

i=
ω= ω ω ω ω ∈ ω =∑ . The elements of the decision matrix 

are triangular intuitionistic fuzzy numbers ( )ij m nD D ×= , ([ ,  ,  ],[ ,  ,  ])L M U L M U
ij ij ij ij ij ij ijD a a a b b b=

where ( ) ([ , , ])L M U
i j ij ij ijr a a aµ = denotes the satisfaction degree of project is  to attribute jr and 

( ) ([ ,  ,  ])L M U
i j ij ij ijr b b bν = denotes the non-satisfaction degree of project is  to attribute jr . The 

multiple criteria decision making method based on triangular intuitionistic fuzzy numbers, 
according to Zhang and liu (2010), could be accomplished following the below introduced steps.

1. The creation of a combined decision matrix. The elements of such matrix reflect the 
opinions of different evaluators (experts) and consist of information collected from all 
evaluators. experts evaluate every element of the decision matrix with reference to an 
intuitionistic fuzzy number. The element of the combined decision matrix is created 
as follows: ,  ,  L M U

ij ij ija a a are the minimum, average and maximum values of evaluators 
denoting the satisfaction degree of project is  to attribute jr while ,  ,  L M U

ij ij ijb b b  are the 
minimum, average and maximum values of evaluators denoting the non-satisfaction 
degree of project is  to attribute jr .

2. Aggregating project information. For every row of the decision matrix containing 
information corresponding to project i, the weighted arithmetic averaging operator 

1 2( , ,..., ),  1,2,...,f
i i i inI f D D D i mω= =  or the weighted geometric averaging operator 

1 2( , ,..., ),  1,2,...,g
i i i inI g D D D i mω= =  according to formulas (3) and (4) is calculated. 

Thus, all information associated with project i is aggregated.
3. Calculating the values of score function ( ), ( )f g

i iS I S I and accuracy function ( ), ( )f g
i iH I H I  . 

according to formulas (7) and (8), the values of the score function and, in case it is 
necessary, the values of accuracy function for f

iI  and g
iI  are calculated. It is a defuzzi-

fication procedure converting each aggregated triangular fuzzy number into a crisp 
value for ranking and further analysis.

4. Comparing projects. on the grounds of Proposition 2.1., the best project from m project 
set is selected.

We can similarly operate with (point) intuitionistic fuzzy numbers and interval valued intu-
itionistic fuzzy numbers.

4. aggregated fuzzy functions based on the generalized averaging operator

We want to extend the notions of aggregation operations on a set of triangular intuitionistic 
fuzzy numbers.

Definition 4.1. suppose ( 1,2,..., )iA i n=  is a set of triangular intuitionistic fuzzy numbers, 
0,p p R> ∈ and :p nfω Ω →Ω , Ω - a set of all triangular intuitionistic fuzzy numbers. If 

 
1/

1 2
1

( , ,..., )
pn

p p
n i i

i
f A A A Aω

=

 
= ω  
 
∑    , (9)
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where 1 1
1

( , ,..., ) , [0;1], 1
n

T
n i i

i=
ω= ω ω ω ω ∈ ω =∑  is the weight vector of ( 1,2,..., )iA i n= , function 

pfω  is called the generalized weighted averaging operator with the exponent p  of triangular 
intuitionistic fuzzy numbers.

remark 1. If 1p = , then, the generalized weighted averaging operator coincides with the 
arithmetic averaging operator described by (3).

remark 2. The limit of the generalized weighted averaging operator, when 0p→  , co-
incides with the geometric averaging operator described by (4):

 1 2 1 20 1
lim ( , ,..., ) ( , ,..., ) ( ) i

np
n n ip i

f A A A g A A A A ω
ω ω

→ =
= = ∏       . (10)

suppose ([ , , ],[ , , ]),L M U L M U
i i i i i i iA a a a b b b=  ( 1,2,..., )i n=  is a set of triangular intuitionistic 

fuzzy numbers. Then, according to formula (9) and operation rules for triangular intuitionistic 
fuzzy numbers, the result of the generalized weighted averaging operator with exponent p  is 
a triangular intuitionistic fuzzy number. a formula for calculating the generalized weighted 
averaging operator in the set of triangular IFNs proposed by Zhao et al. (2010) is as follows:

 ( ) ( ) ( )
1/ 1/ 1/

1 2
1 1 1

( , ,..., ) 1 1 , 1 1 , 1 1 ;
i i i

p p p
n n np p pp L M U

n i i i
i i i

f A A A a a a
ω ω ω

ω
= = =

              =  − −   − −   − −                          

∏ ∏ ∏    

 ( ) ( ) ( )
1/ 1/ 1/

1 1 1
1 1 1 1 ,1 1 1 1 ,1 1 1 1

i i i
p p p

n n np p pL M U
i i i

i i i
b b b

ω ω ω

= = =

             −  − − −  −  − − −  −  − − −                          

∏ ∏ ∏ . (11)

5. monte Carlo research on the stability of the generalized weighted averaging 
operator considering ranking alternatives

Initially design our research. suppose we have 5 experts and 5 alternative projects that must 
be ranked according to 5 criteria. There are 3 versions of initial decision matrices the elements 

ijD  of which reflect the satisfaction degree of project , 1,2,...5is i =  to attribute , 1,2,...5jr j =  
and are represented by crisp numbers. Initial decision matrices reflect an objective (true) 
judgment of projects. The weights of criteria are considered as equal, i.e. their importance 
is equal to (0.2,0.2,0.2,0.2,0.2)Tω= . Initial decision matrices are given in Table 1. The first 
matrix shows high, the second – medium and the third – low separability of alternatives:

Nevertheless, we can easily check that for all 3 decision matrices and equal weights of 
criteria, the ranking results of alternatives, according to all our surveyed methods, would be 
the same: 1 2 3 4 5s s s s s    .

The elements of the Monte Carlo experiment involving 5 expert decision matrixes are 
intuitionistic fuzzy numbers randomly generated from the values of the initial matrixes given 
in Table 1 by uniform or normal distribution with different variance values. 
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In the case of fuzzy numbers, the standard procedures of generating a random number 
could be applied. as FNs have 2 components – the degree of membership aµ  and the degree 
of non-membership aν  related by equation 1a aµ + ν =  - it is enough to generate only one 
component, for example, aµ . In the case of IFNs, there are two degrees of freedom – the 
degree of membership and the degree of uncertainty. Therefore, for IFNs, the procedure of 
generation must be applied twice. The method of an inverse cumulative distribution func-
tion, as described by Gentle (2003), has been used. supposedly, the judgment of each expert 
is a random number that does not differ significantly from an objective judgment. at the 
stage of planning our experiment, the idea of evaluating the degrees of membership and 
non-membership independently have been used (Dubois et al. 2005). The fuzzy number of 
expert evaluation ( , )a aµ ν  is generated by normal distribution from crisp number a  in the 
following way. For the fixed σ  value, random number 1X  from normal distribution with 
average 1EX a=  and standard deviation 1DX = σ is generated. aµ  is the realization of 
random variable 1X . Then, the degree of uncertainty aπ is formed, which is the realization 
of random variable 2X having normal distribution with 2 20.1, 0.05EX DX= = . Next, 

1a a aν = −µ − π is calculated.
Generation by uniform distribution was performed in a similar way. 1X  as a uniform 

random variable in the interval [ , ]a a−σ + σ  and 2X  as a uniform random variable in the 
interval [0.05, 0.15] have been generated. 

The realization of the generated decision matrix of high separability alternatives in the 
case of normal distribution when 0.2σ = is presented in Table 2.

Table 2. The realization of the decision matrix of high separability alternatives applying normal distri-
bution when 0.2σ =

1r 2r 3r 4r 5r

1s (0.824,0.066) (0.868,0.0) (0.826,0.027) (0.822,0.067) (0.916,0.0)

2s (0.512,0.34) (0.749,0.087) (0.484,0.396) (0.802,0.091) (0.624,0.275)

3s (0.171,0.744) (0.312,0.621) (0.504,0.432) (0.695,0.177) (0.468,0.456)

4s (0.311,0.547) (0.024,0.873) (0.376,0.540) (0.663,0.227) (0.086,0.635)

5s (0.129,0.772) (0.239,0.585) (0.44,0.447) (0.29,0.567) (0.0,0.968)

Table 1. The initial matrices for high, medium and low separability alternatives

High separability Medium separability low separability

1r 2r 3r 4r 5r 1r 2r 3r 4r 5r 1r 2r 3r 4r 5r

1s 0.8 0.8 0.8 0.8 0.8 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.55 0.55

2s 0.65 0.65 0.65 0.65 0.65 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.65

3s 0.5 0.5 0.5 0.5 0.5 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.35 0.55

4s 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.25 0.55

5s 0.2 0.2 0.2 0.2 0.2 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.45 0.55
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such decision matrixes were generated for all 5 experts. Next, the combined decision 
matrix is created from separate experts matrixes. The elements of the combined matrix are 
triangular intuitionistic fuzzy numbers ([ ,  ,  ],[ ,  ,  ])L M U L M U

ij ij ij ij ij ij ijD a a a b b b= . ,  ,  L M U
ij ij ija a a  are 

the minimum, average and maximum values of 5 experts considering the satisfaction degree 
of project is  to attribute jr . ,  ,  L M U

ij ij ijb b b  are the minimum, average and maximum values of 
5 experts considering the non-satisfaction degree of project is  to attribute jr .

according to formula (11), the results of aggregated functions – the generalized weighted 
averaging operator having 5 exponent p  values: 0.0;0.01;0.25;0.5;1.0.p =  are calculated 
and triangular, interval and point intuitionistic fuzzy numbers of each evaluated project 

, 1,2,...,5js j =  are obtained. Next, score function values referring to formulas (5)–(7) are 
calculated finally ranking our projects. each time, the obtained ranking result is compared 
with true ranking order 1 2 3 4 5s s s s s    . 500 Monte Carlo generation experiments have 
been conducted and repeated 40 times ( 500 40 20000)× = . The probability of ranking errors 
has been calculated as a proportion of wrong ranking results amongst all 20000 experiments. 
The higher is error probability, the less stable is the corresponding generalized weighted 
averaging operator. It seems to be clear that the more standard deviation σ is the higher is 
the probability of ranking error. The results of the experiment for the initial matrixes of high, 
medium and low separability in the case of generation by uniform distribution are presented 
in Table 3. each row (different σ values) contains the least error probability marked in bold 
font. The most stable generalized average operators for high and medium separability initial 
matrixes have been interval fuzzy with exponents 0.01p =  and 0.25p = , whereas for a low 
separability initial matrix, triangular and interval generalized average operators with 0.01p =  
have been accepted the most steady. 

The dependence of error probability on σ  taking into consideration various values of 
exponent p  in the case of uniform distribution for intuitionistic interval fuzzy numbers of 
a high separability initial matrix is depicted in Figure 2. 
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Fig. 2. The dependence of error probability on σ  considering various values of p   
in the case of uniform distribution for the intuitionistic interval fuzzy numbers  

of the high separability initial matrix
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Table 3. The probability of ranking errors considering generalized averaging operators in the case of 
uniform distribution for high, medium and low separability alternatives

High separability initial matrix
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 1

0.65 0.008 0.009 0.011 0.0075 0.008 0.012 0.008 0.008 0.012 0.008 0.008 0.012 0.008 0.009 0.011

0.7 0.017 0.016 0.024 0.016 0.014 0.025 0.016 0.015 0.025 0.016 0.015 0.025 0.017 0.016 0.024

0.75 0.028 0.028 0.041 0.027 0.026 0.042 0.027 0.025 0.041 0.027 0.026 0.041 0.028 0.028 0.041

0.8 0.045 0.044 0.06 0.042 0.041 0.062 0.042 0.039 0.061 0.043 0.041 0.061 0.045 0.044 0.06

0.9 0.085 0.084 0.109 0.078 0.073 0.112 0.078 0.074 0.11 0.08 0.076 0.11 0.085 0.084 0.109

1 0.134 0.132 0.171 0.122 0.109 0.174 0.125 0.113 0.173 0.127 0.119 0.172 0.134 0.132 0.171

1.2 0.295 0.305 0.333 0.238 0.229 0.337 0.252 0.238 0.334 0.267 0.259 0.334 0.295 0.305 0.333

Medium separability initial matrix

σ

Tr
ia

ng
 p

 =
 0

In
t p

 =
 0

Po
in

t p
 =

 0

Tr
ia

ng
 p

 =
 0

.0
1

In
t p

 =
 0

.0
1

Po
in

t p
 =

 0
.0

1

Tr
ia

ng
 p

 =
 0

.2
5

In
t p

 =
 0

.2
5

Po
in

t p
 =

 0
.2

5

Tr
ia

ng
 p

 =
 0

.5

In
t p

 =
 0

.5

Po
in

t p
 =

 0
.5

Tr
ia

ng
 p

 =
 1

In
t p

 =
 1

Po
in

t p
 =

 1

0.6 0.033 0.031 0.048 0.031 0.028 0.052 0.033 0.0295 0.05 0.033 0.03 0.049 0.033 0.0314 0.048

0.7 0.086 0.081 0.115 0.082 0.071 0.124 0.083 0.074 0.121 0.084 0.077 0.119 0.086 0.081 0.115

0.8 0.161 0.154 0.205 0.159 0.149 0.217 0.158 0.145 0.213 0.159 0.149 0.21 0.161 0.154 0.205

0.9 0.249 0.244 0.302 0.240 0.223 0.314 0.244 0.226 0.312 0.246 0.232 0.308 0.25 0.244 0.302

1 0.350 0.341 0.412 0.317 0.289 0.425 0.33 0.302 0.421 0.338 0.316 0.418 0.35 0.341 0.412

low separability initial matrix
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0.1 0.05 0.049 0.066 0.0132 0.01285 0.02 0.018 0.0179 0.026 0.025 0.025 0.036 0.05 0.05 0.066

0.15 0.115 0.115 0.143 0.0536 0.05135 0.078 0.065 0.0614 0.089 0.078 0.076 0.103 0.115 0.115 0.143

0.2 0.179 0.1816 0.206 0.1102 0.1142 0.134 0.124 0.126 0.146 0.14 0.141 0.165 0.179 0.182 0.206

0.25 0.243 0.2456 0.257 0.1738 0.1757 0.193 0.187 0.190 0.205 0.203 0.206 0.222 0.243 0.246 0.257

0.3 0.298 0.302 0.31 0.234 0.2355 0.247 0.246 0.249 0.259 0.263 0.263 0.275 0.298 0.302 0.31

0.4 0.374 0.3794 0.385 0.3211 0.31935 0.339 0.332 0.332 0.349 0.345 0.346 0.358 0.374 0.379 0.385
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The dependence of error probability on p  taking into consideration various values ofσ  
in the case of uniform distribution for the intuitionistic interval fuzzy numbers of the initial 
separability matrix is presented in Figure 3. 

The results of the experiment on high, medium and low separability initial matrixes in 
the case of generating normal distribution are presented in Table 4. The most stable general-
ized averaging operators of the high separability initial matrix include the point generalized 
averaging operator with exponents 0.01p =  and 0.25p = . For medium and low separability 
initial matrices, the point generalized averaging operator having 0.01p =  appeared to be the 
most stable.
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Fig. 3. The dependence of error probability on p  considering various values of σ  in the case of 
uniform distribution for the intuitionistic interval fuzzy numbers of the high separability initial matrix

The dependence of error probability on σ  taking into consideration various values of 
p in the case of normal distribution for the point intuitionistic fuzzy numbers of the low 

separability initial matrix is shown in Figure 4. 
Next, the probability of ranking errors depending on the number of experts will be ana-

lyzed. Comparative analysis involving 3, 4 and 5 experts and the medium separability initial 
matrix has been performed. Different exponent values of generalized weighted averaging 
operators and various types of intuitionistic fuzzy numbers (triangular, interval and point) 
have been examined. The chosen numbers of experts are small because, as a rule, hiring 
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Fig. 4. The dependence of error probability on p  considering various values of σ  in the case of 
normal distribution for the point interval fuzzy numbers of the low separability initial matrix
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Table 4. The probability of ranking errors for generalized averaging operators in the case of normal 
distribution for high, medium and low separability alternatives

High separability initial matrix
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0.15 0.013 0.021 0.006 0.0122 0.019 0.0055 0.012 0.019 0.0054 0.012 0.02 0.006 0.013 0.021 0.006

0.2 0.085 0.113 0.055 0.083 0.113 0.0528 0.081 0.108 0.053 0.082 0.109 0.054 0.085 0.113 0.055

0.25 0.206 0.249 0.153 0.216 0.282 0.1476 0.202 0.250 0.149 0.201 0.246 0.149 0.206 0.25 0.153

0.3 0.332 0.381 0.268 0.348 0.438 0.2625 0.328 0.384 0.264 0.325 0.378 0.264 0.332 0.381 0.268

Medium separability initial matrix
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0.1 0.008 0.014 0.003 0.008 0.013 0.0032 0.008 0.013 0.0033 0.008 0.013 0.0034 0.008 0.014 0.003

0.15 0.123 0.154 0.08 0.114 0.149 0.077 0.114 0.146 0.078 0.116 0.148 0.078 0.123 0.154 0.08

0.2 0.324 0.368 0.256 0.316 0.368 0.248 0.311 0.356 0.249 0.315 0.361 0.251 0.324 0.368 0.256

0.25 0.483 0.527 0.415 0.494 0.556 0.409 0.476 0.523 0.409 0.476 0.521 0.41 0.483 0.527 0.415

low separability initial matrix
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0.03 0.109 0.121 0.104 0.046 0.055 0.045 0.056 0.065 0.056 0.07 0.079 0.069 0.109 0.121 0.104

0.035 0.136 0.151 0.129 0.069 0.081 0.063 0.08 0.092 0.074 0.094 0.108 0.089 0.136 0.151 0.129

0.04 0.161 0.178 0.149 0.089 0.106 0.078 0.102 0.118 0.09 0.118 0.134 0.106 0.161 0.178 0.149

0.05 0.208 0.231 0.188 0.138 0.161 0.119 0.152 0.173 0.131 0.166 0.19 0.148 0.208 0.231 0.188

experts is rather expensive. Table 5 indicates the probability of ranking errors considering 
generalized averaging operators with uniform distribution in the cases of 3, 4 and 5 experts. 
For each row, the least probability of error is marked in bold font. The expectable result has 
been obtained – the bigger is the number of experts, the lower is the probability of ranking 
errors. Trends are very similar in the cases of 3, 4 and 5 experts – the most stable general-
ized averaging operators almost for all σ  values have been those with a fuzzy interval and 
exponent 0.01p = .
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Table 5. The probability of ranking errors for generalized averaging operators with uniform distribution 
and the medium separability initial matrix in the cases of 3, 4 and 5 experts
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0.5 0.095 0.0959 0.102 0.0962 0.0957 0.105 0.096 0.0962 0.103 0.095 0.0959 0.102 0.0942 0.0966 0.101

0.6 0.1775 0.1733 0.199 0.1684 0.1577 0.206 0.176 0.1697 0.202 0.178 0.1733 0.199 0.1767 0.1751 0.195

0.7 0.2887 0.281 0.317 0.2746 0.2574 0.327 0.287 0.2751 0.321 0.289 0.281 0.317 0.2894 0.2848 0.314

0.8 0.3921 0.3833 0.425 0.3755 0.3578 0.438 0.388 0.3748 0.431 0.392 0.3833 0.425 0.3942 0.3882 0.42
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0.5 0.0319 0.03 0.04 0.0326 0.0301 0.042 0.032 0.0298 0.04 0.032 0.03 0.04 0.0314 0.0307 0.039

0.6 0.0782 0.0748 0.1 0.0751 0.0675 0.108 0.078 0.0728 0.104 0.078 0.0748 0.1 0.0780 0.0767 0.096

0.7 0.155 0.1469 0.189 0.1457 0.1317 0.202 0.153 0.1423 0.196 0.155 0.1469 0.189 0.1562 0.1493 0.185

0.8 0.25610.24725 0.299 0.2468 0.2322 0.312 0.254 0.2404 0.306 0.256 0.2473 0.299 0.2577 0.2523 0.294

5 experts
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0.5 0.0104 0.0097 0.014 0.0107 0.0095 0.015 0.011 0.0095 0.014 0.01 0.0097 0.014 0.0099 0.0098 0.013

0.6 0.0331 0.0314 0.048 0.0313 0.0280 0.052 0.033 0.0304 0.049 0.033 0.0314 0.048 0.0338 0.0325 0.046

0.7 0.08640.08095 0.115 0.0817 0.0710 0.124 0.084 0.07675 0.119 0.086 0.081 0.115 0.0873 0.0844 0.111

0.8 0.16120.15405 0.205 0.1586 0.1485 0.217 0.159 0.1488 0.21 0.161 0.1541 0.205 0.1625 0.1604 0.2

Table 6 shows the probability of ranking errors for generalized averaging operators with 
normal distribution in the cases of 3, 4 and 5 experts and the medium separability initial 
matrix. likewise in the case of uniform distribution, a higher number of experts results in 
the lower probability of ranking errors. In all cases, the most stable values of generalized 
averaging operators have been those including a fuzzy point with exponent p = 0.01.

Figure 5 shows two graphs of the dependence of error probability on σ regarding various 
values of p in the cases of uniform and normal distribution and the medium separability 
initial matrix.
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Table 6. The probability of ranking errors for generalized averaging operators with normal distribution 
and the medium separability initial matrix in the cases of 3, 4 and 5 experts
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0.1 0.0259 0.0334 0.018 0.0246 0.0326 0.0169 0.025 0.032 0.0173 0.026 0.033 0.018 0.027 0.035 0.018

0.15 0.2154 0.242 0.178 0.2034 0.2301 0.170 0.208 0.234 0.1739 0.215 0.242 0.178 0.222 0.25 0.181

0.2 0.4348 0.4676 0.389 0.4181 0.4487 0.3812 0.425 0.455 0.384 0.435 0.468 0.389 0.445 0.478 0.396

0.25 0.595 0.6198 0.554 0.5825 0.6144 0.5479 0.586 0.609 0.5505 0.595 0.62 0.554 0.605 0.628 0.56
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0.1 0.0151 0.0229 0.007 0.0144 0.021 0.0069 0.007 0.015 0.022 0.0071 0.015 0.023 0.007 0.016 0.024

0.15 0.1565 0.1901 0.114 0.147 0.1811 0.1099 0.1107 0.151 0.182 0.1116 0.156 0.19 0.114 0.163 0.197

0.2 0.368 0.4041 0.31 0.354 0.3951 0.3019 0.3037 0.358 0.394 0.3058 0.368 0.404 0.31 0.377 0.414

0.25 0.5328 0.567 0.482 0.5343 0.5824 0.4729 0.4738 0.525 0.56 0.476 0.533 0.567 0.482 0.541 0.577

5 experts

σ

Tr
ia

ng
 p

 =
 0

In
t p

 =
 0

Po
in

t p
 =

 0

Tr
ia

ng
 p

 =
 0

.0
1

In
t p

 =
 0

.0
1

Po
in

t p
 =

 0
.0

1

Tr
ia

ng
 p

 =
 0

.5

In
t p

 =
 0

.5

Po
in

t p
 =

 0
.5

Tr
ia

ng
 p

 =
 1

In
t p

 =
 1

Po
in

t p
 =

 1

Tr
ia

ng
 p

 =
 1

.5

In
t p

 =
 1

.5

Po
in

t p
 =

 1
.5

0.1 0.0083 0.0141 0.003 0.0077 0.01325 0.0032 0.008 0.013 0.0034 0.008 0.014 0.003 0.009 0.015 0.003

0.15 0.12265 0.1543 0.08 0.1143 0.14895 0.0768 0.116 0.148 0.0785 0.123 0.154 0.08 0.127 0.16 0.082

0.2 0.3236 0.3683 0.256 0.316 0.36845 0.2486 0.315 0.361 0.2515 0.324 0.368 0.256 0.332 0.378 0.26

0.25 0.4828 0.5266 0.415 0.4935 0.55595 0.4092 0.476 0.521 0.410 0.483 0.527 0.415 0.488 0.533 0.421

The results of the conducted research have disclosed that the least probability of ranking 
errors has not been noticed neither as regards arithmetic ( 1)p = nor geometric averaging 
operators ( 0)p = in the case of 5 alternatives and 5 criteria for 3, 4 and 5 experts when ana-
lyzing normally and uniformly distributed IFNs. Thus, the advantage of generalized averaging 
operators is a minor error in ranking probability. The following numerical example will show 
that in a marginal case, when at least for one alternative and one criteria (0;0;0)aµ = , the 
weighted geometric averaging operator will assign the lowest rank to this alternative despite 
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of the values of other elements of the decision matrix. on the other hand, when at least for 
one alternative and one criteria (1;1;1)aµ = , the weighted arithmetic averaging operator 
will assign the highest rank to this alternative despite of the values of other elements of the 
decision matrix. Thus, in such marginal cases, the weighted geometric averaging operator 
and the weighted arithmetic averaging operator become insensitive and inappropriate.

6. an example of data fuzzification and fmCDm application 

suppose we have n  indicators [0; )jx ∈ +∞  used for comparing alternatives 1 1 1 1
1 2( , ,..., )nA x x x=  

and 2 2 2 2
1 2( , ,..., )nA x x x= :

1 2A A if 1 2( ) .j jj x x∀ ≤  
let jx  be triangular fuzzy numbers , , , , , ,( , , ),j j L j M j U j L j M j Ux x x x x x x= ≤ ≤ . If we have 

m  alternatives , 1,2,...,iA i m= , the decision matrix is as follows2:

 

1 1 1 2 2 2
1, 1, 1, 1, 1, 1, 1, 1, 1,
1 1 1 2 2 2
2, 2, 2, 2, 2, 2, 2, 2, 2,

1 1 1 2 2 2
, , , , , , , , ,

( , , ) ( , , ) ... ( , , )
( , , ) ( , , ) ... ( , , )

... ... ... ...
( , , ) ( , , ) ... ( , , )

m m m
L M U L M U L M U

m m m
L M U L M U L M U

m m m
n L n M n U n L n M n U n L n M n U

x x x x x x x x x
x x x x x x x x x

D

x x x x x x x x x



= 









 


 

Thus, numbers jm and jM can be chosen: , ,( ) , .i i
j j L j U ji m x x M∀ ≤ ≤  Numbers jm and jM

could be either theoretical bounds of indicators jx or quantities obtained from empirical 

2 rows of decision matrix represent attributes (indicators) and columns represent projects (alternatives)

Fig. 5. The dependence of error probability on σ considering various values of p  
and 3, 4 and 5 experts in the cases of uniform distribution for intuitionistic interval fuzzy numbers (a) 

and normal distribution for intuitionistic point fuzzy numbers (b)
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data, for example, , ,min , max .i i
j j L j j Ui i

m x M x= =  Normalized triangular fuzzy numbers are 
constructed as triplets , , ,( , , )j j L j M j Uµ = µ µ µ :

 ,
, , , , .j p j

j p
j j

x m
p L M U

M m
−

µ = =
−

 (12)

It seems to be clear that , , ,0 , , 1j L j M j U≤µ µ µ ≤  when indicator jx  has a direct relation-
ship with alternatives iA . let’s agree that , , ,j L j M j Uµ =µ =µ  if .j jm M=  Corresponding 
normalized values , , ,, ,i i i

j L j M j Uµ µ µ  are the lower, modal and upper degrees of the adequacy 
of alternative iA  to indicator (criteria) jx .

remark. In the case when indicator *jx  has an opposite relationship with alternatives 
iA , i.e. 1 2A A , when

1 2( ) j jj J x x∀ ∈ ≤ & * *
* * 1 2 * *( ) , {1,2,... },

j j
j J x x J J n J J∀ ∈ ≥ ∪ = ∩ =∅ , the values of the lower, 

modal and upper degrees of the adequacy of alternative iA to indicator *jx  are constructed 
as follows:

 
* *

*
* *

,
, , , , .j j p

j p
j j

M x
p L M U

M m

−
µ = =

−
 (13)

Further, an example (antuchevičienė et al. 2010, 2011) where a decision on possible 
redevelopment alternatives to derelict rural buildings must be chosen from 3 alternatives 
will be analyzed: the reconstruction of rural buildings and adapting them to production (or 
commercial) activities (alternative 1A ), improving and using them for farming (alternative 

2A ) or dismantling and recycling demolition waste materials (alternative 3A ). Three groups 
of criteria (sustainability indicators) describing the suggested alternatives were applied: the 
existing state 1 6( )x x− , development possibilities 7 11( )x x− and environmental impact 

12 15( )x x− :
1x  –  average soil fertility in the area (points); 2x  – the quality of life of the local population 

(points); 3x  – population activity index (%); 4x  – GDP proportion with respect to 
the average GDP of the country (%); 5x  – material investment in the area (lt per 
resident); 6x  – foreign investment in the area (lt × 103 per resident);

7x  –  building redevelopment costs (lt × 106); 8x  – an increase in the income of the local 
population (lt × 106 per year);

9x  –  an increase in sales in the area (%); 10x  – an increase in employment in the area (%); 
11x  – state income from business and property taxes (lt × 106 per year); 12x – business 

outlook; 13x  – difficulties in changing the original purpose of a site; 14x  – the degree of 
contamination; 15x  – the attractiveness of the countryside (i.e. image, landscape, etc).

among the criteria, considered 2 7 13 14, , ,x x x x  are associated with cost/loss and therefore 
their lower value is better while the remaining criteria are associated with benefit and their 
higher value is better. Hence, * {2,7,13,14},J =  {1,3,4,5,6,8,9,10,11,12,15}J = . Three decision 
matrixes are given for three regions according to the concept of the spatial development of 
the country: the areas of active development, the areas of regressing development and ‘buffer’ 
areas. These matrixes are presented in Table 7.
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Table 7. Initial decision matrixes for the areas of active development, the areas of regressing development 
and ‘buffer’ areas

Criteria 
(indicator)

Weight of 
indicator alternative A1 alternative A2 alternative A3 

Areas of active development
x1 0,0600 (30.9; 39.9; 50.0) (30.9; 39.9; 50.0) (30.9; 39.9; 50.0)
x2 0,0727 (39.3; 31.7; 23.1) (39.3; 31.7; 23.1) (39.3; 31.7; 23.1)
x3 0,0747 (39.8; 51.7; 68.1) (39.8; 51.7; 68.1) (39.8; 51.7; 68.1)
x4 0,0627 (73.9; 98.4; 137.3) (73.9; 98.4; 137.3) (73.9; 98.4; 137.3)
x5 0,0673 (552.0; 1304.0; 3561.0) (552.0; 1304.0; 3561.0) (552.0; 1304.0; 3561.0)
x6 0,0627 (73.2; 1028.7; 4160.0) (73.2; 1028.7; 4160.0) (73.2; 1028.7; 4160.0)
x7 0,0667 (766.1; 273.6; 35.6) (144.9; 59.4; 28.5) (20.2; 14.4; 8.6)
x8 0,0667 (31.1; 69.1; 241.9) (7.8; 25.9; 48.4) (0.3; 0.4; 1.2)
x9 0,0667 (2.3; 14.0; 39.1) (0.7; 2.2; 4.7) (0; 0; 0)
x10 0,0667 (2.1; 3.4; 9.6) (0.5; 1.7; 2.4) (0; 0; 0)
x11 0,0667 (8.6; 21.6; 50.4) (2.2; 5.4; 10.1) (0.1; 0.2; 0.5)
x12 0,0667 (0.8; 0.9; 1) (0.2; 0.3; 0.4) (0.6; 0.7; 0.8)
x13 0,0667 (1; 0.9; 0.8) (0.2; 0.1; 0) (0.8; 0.7; 0.6)
x14 0,0667 (0.8; 0.7; 0.6) (0.6; 0.5; 0.4) (0.2; 0.1; 0)
x15 0,0667 (0.6; 0.7; 0.8) (0.4; 0.5; 0.6) (0.2; 0.3; 0.4)

Areas of regressing development
x1 0,0740 (31.1; 34.8; 44.3)  (31.1; 34.8; 44.3) (31.1; 34.8; 44.3)
x2 0,0613 (37.78; 29.1; 20.78) (37.78; 29.1; 20.78) (37.78; 29.1; 20.78)
x3 0,0626 (47.1; 55.9; 66.2) (47.1; 55.9; 66.2) (47.1; 55.9; 66.2)
x4 0,0613 (79.5; 94.7; 137.3) (79.5; 94.7; 137.3) (79.5; 94.7; 137.3)
x5 0,0740 (212.0; 962.9; 3504.0) (212.0; 962.9; 3504.0) (212.0; 962.9; 3504.0)
x6 0,0673 (8.14; 833.1; 3550.5) (8.14; 833.1; 3550.5) (8.14; 833.1; 3550.5)
x7 0,0667 (667.3; 238.6; 31.0) (100.1; 51.8; 24.8) (17.6; 12.6; 7.6)
x8 0,0667 (27.1; 60.3; 210.7) (6.8; 22.6; 42.1) (0.2; 0.4; 1.1)
x9 0,0667 (12.7; 75.8; 212.1) (3.6; 12.1; 25.4) (0; 0; 0)
x10 0,0667 (1.6; 2.6; 7.3) (0.4; 1.3; 1.8) (0; 0; 0)
x11 0,0667 (7.5; 22.0; 43.9) (1.9; 4.7; 8.8) (0.1; 0.2; 0.4)
x12 0,0667 (0.2; 0.3; 0.4) (0.4; 0.5; 0.6) (0; 0.1; 0.2)
x13 0,0667 (0.6; 0.5; 0.4) (0.2; 0.1; 0) (0.2; 0.1; 0)
x14 0,0667 (0.6; 0.5; 0.4) (0.2; 0.1; 0) (0.2; 0.1; 0)
x15 0,0667 (0.6; 0.7; 0.8) (0.6; 0.7; 0.8) (0.4; 0.5; 0.6)

‘Buffer’ areas
x1 0,0553 (30.4; 40.0; 48.2) (30.4; 40.0; 48.2) (30.4; 40.0; 48.2)
x2 0,0567 (32.9; 30.3; 26.8) (32.9; 30.3; 26.8) (32.9; 30.3; 26.8)
x3 0,0833 (47.3; 55.8; 61.2) (47.3; 55.8; 61.2) (47.3; 55.8; 61.2)
x4 0,0553 (59.9; 78.1; 97.8) (59.9; 78.1; 97.8) (59.9; 78.1; 97.8)
x5 0,0747 (356.5; 663.5; 1398.6) (356.5; 663.5; 1398.6) (356.5; 663.5; 1398.6)
x6 0,0747 (0.41; 244.0; 607.8) (0.41; 244.0; 607.8) (0.41; 244.0; 607.8)
x7 0,0667 (808.6; 288.8; 37.6) (121.3; 62.7; 30.1) (21.3; 15.2; 9.1)
x8 0,0667 (32.8; 73.0; 255.4) (8.2; 27.4; 51.1) (0.3; 0.5; 1.3)
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Criteria 
(indicator)

Weight of 
indicator alternative A1 alternative A2 alternative A3 

‘Buffer’ areas
x9 0,0667 (14.4; 85.5; 239.3) (4.1; 13.7; 28.7) (0; 0; 0)
x10 0,0667 (23.0; 3.8; 10.6) (0.6; 1.9; 2.7) (0; 0; 0)
x11 0,0667 (9.1; 26.6; 53.2) (2.3; 5.7; 10.6) (0.1; 0.2; 0.5)
x12 0,0667 (0.4; 0.5; 0.6) (0.2; 0.3; 0.4) (0.2; 0.3; 0.4)
x13 0,0667 (1; 0.9; 0.8) (0.2; 0.1; 0) (0.6; 0.5; 0.4)
x14 0,0667 (0.4; 0.3; 0.2) (0.2; 0.1; 0) (0.2; 0.1; 0)
x15 0,0667 (0.8; 0.9; 1) (0.4; 0.5; 0.6) (0.8; 0.9; 1)

The construction of triangular fuzzy numbers , , ,( , , )j j L j M j Uµ = µ µ µ , according to for-
mulas (12) and (13), could be done as follows: indicator 1x – average soil fertility in the 
area measured in points is given by 9 fuzzy numbers (30.9; 39.9; 50.0), (30.9; 39.9; 50.0), 
(30.9; 39.9; 50.0), (31.1; 34.8; 44.3), (31.1; 34.8; 44.3), (31.1; 34.8; 44.3), (30.4; 40.0; 48.2), 
(30.4; 40.0; 48.2), (30.4; 40.0; 48.2). 

let’s choose 1 1,min 30.4i
Li

m x= = , 1 1,max 50i
Ui

M x= = . 1x  has a direct relationship with 
the alternatives (a greater value is better). Thus, following the application of formula (12), 
normalized triangular fuzzy numbers values (0.0255; 0.4846; 1.0), (0.0255; 0.4846; 1.0), 
(0.0255; 0.4846; 1.0), (0.0357; 0.2245; 0.7092), (0.0357; 0.2245; 0.7092), (0.0357; 0.2245; 
0.7092), (0.0; 0.4898; 0.9082), (0.0; 0.4898; 0.9082), (0.0; 0.4898; 0.9082) are obtained.

variable 2x  – the quality of life of the local population measured in points has an 
opposite relationship with the alternatives (a lower value is better). 2 2,min 20.78i

Li
m x= = , 

2 2,max 39.3i
Ui

M x= =  are chosen and, according to formula (13), normalized values having 
a direct relationship with the alternatives (0.; 0.4104; 0.8747), (0.; 0.4104; 0.8747), (0.; 0.4104; 
0.8747), (0.0821; 0.5508; 1.0), (0.0821; 0.5508; 1.0), (0.0821; 0.5508; 1.0), (0.3456; 0.486; 
0.6749), (0.3456; 0.486; 0.6749), (0.3456; 0.486; 0.6749) are calculated.

3x  – population activity index (%) and lower and upper theoretical bounds of indicator 

3x are 3 30, 100.m M= =  after transformation, all calculated normalized fuzzy variables have 
a direct relationship with alternatives 1 2 3, ,A A A .

Next, intuitionistic fuzzy numbers by the generation of , , ,( , , )i i i i
j j L j M j Uν = ν ν ν – lower, 

modal and upper degrees of the non-adequacy of alternative iA  to indicator (criteria) jx  
are constructed. Non-adequacy values have either normal distribution with an average equal 
to 0.1 or zero values in case , 1i

j Uµ = . From the definition of intuitionistic fuzzy numbers, in-
equalities , , ,0 , , 1i i i

j L j M j U≤ ν ν ν ≤ , , , 1i i
j U j Uµ + ν ≤  must be hold. Table 8 presents intuitionistic 

fuzzy numbers of the decision matrix of an active development area. In the same manner, the 
decision matrixes of regressing development and ‘buffer’ areas have been created.

For every column of the decision matrix given in Table 8 containing information about 
project i, 5 weighted generalized average operators , 0.0;0.01;0.5;1.0;2.0p

iI p = are calculated 
referring to formula (11) so that to aggregate all elements associated with project i. 

Continued Table 7

181Technological and Economic Development of Economy, 2013, 19(1): 162–187



Table 8. Intuitionistic fuzzy numbers constructed from the initial decision matrix of an active deve-
lopment area 

Criteria 
(indicator) alternative A1 alternative A2 alternative A3 

x1 ([0.0255; 0.4846;1];[0; 0; 0]) ([0.0255; 0.4846;1];[0; 0; 0]) ([0.0255; 0.4846; 1];[0; 0; 0])

x2 ([0; 0.4103; 0.8747]; 
[0.0652; 0.0952; 0.1252])

([0; 0.4103; 0.8747]; 
[0.0652; 0.0952; 0.1252])

([0; 0.4103; 0.8747]; 
[0.0652; 0.0952; 0.1252])

x3 ([0.398; 0.517;0.681]; 
[0; 0.0188; 0.0488])

([0.398; 0.517; 0.681]; 
[0; 0.0188; 0.0488])

([0.398; 0.517; 0.681]; 
[0; 0.0188; 0.0488])

x4 ([0.1808; 0.4974; 1];[0; 0; 0]) ([0.1808; 0.4974; 1];[0; 0; 0]) ([0.1808; 0.4974; 1];[0; 0; 0])

x5 ([0.1015; 0.3260; 1];[0; 0; 0]) ([0.1015; 0.3260; 1];[0; 0; 0]) ([0.1015; 0.3260; 1];[0; 0; 0])

x6 ([0.0174; 0.2472; 1];[0; 0; 0]) ([0.0174; 0.2472; 1];[0; 0; 0]) ([0.0174; 0.2472; 1];[0; 0; 0])

x7 ([0.0530; 0.6679; 0.9650]; 
[0; 0.0049; 0.0349])

([0.8285; 0.9353; 0.9739]; 
[0; 0; 0.0260])

([0.9842; 0.9915; 0.9987]; 
[0; 0; 0.0012])

x8 ([0.1210; 0.2699; 0.9471]; 
[0; 0.0228; 0.0528])

([0.0297; 0.1007; 0.1888]; 
[0.1007; 0.1307; 0.1607])

([0.0003; 0.0007; 0.0039]; 
[0.0124; 0.0424; 0.0724])

x9 ([0.0096; 0.0585; 0.1633]; 
[0; 0.0178; 0.0478])

([0.0029; 0.0091; 0.0196]; 
[0; 0; 0.0118])

([0; 0; 0]; 
[0.0646; 0.0946; 0.1246])

x10 ([0.1981; 0.3207; 0.9056]; 
[0.0343; 0.0643; 0.0943])

([0.0471; 0.1603; 0.2264]; 
[0.0513; 0.0813; 0.1113])

([0; 0; 0]; 
[0.1162; 0.1462; 0.1762])

x11 ([0.1600; 0.4048; 0.9472]; 
[0; 0.0227; 0.0527])

([0.0395; 0.0998; 0.1883]; 
[0.0020; 0.0320; 0.0620])

([0; 0.0018; 0.0075]; 
[0.0438; 0.0738; 0.1038])

x12 ([0.8; 0.9; 1]; 
[0; 0; 0])

([0.2; 0.3; 0.4]; 
[0; 0.0239; 0.0539])

([0.6; 0.7; 0.8]; 
[0; 0.0191; 0.0491])

x13 ([0; 0.1; 0.2]; 
[0; 0.0036; 0.0336])

([0.8; 0.9; 1]; 
[0; 0; 0])

([0.2; 0.3; 0.4]; 
[0.1080; 0.1380; 0.1680])

x14 ([0; 0.125; 0.25]; 
[0.1023; 0.1323; 0.1623])

([0.25; 0.375; 0.5]; 
[0.1385; 0.1685; 0.1985])

([0.75; 0.875; 1]; 
[0; 0; 0])

x15 ([0.5; 0.625; 0.75]; 
[0.0123; 0.0423; 0.0723])

([0.25; 0.375; 0.5]; 
[0.0501; 0.0801; 0.1101])

([0; 0.125; 0.25]; 
[0.0588; 0.0888; 0.1188])

Notice that if p = 1.0, 1
iI is the weighted arithmetic averaging operator, and if p = 0.0, 

0
iI  is the weighted geometric averaging operator. Then, for each p, the values of the score 

function are calculated using formulas (5)–(7) and ranking intuitionistic fuzzy numbers is 
accomplished. The results are given in Table 9. additionally, the ranking results obtained after 
applying 4 FMCDM methods – CoPras, ToPsIs, including vector and linear normalization 
and vIKor (antuchevičienė et al. 2011) are presented in Table 9. The ranking results of active 
development areas differ depending on the applied method. CoPras, ToPsIs with linear 
normalization and vIKor rank the alternatives in the following order: 2 1 3A A A  . The 
method of generalized aggregated fuzzy average functions gives similar results of intuition-
istic interval values and p = 0.01 ( 2 1 3A A A≈ ) and intuitionistic point values and p = 0.01 
( 2 1 3A A A≈  ). Triangular, interval and point generalized average methods with p = 0.0; 0.5; 
1.0; 2 give another best alternatives as well as intuitionistic triangular values for p = 0.01.

For the areas of regressing development, CoPras and ToPsIs with linear normaliza-
tion rank the alternatives in the order of 2 3 1A A A≈ , vIKor – 2 3 1A A A  , ToPsIs with 
vector normalization – 2 1 3A A A  . Closest to the introduced results are all generalized 
aggregated fuzzy average functions with p = 0.01; 0.5, except a triangular value for p = 0.01. 
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Difficulties in making some strict inferences in the case of ranking results of ‘buffer’ areas 
appear, because the results differ not only in different p values taking into account the method 
of generalized aggregated fuzzy average functions, but also considering various FMCDM 
methods. Nevertheless, only generalized aggregated fuzzy average functions having p = 0 
(geometric mean) ranking results coincide with ranking results of CoPras and ToPsIs 
using vector normalization: 1 2 3A A A  .

Table 9. ranking results of the areas of active development

areas of active development

Method
scores of alternatives

Priority order
A1 A2 A3

Triangular p = 0
Interval p = 0
Point p = 0

0.2949
0.2996
0.2856

0.1879
0.1754
0.2129

–0.0371
–0.0372
–0.0369

1 2 3A A A 

1 2 3A A A 

1 2 3A A A 

Triangular p = 0.01
Interval p = 0.01
Point p = 0.01

0.4771
0.5094
0.4124

0.5067
0.5538
0.4125

0.6476
0.5037
0.2404

3 2 1A A A 

2 1 3A A A≈

2 1 3A A A≈ 

Triangular p = 0.5
Interval p = 0.5
Point p = 0.5

0.5319
0.5803
0.4351

0.5589
0.6128
0.4512

0.5851
0.6395
0.4763

3 2 1A A A 

3 2 1A A A 

3 2 1A A A 

Triangular p = 1
Interval p = 1
Point p = 1

0.5607
0.6118
0.4587

0.5935
0.6464
0.4877

0.6476
0.6984
0.546

3 2 1A A A 

3 2 1A A A 

3 2 1A A A 

Triangular p = 2
Interval p = 2
Point p = 2

0.6078
0.6604
0.5027

0.6496
0.6991
0.5504

0.7206
0.7666
0.6287

3 2 1A A A 

3 2 1A A A 

3 2 1A A A 

CoPras 2 1 3A A A≈ 

ToPsIs (vector normalization) 1 2 3A A A 

ToPsIs (linear normalization) 2 1 3A A A 

vIKor 2 1 3A A A 

areas of regressing development

Method
scores of alternatives

Priority order
A1 A2 A3

Triangular p = 0
Interval p = 0
Point p = 0

0.3196
0.3247
0.3095

0.2189
0.2081
0.2406

–0.061
–0.061
–0.061

1 2 3A A A 

1 2 3A A A 

1 2 3A A A 

Triangular p = 0.01
Interval p = 0.01
Point p = 0.01

0.495
0.5443
0.3965

0.5466
0.5813
0.4773

0.6715
0.5019
0.2564

3 2 1A A A 

2 1 3A A A 

2 1 3A A A 

Triangular p = 0.5
Interval p = 0.5
Point p = 0.5

0.5252
0.5853
0.405

0.6107
0.6574
0.5171

0.6052
0.6573
0.5012

2 3 1A A A 

2 3 1A A A≈ 

2 3 1A A A 

Triangular p = 1
Interval p = 1
Point p = 1

0.5389
0.6008
0.4153

0.6491
0.6959
0.5555

0.6715
0.7192
0.5763

3 2 1A A A 

3 2 1A A A 

3 2 1A A A 
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areas of regressing development

Method
scores of alternatives

Priority order
A1 A2 A3

Triangular p = 2
Interval p = 2
Point p = 2

0.5623
0.6245
0.4379

0.703
0.7456
0.6177

0.7448
0.7854
0.6636

3 2 1A A A 

3 2 1A A A 

3 2 1A A A 

CoPras 2 3 1A A A≈

ToPsIs (vector normalization) 2 1 3A A A 

ToPsIs (linear normalization) 2 3 1A A A≈

vIKor 2 3 1A A A 

‘Buffer’ areas

Method
scores of alternatives

Priority order
A1 A2 A3

Triangular p = 0
Interval p = 0
Point p = 0

0.2486
0.2399
0.2659

0.1699
0.1507
0.2083

–0.0485
–0.0489
–0.0477

1 2 3A A A 

1 2 3A A A 

1 2 3A A A 

Triangular p = 0.01
Interval p = 0.01
Point p = 0.01

0.4763
0.5034
0.4221

0.499
0.5336

0.43

0.6692
0.5038
0.2452

3 2 1A A A 

2 3 1A A A 

2 1 3A A A 

Triangular p = 0.5
Interval p = 0.5
Point p = 0.5

0.5462
0.5972
0.4441

0.5867
0.6426
0.4747

0.6069
0.6657
0.4893

3 2 1A A A 

3 2 1A A A 

3 2 1A A A 

Triangular p = 1
Interval p = 1
Point p = 1

0.5754
0.63

0.4662

0.6279
0.6826
0.5185

0.6692
0.7216
0.5644

3 2 1A A A 

3 2 1A A A 

3 2 1A A A 

Triangular p = 2
Interval p = 2
Point p = 2

0.6154
0.6702
0.5057

0.6863
0.7343
0.5904

0.7373
0.7807
0.6503

3 2 1A A A 

3 2 1A A A 

3 2 1A A A 

CoPras 1 2 3A A A 

ToPsIs (vector normalization) 1 2 3A A A 

ToPsIs (linear normalization) 3 1 2A A A 

vIKor 3 1 2A A A 

Notice, that for p = 0 (geometric mean), the scores of alternative 3A  for active devel-
opment areas, the areas of regressing development and ‘buffer’ areas are negative while 
the scores of other alternatives are positive. Thus, alternative 3A  will always be the worst. 
such situation of a geometric mean will be in the case when for at least one of indicators 

(0,0,0)jµ =  for the given alternative. Therefore, we have 9 (0,0,0)µ =  and 10 (0,0,0)µ =  for 
x9 and x10 (see Table 7). suppose that for one alternative and at least one variable ,: 1j j Ux µ =

 
; 

then, , 0j Uν =  and (0,0,0)jν = . In this case, the values of the generalized aggregated fuzzy 
average function are not intuitionistic fuzzy numbers because (0,0,0)pIν =  for all p, except 
p = 0. Table 8 shows such variables ( 4 5 6, ,x x x ) for each of 3 alternatives, i.e. the values of the 
generalized aggregated fuzzy average function for 0p ≠ are simple triangular fuzzy numbers 
(not intuitionistic fuzzy numbers) for all 3 alternatives.

Continued Table 9
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Conclusions

The following conclusions from ranking alternatives on the basis of generalized aggregated 
fuzzy average functions could be derived:

1. ranking results of active development areas are closest to the results given employing 
CoPras, ToPsIs and vIKor methods when p = 0.01 and using intuitionistic interval 
values or intuitionistic point values.

2. ranking results of regressing development areas are closest to the results given applying 
CoPras, ToPsIs and vIKor methods when p = 0.01; 0.5, except triangular value 
for p = 0.01.

3. The method of generalized aggregated average fuzzy functions does not properly dis-
criminate alternatives when p = 1, 2. These functions are not sensitive enough. Thus, 
an arithmetic average (p = 1) is not the best method for ranking alternatives.

4. When for at least one of indicators (criteria) and one alternative (0,0,0)jµ = , the 
geometric aggregated fuzzy average function (p = 0) is not a reasonable method for 
FMCDM, as despite of the values of the other criteria, this alternative will be the worst.

5. When for at least one of indicators (criteria) and one alternative (1,1,1)jµ = , the arith-
metic aggregated fuzzy average function (p = 1) is not reasonable method for FMCDM, 
as despite of the values of the other criteria, this alternative will be the best.

These results confirm similar conclusions drawn by the Monte Carlo experiment. The 
lowest values of ranking errors in the case of generating uniform distribution included inter-
val generalized averaging operators having exponents 0.01p =  and 0.25p =  and triangular 
generalized averaging operators when 0.01p = . The lowest values of ranking errors in the 
case of generating normal distribution were those of point generalized averaging operators 
having exponents 0.01p =  and 0.25p = . Notice that in the case of normal distribution, the 
application of interval and triangular intuitionistic fuzzy numbers does not improve the 
results. other remark is that neither arithmetic nor geometric averaging operators provided 
the lowest values of ranking errors.
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