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Abstract. Multi-objective programming (MOP) is a branch of mathematical programming that has 
been widely used to deal with various practical problems. With the introduction of new technologies 
and business models, a paradigm shift in optimization problems is gradually taking place from 
fixed to flexible optimization. For example, many organizations use outsourcing or business process 
reengineering (BPR) to improve or upgrade their objective and technological coefficients to achieve 
better performance. Hence, traditional MOP models should be extended from the concept of fixed 
to changeable parameters, called changeable space, which includes decision space and objective 
space. In this paper, we propose three kinds of MOP model with changeable parameters to help 
decision-makers achieve the desired point (aspiration level), which is better than the ideal point.
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Introduction

It has been over 60 years since the simplex algorithm was proposed by Dantzig (1947) as a 
discipline for handling optimization problems. In the same year, von Neumann (1947) de-
veloped the theory of duality as a linear optimization solution and applied it in the field of 
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game theory. The original motivation of mathematical programming was the need to solve 
complex planning problems in wartime operations. After World War II, this technique was 
extended to solve various industrial optimization problems with great success. However, tra-
ditional mathematical programming models, whether single-objective programming (SOP) 
or multi-objective programming (MOP), consider optimizing a fixed objective function(s) 
under given constraints or resources. Therefore, it can only be viewed as an optimal tool within 
a system rather than as a tool to optimize the system itself. More specifically, most progress 
in traditional optimization methods has focused on algorithms or convergence properties 
to derive the optimal solution within a system, not on evolving the optimality concept itself, 
nor on expanding the notions of true optimization (Zeleny 1998).

The postulate of traditional mathematical programming not only simplifies problems 
themselves, but also reflects the situation which companies faced in the past. As time has 
gone by, new practical problems have become more complicated than in the past. An in-
creasing number of practical phenomena supports the necessity for changeable parameters 
of mathematical programming. For example, the emergence of dispatched workers or leased 
workers provides the flexibility of a company to adjust its human-resource allocation. In ad-
dition, a system can dynamically tune up its production resource allocation through satellite 
manufacturers or outsourcing. Hence, modern systems and problems should be considered 
to re-design and re-shape according to their flexibility, not their fixation (Zeleny 1998).

Another obvious case to justify the necessity for changeable parameters in mathematical 
programming is virtual organizations. Virtual organizations can be regarded as a network 
of independent firms that join together to capture specific market opportunities (Davidow, 
Malone 1992; Lambrechts et al. 2009). Each firm in a virtual organization contributes core 
competences and shares resources. Hence, the resources and production capabilities of a firm 
in a virtual organization are changeable and variable. Hence, mathematical programming 
models should also be flexible enough to deal with these problems. That is, we should relax 
the parameters of mathematical programming models from fixation to changeability.

De Novo programming was proposed by Zeleny (1982, 1986) to first extend traditional 
mathematical programming to relax the assumption of fixed resource allocations. The main 
concept of “De Novo programming” is to reconstruct the original constraints by incorporating 
the information of resources’ unit prices. Hence, the result of De Novo programming can 
determine the optimal resource allocation of a system and its objectives so that trade-offs 
among objectives can be appropriately eliminated (Zeleny 1990; Huang et al. 2005, 2006; 
Chen, Tzeng 2009).

Although Shi (1999) proposed the concept of a possible debt to De Novo programming, 
there are some significant differences between the two models. Shi’s model (Shi 1999) enables 
the available resources to be flexible. Then, a possible debt can borrow additional money from 
a bank with a fixed interest rate to achieve the preferences of multiple decision makers and 
the corresponding objectives. On the other hand, the proposed models try to achieve the 
desired levels which are set by a decision maker under the objective of the minimum total 
debt. In addition, the proposed models consider the situations of the changeable parameters 
of the objective and technological coefficients.
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In addition, the concept of the “changeable space” of mathematical programming was also 
proposed by (Yu, ChiangLin 2006; ChiangLin et al. 2007; Yu, Chen 2010, 2012) to illustrate 
that the parameters of a system may in practice be changed via investment, outsourcing or 
production improvement. However, they did not develop a complete model to resolve the 
mathematical programming problems of changeable parameters, also called “changeable 
space”. The basic concept of changeable decision space and aspiration level can be shown as 
in Fig. 1.
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Fig. 1. Basic concept of changeable decision space and aspiration level (Liou, Tzeng 2012)
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1. De Novo programming

De Novo programming can be considered as an optimal method for solving resource allocation 
problems. Traditionally, a multiple objective resource allocation problem (Hackman, Platzman 
1990) could be formulated to maximize the following multi-objective knapsack problem:
 =max z Cx; (1)
 ≤. .s t Ax b,
 ≥ 0x ,
where: C is the objective coefficient matrix; x denotes the variable vector; A denotes the tech-
nological coefficient matrix and the b vector denotes the maximum limited resource portfolios.

However, traditional resource allocation models may be inappropriate in the real world. 
First, since the components of b are determined in advance, the optimal solution heavily 
depends on whether resources are appropriately allocated. In addition, although it is rational 
to allocate resources using the above model in a hierarchical system, when resources can 
be brought from markets, the factor of a resource’s unit price should be considered, and so 
the traditional methods are no longer suitable. In order to deal with this issue, De Novo 
programming was proposed.

De Novo programming was proposed by Zeleny (1982, 1986) to re-design or re-shape a 
given system to achieve an ideal point based on given resources (subject to constraints). He 
suggested that trade-offs are properties of an inadequately designed system and thus can be 
eliminated through designing a better, preferably optimal system.

The usefulness of De Novo programming is that it can consider the following MOP 
problem (Zeleny 1982). Assume a manufacturer produces two different products, suits and 
dresses, in quantities x and y. Each of them requires five different resources, nylon through 
golden thread, according to technologically determined requirements. Unit prices of resources 
are also given, as shown in Table 1.

Table 1. Resource allocation of Zeleny’s example

Unit price Resource
Technological coefficients

No. of units=1 1x =2 1x
30 Nylon 4 0 20
40 Velvet 2 6 24
9.5 Silver thread 12 4 60
20 Silk 0 3 10.5
10 Golden thread 4 4 26

If two objectives, namely profit ( 1f ) and quality index ( 2f ), are considered by the com-
pany, we can formulate the following two-objective mathematical programming problem as:

 
1 1 2

2 1 2

max 400 300 ;
max 6 8 ;

f x x
f x x
= +
= +

 ≤1. . 4 20s t x ,

 + ≤1 22 6 24x x ,
 + ≤1 212 4 60x x ,
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 ≤23 10.5x ,

 + ≤1 24 4 26x x ,

 ≥ 1 2, 0x x ,

where f1 and f2 denote the objectives: profit and quality index, respectively. Let the two ob-
jectives be equally important. Then, if we employ the compromise solutions and set p = 2, 
we can obtain the optimal solution: =1 3.9837x , =2 2.5163x , f1 = 2348.37 and f2 = 44.03. 
However, the above solution may be unsatisfactory to the decision makers, due to the inap-
propriate resource portfolio.

Therefore, Zeleny (1998) proposed the concept of an optimal portfolio of resources, which 
is the design of system resources with a sense of integration, so that there are no trade-offs 
in a newly designed system. The original idea of De Novo programming was that product-
ive resources should not be engaged individually and separately because resources are not 
independent. Later, various issues, such as considering fuzzy coefficients (Li, Lee 1990a, b, 
1993; Lee 1994), other optimum-path ratios (Shi 1995) and the 0–1 programming problem 
(Kim et al. 1993), have been proposed to deal with more complicated situations. Based on 
the above concept, via breaking the constraints of fixed resources, De Novo programming 
can eliminate trade-offs between objectives to achieve the aspiration solution.

The procedures of De Novo programming can be described as follows (Zeleny 1982):
1. Find the aspiration level vector ( uz ) by solving each objective function of a system 

separately as
 =max u

kkz c x, =1, ,k m ; (2)

 ≤. .s t V Bx ,

 ≥ 0x ,

where:  =  1 2 

u u u u
mz z zz  denotes the aspiration level vector; V = pA denotes the unit 

cost vector; p is the resource’s unit price vector and B denotes the total budget.
2. Identify the minimum budget ∗B  and its corresponding resource allocation ( ∗x  and 

∗ ∗=b Ax ) with the aspiration level, such as:
 ∗ ∗=min B Vx ; (3)

 ∗=. .s t Cx z ,

 ≥ 0x .

3. Use the optimum-path ratio (r) to obtain the final solution ( ,  z x and b).

 ∗= ×rz z ; (4)

 ∗= ×rx x  (5)
and
 ∗= ×rb b , (6)

 where ∗= /r B B . (7)
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If we reconsider the previous example and deal with that problem using De Novo pro-
gramming, we can obtain the optimal resource allocation as: = 4.03x  and = 2.54y , =1 16.12b  , 

=2 23.3b , =3 58.52b , =4 7.62b  and =5 26.28b  under the total budget = 2600B  to generate 
=1 2375f  and =2 44.5f (ideal point). Comparing this result with the previous example, we 

can find that two objective values deriving from De Novo programming are better than that 
of traditional MOP, due to the appropriate resource allocation.

The procedures of De Novo programming proposed by Zeleny (1982) only derive one 
possible Pareto solution. Formally, we can formulate De Novo programming as:
 max Cx ; (8)
 ′ ≤. .s t Bp Ax ,
 ≤Ax b,
 ≥ 0x .

Next, we can solve the above problem using traditional MOP models, such as goal pro-
gramming or compromise solutions, to derive the optimal solution of De Novo programming.

Another kind of extension for MOP is to consider changeable parameters of MOP 
mo dels. De Novo programming, like traditional mathematical programming, also pos-
tulates that the parameters of models, such as technological coefficients and objective 
coefficients, are fixed. However, these parameters may be changeable if we consider exo-
genous factors, such as increasing investment, improving efficiency and time advancement 
(Chiang Lin et al. 2007).

ChiangLin et al. (2007) proposed a single-objective programming model with changeable 
parameters as:
 

=
+∑ 1 2

1
max ( )

m

j j j
j

c c y x ; (9)

 
=

≤ + =∑ 1 2
1

. . ( ), 1, ,

m

kj j k k
j

s t a x d d z k r,

 ′≤ ≤0 y y , ′≤ ≤0 z z , ≥ =0, 1,2,...,jx j m,

where: 1jc  denotes the original jth objective coefficient; 2jc  is the jth new objective coeffi-
cient caused by y, which could be investment in advertisement, service and distribution 
channels, etc.; 1kd  denotes the original kth available resources and 2kd  is the kth new extra 
resource caused by z, which could be making alliances, outsourcing, etc. Usually, y and z 
have upper limit constraints, namely ′y  and ′z , respectively, or Eq. (9) will become an 
unbounded problem.

Let us modify the previous example (as shown in Table 2) to demonstrate Yu’s model. 
Assume the firm can increase its objective coefficients and resources through investment 
(y) and purchase (z). The profits of products 1x  and 2x  can be increased by 3 and 4 units 
separately and the quality index of products 1x  and 2x  can be increased 0.3 and 0.4 sepa-
rately through the investment. In addition, the number of units of each resource can be 
increased through the unit purchase. Finally, the investment and purchase levels should be 
less than 7 units, separately, and the total of the investment and purchase is limited to 10.
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Table 2. Modified example to demonstrate Yu’s model

Resource
Technological coefficients

No. of units
Unit Purchase 

Benefit=1 1x =2 1x
Nylon 4 0 20 0.3
Velvet 2 6 24 0.3
Silver thread 12 4 60 0.3
Silk 0 3 10.5 0.3
Golden thread 4 4 26 0.3

Although Yu’s model only considers the single-objective situation, we can simply trans-
form it to a multi-objective situation by using the compromise solutions. Here, we use the 
compromise solution and set p = 2 to calculate the problem as follows:
 = + + +1 1 2 1 2max 400 300 (3 4 )f x x y x x ;
 = + + +2 1 2 1 2max 6 8 (0.3 0.2 )f x x y x x ;
 ≤ +1. . 4 20 0.3s t x z ,
 + ≤ +1 22 6 24 0.3x x z ,
 + ≤ +1 212 4 60 0.3x x z ,
 ≤ +23 10.5 0.3x z ,
 + ≤ +1 24 4 26 0.3x x z,
 ≤ ≤0 ,  7y z ,
 + ≤10y z ,
 ≥   1 2, , , 0x x y z .

The optimal solution can be calculated as: y = 7, z = 3, =1 4.1655x , =2 2.5595x , f1 = 2593.19 
and f2 = 57.80. From the above result, besides resource reallocation, we know that the firm can 
also increase its profit and quality index through outside investment or resource purchase.

Although the previous models extended traditional mathematical programming to deal 
with more practical problems, they cannot satisfy the purpose of this paper. Let us depict 
Figure 2 to highlight the purpose of this paper as follows.

Fig. 2. Basic concept of the desired point
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The original idea of De Novo programming is to re-allocate production resources so 
that a system’s trade-offs can be eliminated, and the ideal point can be achieved. However, 
the question arises, what if the ideal point still cannot satisfy the decision makers? Although 
ChiangLin et al. (2007) proposed another model to resolve the above problem, their model 
still cannot ensure that the desired level, which is wanted by the decision maker, can be 
achieved. This might be true if adding the effects of y and z still cannot achieve the desired 
point. In addition, what if a company cannot consider the effects of y or z? Maybe the above 
questions should be transformed into the problem that if the desired point is wanted by the 
decision maker, how can the system be adjusted or re-designed to achieve that point? Decision 
makers may prefer to know what to do to achieve the desired point (aspiration level) via a 
re-designed system than what to do to optimize a fixed system.

It is obvious that if the parameters of a system remain constant, the best solution is the 
ideal point if there is no trade-off among objective functions. However, the desired point 
(aspiration level), which is better than the ideal point, can never be achieved. Hence, if we 
want to achieve the desired point (aspiration level), we have to “upgrade” the parameters 
of the system. Usually, a company may improve its objective/technological coefficients by 
importing new equipment and methods or by enlarging its fixed resources or promoting 
its human resources by innovating technology or increasing the total budget, or both, or 
other ideas. Next, we develop possible models to re-design or re-shape a system to achieve 
the desired point (aspiration level) according to the concept of changeable space, including 
decision space and objective (outcome) space.

2. MOP with changeable parameters

In practice, there are three basic ways for a system to achieve its desired point (aspiration 
level): 1) increasing budgets; 2) improving objective coefficients; and 3) upgrading production 
efficiency. Next, we discuss each situation and develop the corresponding optimal model as 
follows. In the first situation, a company can make some financing decisions, e.g. to borrow 
money from the bank or to issue company bonds/stocks to the capital market in order to 
enlarge/enrich available budgets so as to increase R&D in innovation and creativity for the 
value-created knowledge economy. Then, the problem of achieving the desired point (aspir-
ation level) is equivalent to minimizing the extra budget under the given objectives space 
and decision space (constraints).

Assume a company has n objectives to be achieved and m products are produced. We can 
incorporate the concepts of financing decisions into MOP and formulate the following model:

<Model 1: MOP with changeable budgets>
 min



B ; (10)

 ∗∗

=
= = …∑

1
. . ( ), 1, ,

m

ij ij i
j

s t c x f i nx ,

 ′ ≤ +


B Bp Ax ,

 <extra conditions for 


B >

 ≥ 0x ,
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where: ijc  denotes the jth coefficient of the ith objective function; ∗∗( )if x  denotes the desired 
value of the ith objective; p denotes the unit price vector of resources; B is the original budget 
and B



 denotes the extra budget obtained from financing decisions.
Example 1. Let us reconsider the initial example of producing suits and dresses. If the ob-

jective functions and constraints are constant, we can obtain the optimal solution from De Novo 
programming as =1 2375f  and =2 44.5f . However, the decision maker feels unsatisfied with 
the results and hopes to increase 1f  (profit) from 2,375 to 2,600 and 2f  (quality) from 44.5 to 
60, respectively. Hence, one way to achieve the desired solution is to borrow money from the 
capital markets via financing decisions. Table 3 presents the information related to Example 1.

Table 3. Information table for Example 1

Unit price Resource
Technological coefficients

No. of units
=1 1x =2 1x

30 Nylon 4 0 1b

40 Velvet 2 6 2b

9.5 Silver thread 12 4 3b

20 Silk 0 3 4b

10 Golden thread 4 4 5b

The problem of Example 1 is to derive the minimum extra budget which can achieve the 
desired point and determine the corresponding resource allocation. Next, we can formulate 
the following linear programming to solve the problem of Example 1 as:

 min


B

 + =1 2. . 400 300 2600s t x x ,
 + =1 26 8 60x x ,
 × + × + + × + + × +1 1 2 1 2 230 4 40 (2 6 ) 9.5 (12 4 ) 20 3x x x x x x
 × + ≤ +1 210 (4 4 ) 2600



x x B,
 ≥1 2, 0x x .

By solving the above problem, we obtained that the extra budget needed is = 376


B , pro-
ducing =1 2x  and =2 6x . The corresponding resource allocation can be calculated as =1 8b , 

=2 40b , =3 48b , =4 18b  and =5 32b . The corresponding profit and quality index are exactly 
equal to 2,600 and 60, respectively.

Comparing the result with De Novo programming and the proposed models, it can be 
seen that the proposed method can find a way to achieve the desired point which cannot be 
achieved by using De Novo programming. It is clear that the only way to go beyond the ideal 
point is to ask for outside help. Therefore, if the system hopes to achieve the desired point, 
it needs an extra $376. However, if the extra budget needed is equal to zero, it means that 
the original system is good enough to achieve the desired point, and the proposed model 
reduces to De Novo programming.
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Besides borrowing money from capital markets, a company can also achieve its desired 
goal through improving the objective coefficients of a system, e.g. economics of scale, elec-
tronic commerce, total quality management (TQM) and eliminating middle agencies. In this 
situation, a company should consider the unit improving cost of each objective coefficient 
and determine the optimal budget allocation between the improving costs and production re-
sources. Then, we can develop a MOP model with changeable objective coefficients as follows:

<Model 2: MOP with changeable objective coefficients>

 min


B ; (11)

 ∗∗

=
+ = = …∑

1
. . ( ) ( ), 1, ,

m

ij ij ij i
j

s t c c x f i nx ,

 
= =

′ + ≤ +∑∑
1 1





n m
c
ij ij

i j
p c B Bp Ax ,

 <extra conditions for c
ijp  and ijc >

 ≥ 0x ,
where c

ijp  denotes the unit upgrading cost with respect to the jth product coefficient of the ith 

objective function and ijc  is the jth upgrading product coefficient of the ith objective function.
Example 2. Following the previous example of producing suits and dresses, if the company 

cannot borrow money from capital markets, but also hopes to increase 1f  (profit) from 2,375 
to 2,600 and 2f  (quality) from 44.5 to 60, another way is to improve its objective coefficients 
through possible strategies or technologies. Therefore, we assume that the unit improving 
costs of the objective coefficients are $0.200, $0.289, $2.225 and $2.487, respectively, as shown 
in Table 4.

Table 4. Information table for Example 2

Objective coefficients
Unit price Resource

Technological coefficients
No. of units

=1x =1y =1 1x =2 1x

400 ($0.200) 300 ($0.289) 30 Nylon 4 0 1b

6 ($2.225) 8 ($2.487) 40 Velvet 2 6 2b

9.5 Silver thread 12 4 3b

20 Silk 0 3 4b

10 Golden thread 4 4 5b

Next, we can formulate the following mathematical programming to consider achieving 
the desired points via improving the objective coefficients as follows:
 min



B

 + + + =11 1 12 2. . (400 ) (300 ) 2600 s t c x c x ,
 + + + =21 1 22 2(6 ) (8 ) 60 c x c x ,
 × + × + + × + + × +1 1 2 1 2 230 4 40 (2 6 ) 9.5 (12 4 ) 20 3x x x x x x
 + +× ≤++ + +11 12 21 221 2 200 0.289 2.225 2.48710 (4 4 ) (0. ) 2600   



c cx x c c B ,
 ≥1 2, 0x x .
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Solving the above problem, we can obtain the extra budget 0B =


. The result means that 
no extra budget is needed for achieving the desired point. Then, we can also derive =1 4.43x  , 

=2 2.70x , =11 3.51c , =12 0.18c , =21 1.44c , and =22 2.00c . In addition, the corresponding re-
source allocation can be assigned as =1 17.72b , =2 25.06b , =3 17.72b , =4 8.10b  , =5 28.52b  , 
profit = 2600 and the quality index = 60. We should highlight that if ≠ 0



B , it means that we 
still cannot achieve the desired point via improving objective coefficients. Therefore, it indic-
ates that extra budget is also needed for the system to achieve the desired point. Otherwise, 
we should consider another possibility.

  The last situation discussed here is that a company may expand its outcome space through 
upgrading the technology coefficients of a system. For example, a company can adopt business 
process reengineering (BPR), new information technologies or enterprise resource manage-
ment (ERP) to increase its production efficiency, i.e. upgrading its technology coefficients. 
Hence, we can conceptualize the above description to formulate the following model:

<Model 3: MOP with Changeable technological coefficients >

 min


B ; (12)

 ∗∗

=
= = …∑

1
. . ( ), 1, , ,

m

ij ij i
j

s t c x f i nx

 B+ B
= =

′ − + ≤∑∑
1 1

( )
 



r m
a

kjkj
k j

p ap A A x

 <extra conditions for a
ijp  and ija >

 ≥ ,0x

where =   




kj
aA  is the upgrading technological coefficient matrix and a

kjp  is the unit up-
grading cost with respect to the jth technology coefficient of the kth constraint.

Example 3. We can follow the previous example of producing suits and dresses to ad-
dress the following problem. If the company still cannot achieve the desired point through 
adding extra budget or improving objective coefficients, the last possible way is to update the 
technological coefficients of the system. Therefore, we assume each unit updating cost of the 
technological coefficients can be defined and presented as shown in Table 5.

Table 5. Information table for Example 3

Objective coefficient
Unit price Resource

Technological coefficients
No. of units

=1x =1y =1 1x =2 1x

400 300 30 Nylon 4 ($0.5) 0 1b

6 8 40 Velvet 2 ($0.5) 6 ($0.27) 2b

9.5 Silver thread 12 ($0.27) 4 ($0.26) 3b

20 Silk 0 3 ($0.25) 4b

10 Golden thread 4 ($0.25) 4 ($0.25) 5b
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Incorporating the information of the unit updating cost of the technological coefficients, 
we can formulate the following mathematical programming model:

 min


B
 + =1 2. . 400 300 2600s t x x ,
 + =1 26 8 60x x ,

 × − + × − + − + × − +11 1 21 1 22 2 31 130 (4 ) 40 ((2 ) (6 ) ) 9.5 ((12 )   a x a x a x a x

 − + × − + × − + − +32 2 42 2 51 1 52 2(4 ) ) 20 (3 ) 10 ((4 ) (4 ) )   a x a x a x a x

 + + + + + + + ≤ +11 21 22 31 32 42 51 520.5 0.5 0.27 12 4 3 4 4 2600


       a a a a a a a a B,

 ≥1 2, 0x x .

Solving the above problem, we can obtain the extra budget = 0


B . The result means that 
no extra budget is needed for achieving the desired point. Then, we can also derive =1 2.42x  , 

=2 5.69x , =11 2.03a , =21 1.27a , =22 0.30a , =31 0.27a , =32 0.25a , =42 0.26a , =51 0.25a  and 
=52 0.26a . In addition, the corresponding resource allocation can be assigned as =1 4.76b  , 
=2 34.20b , =3 49.72b , =4 15.59b , =5 30.36b , profit = 2600 and quality index = 60.
In the previous models, we can use one of the three ways to try to achieve the desired 

point. In practice, three situations could exist simultaneously. Therefore, a more general model 
of changeable parameters can be considered to incorporate the previous three situations as:
 min



B ; (13)
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ij ij j i
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s t c c x f x i n

 
= = = =

′ − + + ≤ +∑∑ ∑∑
1 1 1 1
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 

 
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ij ij ij ij

i j i j
p c p a B Bp A A x ,

 <extra conditions for 


B , c
ijp , ijc , a

ijp  and ija >

 ≥ 0x .

If = 0


B , it means that the desired point can be achieved without increasing the budget. 
The decision maker can improve objective coefficients (when ≠ 0

ijc ), update the technological 
coefficients (when ≠ 0

ija ) or both (when ≠ 0

ijc  and ≠ 0

ija ) to achieve the desired point. 
On the other hand, if ≠ 0



B , it means that the original system cannot be achieved through 
updating the objective or the technological coefficients. Hence, the only way is to increase 
the budget through borrowing money from capital markets.

Note that the proposed models enable the objective and technological coefficients to be 
changeable. Although this characteristic makes the model more flexible, it may suffer from 
problems of computation and solubility. Hence, we propose the concept of convex program-
ming, and the corresponding proof to justify that our models is rational and solvable as follows.

Definition 1. A mathematical programming is called convex programming if and only if 
its objective and constraint functions are convex. Note that it is clear that least-squares and 
linear programming are special kinds of convex programming.
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Definition 2. Suppose a function →: nf R R  is twice differentiable. Then f  is convex if 
and only if its domain, D( f ), is a convex set and its Hessian matrix is positive semidefinite.

As we know, convex programming is a special kind of non-linear programming. Like 
linear programming, it generally has no analytic solution. However, for a convex optimization 
problem, all locally optimal solutions are globally optimal. Hence, there are many algorithms, 
such as interior-point method, which can be used for solving these problems reliably and 
efficiently. In addition, the time complexity of the convex programming is approximately 

3 2max{ , , }n n m F , where n is the number of variables, m is the number of constraints, and F 
is the cost of the evaluating objectives, constraints and their first and second derivatives. In a 
general situation, the complexity of a convex programming model belongs to the polynomial 
problems. It can be easily solved by today’s computers.

The proposed models belong to convex programming.
Proof:
Equations (10)–(12) are special cases of Equation (13). Hence, if Equation (13) is a convex 

programming problem, Models 1–3 are convex programming problems.
First, we want to examine the Hessian matrices of the objective and constraints of Equa-

tion (13). For convenience of the operations, we assume

 =( )
 

f B B ,
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Then, the Hessian matrix of each equation is calculated, separately, as:

 ∇ =2 ( ) [0]


f B ,

 ×∇ = ∀ =2
2 2( , ) [0] , 1,...,

i j ij m mg x c i n,

 0]∇ =2 ( , , , ) [ 

j ij ijh x c a B .

Clearly, all of the matrices above are positive semidefinite. Hence, the problem of Equa-
tion (13) is a convex programming problem. Similarly, we can prove that Models 1–3 are 
examples of convex programming. This proof also justifies the rationale and solubility of the 
proposed models.

Next, we propose the related findings according to the results of the illustrated examples.

3. Discussion

Traditional MOP is used to solve optimal problems with a given and fixed system. However, 
an increasing number of flexible systems/organizations, such as team-based and virtual or-
ganizations, are being proposed to replace traditional ones. Therefore, the problem of system 
optimization should be extended from inside to outside the system. That is, we should design 
a new system rather than optimizing a given system through changing the system parameters. 
In practice, these methods include BPR, outsourcing, dispatching workers, etc.
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In this paper, we develop three MOP models for decision-makers to design or plan a 
system. The first model retains the original parameters of objective and technological coeffi-
cients but only considers borrowing money from capital markets. The second model enables 
objective functions to be changeable so that a system can improve its objective coefficients 
to achieve the desired point. The last model considers that the technological coefficients of 
a system are changeable. Therefore, the desired point can be achieved through updating its 
technological coefficients.

Next, we can illustrate how to expand the changeable spaces for achieving the desired point 
(aspiration level), as shown in Fig. 3. Note that in Fig. 2, the left and right quadrant charts 
denote the decision and objective spaces, respectively. The curves pointed from the decision 
space to objective space indicate the corresponding corner solutions of the programming 
problem. In addition, Fig. 4 displays the sets of different objective spaces. It can be seen that 
the objective set is gradually enlarged if we release the parameters of the traditional mathem-
atical programming problems. That is, the optimal solution can be upgraded by considering 
changeable parameters of mathematical programming.
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Fig. 3. Changeable spaces for achieving the desired point
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It can be seen that the decision spaces of the illustrated example are expanded gradually 
through resource re-allocation or changeable parameters. Therefore, the corresponding ob-
jective spaces are changeable and create the possibility of achieving better solutions. As we 
know, the original decision space will cause the Pareto solution, due to the trade-off between 
objectives. Although the De Novo programming enables the possibility of resource re-al-
location to obtain a better result, it still causes a De Novo trade-off because of the fixation 
of the system parameters. Therefore, the only way to achieve the desired point is to expand 
the decision space via changeable parameters. Then, we can obtain the desired point without 
trade-off between objectives.

Here, we compare the three models, De Novo, Yu’s model and the proposed model, as 
follows. Although the three models share the same purpose of system design, there are several 
significant differences between them. First, De Novo incorporates the variables, resource unit 
prices and total budget, to re-allocate the available resources. On the other hand, Yu’s model 
enables the objective coefficients and resources to be changeable via outside investment or 
time. However, the proposed model considers all possible situations of parameter change-
ability. In addition, the purpose of the proposed model is to find a way with the minimum 
budget to achieve the desired objectives set with minimum budget. In contrast, De Novo 
and Yu’s model derives the optimal solution under re-given objectives and/or constraints. 
The comparisons of these models are presented in Table 6.

In addition, the relationship between these models can be represented as shown in Fig. 5.
Recently, the concept of habitual domains (HD) has been proposed and supports the flexible 

or changeable parameters of decision spaces. Habitual domains (Yu 1980, 1984, 1985, 1990, 
1991) refer to the set of human’s thinking, judging, responding, experience, and knowledge. 
Therefore, it is clear that HDs play a key role in affecting human behaviour. To improve the 
quality of decision-making, people should think about two major problems: 1) how to polish the 
existing HDs; 2) how to expand the existing HDs. Recently, many papers have been proposed 
to efficiently expand HDs, known as competence set analysis (Yu, Zhang 1989, 1990, 1992; Li, 
Yu 1994), and practical applications (Huang et al. 2012; Larbani, Yu 2009a, b, 2012a, b). These 
methods can be used to significantly improve the quality of decision-making.

Fig. 4. A comparison of objective space
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There are four elements within a habitual domain:
1. The potential domain (PD) – the collection of ideas and actions that can potentially 

be activated;
2. The actual domain (AD) – the set of ideas and actions that are actually activated;
3. The activation probabilities (AP) – the probabilities that ideas and actions in PD also 

belong to AD;
4. The reachable domain (RD) – the set of ideas and actions that can be attained from a 

given set in an HD.
Since decision processes depend on the evolution of HDs, an expanding HD can result 

in effective decisions and preferred solutions. Hence, the expanding HD can be considered 
as the changeable parameters of the system.

Next, we compare the differences between goal programming and the proposed method as 
follows. Goal programming was proposed by Charnes and Cooper (1961) to deal with linear 
MOP problems. The idea of goal programming is to seek a solution which is nearest to the 
ideal point. Thus, a decision maker should first assign the targets or goal to each objective and 
then minimize the “distance” from the targets to the objectives (usually we can use Lp-norm 
to define the distance between the targets and the objectives) to find the solution.

Table 6. The differences between the system design of the models

De Novo Yu’s model The proposed
Changeable 
parameters

Budget Resource and Objective Budget, Resource, 
Objective and Technology

Optimality via Resource Reallocation Outside investment 
or time

Both

Optimal solution Model determined Model determined Determined by 
decision-makers

Purpose Optimality under 
given constraints

Optimality under 
given constraints

Optimality by any 
possibility

Objectives Original objectives Original objectives Minimum debt
Philosophy What What How

�e Proposed Model

– Technological coe�cients changeable
– Achieving the desired level via the minimum (extra) budget

– Resource reallocation
– Resource unit price
– Via budget

De Novo Programming

– Objective changeable
– Resource changeable
– Via investment or time

Changeable Model

Fig. 5. The relationship between the models
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The differences between goal programming and the proposed methods can be described 
as follows. First, the purpose of goal programming is to find a solution, which is located in 
Pareto solutions, and is closest to the ideal point. However, the purpose of the proposed 
models is to find out a way that can achieve the desired point via possible changes. Hence, the 
optimal solution of goal programming is usually worse than the ideal point because of trade-
offs among objective functions. On the other hand, the proposed models can ensure that the 
desired point, which is better than the ideal point, can be achieved. In sum, goal programming 
optimizes the objective functions within a given system, i.e. inside optimization. However, 
the proposed models minimize extra budget with a flexible system, i.e. outside optimization.

Secondly, goal programming optimizes the objective functions of a system with fixed 
parameters. That is, goal programming solves the problem of what to do to obtain the optimal 
solution of a system. On the other hand, the proposed models tolerate the parameters of a 
system being changeable so that the desired point can be achieved through possible adjust-
ments. Hence, goal programming is more suitable for dealing with “what to do” problems, 
while the proposed models try to answer “how to do” problems.

Finally, the essence of goal programming is to determine an optimal solution in an MOP 
problem. Therefore, like other traditional MOP methods, such as compromise solutions, it 
is an optimization method. However, the essence of the proposed models seeks to change or 
modify the original system so that the desired point can be achieved. Hence, the proposed 
method can be regarded as an optimal system-design method rather than an optimization 
method.

On the other hand, we can also highlight the differences between De Novo programming 
and the proposed models. De Novo programming incorporates the information of resources’ 
unit prices into traditional mathematical programming to design a better system. On the other 
hand, the proposed method not only considers resources’ unit prices but also relaxes other 
parameters, such as objective and technological coefficients, to be changeable. In addition, 
the optimal solution of De Novo programming is the ideal point. However, the proposed 
method seeks ways to achieve the desired point.

Finally, we can highlight the philosophical difference between the proposed method 
and other MOP methods, including De Novo programming, from the perspective of formal 
analysis (Tzeng, Huang 2011). All traditional MOP models can be considered as normative 
models which focus on the problems that decision makers should ideally resolve. However, the 
proposed method should be regarded as a prescriptive model which considers the methods 
that decision makers ought to use to improve their decisions.

Conclusions

Traditional MOP problems focus on the optimization within a system. However, more and 
more technologies and strategy developments enable systems to be re-designed or re-shaped 
to perform better. Hence, we should extend traditional MOP from a normative model to a 
prescriptive model. In this paper, we propose three kinds of MOP with changeable parameters, 
i.e. budget, objective coefficients and technological coefficients, to help decision-makers to 
achieve their desired points.
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