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Abstract. To understand large-scale portfolio construction tasks we analyse sustainable economy 
problems by splitting up large tasks into smaller ones and offer an evolutional feed-forward sys-
tem-based approach. The theoretical justification for our solution is based on multivariate statistical 
analysis of multidimensional investment tasks, particularly on relations between data size, algorithm 
complexity and portfolio efficacy. To reduce the dimensionality/sample size problem, a larger task 
is broken down into smaller parts by means of item similarity – clustering. Similar problems are 
given to smaller groups to solve. Groups, however, vary in many aspects. Pseudo randomly-formed 
groups compose a large number of modules of feed-forward decision-making systems. The evol-
ution mechanism forms collections of the best modules for each single short time period. Final 
solutions are carried forward to the global scale where a collection of the best modules is chosen 
using a multiclass cost-sensitive perceptron. Collected modules are combined in a final solution in 
an equally weighted approach (1/N Portfolio). The efficacy of the novel decision-making approach 
was demonstrated through a financial portfolio optimization problem, which yielded adequate 
amounts of real world data. For portfolio construction, we used 11,730 simulated trading robot 
performances. The dataset covered the period from 2003 to 2012 when environmental changes 
were frequent and largely unpredictable. Walk-forward and out-of-sample experiments show that 
an approach based on sustainable economy principles outperforms benchmark methods and that 
shorter agent training history demonstrates better results in periods of a changing environment.
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Introduction

Sustainable economy. In general sense, sustainability is the competence to support, maintain 
or endure; sustainability can help a community ensure that its social, economic and environ-
mental systems are well integrated and will endure. One of the main sustainability dogmas 
requires the enhancement of local economic vitality. One must consider this in every step of 
the process, regardless of whether the process originates in manufacturing or teaching process.

Large-scale processes are often difficult to optimize and raise sustainability issues. 
This has been noted in several research studies, including algae-based bio fuel production 
(Board on … 2012). Therefore, the natural way to combat large-scale optimization problems 
is to break the problem down into smaller ones and address them locally, later joining the 
results into one large global solution. Small-scale solutions are easier to make sustainable, as 
illustrated by the fishery industry (Cochrane et al. 2011). We follow this principle by creating 
and analysing a multilevel feed-forward automated trading system portfolio.

Portfolio construction. Financial problems play one of leading roles in the evolution of 
modern society. The diversity of assets or financial trading participants is of great importance 
in this respect. Diversification is also highly important for the sustainable development of 
society (Jeucken 2001; McCormick 2012). Portfolio construction is a field in which a large 
quantity of data is available and it is easy to perform computer simulations. In this paper, we 
use sustainable economy principles in large-scale portfolio construction problems. Here, we 
may have thousands of potential portfolio members. At the same time, the task of portfolio 
management (PM) is one of the principal research topics in financial markets. Here we have 
clearly expressed performance criteria. To create the portfolio, using the formula:
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To find the weights, one uses L days’ investment profit, i.e. so many days of investment 
profit and history, xji (i = 1, 2, … , L; j = 1, 2, …, N).

Automated trading systems. During the last decade, automated trading systems (ATS) 
and especially high frequency trading (Chan 2008; Aldridge 2010) have become very pop-
ular. They potentially promise good returns with relatively small risk (Bookstaber 2009) as 
positions are held for a short time (from a few seconds to a few hours or a day) and thus 
losses are also small; this approach minimizes the risk of large losses. A profit is possible 
due to the very short term market inefficiencies. Usually, the number of ATS is larger than 
the number of available assets as it is possible to create a number of different types of ATS 
trading one asset. However, having a high number of ATS, we face large-scale portfolio 
construction problems.
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Large-scale portfolio problems. Large-scale portfolio construction becomes a signific-
ant research problem when the number of trading strategies, N, is larger than the number 
of data points, L. In such cases, small sample size problems arise in portfolio optimization. 
We have a huge number of inputs and we know little about returns of these time series and 
correlations between them.

Portfolio of assets vs. trading systems. Historically, the majority of efforts have been 
aimed at creating portfolios for a set of assets (stocks, bonds, etc.) where we have profit or 
loss every day. In contrast, we use ATS instead of the assets where we may have profit or loss 
or zero (zero if ATS is not trading). To date, there have been very few attempts to relate ana-
lyses of “economic crises” with portfolio management problems using artificial and swarm 
intelligence (Cura 2009) approaches.

Portfolio management approaches comprise two different lines of attack: the first is based 
on the assets and the second on the successes of automated trading systems. ATS trade 
infrequently and therefore the data matrix is sparse. The data consist of circa 70% of zeros. 
Distribution of the data becomes bimodal.

Specificity of this paper. In this research, we aim to consider large-scale sustainable 
economy problems inspired by ATS portfolio construction. Here, a variety of diverse human 
factors is incorporated in the trading software and plays a prominent role. In our analysis, 
portfolio creation is not based on assets. This aspect distinguishes it from previous research. 
The method of portfolio construction implemented uses information on the successes and 
losses of the ATS that trade the assets. In addition, the underlying trading systems are short 
term/high frequency, so aggregated returns are not correlated to any great extent to variations 
in the underlying instruments.

An additional idiosyncrasy of our analysis is the extremely large number (11,730) of poten-
tially useful trading robots and relatively small (2,398) sample size (number of days) used to 
design portfolio weights in situations where data structure is changing constantly. The literature 
on this topic is very sparse. Research studies have tended to focus on the trading systems or 
portfolio construction methods or multi-agent systems (Smeureanu et al. 2012) separately. 
Some have optimized trading system portfolios (Moodyand, Lizhong 1997), (Dempster, Jones 
2001) but very few have addressed large-scale trading system portfolio optimization problems 
(Perold 1984). Multi-agent systems are rarely used in trading, although occasional examples can 
be found (Araújo, de Castro 2011). In the past, only the authors of this paper have looked into 
large-scale feed-forward ATS portfolio construction (Raudys, S., Raudys, A. 2011, 2012) and 
multivariate statistical analysis of multidimensional investment tasks (Raudys 2013) as a whole.

The paper is organized as follows. In Section 1 we describe the data. In Sections 2 and 3 
we itemize the portfolio management tasks and describe the novel decision-making meth-
odology. In the last two sections, we present the discussion and conclusions.

1. Data description

Certain economic simulations are difficult to perform due to the lack of data, poor data quality 
or insufficient data. Thus, in some cases it is useful to choose some related problem that has 
sufficient data. This is especially acute for large-scale sustainability problems where the number 
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of factors is huge. Sustainable environment analysis is dispersed in a large number of diverse 
papers. Today it is impossible to collect large-scale data which has huge amount of factors 
affecting sustainability with lengthy histories. In analysis of ATS, however, we can analyse 
thousands of them and generate lengthy data histories. ATSs are also mutually dependent.

1.1. Data source description

Systematic trading firm that trades futures in the global markets provided us with 3 sets of 
data: p = 3,133, p = 7,708 and p = 11,730. We named them A, B and C accordingly. Here, 
time series data X = (x1, x2, x3, ... xp). Each time series is created by simulating automated 
trading systems and by recording daily profit and loss. Time series are very sparse and consist 
of circa 70 percent of zeros. It means that ATS refuse to trade 7 out of 10 times on average. 
This is quite a typical behaviour as for example, trend following ATS will not trade until it 
detects a trend. One typical example is presented in Figure 1. We have daily profit and loss 
of the system in the top graph and the assets that is being traded in the bottom graph where 
ATS has occasional zero profit/non-trading periods.

Fig. 1. Typical ATS (top) time series in our p = 3,133 sized dataset and the asset  
(E-mini S&P 500 futures) being traded (bottom) by that ATS
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1.2. Summary of datasets
A – Variety of ATS systems including trend following, momentum, mean reversion and 

seasonality systems. The set was composed over a long period adding the best performing 
strategies.

B – One specific type of mean reversion system (MRS) was optimised on approximately 30 
most liquid futures and from each instrument we selected a set of the best solutions. The MRS 
typically buys if market is falling and sells if market is rallying in anticipation of a reversal.

C – This dataset is similar to B, but RMS logic is slightly different. In selection procedure 
we selected bigger set of systems, hence dataset is bigger.

Table 1 below demonstrates characteristics of the data.
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Table 1. In this table we present detailed information about datasets

Name L (days) p (robots) % of zeros From To
A 2,581 3,133 68.65% 11 Mar 2002 04 Dec 2012
B 2,517 7,708 71.84% 10 Jan 2003 03 Sep 2012
C 2,398 11,730 64.44% 01 Jan 2002 10 Mar 2011

1.3. Individual dataset description

The firm is trading most liquid US and European futures in global exchanges (CME, CBOT, 
NYBOT, ICE, COMEX, EUREX): stock indexes, energies, metals, commodities, interest rate 
products, foreign exchange products (E-mini S&P 500, E-mini S&P MidCap 400, E-mini 
Russell 2000, E-mini, ASDAQ-100, E-mini DOW ($5), Canadian Dollar, Swiss Franc, Japan-
ese Yen, Australian Dollar, Euro FX, British Pound, Sugar No. 11, Coffee, Soybeans, Gold, 
Silver, Copper, DAX, EURO STOXX 50, Natural Gas, Crude Oil, 2 Year U.S. Treasury Notes, 
5 Yr U.S. Treasury Notes, 10 Yr U.S. Treasury Notes, 30 Yr U.S. Treasury Bonds and others). 
The set ranges from high frequency and short term automated trading systems running on 
minute data to systems having trade duration of 5 days. Majority of the systems exit their 
position within 24 h. All ATS have realistic transaction costs and slippage included. Firm’s 
objective was to create a portfolio that will have robust Sharpe ratio on out of sample data.

Some ATS are very similar and trade almost identically. Correlation coefficients of 
A (p = 3,133) dataset grouped by similar strategies can be viewed in Figure 2. We can see 
groups of similar strategies (yellow/light squares), carroty areas represent uncorrelated systems 
and red/darker squares represent negatively correlated systems (very few).

Fig. 2. Correlation matrix of p = 3,133 ATS dataset. Yellow/light areas of the figure correspond  
to highly correlated ATS, red correspond to negatively correlated ATS and carroty areas  

correspond to uncorrelated ATS
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1.4. Typical strategy logic description

Some ATS (or trading strategies or simply strategies) are very different from each other and 
profit from completely different market inefficiencies. Some strategies work on a high-fre-
quency market data and some work on a daily or even weekly data. At any point, strategy can 
be long, short or flat, so profits can be generated in rising and falling markets. Some strategies 
never hold position during the night, some do. Strategies use only technical analysis indicators 
and pay no attention to the fundamental data.

Trend following systems tend to follow the market direction. If market is rising they buy 
and if market is falling – sell. Momentum strategies behave summarily but use momentum 
as a market direction indicator.

Mean reversion systems (also known as contra-trend strategies) tend to take an opposite 
direction than trending ones. The rationale of this behaviour is that market is moving in 
cycle/waves. If the market rises significantly and systems see trend developing it will take 
opposite direction with the anticipation of a correction.

Interestingly, both types of systems can be profitable on the same financial instrument. 
The difference is the time frame. I.e. market may be trending upwards but on the way it waves 
a bit where mean reversion strategies can make a profit.

Seasonality type of strategies uses rationale that market repeats itself on specific time 
frame. Seasonality may not necessarily be yearly, it can be on a monthly, weekly or daily 
basis. If strategy spots such behaviour, next time it will take the position with anticipation 
of the same market movement.

1.5. Trading strategy optimization

After creation of ATS, it can be calibrated/optimised to the specific time frame, market or 
market conditions. The process involves changing strategy parameters (i.e. moving average 
periods, take profit or stop loss levels, etc.) and calculating simulated profit, Sharpe ratio or 
other performance measures. Systems with the best results are selected to the next level – 
inclusion into the portfolio. During ATS optimization procedure a lot of similar solutions 
(with small differences in parameters and trading patterns) can be produced. Optimization 
procedure typically is performed using brute force or genetic optimizations methods. This 
procedure produces a lot of similar systems and typically, a number of systems exceeds the 
number of data points. Therefore, a robust sustainable portfolio creation procedure is required 
to select only optimal set of ATS for the portfolio.

2. Problem description

In this section, we will familiarize with portfolio management problem in more detail. In 
particular, we will pay more attention in sustainable portfolio construction, mean variance 
portfolio optimization and proposed feed-forward portfolio construction.
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2.1. Mean variance portfolio optimization

In the mean-variance framework (Markowitz 1952) one maximizes the sample mean (mean) 
and standard deviation (std) ratio (a modified Sharpe ratio with no risk free rate) for a selected 
number (say k values) of apriori selected return (profit or loss) values:

 P Pmean( ) / std( ),i iSh x x=  (3)

where: xi = (xr1i, xr2i, …, xrNi), “T” denotes transpose operation, (s = 1, 2, … , k), 
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In practice instead of Eq. (3), a scaled ratio Sh = mean (xPi)/std(xPi)×15.8745 is 
used (15.8745=252/sqrt(252) – is annualised Sharpe ratio modifier). In Equation (3) 
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matrix Σ.
To speed up calculations, instead of exact solution, minimization of standard deviations 

by using the Lagrange multiplier, we used approximate analytic solution. In our research, we 
minimize cost function, where constraints (2) are incorporated inside:

 2 2
1Cost( ( ) 1)) T T T

t t t q t t tq q= + λ − + λ −(w Sw w X w1 . 

In the above equation, [1 1  1]= 1  stands for a row vector composed of N “ones”. Scalars 
λq and λ1 control the constraints violations. Values of λq, λ1 should be sufficiently large to 
ensure terms, 2( )T

t tq−w X and 21)T
t −( w1 , converge to 0. We presumed λq = λq = λ = 108.

Then optimal weights can be expressed in a straightforward way:

 1( )( / )T T
t tq S −+ λ +=w X X X +1 1 1 , (4)

where: λ plays role of optimization accuracy constant; and 1
T

tq = w X  is one of F return values 
used to calculate an efficient frontier (Markowitz 1952).

Note, the optimization accuracy constant λ controls weights magnitude and stands as ad-
ditional regularisation constant (Brodie et al. 2009; Raudys, S., Raudys, A. 2011; Zafeiriou et al. 
2012; Stuhlsatz et al. 2012). After calculating vector ws, to satisfy the constraints (2) we brought 
negative weights to naught, if wj ≤ 0 and normalize ws to meet constraint (2). Analytical solution 
was roughly 30 times faster as traditional Lagrange multiplier based optimization procedure 
realized in Matlab frontcon code. Simple analytical expression and high calculation speed is very 
important when we have to generate a large number of agents differing in subsets of trading 
robots and training parameters, and training sequence.
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2.2. Benefits of portfolio management model for sustainability analysis

The mean/standard deviation ratio used in portfolio construction has two important ad-
vantageous features:

1. Provided the number of inputs (assets, or trading robots) is large, distribution of the 
weighted sum (2) can become close to Gaussian (central limit theorem).

2. In case of Gaussian returns, maximization of ratio (3) means that mean value of returns 
is maximized provided probability Prob (xPi

 < Pmax) is fixed apriori, where Pmax is a freely 
chosen risk level. Positive feature of the mean and standard deviation criterion is that 
result does not depend on the choice of Pmax.

Another encouraging feature also lies in a fact that, in many practical tasks, good Gaus-
sian fit can be obtained when number of inputs, N, exceeds one hundred even in the case 
of correlated and obviously non-Gaussian univariate distributions of xa2i. In this way, the 
mean-variance framework does not require normality of distribution for each single input. 
One needs that distribution of the weighted output, P r r

T
i ix = x w , would be close to Gaussian.

The presence of extremely large number of trading robots is a characteristic peculiarity 
of automatic asset trading. If a sample size, L, is small and the number of inputs N, is large, 
instabilities and diminution in the portfolio performance arise. The instabilities can be reduced 
if regularizing constraints or penalty terms are incorporated in the optimization procedure 
(Kan, Zhou 2007; DeMiguel et al. 2007). Use of assumptions about a block diagonal structure 
of matrix Σ, can dramatically reduce the number of parameters to be estimated. In pattern 
classification, this model has been used for four decades (see e.g. review (Raudys, Young 
2004)), now it is successfully applied for portfolio management (Hung et al. 2000; Raudys, 
Zliobaite 2005). Authors in DeMiguel et al. (2007), Kan, Zhou (2007) divided the assets 
into three groups. As a result they used specific “block type” assumptions and obtained a 
noticeable gain. Complexity reduction is also obtained while using a tree type dependence 
between variables xr1, xr2, …, xrN (Bai et al. 2009; Raudys, Saudargiene 2001; Raudys 2001).

3. Multilayer feed-forward system for large-scale portfolio design

Feed-forward large-scale portfolio construction system is composed of several parts. The 
steps are as follows:

 – In order to obtain diversifications and reduce a number of inputs we form trading 
groups that calculate averages of a large number of similar trading robots. For this 
purpose, for each single time intervals (say 100 or 400 days time interval) we cluster 
ATSs’ by the correlation of their simulated trading track record – profit and loss series. 
We form a number of clusters in such a way that the correlations inside the clusters are 
high, however, correlations between the clusters are much smaller.

 – Then we can join trading systems inside each single cluster in order to make a trading 
agent. For this purpose, the 1/N portfolio is close to optimal (Raudys 2013).

 – After reduction of the number of factors (inputs) we can use mean-variance principle 
based portfolio design, i.e. perform classical Markowitz rule between the outputs of 
the first order agents.
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 – To increase the diversity we: 1) use distinct regularization values; 2) carry out a several 
clustering procedures based of time series of different length. In such a way we obtain 
a great number of trading modules (see schema in Fig. 3).

 – To select the best modules for final portfolio weights calculation we use specially 
developed cost sensitive multilayer perceptron.

 – We use selected agents to produce future portfolio as an average of modules’ weights 
recognized as belonging to “the elite (the fourth) class”.

In the next section we will explain the steps in more detail.

3.1. History length selection

The data used for analysis cover prior-to-crisis and crisis time period, characterized by mul-
titude of sudden changes. In preceding analysis (Raudys, S., Raudys, A. 2011) it was found 
that 300–600 days of data history produce the highest Sharpe ratio. Calculations show that 
a small (below 100) number of inputs should be used in such situations (Raudys 2013). 
Consequently, we have to use either non-trainable 1/N Portfolio rule, or reduce the number 
of inputs severely and use the mean-variance approach. Both ways have their positive and 
negative aspects. Thus, we need to find a compromise solution.

At first, we considered conditions where 1/N portfolio can be optimal and found that if
 – the sum of the automated trading robot outputs are normally distributed;
 – outputs of NB robots are equally correlated, i.e. ρij, = ρ;
 – the mean returns of the robots are equal,

then the benchmark 1/NB portfolio rule is the optimal solution. This conclusion follows from 
a simple matrix algebra analysis of covariance matrix of the form

 (1 ) T= × − ρ + ×ρK I 1 1 , 

when matrix K is inserted instead of S into Equation (4).
Modern world is affected by the fast technological, political and economical changes, 

especially in prior-to-crisis and crisis period. Thus, financial situations very often are varying 
and unpredictable. Therefore, the lengthy time series are often unsuitable for precise portfolio 
calculation. One needs to employ shorter training histories (Raudys, Zliobaite 2005; Raudys, 
Mitasiunas 2007; Raudys 2013). In our analysis of diverse trading strategies we face data 
where in ¾ of days the trading robots refuse to operate. Therefore, actual (effective) lengths 
of time series are much shorter and training sample size becomes a very important issue.

3.2. Clustering of the trading robots

One of the principal ideas proposed in this paper is that having a large number of ATS (trading 
robots) allows us to group/cluster most similar ATS together and create almost uncorrelated 
groups. We group PnL series into clusters by their correlation using k-means algorithm 
and perform 1/N portfolios in each of them. The k-means algorithm is known and popular 
algorithm for constructing groups of similar items described in many books and realized in 
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many data mining software. In our portfolio design schema, we perform cluster analysis of 
N×L data according to correlations between the N time series of length L. Here we use absolute 
values |1-corelationij| as the similarity measure between i-th and j-th time series. Assuming 
that the robots inside single group are similar we can use mean values of their outputs in such 
a way realizing 1/N B portfolio rules serving as R first order (expert) agents. Having a small 
number of expert agents we can use mean-variance approach to design more complex agent 
(module) where R weights would be calculated according to Equation (4). To improve small 
sample properties of the covariance matrix we use regularized covariance matrix:

 reg1 (1 )= × − τ + × τS S D ,  (5)

where: D is a diagonal N×N matrix found from matrix S; and τ is regularization parameter 
(0 ≤ τ ≤ 1).

Fig. 3. Feed-forward flow of information in single trading module of decision-making system

Two levels decision-making schema or R non-trainable (expert) and one trainable agent 
we call feed-forward trading module (FFM), see Figure 3.

3.3. Final feed-forward system design

A novelty of the present paper is an introduction of a vast number of feed-forward modules 
depicted in Figure 3. The modules differ in learning set sizes, L, used to perform clustering of 
the data, regularization parameter, t, and randomly selection of subsets of expert agents. In 
our experiments reported below, in each of a walk-forward step we considered four learning 
set sizes L1 = 100, L2 = 200, 300 and 400 days prior to 100 days validation period and clustered 
ATS into R = 25 groups. After averaging, we formed 100 diverse expert agents. To increase 
a diversity, from 100 agents we formed 80 semi-randomly selected groups of RL = 60 expert 
agents to be joined into 120 types of higher order agents. Each of the latter agents were made 
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by the mean-variance approach using one of four a priori selected values of covariance matrix 
regularization (t = 0.4, 0.6, 0.7 or 0.8). Altogether, we used 480 diverse feed-forward modules 
in the experiments.

3.4. Selection of “elite modules” for the final portfolio calculation

Each single module depictured in Figure 3 gives a set of portfolio weights. Some modules 
perform better in some time interval, other modules are preferable in another time interval. 
To adapt to changes constantly, every 10 days we performed module selection for the final 
portfolio design. Each time we divided 480 modules into K = 4 equal groups (120 modules 
in each) according to their mean return values during the last 20 days. Then we used specific 
parameters of the modules: 1) a number of times when each of 100 first order agent was 
employed in the module; 2) regularization parameter; and 3) clustering data interval size.

For classification we used four class multilayer perceptron training pair-wise misclassifica-
tion cost specific loss function, where in the output layer instead of minimizing the class specific 
weights w1, w2, … , wK, one minimizes differences of two weight vectors, wj – wh (Raudys, S., 
Raudys, A. 2010):

 ( ) 2
novel

1  1 1
/ ( ( ) )

hNK K
T

h h hj j h s
h j s

Loss f w wq N C
= = =

= −∑ ∑ ∑ hy . (6)

We use a K×K – dimensional misclassification cost matrix Ccost = ((Chj)) to control pair-
wise misclassification cost.

4. Simulation study

In the simulation study we performed a set of experiments with three different datasets. The 
proposed feed-forward methodology showed better results than benchmark method. Below 
we will describe experiments in more detail. The model testing can be done in 3 ways. Firstly, 
one creates a model, calibrates its parameters and tests performance/quality on the same 
data set. This type of testing is widely criticized because complex models can adapt to the 
training data and generate optimistically biased results. Secondly, one calibrates the model 
on one set and validates it on the unseen data. This method is better but also unreliable as 
having one satisfactory out of sample result which can be a matter of luck. This approach is 
popular but limits us to a small amount of unseen data. The third alternative: one is repeat-
ing the experiment with multitude of pairs of the data subsets. One subset is used for model 
calibration and another one is used for performance evaluation. In time series analysis it is 
called a walk-forward approach. Here, we train the model on one set and test it on the small 
period of future data. Next, we shift the training period by period x and we shift the testing 
period by the same time x into the future. This procedure is repeated until there is no data 
to shift our training and testing data periods. Walk-forward analysis is gaining popularity. 
It is a time consuming process but allows viewing potential results in out of sample with 
longer time periods.
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In this study, we organised data into k = 16 time intervals zi of 100 working days. Initially, 
we create a portfolio using z1 ... zm intervals and test it on zm+1 interval. In the next step, we 
create a portfolio using z1 ... zm+1 range and test on zm+2. The process is repeated until we reach 
zm+k. This is illustrated in Figure 4. So we have totally k out of sample periods that we can 
concatenate and get one long out of sample period. In total we have m + k periods. Thus, in 
experiments reported below, for testing we used 16 × 100 = 1600 days data.

4.1. Benchmark methods

In small scale problem we could use classic Markowitz approach for portfolio construction. 
Because of the size of the problem we cannot use classic Markowitz as a benchmark method. 
Markowitz is not capable of handling large-scale, high-dimensionality data. We are forced 
to use simple 1/N rule as a benchmark instead. Here, every possible portfolio member is 
included into account.

This rule is sometimes regarded as equally weighted rule. In some research works it was 
noted that this rule can be rather good in many practical portfolios (DeMiguel et al. 2009). 
We considered two versions of 1/N rule. In the first one, all ATSs are used. In its modification, 
only agents with average above zero profits during the latest 400 trading days were selected.

In spite of the known ways to reduce complexity “there are still many miles to go” be-
fore the gains promised by optimal portfolio choice can actually be realized out of sample 
(Kan, Zhou 2007; DeMiguel et al. 2007). One of the reasons of a mild success relies on the 
incorrect normality assumption inherently incorporated into the standard mean-variance 
framework. This factor is often observed if a small number of assets and records are measured. 
Therefore, simple fixed (non-trainable) benchmark portfolio trading rule (1/N – equally 
weighted portfolio) with (wr1 = wr2 = … = wrN = 1/N) is suggested as a benchmark method 
(DeMiguel et al. 2007).

4.2. Portfolio construction experiments

In an attempt to choose the best model for the final portfolio calculation, we split 480 systems 
into four equal (120 models in each of them) pattern classes according to the last period’s 
10 days mean return values. The most successful models (the 4th class) were used in the final 
Portfolio weights calculation for subsequent 10 validation days. To “recognize” the 4th class 
models we used the misclassification cost-sensitive multilayer perceptron with 20 inputs, 

Fig. 4. Walk-forward testing, zm+1 is the first out-of-sample period and zm+k and is the last

...

z1 z2 z3 zm zm+1 zm+2 zm+k

...

walk forward out of sample periodinitial in sample period
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two hidden units and four outputs. Such perceptron allowed realizing non-linear decision 
boundary. Attributes for recognition of the best models were: a) 100 quantities of expert 
agents in each model; b) a generalized parameter that characterized learning set sizes of the 
given model; and c) regularization parameter, τ.

Totally, we had 102 attributes. Learning set size used to train perceptrons was 480. 
To improve small sample properties of classification rule we performed a singular value 
decomposition of 480×102 dimensional data and used the first 20 principal components 
for classification. The multilayer perceptron was trained starting from very small random 
initial weights using a cost sensitive algorithm aimed to minimize the sum pair-wise costs 
of misclassifications (Raudys, S., Raudys, A. 2010). In some of experiments the pair-wise 
misclassification costs were calculated according to values of differences between the average 
returns in the 4 pattern classes. The best results, however, were obtained when our costs matrix 
prevented allocation of vectors of the first class (most unsuccessful) to the fourth class. In 
Table 2 we present misclassification cost matrix used in the experiments. Here, allocation of 
the worst models (the 1st class) to the 4th class is predominantly penalized.

Table 2. The 4×4 dimensional matrix, Ccost, of pair-wise misclassi-
fication costs

Class 1 2 3 4
1 0 2 4 20
2 1 0 1 1
3 1 1 0 1
4 1 1 1 1

Table 3. A number of allocations of 120 vectors (modules) matrix in 
a singe 20 days period training session. Diagonal values represent 
correct classifications and other – a number of misclassifications 
(on the right)

Class 1 2 3 4
1 82 37 1 0
2 21 44 47 8
3 17 15 69 19
4 4 5 15 96

In Table 3 and Figure 5 we can see that the 1st and 4th classes are separated pretty well. 
None from the first class was assigned to the class 4. This is what we tried to achieve using 
cost matrix and indicating very high cost for such assignment. This result was achieved using 
perceptron with 2 hidden layers that takes into account cost matrix during training. Figure 5 
visualises 480 agents in 2D two hidden unit space.

We can see in the figure that class one (black dots) is not mixed with class 4 (green dots). In 
16 walk-forward shifts of the training and the test data sets we designed 480 trading modules 
16 times. Selection of the elite (the 4th class) modules were preformed after each 10 trading 
days. So, the evaluation of portfolio performance was executed 160 times.
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To avoid over-adaptation to experimental material, the parameters of multistage portfolio 
weights calculation schema were found while experimenting with the 11,730 trading agent 
data recorded in the period from 2002 to 2010. The evaluation of the method’s performance 
was executed with another two data sets formed from diverse trading robots collections 
selected from 2002 to June 2012 and from 2003 to December 2012 data archives. Below we 
present out-of-sample results, variation of the Sharpe ratio during the last 6 years.

By employing proposed approach where agents differ in the training history length, al-
lowed us to improve portfolio Sharpe ratio from equally weighted 5.23 to a new system’s 7.59. 
Both benchmark methods were approximately equally effective (Fig. 6. left panel). The 1.5 
times improvement is very stable and statistically significant and in almost all out of sample 
experiments produced better Sharpe ratio (Fig. 6).

Fig. 5. Classification results into 4 pattern classes (first class is black; green – the “elite” class)
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Fig. 6. Variation of out-of-sample Sharpe ratio evaluated in six years period with two diverse data sets 
of trading robots (left panel – p = 7,708 dataset, right panel – p = 3,133 dataset)
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Conclusions

This paper presents a portfolio construction method inspired by sustainable economy prin-
ciples, so that large tasks are divided into smaller ones, solved and later composed into a final 
solution. The theoretical justification for this novel solution is based on multivariate statistical 
analysis of multidimensional investment tasks, particularly on relations between data size, 
algorithm complexity and portfolio efficacy. Validation of the feed-forward decision-making 
system was performed on large-scale financial data sets, taking into consideration thousands 
of ATS during the last ten years.

Having a large number of portfolio candidates, we move towards the Gaussian distribu-
tion of portfolio returns. In such a situation, one can use the mean-variance approach. In 
the case of thousands of ATS, however, the small sample size problem arises. In high dimen-
sional situations the employment of typical solutions, such as the Markowitz optimization 
principle, becomes ineffective. Thus, it is necessary to develop additional tools for reducing 
dimensionality with minimal loss of useful information. Our novel multilevel feed-forward 
decision-making schema comprises the following procedures:

1) clustering is used for dimensionality reduction and generating the first order trading 
agents by using the non-trainable 1/N portfolio design rule;

2) mean/variance optimization employed to taking into account correlations between 
the outputs of the first order trading agents;

3) cost-sensitive multi-category classification applied to select the group of the best 
trading modules;

4) final decision making based on the non-trainable 1/N portfolio rule.
The above sequence of procedures is based on sound theoretical considerations and is 

explained in more detail in Raudys, S., Raudys, A. (2011) and Raudys (2013). In the first 
procedure, we obtain a gain due to the theoretically-based knowledge that for correlated 
agents with similar mean returns, the non-trainable 1/N portfolio rule is well founded. In the 
second procedure, we obtain a gain because we have a relatively small number of first order 
trading agents and regularize the covariance matrix while developing the trading modules. 
In the third procedure, we have a gain in view of the fact that we are selecting the most 
promising trading modules by means of a special multilayer perceptron capable of taking 
into account the pair-wise costs of misclassification. In the fourth procedure, we expect a 
gain due to employing the 1/N rule. The gain can result from the fact that after the use of 
randomization, the performances of all modules allocated to the 4th class and correlations 
between the module outputs should not differ notably. Theory shows that in such situations 
the non-trainable 1/N rule becomes close to optimal.

In our two large-scale empirical performance evaluations we demonstrated the superi-
ority of the novel method over the benchmark methods in 16 out-of-sample periods. From 
theoretical and empirical analysis it was clear that sample size issues are of great importance 
in portfolio construction: shorter time series are beneficial to out-of-sample portfolios when 
environments are undergoing frequent change. This can be useful during a crisis period, in 
which the environment is changing more rapidly than would usually be the case. Therefore, 
for portfolio construction, shorter histories have to be used (Raudys, S., Raudys, A. 2011).
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The new trading system portfolio methodology has a theoretical basis and has been verified 
empirically using the large financial data sets. It shows promising results, although, it can 
be improved undoubtedly. One possible way would be to start applying evolutionary and/
or memetic algorithms (Krasnogor, Smith 2005) instead of agent/module selection. Recent 
approaches aimed at pre-processing truly high-dimensional input data to low-dimensional 
representations combined with regularization (Stuhlsatz et al. 2012; Zafeiriou et al. 2012) 
can facilitate enhanced trading agents and design of modules.

The proposed multi-layer feed-forward portfolio construction system with the selection 
of the best agents and modules for each time interval allowed reducing the number of in-
correct decisions and increasing Sharpe ratio. We believe that the use of adaptive multistage 
feed-forward systems is suitable not only for financial portfolio modelling. In sustainable 
ecology, sustainable economy and sustainable society analysis tasks, a multitude of factors/
agents (smaller elements of the large model) influence the final decision. The similarity 
between such tasks and the large-scale portfolio design strategy suggests that the newly 
developed methodology is worth applying to wider areas of research. We need to seek al-
ternative problems that can provide sufficient data and which are similar in nature to the 
modelling problems discussed.
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