
CONFIGURING ARTIFICIAL NEURAL NETWORKS
FOR STOCK MARKET PREDICTIONS

Gheorghe RUXANDA, Laura Maria BADEA

Bucharest University of Economic Studies, 15–17 Calea Dorobanti, District 1, Bucharest, Romania

Received 28 May 2013; accepted 24 November 2013

Abstract. Making accurate predictions for stock market values with advanced non-linear methods
creates opportunities for business practitioners, especially nowadays, with highly volatile stock
market evolutions. Well suited for approaching non-linear problems, Artificial Neural Networks
provide a number of features which make possible reasonably accurate forecasts. But, like the old
Latin saying “Primus inter pares”, not all Artificial Neural Networks perform the same, end results
depending very much on the network architecture and, more specifically, on the chosen training
algorithm. This paper provides suggestions on how to configure Artificial Neural Networks for
performing stock market predictions, with an application on the Romanian BET index. Final results
are confirmed by testing the trained networks on the Croatian Stock Market data. End remarks
entitle Broyden-Fletcher-Goldfarb-Shanno training algorithm as a good choice in terms of model
convergence and generalization capacity.

Keywords: prediction, Artificial Neural Networks, nonlinear programming, gradient descent, BFGS,
numerical differentiation, stock exchange market.

Reference to this paper should be made as follows: Ruxanda, G.; Badea, L. M. 2014. Configuring
Artificial Neural Networks for stock market predictions, Technological and Economic Development
of Economy 20(1): 116–132.

JEL Classification: C45, C51, C53, C63.

Introduction

Driven by the prospect of high profits and benefits that can be extracted from speculative
activities, over the past decades, predicting stock market prices has become an attainable
goal for business practitioners due to powerful estimation tools and advanced computing
resources. Available theories such as efficient market hypothesis (EMH) and random walk

Corresponding author Laura Maria Badea
E-mail: laura.maria.badea@gmail.com

TechNOLOGicAL ANd ecONOMic deVeLOPMeNT OF ecONOMY

iSSN 2029-4913 print/iSSN 2029-4921 online

Copyright © 2014 Vilnius Gediminas Technical University (VGTU) Press
http://www.tandfonline.com/TTED

2014 Volume 20(1): 116–132
doi:10.3846/20294913.2014.889051

support the idea that it is virtually impossible to forecast stock prices. According to EMH,
stock values reflect all available information, any new knowledge quickly being absorbed
by the market in an efficient manner. On the other hand, the random walk theory assumes
that past values do not impact the current values as no trend exists, all variations being the
result of a random process. Nevertheless, with the proper approach and by using advanced
forecasting models, the market response can be speculated. For many years, the classical
Auto-Regressive Integrated Moving Average (ARIMA) technique has been used to make
stock exchange predictions. However, the stock market evolution is difficult to predict using
linear approaches. Recent advancements in computational area make non-linear models a
viable option for time series estimations, and Artificial Neural Networks (ANNs) are such
mathematical representations, very popular these days in many fields, including stock market
prediction.

In this study differently configured ANNs are built and compared in terms of forecasting
errors when making predictions on Bucharest Stock Market Index, BET. The paper is organized
as follows: Section 1 gives an overview on the related work regarding the use of ANNs in stock
market predictions. Section 2 presents relevant information about Bucharest Stock Exchange,
establishing a context. Also, information about employed data and sampling technique are
briefly discussed in this part of the paper. Section 3 details the model building steps and
presents the mathematical backgrounds of some optimization algorithms used for network
training: gradient descent and Broyden-Fletcher-Goldfarb-Shanno method (henceforth also
BFGS). These are further used to make predictions on BET index. This section also presents
a powerful algorithm for numerical differentiation, which is a method used to evaluate first
order and second order derivatives. Section 4 provides the results of the models built with
ANNs and those obtained when testing the networks on the Croatian market data. At the
end of the paper the main conclusions are presented regarding the use of Artificial Neural
Networks in stock market forecasting applications, and proposals for future developments.

1. ANNs and stock market forecasting – literature review

After the reticence period from the late 60’s and from the 70’s, when Minsky, Papert (1969)
criticised Neural Networks, especially the perceptron model, many improvements and devel-
opments have been delivered by researchers to sustain the use of ANNs. As such, nowadays,
ANNs have gained success in many areas, from mathematics and informatics to medicine
and economics (Iordache, Spircu 2011). Given their flexibility in handling non-linear data,
and considering superior results offered when compared with traditional estimation tech-
niques, over the past years, Artificial Neural Networks have been intensely used in forecasting
applications. Exchange rate prediction and stock price forecasting are common areas where
ANNs have proven the ability to reach good results. Egeli et al. (2003) used ANNs to predict
Istanbul Stock Exchange market index and they observed that these methods attain better
results compared with Moving Average approach. Coupelon (2007) also showed that Artificial
Neural Networks provide good solutions when predicting stock movements. Faria et al. (2009)
compared the forecasting power of ANNs with that of the adaptive exponential smoothing
method using the principal index of the Brazilian stock market. Isfan et al. (2010) compared

117Technological and Economic Development of Economy, 2014, 20(1): 116–132

ANNs with traditional estimation techniques using forecast results obtained on Portuguese
stock market, proving also that Neural Networks are very efficient when dealing with the
non-linear character of financial data. Also, Georgescu (2010) used one-value-ahead Neural
Networks forecasting methods to make stock exchange predictions on the Romanian market.

More recently, Vahedi (2012) used ANNs to predict stock price in Tehran Stock Exchange
using investment income, stock sales income, earnings per share and net assets. His results
support the ability of ANNs to perform well in stock exchange forecasting applications by
using quasi-Newton training algorithms. Using the observed values between 2003 and 2006
of the Nigerian Stock Exchange (NSE) market index, Idowu et al. (2012) showed that ANNs
can generate good predictions, however, without disregarding the configuration process
which needs to be performed very carefully and which represents an essential factor in gen-
erating meaningful results with these modelling techniques. Khan, Gour (2013) compared
the forecasting power of different technical methods with ANNs and in the end reached to
the conclusion that back-propagation Neural Networks generate better outcomes.

2. Datasets and sampling methods

The Romanian Stock Market had a tradition of over 70 years before restarting its’ activity in
November 1995. Starting from 1996, when the mass management/employee buy-out (MEBO)
process took place, the number of transactions performed by Bucharest Stock Exchange
Market has significantly increased, marking the beginning of a viable and promising trading
mechanism. In 1997, the Bucharest Stock Exchange introduced its’ first synthetic index, BET,
aimed to give a general image of the stock exchange performance. BET is a weighted index
of the free-float capitalization of the top ten most liquid companies listed at the Bucharest
Stock Exchange. The liquidity ratio is calculated semi-annually and this methodology allows
BET index to represent a support asset for financial derivatives and for structured products.

The evolution of the Romanian stock exchange followed an increasing trend after the
implementation of BET index, gaining the attention of many investors. In 2004, Bucharest
Stock Exchange capitalization reached the level of almost 12 billion USD, which back then
represented about 17% of the Romanian GDP. In 2006, the average value of daily transactions
surpassed the 10 million EUR threshold, this being also highlighted by the ascending trend
of the Bucharest Stock Market index, BET. Nevertheless, the peak was reached in July 2007,
when BET index hit a value that was ten times higher compared with September 1997, when
the index was first introduced. Thus, mid of 2007 brought a maximum point for BET index,
marking also the beginning of the Romanian Stock Exchange decrease. In 2008, the Romanian
Stock Market severely felt the shocks induced by the economic crisis, moving towards a new
inflexion point reached at the beginning of 2009, representing a new minimum this time.
Since then, the general evolution of BET index outlined a rising trend.

Using the data observed between 1st of January 2005 and 31st of March 2013, the aim of this
study was to forecast BET index value using lagged prices and also macroeconomic indicators
which might prove relevance in explaining the evolution of this indicator. Previous studies
(Zoicas, Făt 2005; Ungureanu et al. 2011) have already emphasized some bonds between
certain Bucharest Stock Market indexes and macroeconomic indicators like: EUR/ RON

118 G. Ruxanda, L. M. Badea. Configuring Artificial Neural Networks for stock market predictions

exchange rate (where RON denotes the Romanian New Leu), unemployment rate, inflation
rate and different forms of interbank average interest rates (ROBID and ROBOR by maturity
bands1). Nevertheless, considering the low frequency of the information provided by the
inflation rate and unemployment rate, only the other two indicators (EUR/RON and interest
rates), which offer daily observations, were further considered in this study.

Taken from the perspective of an investment, ROBID represents an alternative to stock
exchange and foreign currency capital placing. Thus, this leaves only EUR/RON and ROBID
macroeconomic indicators for the analysis. In order to prevent the model from consider-
ing irrelevant information which unnecessarily overloads the training process of ANNs, a
simple regression model between BET index and each of the remaining macroeconomic
indicators was computed. Table 1 shows that ROBID_12M provided the highest R-square
(determination coefficient) for BET compared with the other ROBID ratios, namely 0.101884.
However, this is still much lower compared with EUR/RON indicator which generated an
R-squared of 0.556330. Thus, only EUR/RON exchange rate was further kept for predicting
BET index values.

Table 1. R-squared results for simple regressions of BET index against ROBID and EUR/RON

ROBID_ON ROBID_TN ROBID_1W ROBID_1M
R­squared 0.028535 0.033433 0.050462 0.056978

ROBID_3M ROBID_6M ROBID_9M ROBID_12M
R­squared 0.077268 0.092286 0.101399 0.101884

EUR/RON
R­squared 0.556330

Figure 1a provides the evolution of the closing BET index over the selected timeframe
compared with EUR/RON exchange rate available on the official website of the National Bank
of Romania. Missing values resulted from non-transactional days, such as legal holidays, were
replaced by values from previous available days. The negative correlation between the two time
series is visible with the naked eye, grounding the process of further searching for connexions
between these two ratios. Up until mid of 2007, the blooming Romanian economy was reflected
by a rising trend observed in the evolution of BET index and by significant appreciations of
the national currency as related to EUR. However, beginning with 2008, the developments of
these two ratios have taken the opposite trends, severe depreciations being observed especially
starting with October 2008, the point when the worldwide economic crisis has installed.

When building a model with Artificial Neural Networks, data partitioning is a very im-
portant step. The initial data was split into three datasets, as follows:

 – Training set – 80% of the initial dataset, which was used for model development (1st of
January 2005 – 5th of August 2011);

1 ROBID is the interbank average interest rate for deposits, and ROBOR is the interbank average interest rate for
loans granted. Each one is available for 8 maturities: overnight (ROBID_ON), tomorrow-next (ROBID_TN),
one week (ROBID_1W), one month (ROBID_1M), three months (ROBID_3M), six months (ROBID_6M), nine
months (ROBID_9M), and twelve months (ROBID_12M).

119Technological and Economic Development of Economy, 2014, 20(1): 116–132

 – Validation set – 10% of the initial dataset, used for model assessment (8th of August
2011 – 31st of May 2012);

 – Test set – the remaining 10% of the initial dataset, which offers a completely out-of-
time reassessment of the model (1st of June 2012 – 31st of March 2013).

The partitioning rule is based on the chronological dimension, meaning that the oldest
80% of the values have fallen into the training set, the following 10% of these were included
in the validation set, and the most recent 10% were part of the test set.

For additional out-of-sample testing of the final results obtained on the Romanian market
data, the models will be also checked on the Croatian Stock Exchange official index, CROBEX.
Croatia is a country situated between South-Eastern Europe and Central Europe that has
made remarkable progress over the past years, enhancing its adherence to EU. CROBEX was
introduced in 1997 and it measures the performance of Zagreb Stock Exchange (ZSE) by
including the 25 most liquid companies listed at ZSE. Figure 1b shows that within the time
period 1st of January 2005 – 31st March 2013 there is a high resemblance between BET index
and CROBEX index evolutions. Also, the relationship between EUR/HRK exchange rate and
Zagreb Stock Exchange indicator highlights a similar evolution to the one observed on the
Romanian market between BET stock index and EUR/RON exchange rate, suggesting that
this testing data was properly chosen. Nevertheless, the testing will be performed only on the
data corresponding to the period included in the test set of the Romanian data set, meaning
on the timeframe 1st of June 2012 – 31st of March 2013.

3. Configuring ANNs for stock exchange predictions

Artificial Neural Networks are modelling techniques which have successfully been used in
previous stock exchange forecasting applications. However, as with any other Neural Network
model, their performance depends on a number of elements such as: the network type, the

 a) b)

Fig. 1. BET Index vs. EUR/RON (a); CROBEX Index vs. EUR/HRK (b)

3.0

3.5

4.0

4.5

5.0

1500

2500

3500

4500

5500

6500

7500

8500

9500

10500

11500

BET Index (le� axis scale)

EUR/RON (right axis scale)
Ja

n-
20

05

O
ct

-2
00

5

Ju
l-2

00
6

A
pr

-2
00

7

Ja
n-

20
08

O
ct

-2
00

8

Ju
l-2

00
9

A
pr

-2
01

0

Ja
n-

20
11

O
ct

-2
01

1

Ju
l-2

01
2

7.05

7.15

7.25

7.35

7.45

7.55

7.65

7.75

7.85

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

CROBEX (le� axis scale)

EUR/HRK (right axis scale)

Ja
n-

20
05

O
ct

-2
00

5

Ju
l-2

00
6

A
pr

-2
00

7

Ja
n-

20
08

O
ct

-2
00

8
Ju

l-2
00

9

A
pr

-2
01

0

Ja
n-

20
11

O
ct

-2
01

1

Ju
l-2

01
2

120 G. Ruxanda, L. M. Badea. Configuring Artificial Neural Networks for stock market predictions

training method and other configuration components that will be further approached. Often,
some of these elements are selected based on a process of trial-and-error comparison aimed
to identify the model with the lowest error, usually on the test set. However, the end decision
should always be taken, based on a trade-off between training costs and benefits emerged
from using a certain network.

The basic principle of ANNs stands in generating a signal or an outcome based on a
weighted sum of inputs which is afterwards passed through an activation function as below:

 ()y f wx b= +∑ , (1)

where: x is the vector of input variables; w is the vector of weights; b is the bias; (.)f is the
activation function, and y is the output vector.

One of the most used types of ANNs within stock exchange applications is the feed-for-
ward multilayer perceptron (MLP). This is organized in three categories of layers (input layer,
hidden layers and output layer) and the information flow is performed in a feed-forward
manner. In this work, differently configured multilayer feed-forward Neural Networks are
developed to make predictions on Bucharest Stock Exchange BET index. These configurations
are further detailed in the upcoming sections.

3.1. Input and output variables

This study seeks to predict BET index evolution using lagged values, but also the signals in-
duced by the evolution of EUR/RON exchange rate. Egeli et al. (2003) used the price of the
Istanbul Stock Exchange value from one day before and the previous day TL/USD exchange
rate, along with other variables to predict the evolution of the stock exchange index. Consider-
ing the non-stationary character of the stock exchange data series (Georgescu 2011), the first
difference of the log time series were performed on BET index and on EUR/RON exchange
rate. Usually, for financial predictions the best outputs are reached when short forecasting
periods are considered. Therefore, the time horizon to be predicted was set to one day ahead.

In this paper, input variables were established based on a stepwise forward regression.
Thus, for EUR/RON exchange rate two steps backwards were tested and for BET index five
previous steps were evaluated in respect with their p-values. Stepwise forward regression is
performed by initially estimating a linear regression of the dependent variable against each
independent variable. After selecting the independent variable with the lowest p-value, all
possible two-variable regressions in which one of the variables is the one resulted as signi-
ficant after the initial estimation are computed. If more of the two-variable regressions are
significant in respect with the p-values, then the model which generates the lowest p-values
is selected. Next, both of the added variables are checked against the backwards p-value
criterion, and variables with p-value higher than the selected criterion are removed from
the model. After that, the next variable is added after choosing the three-variable regression
with the lowest p-values. After each new variable entry, they are again all tested against the
backwards criterion and removed from the model if they don’t meet the p-value backwards
criterion. The process stops when the lowest p-value of the variables not yet included in the
regression exceeds the forward stopping criterion.

121Technological and Economic Development of Economy, 2014, 20(1): 116–132

Table 2 provides the results of the stepwise forward regression using the selected stopping
criteria: p-value forward greater than 0.1 and p-value backwards exceeding 0.1. The stepwise
regression was performed using the training and validation datasets. Results highlight that the
following indicators should be used as input variables for predicting BET index at time point t:

 – d_ln_BET_(-1) – the modification of BET index from one day before;
 – d_ln_BET_(-3) – the modification of BET index from three days before;
 – d_ln_EUR_RON_(-2) – the modification of EUR/RON exchange rate from two days

before.

Table 2. Input variables for BET index

Dependent Variable: D_LN_BET_T
Method: Stepwise Regression
Included observations: 1924 after adjustments
Number of always included regressors: 3
Selection method: Stepwise forwards
Stopping criterion: p-value forwards/backwards = 0.1/0.1

Variable Coefficient Std. Error t­Statistic Prob.
D_LN_BET_T_1 0.077819 0.022683 3.430684 0.0006
D_LN_BET_T_3 –0.038682 0.022700 –1.704051 0.0885

D_LN_EUR_RON_T_2 –0.274951 0.094916 –2.896787 0.0038

3.2. Hidden layers and hidden nodes

Even though there is no rule of thumb when setting the number of hidden layers and hidden
nodes, care must be taken when selecting these elements. A high number of hidden nodes
might generate an over-fitted model, while a network with a small number of hidden units
is at risk of performing poor on new observations. Usually, these elements are selected after
performing a series of experiments in which different values are tested and final forecasting
errors are compared. Thenmozhi (2006) outlines that most of the studies on stock exchange
prediction using ANNs include up to 12 hidden nodes. However, past research has only
given some hints on how to set these values, the end decision still depending on the analysed
problem and, more precisely, on the available data. For the current experiment one hidden
layer was selected, and the number of hidden nodes ranged between a minimum of 2 and a
maximum of 6, twice the number of input variables (Jha 2009).

3.3. Activation functions

Activation functions are applied to the weighted sum of inputs of a node in order to generate
a certain outcome. Sibi et al. (2013) provide examples of activation functions that can be
used when training Neural Networks with the back-propagation method. As the non-linear
character of ANNs is given by the form of the activation functions, the most common types
especially within the hidden layers are those taking a non-linear form. Among these, sig-
moid (“S” shape) functions are often preferred for their continuous character, which makes
possible differentiation, an important feature when training with back-propagation, but also

122 G. Ruxanda, L. M. Badea. Configuring Artificial Neural Networks for stock market predictions

for their bounded range ([0,1] or [–1,1]), which makes them easily interpreted. Some of the
most common types of sigmoid functions are:

 – Logistic function (Verhulst 1845):

 1()
1 xf x

e−
=

+
; (2)

 – Hyperbolic tangent function (tanh) (Abbé Sauri 1774):

 ()
x x

x x
e ef x
e e

−

−
−

=
+

; (3)

 – Elliott function (Elliott 1993):

 1()
1

f x
x

=
+

. (4)

Based on previous studies and indications (Kaastra, Boyd 1995; Bishop 1995), this paper
analyses, in turns, the use of logistic and hyperbolic tangent functions in the hidden layer. In
the output layer, linear activation function was selected for all networks built.

3.4. Error function

Every training cycle of an ANN generates a certain cost, measured by using an error function
which analyses the differences between the network outputs and the target (desired) outputs.
During each cycle, the error corresponding to all training observations is reassessed, further
generating new adjustments in the network weights with the purpose of minimizing the
selected error function. Often used when training MLP networks are the sum of squared
errors, taking the following form:

 ()2

1

1()
2

m
d d

dataset
d

SOS E w t o
=

= = −∑ , (5)

where: datasetSOS is the error calculated on the analysed dataset; m is the number of obser-
vations within the dataset; dt is the target value for observation d ; and do is the output of
the network for observation d.

3.5. Training algorithms

The way in which the network weights are adapted for meeting the desired purpose defines
the training algorithm and is essentially an optimization problem. When learning with ANNs,
the optimization problem becomes the minimization of the error function E(w). For networks
having more than one layer of weights, there may be many local minima points for which

the gradient of the weights space satisfies the condition 0E
w

∂
=

∂
. Therefore, in search of that

global minimum point for which the error function has the lowest value, several adjustments
are performed using the formula below:

 1 1t t tw w w+ += + ∆ , (6)

where t is the number of the training cycle (epoch).

123Technological and Economic Development of Economy, 2014, 20(1): 116–132

Local optimization can be divided into the following three classes: non-derivative methods,
first derivative (gradient) methods, and second derivative methods. Financial applications
mostly use first derivative method gradient descent algorithm to make adjustments in the
weights during the training cycles. Nevertheless, the rating of this algorithm is many times
shaded by the local minima problem and by a slow convergence process. Second derivative
optimization methods use the Hessian matrix to determine the search direction. Examples of
second derivative methods are discrete Newton, quasi-Newton, and Levenberg-Marquardt.
Newton’s methods assume that the objective function can be locally approximated as a quad-
ratic around the optimum, and uses the first and second derivatives to find the stationary
point. In quasi-Newton methods the Hessian matrix of second derivatives of the function to
be minimized does not need to be computed at any stage. The Hessian is updated by analysing
successive gradient vectors instead.

Past studies (Ruxanda, Smeureanu 2012; Antucheviciene et al. 2012; Dadelo et al. 2012)
indicate that decision making is mostly about finding preferable solution, within an acceptable
decision time and with a bearable error level. This is where optimization algorithms play an
important role as they offer a solution for the trade-off between decision process time and
results. The optimization algorithms presented below will be further analysed in respect with
their errors when performing stock market predictions.

3.5.1. Gradient descent

First introduced by Rumelhart et al. (1986), back-propagation algorithm using gradient descent
technique is a first derivative method which uses gradient information calculated from the
optimization function to determine the search direction on the response surface (Ruxanda
2010). Given a three layer MLP (one input layer, one hidden layer and one output layer), the
training process within the back-propagation algorithm is described below.

The network weights are initially set to small random values. Afterwards, the input model
is applied and propagated through the network generating outputs:

 () ()j j jk k
k

h f net f w x= = ∑ , (7)

where: jh is the output of the hidden unit j; jnet is the input of the hidden node j; jkw is the
weight given to input k for hidden node j; kx is the input node k; and (.)f is the activation
function for the hidden layer.

These outputs are further used as entries for the output layer. Weighted and summed up,
they are passed through an activation function in order to produce the final output:

 () () (())i i ij j ij jk k
j j k

o g net g w h g w f w x= = =∑ ∑ ∑ , (8)

where: io is the response of the output unit i; inet is the input of the output node i; ijw is the
weight given to the hidden node j for the output node i; and (.)g is the activation function
from the output layer.

124 G. Ruxanda, L. M. Badea. Configuring Artificial Neural Networks for stock market predictions

Considering the form of the error function provided in Equation (5), for p output nodes
and m input-output pairs, the error becomes:

2

1 1

1() (())
2

pm
d d

training i ij jk k
d i j k

SOS E w t g w f w x
= =

 
 = = −
 
 

∑∑ ∑ ∑ . (9)

Then, the errors are passed back through the network using the gradient method by
calculating the contribution of each hidden node and deriving the adjustments needed to
generate a better output. The gradients for the hidden to output layer, and for the input to
hidden layer are presented in Equations (12) and (15) respectively:

 ()
1

() ()
m

d d d d
ij i i i j

ij d

Ew t o g net h
w =

∂ ′∆ = −η = η − ⋅ ⋅
∂ ∑ ; (10)

 ()()d d d d
i i i ig net t o′δ = − ; (11)

1

m
d d

ij i j
d

w h
=

∆ = η δ∑ ; (12)

1 1 1

'()
d pm m
j d d d

jk i ij j kd
jk jkjd d i

hE Ew w f net x
w wh= = =

∂∂ ∂
∆ = −η = −η ⋅ = η δ ⋅ ⋅

∂ ∂∂∑ ∑∑ ; (13)

1

()
p

d d d
j j ij i

i
f net w

=

′δ = δ∑ ; (14)

1

m
d d

jk j k
d

w x
=

∆ = η δ∑ , (15)

where η is the learning rate.
The new weights can be adjusted using also the momentum rate, which considers the

modifications performed in previous cycles:

 1
()t

t t
t

E w
w w

w+
∂

∆ = −η + a∆
∂

, (16)

where: a is the momentum rate; 1tw +∆ is the weight modification for cycle 1t + ; and tw∆ is
the modification in weights from the previous cycle.

The learning rate controls the size of the step from each iteration, and the momentum
rate speeds up the convergence process in flat regions, or reduces the jumps in regions with
high fluctuations by considering a fraction of the previous weight change. Although very
popular in practice, a downside of the gradient descent algorithm is that the learning process
is slow and thus, the convergence is highly dependent on the values chosen for the learning
and momentum rates.

3.5.2. Broyden-Fletcher-Goldfarb-Shanno

Introduced in 1970 (independently by Broyden (1970); Fletcher (1970); Goldfarb (1970);
Shanno (1970)), Broyden-Fletcher-Goldfarb-Shanno is a quasi-Newton optimization method

125Technological and Economic Development of Economy, 2014, 20(1): 116–132

which provides good convergence. Although second derivative algorithms usually require
more computational resources, BFGS algorithm uses only an approximation and not the
fully explicit calculation of the Hessian inverse matrix, based on estimations obtained only
from first order information.

In case of BFGS algorithm the necessary condition for optimality is the minimization of
the error function ()E w . The weights adjustments when using BFGS training algorithm are
performed in an iterative manner, as follows:

 1
1 1

()t
t t t t

t

E w
w w w H

w
−

+ +
∂

∆ = − = −η
∂

, (17)

where: t indicates the training cycle; and 1
tH − is an approximation of the Hessian inverse

matrix 2 1[()]tE w −∂ at time point t.
Quasi-Newton methods require that the approximation of matrix 1

1tH −
+ satisfies the con-

dition 1
1t t tH −

+ γ = δ . The approximation of the Hessian inverse matrix used by BFGS algorithm
is provided in the equation below:

1 1 1

1 1
1 1

T T T T
t t t t t t t t t t t

t t T T T
t t t t t t

H H H
H H

− − −
− −
+

 δ γ + γ δ γ γ δ δ
= − + + ⋅  δ γ δ γ δ γ 

, (18)

where: 1t t tw w+δ = − and 1

1

() ()t t
t

t t

E w E w
w w

+

+

∂ ∂
γ = −

∂ ∂
.

The initial value of 1
0H − is the identity matrix. The adjusting process is performed until

a stopping criterion is met such as verifying the performance of the training process on an
additional validation data set which prevents the over-fitting phenomenon from affecting
the model’s performance on new data.

Although in the specialized literature many other training algorithms and derivations from
these are proposed (Cocianu, State 2013), in this paper, gradient descent method and BFGS
training algorithm were used to make predictions on BET index values and were compared
in terms of estimation errors.

3.6. Stopping conditions

With non-linear optimization algorithms it is important to choose certain stopping rules.
Bishop (1995) presents five types of stopping criteria which refer to: performing a number
of cycles, a certain time has elapsed, the error function has decreased below a certain value,
the relative change in error is below a threshold, or the error calculated on an independent
dataset (validation set) has started to increase, meaning that there is a risk of over-fitting the
model. In this paper, the training process was set to stop when one of the following events is
first reached: 500 cycles, or a variation of the average error for 20 consecutive epochs below
0.0000001. The error function is the sum of squared errors between the network outputs and
the target values, computed as in Equation (5). The evolution of the error function on the
training set was also compared with the one from the validation dataset in order to make
sure that additional decreases in the training error (training SOS) don’t bring increases in
the validation set error (validation SOS).

126 G. Ruxanda, L. M. Badea. Configuring Artificial Neural Networks for stock market predictions

3.7. An algorithm for numerical differentiation

The most important aspect related to learning algorithms which use gradient and Hessian
matrix information, is based on the numerical evaluation of the first order and second order
derivatives. The success of ANNs training process is strictly related to the method used to
perform the numerical evaluation of the derivatives. An efficient numerical differentiation
algorithm was proposed by Professor Gheorghe RUXANDA in the context of developing a
language for analysis and prediction – EMI. The algorithm is based on determining an optimal
variation of the argument for which the differentiation of a real function is performed, and
allows the estimation of first order and second order derivatives (simple and mixed) with a high
precision rate. Below is presented the description of the algorithm written in pseudo-code:

algorithm deriv;
external
 function f(x), x;
const
 cmin=$MinMachineNumber,cmax=$MaxMachineNumber,cprec=$MachinePrecision;
 climvs=cmin 10^7, climrs=cmin 10^16, cunit=1.0, cvd=1.005;
 precmax=1.5*10^(-IntegerPart(cprec)), precwrk=0.75*10^(-IntegerPart(cprec-10.5));
begin
 rs=cmin, rd=cunit, xabs=abs(x);
 if xabs > climrs then rs=precmax*xabs endif;
 if xabs > cunit then rd=xabs/precwrk endif;
 val=f(x), vs= abs(val);
 if vs < climvs then vs=cunit endif;
 vs=precwrk*vs, vd=cvd*vs, limps=rs, limpd=rd;
 sign=1.0, iter=1, cont=1;
 while (cvd*limps <= limpd) && (iter <= maxiter) && (cont ==1)
 p=sqrt(limps*limpd), delt=f(x+sign*p) -val;
 if abs(delt) <= vs then
 limps=p;
 else
 if abs(delt) >= vd then limpd=p, cont=0 endif;
 endif;
 if (delt == 0.0) && (iter > 2) then cont=0, break endif;
 iter++;
 if (iter > maxiter) && (cont == 1) && (sign == 1) then
 sign=–1, iter=0, limps=rs, limpd=rd ;
 endif;
 if cont == 0 then
 if sign == 1 then
 vder=(f(x+p) – f(x-p))/(2.0*p);
 else
 vder=(val-f(x-p) /p, p=sign*p;

127Technological and Economic Development of Economy, 2014, 20(1): 116–132

 endif;
 vder2=(f(x+2*p) - 2*f(x) + f(x-2*p))/(4.0*p*p);
 endif;
 endwhile;
 return cont, vder, vder2;
end.

The above pseudo-code of the algorithm is applicable for the calculation of first order
and second order derivatives of a single-variable function. Nevertheless, the algorithm can
easily be adapted for the evaluation of multi-variable functions. Tested on several classes of
functions, the proposed algorithm has revealed an average precision of 1.0e-9 for first order
derivatives, and an average precision of 1.0e-5 for second order derivatives. The obtained
average number of iterations needed to determine the optimal variation of the argument
used for differential evaluation equals 12.

4. Results

The model building consisted of generating 100 different networks from combining the
following elements:

 – The number of hidden nodes, which varied from 2 to 6;
 – The types of activation functions from the hidden layer: logistic sigmoid and hyper-

bolic tangent sigmoid;
 – The training algorithms: gradient descent (GD) and BFGS.

For each distinct configured building-block, five networks were trained for results consist-
ency in which the initial weights were different (initial weights were picked using a normal
distribution of mean 0 and variance 0.1). For the gradient descent method, the learning rate
and the momentum parameters were set to 0.1 each. For each type of training algorithm
analysed in this paper, the best five networks in terms of sum of squared error on the test
sample (test SOS) were retained. The test sample, acting as a totally independent dataset,
gives indications on the model predictive power on new information. Table 3 provides the
errors reached by the best five networks for each learning algorithm. Values indicate that
BFGS provides more accurate predictions on all three datasets.

Table 3. Neural Networks’ results on Romanian data

Network name Training
SOS

Validation
SOS

Test SOS Training
algorithm and
No. of cycles

Hidden layer
activation
function

MLP 3-4-1 BFGS 7 T 3.225E-01 2.345E-02 8.120E-03 BFGS 7 Tanh
MLP 3-5-1 BFGS 5 T 3.226E-01 2.342E-02 8.130E-03 BFGS 5 Tanh
MLP 3-3-1 BFGS 28 L 3.191E-01 2.319E-02 8.140E-03 BFGS 28 Logistic
MLP 3-2-1 BFGS 5 L 3.225E-01 2.345E-02 8.140E-03 BFGS 5 Logistic
MLP 3-3-1 BFGS 7 T 3.224E-01 2.348E-02 8.150E-03 BFGS 7 Tanh
MLP 3-2-1 GD 3 T 3.932E-01 3.142E-02 1.908E-02 GD 3 Tanh

128 G. Ruxanda, L. M. Badea. Configuring Artificial Neural Networks for stock market predictions

Network name Training
SOS

Validation
SOS

Test SOS Training
algorithm and
No. of cycles

Hidden layer
activation
function

MLP 3-3-1 GD 3 T 3.933E-01 3.144E-02 1.910E-02 GD 3 Tanh
MLP 3-2-1 GD 4 T 3.938E-01 3.150E-02 1.916E-02 GD 4 Tanh
MLP 3-5-1 GD 7 T 3.938E-01 3.149E-02 1.917E-02 GD 7 Tanh
MLP 3-2-1 GD 5 T 3.946E-01 3.159E-02 1.926E-02 GD 5 Tanh

In case of all networks, linear activation function was used in the output layer

The lowest error is achieved by the model MLP 3-4-1 BFGS 7 T which uses BFGS
training algorithm, four hidden nodes and hyperbolic tangent function in the hidden
layer. This network is obtained after performing seven epochs of weights adjustments and
generates a test SOS that is by 57% lower compared with the best network using gradient
descent algorithm.

Considering the overall ten best networks available in Table 3 and the activation functions
used in the hidden layer, hyperbolic tangent sigmoid function performs better on the Ro-
manian Stock Market data. Regarding another ranged element, the number of hidden nodes,
results showed that networks using the maximum selected number of six hidden nodes are
nowhere in the best five most performing models in this experiment. Therefore, this proves
that there is no need of including too many hidden nodes in the network, as this will result
only into increased training time and complexity, and not into improved outcomes.

Evaluating the results obtained from applying these ten best networks on the Croatian
data (Table 4), we observe that the activation function that reached the lowest error is logistic
sigmoid this time. Nevertheless, the best network using BFGS training algorithm, MLP 3-3-1
BFGS 28 L, has reached an error that is by 69% lower compared with the one generated when
applying the best network which uses the gradient descent method, MLP 3-2-1 GD 3 T. This
gives us the reason to state that BFGS learning algorithm is a better option when modelling
volatile data such as stock market values.

Table 4. Results on Croatian data

Network name SOS for Croatian data
MLP 3-3-1 BFGS 28 L 4.572E-03
MLP 3-5-1 BFGS 5 T 4.573E-03
MLP 3-2-1 BFGS 5 L 4.580E-03
MLP 3-3-1 BFGS 7 T 4.587E-03
MLP 3-4-1 BFGS 7 T 4.605E-03
MLP 3-2-1 GD 3 T 1.473E-02
MLP 3-3-1 GD 3 T 1.476E-02
MLP 3-2-1 GD 4 T 1.481E-02
MLP 3-2-1 GD 5 T 1.482E-02
MLP 3-5-1 GD 7 T 1.490E-02

Continued Table 3

129Technological and Economic Development of Economy, 2014, 20(1): 116–132

Conclusions

Although Artificial Neural Networks are flexible non-parametric methods that perform well
on non-linear data series, their predictive power is conditioned by a set of elements which
define the network configuration features. When building a predictive model for stock market
prices with ANNs, it is important that the modeller selects the proper values for items like:
the number of input and output variables, the number of hidden layers and hidden nodes,
the activation functions in the hidden and output layers, the initial weights, the training al-
gorithm, and the stopping criteria. Similar to Coupelon (2007) remarks, we can state that in
most of the cases there are no values for these elements to be considered as best choices when
forecasting stock exchange prices, the selection process being based on performing several
experiments and choosing the network that offers the best results in terms of a performance
metric. However, in respect with the training algorithm, this study has given evidence that
BFGS outperforms the classical gradient descent method, providing lower errors even in
the context of highly volatile data such as the one revealed by the stock exchange market.

Idowu et al. (2012) pointed out that although ANNs do not allow perfect estimations on
volatile data such as the stock exchange market, they certainly provide closer results to the
real ones compared with other techniques. In the present study, estimation results have indeed
revealed small errors on the test datasets. Thus, Artificial Neural Networks can be used in
an efficient manner to forecast stock market prices based on past observations. Therefore,
we can affirm that EMH theory stating that stock prices cannot be predicted based on past
values, can be rejected.

Further steps and research directions regarding the evaluation of ANNs in stock market
predictions should consider the followings:

 – Analyse how results differ when performing random partitioning for selecting the
cases for training and validation datasets;

 – Include more predictors to estimate stock exchange market, such as international stock
exchange market index or qualitative factors;

 – Using other training algorithms such as Levenberg-Marquardt (Zayani et al. 2008)
which gives an optimized approach to local minima problem.

References
Abbé Sauri, M. 1774. Cours complet de mathématiques. A Paris, Aux dépens de Ruault. 656 p.
Antucheviciene, J.; Zavadskas, E. K.; Zakarevicius, A. 2012. Ranking redevelopment decisions of derelict

buildings and analysis of ranking results, Economic Computation and Economic Cybernetics Studies
and Research 46(2): 37–62.

Bishop, C. 1995. Neural Networks for pattern recognition. Oxford: Clarendon Press. 482 p.
Broyden, C. 1970. The convergence of a class of double-rank minimization algorithms, Journal of Institute

Mathematical Applications 6(1): 76–90. http://dx.doi.org/10.1093/imamat/6.1.76
Cocianu, C.; State, L. 2013. Kernel-based methods for learning non-linear SVM, Economic Computation

and Economic Cybernetics Studies and Research 47(1): 41–60.
Coupelon, O. 2007. Neural network modeling for stock movement prediction: a state of the art. Blaise

Pascal University. 5 p.

130 G. Ruxanda, L. M. Badea. Configuring Artificial Neural Networks for stock market predictions

Dadelo, S.; Turskis, Z.; Zavadskas, E. K.; Dadeliene, R. 2012. Multiple criteria assessment of elite security
personal on the basis of ARAS and expert methods, Economic Computation and Economic Cybernetics
Studies and Research 46(4): 65–88.

Egeli, B.; Ozturan, M.; Badur, B. 2003. Stock market prediction using Artificial Neural Networks, in Pro-
ceedings of the 3rd Hawaii International Conference on Business, 26–28 July, 2012, Honolulu, Hawaii,
USA. 8 p.

Elliott, D. L. 1993. A better activation function for Artificial Neural Networks. Institute for Systems Re-
search, University of Maryland.

Faria, E. L.; Albuquerque, M. P.; Gonzalez, J. L.; Cavalcante, J. T. P.; Albuquerque Marcio, P. 2009. Predicting
the Brazilian stock market through Neural Networks and adaptive exponential smoothing methods,
Expert Systems with Applications 36(10): 12506–12509. http://dx.doi.org/10.1016/j.eswa.2009.04.032

Fletcher, R. 1970. A new approach to variable metric algorithms, Computer Journal 13(3): 317–322.
http://dx.doi.org/10.1093/comjnl/13.3.317

Georgescu, V. 2011. An econometric insight into predicting Bucharest stock exchange mean, return and
volatility – return processes, Economic Computation and Economic Cybernetics Studies and Research
45(3): 25–42.

Georgescu, V. 2010. Robustly forecasting the Bucharest stock exchange BET index through a novel
computational intelligence approach, Economic Computation and Economic Cybernetics Studies and
Research 44(3): 23–42.

Goldfarb, D. 1970. A family of variable-metric methods derived by variational means, Mathematical
Computations 24: 23–26. http://dx.doi.org/10.1090/S0025-5718-1970-0258249-6

Idowu, P. A.; Osakwe, C.; Kayode, A. A.; Adagunodo, E. R. 2012. Prediction of stock market in Nigeria using
artificial neural network, International Journal of Intelligent Systems and Applications 4(11): 68–74.
http://dx.doi.org/10.5815/ijisa.2012.11.08

Iordache, A. M.; Spircu, L. 2011. Using Neural Networks in ratings, Economic Computation and Economic
Cybernetics Studies and Research 45(3): 101–112.

Isfan, M.; Menezes, R.; Mendes, D. A. 2010. Forecasting the Portuguese stock market time series by using
Artificial Neural Networks, Journal of Physics: Conference Series 221(1): 13 p.

Jha, G. K. 2009. Artificial Neural Networks. Indian Agricultural Research Institute, PUSA, New Delhi. 8 p.
Kaastra, I.; Boyd, M. S. 1995. Forecasting futures trading-volume using Neural Networks, The Journal of

Futures Markets 15(8): 953–970. http://dx.doi.org/10.1002/fut.3990150806
Khan, A. U.; Gour, B. 2013. Stock Market trends prediction using neural network based hybrid model, In-

ternational Journal of Computer Science Engineering and Information Technology Research 3(1): 11–18.
Minsky, M.; Papert, S. 1969. Perceptrons. Cambridge: MIT Press. 81 p.
Rumelhart, D.; Hinton, G.; Williams, R. 1986. Learning representations by backpropagation errors, Nature

323: 533–536. http://dx.doi.org/10.1038/323533a0
Ruxanda, G.; Smeureanu, I. 2012. Unsupervised learning with expected maximization algorithm, Economic

Computation and Economic Cybernetics Studies and Research 46(1): 28 p.
Ruxanda, G. 2010. Learning perceptron neural network with backpropagation algorithm, Economic

Computation and Economic Cybernetics Studies and Research 44(4): 37–54.
Shanno, D. 1970. Conditioning of quasi-Newton methods for function minimization, Mathematical

Computations 24: 647–656. http://dx.doi.org/10.1090/S0025-5718-1970-0274030-6
Sibi, P.; Allwyn Jones, S.; Siddarth, P. 2013. Analysis of different activation functions using Backpropaga-

tion Neural Networks, Journal of Theoretical and Applied Information Technology 17(3): 1264–1268.
Thenmozhi, M. 2006. Forecasting stock index returns using Neural Networks, Delhi Business Review

7(2): 59–69.

131Technological and Economic Development of Economy, 2014, 20(1): 116–132

Ungureanu, E.; Burcea, F.-C.; Pîrvu, D. 2011. The analysis of interest rate and exchange rate influence’s
on stock market. Medium run evidence from Romania, Annals Economic Science Series 17: 163–170.

Vahedi, A. 2012. The predicting stock price using artificial neural network, Journal of Basic and Applied
Scientific Research 2(3): 2325–2328.

Verhulst, P. F. 1845. Recherches mathematiques sur la loi d’accroissement de la population, Nouveau
Mémoires de l’Académie Royale des Sciences et Belles-Lettres de Bruxelles 18: 41 p.

Zayani, R.; Bouallegue, R.; Roviras, D. 2008. Levenberg-Marquardt learning neural network for adaptive
predistortion for time-varying HPA with memory, in OFDM Systems: 16th European Signal Processing
Conference (EUSIPCO 2008), 25–29 August, 2008, Lausanne, Switzerland.

Zoicas, I. A.; Făt, M. C. 2005. The analysis of the relation between the evolution of the Bet Index and
the main macroeconomic variables in Romania (1997–2008), Annals of the University of Oradea:
Economic Science 3(1): 632–637.

Gheorghe RUXANDA. PhD in Economic Cybernetics, Editor-in-chief of ISI Thompson Reuters Journal
“Economic Computation and Economic Cybernetics Studies and Research” and Director of Doctoral
School of Economic Cybernetics and Statistics. Is a Full Professor and PhD Adviser within the Department
of Economic Informatics and Cybernetics, The Bucharest Academy of Economic Studies. He graduated
from the Faculty of Economic Cybernetics, Statistics and Informatics, Academy of Economic Studies,
Bucharest (1975) where he also earned his Doctor’s Degree (1994). Had numerous research visits in
USA, England and France. He is a Full Professor of Multidimensional Data Analysis (Doctoral School),
Data Mining and Multidimensional Data Analysis (Master Studies), Modeling and Neural Calculation
(Master Studies), Econometrics and Data Analysis (Undergraduate Studies). Scientific research activity:
over 35 years of scientific research in both theory and practice of quantitative economy and in coordin-
ating research projects; 50 scientific papers presented at national and international scientific sessions and
symposia; 65 scientific research projects with national and international financing; 79 scientific papers
published in prestigious national and international journals in the field of economic cybernetics, eco-
nometrics, multidimensional data analysis, microeconomics, scientific informatics, out of which eleven
papers being published in ISI – Thompson Reuters journals; 18 manuals and university courses in the field
of econometrics, multidimensional data analysis, microeconomics, scientific informatics; 31 studies of
national public interest developed within the scientific research projects. Fields of scientific competence:
evaluation, measurement, quantification, analysis and prediction in the economic field; econometrics and
statistical-mathematical modelling in the economic–financial field; multidimensional statistics and multi-
dimensional data analysis; pattern recognition, learning machines and Neural Networks; risk analysis and
uncertainty in economics; development of software instruments for economic-mathematical modelling.

Laura Maria BADEA is a PhD candidate in Economic Cybernetics at the Bucharest Academy of Economic
Studies, has an MA in Corporate Finance (2010) and graduated the Faculty of Finance, Insurance, Banking
and Stock Exchange from Bucharest University of Economic Studies (2008). Scientific research activity:
2 published articles in ISI Thompson Reuters Journals. Fields of scientific interest: machine learning and
other modelling techniques used for classification matters in economic and financial domains, with a
focus on Artificial Neural Networks.

132 G. Ruxanda, L. M. Badea. Configuring Artificial Neural Networks for stock market predictions

