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Abstract. Recently, considerable attention has been devoted to application of multi-attribute deci-
sion-making (MADM) method in materials selection. Normalization can be considered as a founda-
tion for rational MADM methods, which should deal with target-based criteria in addition to cost 
and benefit criteria. Although a good number of applications have been reported for point target 
criteria in MADM problems, in selection problems related to engineering design, it might be better 
to let the material and design criteria vary over a range in order to increase flexibility in subsequent 
design stages. The mentioned point supports a readily adaptable design in changing the customer 
requirements, which is also significant in offering a robust design. In this research, performance 
of three promising target-based normalization methods was investigated using simulation experi-
ments to examine the effect of simulation parameters. The effect of parameters and normalization 
methods was examined using analysis of variance (ANOVA). Moreover, the best structure formula 
was identified to propose an inclusive range target-based normalization method. The suggested 
normalization method was used to enhance the capability of Weighted Aggregated Sum Product 
Assessment (WASPAS) method and applied to a real-word problem dealing with benefit-, cost-, and 
point target-based criteria as well as the range criterion.

Keywords: target-based criteria in MADM, ANOVA, selection, normalization, robust design, 
WASPAS-RTB.

JEL Classification: C02, C44, D81.

Introduction

Changing the material set in an already established technology is a rare event and can be 
considered as a revolution. Traditionally, selection of a new material was usually carried out 
by resorting to previous experiences or applying “trial-and-error” scheme. Recently, there 
has been an increasing interest in the subject of multi-attribute decision-making (MADM) 
methods applied to material selection and design (Alemi-Ardakani et al. 2016; Hafezalkotob 
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et al. 2016a; Xue et al. 2016; Chatterjee et al. 2011) to avoid utilization of inappropriate ma-
terials and make sure that costs are kept to a minimum. Searching for suitable materials is a 
key part of engineering design process and is a prerequisite for solving a chain of different 
engineering selection problems such as process, machine, tool, supplier, and even personnel 
selections. In most of MADM methods, dimensionless or normalization of decision matrix 
elements is one of the crucial steps; however, it is found that most of the current normaliza-
tion methods have shortcomings in tackling all necessary requirements (Jahan, Edwards 
2015). While many normalization methods may appear to be minor variants of one another, 
these nuances can have important consequences for inference and decision-making pro-
cesses. Furthermore, design decision-making matrix consists of target criteria in addition to 
cost and benefit criteria. However, normalization methods considering target criteria have 
received much less attention. Target criteria are applicable in many areas, especially implant 
material selection in which the material must possess properties identical to those of human 
tissues (Bahraminasab, Jahan 2011). In another example explained by Stanujkic et al. (2013) 
addressing computer selection, IT specialists can provide some recommendations (prefer-
ences/targets) in relation to characteristics of computers. An alternative, i.e. computer, whose 
performances are equal to desirable performances, compared to all attributes, is potentially 
the best alternative. Furthermore, target criteria are crucial in patch repair material selection 
applications ranging from aerospace to rehabilitation of reinforced concrete structures in 
maintenance of infrastructures, where the repair materials should have similar properties to 
those of the main material considering a number of criteria such as thermal expansion coef-
ficient. Furthermore, sometimes in some applications for evaluating alternatives in presence 
of defined criteria/optimal values in standards and/or regulations, target criteria should be 
met (Zavadskas et al. 2016; Adan et al. 2007). Difficulties arise when a point target criterion 
is extended to range. Early in the design timeline, some of the design requirements may be 
uncertain. Rather than setting point targets, in order to increase flexibility in the following 
design stages, the material and design criteria can be allowed to vary over a range. There are 
even less methods introduced for normalization of criteria and ranking of material and de-
sign selection problems with range target-based criteria. This study first presents a brief over-
view of the recent history of MADM addressing material selection, normalization methods, 
and applications of WASPAS approach, describes the observed gap in previous studies, and 
finally specifies the objectives of the current study. Section 2 is divided into three subsections. 
The first subsection describes a preliminary method for addressing the following question 
“What are the limitations of current point target-based normalization methods and which 
approach is the best one?” The second subsection proposes a range target-based normaliza-
tion method, and the last subsection describes how the method can enhance the capability of 
Weighted Aggregated Sum Product Assessment (WASPAS) method. The first part of section 
3 presents the results of simulation analysis described in section 2.1, and then applicability 
of the suggested tool is exemplified through a material selection case study in section 3.2. In 
section 4, effectiveness of the new method as well as the role of range target-based criteria 
in material selection to offer a robust design is further discussed. The final section concludes 
with inferences provided by the undertaken research.
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1. Literature review

The pertinent literature has been reviewed attending to material selection methodologies, 
normalization methods in MADM, and applications of WASPAS method. The recognized 
research gap as well as objectives of the current study is presented after thorough review of 
the literature.

1.1. Brief literature review on application of MADM method in material selection

Seminal works on material selection in the light of multi-criteria decision-making (MCDM) 
method were undertaken by Ashby research group (Ashby 1989, 2000; Sirisalee et al. 2004, 
2006). An array of studies conducted by Edwards discussed strategic substitution of new 
materials for old ones (Edwards 2004), selecting materials for optimum use in engineering 
components (Edwards 2005), and also supporting design decision-making (Edwards, Deng 
2007) in the subject. Farag (2013, 2008) described the quantitative methods employed for 
material selection and substitution. As Ashby et al. (2004) states: “Achieving the match with 
design requirements involves four basic steps. (1) A method for translating design require-
ments into a specification for material and process. (2) A procedure for screening out those 
that cannot meet the specification, leaving a subset of the original menu. (3) A scheme for 
ranking the surviving materials and process, identifying those that have the greatest potential. 
(4) A way of searching for supporting information about the top-ranked candidates” (p.1). 
Surveys such as those conducted by Sapuan et al. (2009) and Brifcani et al. (2012) have de-
scribed that a vast array of materials with diverse properties available to the designers make 
the material selection process a difficult and time-consuming task. Jahan et al. (2010) have 
shown that a growth in studies addressing material evaluation and selection problems using 
the MCDM approaches has been observed from 2006. Over recent years, there has been an 
increasing amount of literature both on development of new MADM methods for material 
selection (Kabir, Lizu 2016; Hafezalkotob et al. 2016b; Shan et al. 2016; Ardeshirilajimi et 
al. 2015) and real applications (Al-Oqla, Sapuan 2016; Al-Oqla et al. 2016; Mastura et al. 
2016; Hafezalkotob, A., Hafezalkotob, A. 2016; Ishak et al. 2016; Alemi-Ardakani et al. 2015). 
However, if decision-making models could be developed based on the nature of engineering 
design problems, more official applications can be reported. 

1.2. Brief literature review on normalization methods of selection criteria

MADM models are defined by a decision matrix which has the following parts: alternatives 
Ai (i = 1, …, m) which decision makers have to choose, criteria Cj (j = 1, …, n), and element 
rij which is the rating of alternative i with respect to criterion j as shown in Table 1. Further-
more, max min, , ,j j j jr r Tσ are the maximum value in alternatives associated with criterion j, 
minimum value in alternatives associated with criterion j, standard deviation of rij (i = 1, …, 
m), and target value for criterion j, respectively. Performance ratings for different criteria are 
measured by different units; however, all the elements must be dimensionless in the decision 
matrix to offer a valid comparison. The mentioned point is very significant in material selec-
tion in which the same material properties may be measured in different convertible units. 
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Table 1. A typical multiple attribute decision-making problem

C1 C2 … Cn

A1 r11 r12 … r1n 
A2 r21 r22 … r2n 
A3 r31 r32 … r3n 



Am



rm1



rm2 
…



rmn 

The normalization process must eliminate units of criterion functions without exerting any 
effects on the final result (Opricovic, Tzeng 2004).

A number of matters including capability of removing the scales, symmetry in normaliza-
tion for cost and benefit criteria, transforming other types of criteria to the benefit ones, rank 
reversals, and handling negative values are important aspects worth considering for evalua-
tion of the efficiency of normalization methods (Jahan, Edwards 2015). Figure 1 presents the 
mentioned important aspects that must be considered in developing a normalization method. 
Capability of removing the scales is a basic rule, which means that in the case of normalizing 
identical data with different units or scales, the same results should be obtained. Symmetry 
of normalized values, when comparing cost and benefit criteria, is another chief aspect in 
evaluating normalization methods. Some methods just remove the scale of criteria; but they 
cannot convert cost criteria to benefit criteria. Although such a transformation is not neces-
sary for all MADM methods, it usually reduces the calculations required to be performed in 
the subsequent stages. Phenomenon of rank reversals is another issue, in which the ranking 
changes when an alternative is added to or removed from the decision problem. In some 
cases, this may lead to what is called total rank reversal, where the order of preferences is 
totally inverted. The reason for rank reversal can be application of an improper normalization 
technique (Barzilai, Golany 1994). The last expected property for normalization methods is 
capability of presenting acceptable normalized values when there are negative values in the 
decision matrix.

Figure 1. Expected properties for normalization methods
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Milani et al. (2005) compared the effect of some well-known normalization methods on 
ranking of alternatives in a material selection case study. Similarly, in a critical review of 
normalization methods, Peldschus (2008) compared various normalization approaches. In a 
pioneering research, Zavadskas and Turskis (2008) proposed a new logarithmic dimension-
less approach that may be more appropriate for situations in which the values of criteria differ 
considerably. The proposed method is recently used for multi-criteria analysis of projects’ 
performance in construction (Zavadskas et al. 2014a). Celen (2014) used four popular nor-
malization procedures in context of TOPSIS method to evaluate the financial performances 
of Turkish deposit banks. Nayak et al. (2014) analyzed the impact of various normalization 
methods on four intelligent forecasting models i.e. a simple ANN model trained with gra-
dient descent (ANN-GD), genetic algorithm (ANN-GA), a functional link artificial neural 
network model trained with GD (FLANN-GD), and genetic algorithm (FLANN-GA). Stanu-
jkic et al. (2013) pointed to cases where decision-makers expressed their preferences for each 
selection criteria. Therefore, they extended the linear scale transformation Max-Min method 
to include the preferred performance ratings (point target). Stanujkic and Zavadskas (2015) 
presented a modified simple additive weighting (SAW) method based on decision-makers’ 
preferred levels of performances. Jahan and Edwards (2015) identified, classified, and eval-
uated thirty-one normalization methods for application in material selection problems. The 
examined methods also included those normalize target-based criteria in addition to cost 
and benefit criteria. Vafaei et al. (2016) investigated the most appropriate normalization 
techniques for the Analytical Hierarchy Process (AHP) multi-criteria method by taking into 
account five normalization methods. 

1.3. Literature review on applications of WASPAS method

Weighted Aggregated Sum Product Assessment (WASPAS) is one of the most recently de-
veloped MADM methods which was originally proposed by Zavadskas et al. (2012). It is 
the mixture of two well-known MADM approaches, the weighted sum model (WSM) and 
the weighted product model (WPM). Applications and developments of WASPAS method 
have been reported in many studies. It was used for assessment and selection of appropriate 
solutions for occupational safety (Dejus, Antucheviciene 2013). Capability of WASPAS for 
exact ranking of alternatives was shown by solving eight manufacturing selection problems 
(Chakraborty, Zavadskas 2014). An extended version of WASPAS method for application 
in uncertain decision-making environments was proposed by Zavadskas et al. (2014b). In 
the proposed method, decision-maker(s)’ uncertainty in stating their judgments and evalu-
ations with respect to criteria importance and/or alternatives performance on criteria was 
expressed by interval-valued intuitionistic fuzzy numbers (IVIF). Furthermore, WASPAS was 
utilized to evaluate and rank alternative applications of nanotechnology, as one of the main 
and strategic industries in Iran, for future planning (Ghorshi Nezhad et al. 2015). Moreover, 
WASPAS with fuzzy values was applied to select the best shopping center construction site in 
Vilnius (Turskis et al. 2015). In another study, WASPAS with Grey Values was implemented 
for selecting the right contractor in construction industry due to its capabilities in handling 
imprecise information. To assess existing dwelling houses and refurbish them to satisfy en-
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ergy efficient requirements and humans’ needs, the MADM-opt method was developed and 
applied in the WASPAS technique (Zavadskas et al. 2016). Together, these studies indicate 
that WASPAS method enjoys wide acceptance.

1.4. Gap of previous studies and objectives of the current research

Review of the literature indicates that in areas such as material selection, where numerous 
choices with similar performances exist and a lot of various criteria influence the selection 
results, a more precise normalization and of course MADM approach would be required. 
Reviewed studies in section 1.2 have only dealt with normalization of decision matrix with 
consideration of just cost and benefit criteria; while few of them have included point target-
based criteria, which are important in many MADM problems including material selection. 
No attention has been devoted to the effectiveness of point target-based normalization meth-
ods, particularly with application of ANOVA analysis. Early in the design timeline, some 
of the design requirements may be uncertain. There are even less methods introduced for 
normalization of material and design selection problems with range target-based criteria. 
In order to increase flexibility in the later design stages, target value of material and design 
selection criteria can be allowed to vary over a range to increase flexibility in subsequent 
design stages. Therefore, this study aims at extending the scope normalization research to 
range target-based criteria (Perez et al. 2016).

The major contributions of this paper are: (1) comparing efficiency of point target-based 
normalization methods using a systematic approach, (2) developing a new normalization 
method for addressing range target-based criteria in addition to cost and benefit criteria, (3) 
addressing the gap in the WASPAS literature for problems involving target criteria, and (4) 
providing an example on material selection to elucidate details of the proposed method as 
well as the concepts of point and range target-based criteria.

2. Materials and methods

2.1. Simulation analysis of Point Target-based normalization methods

Computer simulation was used to compare the promising target-based normalization meth-
ods listed in Table 2. The reason for using simulation was its flexible and versatile method, 
which allows generating a range of problems, and replicating them several times. This pro-
vides a vast database of results from which we can study the patterns of solutions provided 
by different factors. 

For this research the simulation study is conducted as follows:
Step 1: Creating table of full factorial simulation experiments with respect to the following 
factors, in which each random number is generated from independent normal distribution 
(here m = 45). The range constitutes a vector or a m × 1 matrix.

 – Factor A, Location of target value: Lower than all data, Between data, Higher than 
all data.

 – Factor B, Variability or standard deviation of data: Low (s = 3), High (s = 30).
 – Factor C, Number of alternatives: Low (m = 4), High (m = 15).
 – Factor D, Normalization methods: Norm (1), Norm (2), Norm (3).
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Table 2. Promising normalization methods for cost, benefit, and target criteria

Number Normalization method Formula

Norm 
(1) Non-monotonic normalization (Shih et al. 2007) approach

2

2
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2
ij j

j

r T

ijn e

−

− σ=
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(2) Comprehensive normalization method (Jahan et al. 2011) min maxmin{ , } max{ , }
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j jj j

r T

r T r Te

−

−

Norm 
(3) Target-based normalization technique (Jahan et al. 2012) max min

1
Max{ , } Min{ , }
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The range for the factors is typical of those found in many material selection applications. 
Two levels for variability and three levels for target values were assumed. This is represent-
ative of a typical MADM problem. To keep this simulation size manageable, number of 
replications is 10 for each combination, thus producing (3 target value levels) × (2 variability 
levels) × (2 Number of alternatives levels) × (3 Normalization methods levels) × (10 replica-
tions) = 360 vectors of data.
Step 2: Generates experimental designs table (Using Design Expert software version 7) ac-
cording to the factors defined in step1. The simulated vector of data is defined as rij, i = 1, 2, 
…, m for a hypothetical criterion j. 
Step 3: Measure angel between vector of original data (generated in step 2) and vector of 
normalized values. In multi criteria analysis problems, among various ways to represent the 
conflict between alternatives, Deng (2007) used the concept of alternative gradient to rep-
resent the conflict of decision alternatives. Here this idea is applied to measure the degree 
of conflict between the original data (rate of alternatives for the hypothetical criterion j), 
and normalized values. However, the differences can be also measured by the correlation 
coefficient.

Assuming that O and N are the original data and normalized values for a specific cri-
terion, respectively, these two groups of data can be considered as two vectors in the “m” 
dimensional space. The angle between O and N in the “m” dimensional space can be a good 
measure of conflict between original data and normalized values. As shown in Figure 2, Oi 
and Nj is in no conflict if qij = 0, the conflict is possible if qij ≠ 0 i.e. (0, )

2ij
π

θ ∈ .This occurs 

Figure 2. Degree of conflict between original data and normalized one
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because when qij = 0 the gradients of both the alternatives Oi and Nj are simultaneously in 
the same increasing direction and there is no conflict between them. The degree of conflict 
between alternatives Oi and Nj is determined by Eq. (1). 1 2( , , ... , )i i imr r r  and 1 2( , ,..., )j j jmn n n  
are the elements of Oi and Nj respectively, where qij is the angle between the gradients of the 
two vectors.
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Step 4: Evaluate the effect of each factor and possible interactions using Design Expert soft-
ware version 7.

2.2. Extension of Point Target-based normalization to range

Target criteria are applicable in many MADM problems, including medical decision making, 
design selection, and materials selection in particular biomedical material selection where 
the biomaterial properties should be as close as possible to the replacing tissue. Target cri-
teria, either point or range, can be also used in patch repair material selection for different 
applications, ranging from aerospace to rehabilitation of reinforced concrete structures in 
the maintenance of infrastructures. In criteria, such as modulus of elasticity and thermal 
expansion coefficient, the repair materials must be compatible with the main body material. 
Furthermore, sometimes in some applications, to evaluate alternatives in the presence of 
criteria defined in standards and/or regulations, target criteria should be met.

Recently, two methods were suggested for range target-based normalization. Zeng et al. 
(2013) proposed VIKOR method with enhanced accuracy to overcome the shortcoming of 
traditional VIKOR that works only in handling benefit and cost attributes. Eqs. (2–3) show 
the proposed normalization formula for handling criteria with range targets as well as cost 
and benefit criteria, respectively. Zeng et al. (2013) ranked iodine deficiency disorder in ten 
regions using three benefit criteria and two range target-based criteria.
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In medical decision-making, most patient data (e.g. a laboratory test report) have normal 
reference ranges. For an attribute with normal distribution, the normal reference range is 
usually defined as the set of values that 95% of the normal population falls within. Therefore, 
in Eq. (2), B can be obtained from 1.96µ − ×σ , and C is 1.96µ + ×σ . If the rate of alterna-
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tive “i” for criterion “j” falls inside the historical normally distributed data (B and C), the 
normalized value will be 1. In addition, Eq. (3) was proposed for cost and benefit criteria. 
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As presented in Figure 1, the normalization approach must fulfill several properties. How-
ever, the main weakness of this method is the failure to remove the scales precisely. While 
it is a basic rule that in normalizing identical data with different units or scales, the same 
results must be obtained. For example, density has units [kg/m3] or [g/cm3]; for temperature, 
the Fahrenheit (TF) scale is used in the U.S.A., but most of the rest of the world use the 
Celsius (TC) scale, and in science, it is often more convenient to use the Kelvin (TK) scale 

9( 32, 273)5F C C KT T T T= + = − . These “convertible” units affect material properties such as 
heat transfer coefficient or thermal conductivity. Normalization methods must be able to 
eliminate the ‘convertible’ units of criterion functions, ( * )ij ijrϕ = α +β , and return the same 
result for all scales. It was shown in (Jahan, Edwards 2015), the sum-based normalization 
methods including Eqs. (2 and 3) suffer from this shortcoming.

Perez et al. (2016) presented a range target-based normalization method (Eq. (4)) in the 
context of Reference Ideal Method (RIM). They described the method using an example 
concerning personal selection (driver). Perez et al. (2016), indicated that, in practice, the 
ideal solution is not necessarily one of the extreme values, but may be, in fact, a value some-
where in between. In the case of driver selection, if the age is one of the criteria, the desired 
age for candidate person should be between 30 and 35 years old. Assume that the age range 
of our candidates is between 23 to 60 years old; it is then evident that those methods that 
cover only cost and benefit criteria or even point target-based criteria do not work in such 
situations. Figure 3 demonstrates the schematic of the relation between data and normalized 
values based on Eq. (4). 

Figure 3. Normalized values and variation of target range in the universe of discourse
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According to the location of rij, three formulas are presented for normalization in Eq. 
(4). Where the interval [B, C] is the reference ideal and the interval [A, D] is a range that 
belongs to a universe of discourse ( ,ijr A D∈   ). The more distance of rij from the reference 
ideal is, the less the normalized value is.
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Let us consider the age criterion, such that the range is [A, D] = [23, 60], the target range 
is the [B, C] = [30,35]. Considering the two values of, x = 25 and x = 40, with the same dis-
tance from the targets (B – 5 = 25 and C + 5 = 40), the normalized values will be obtained, 
based on Eq. (4), as follows:
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It is expected to observe the same normalized values, when there is the same distance 
from the target ranges. Although the presented normalization method (Perez et al. 2016) 
fulfils most of the requirement of an ideal normalization approach, it seems that it had 
accentuated the problem of asymmetry in the normalized values so that it can influence 
the result of MADM. In order to preserve the maximum initial information in relation to 
initial attribute values and values of other criteria, it is necessary to check the symmetry of 
normalized values in comparing cost, benefit, and target-based criteria.

The evidence presented in this section suggests the need for a more comprehensive nor-
malization method. Eq. (5) describes the proposed formula for range target-based criteria 
for possible application in MADM techniques.
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Figure 8 shows schematic of data and normalized values (nij) for a criterion with range 
target. The target range will be somewhere in the universe of data between “A” and “B”. It 
means the target range may vary among the extreme values of the range (See Figures 4, 5 
and 6). The target can be even a point between the minimum and the maximum values, 
instead of range.
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It seems that the proposed method can fulfil all properties described in Figure 1 while 
overcoming the shortcomings of the available approaches (Perez et al. 2016; Zeng et al. 2013). 
When a range target criterion changes to a point target criterion, Tlj and Tuj close together 
in which Tlj = Tuj = Tj. In this case, we obtain Eq. (6) for normalization, thus it is possible to 

Figure 4. Schematic of normalized values in the proposed method with range target  
in the middle of data

Figure 5. Schematic of normalized values in the proposed method with range target  
in the upper bound of data

Figure 6. Schematic of normalized values in the proposed method with range target  
in the lower bound of data
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affirm this approach, which is extremely similar to Norm (3) in Table 3, which has the most 
promising structure (see the results described in Section 3.1). 

 
{ }

1
max B , A

ij j
ij

j j

r T
n

T T

−
= −

− −
. (6)

An efficient approach was presented for the normalization of cost, benefit, and tar-
get-based criteria from point to range. This can be used to increase the quality of design 
decision-making techniques through improving the current widely accepted MADM tech-
niques including COPRAS (Liou et al. 2016), ELECTRE (Figueira et al. 2016), MOORA, 
EVAMIX, TOPSIS, VIKOR (Mardani et al. 2016), and WASPAS. 

2.3. Extension of WASPAS method with Range Target-Based  
(WASPAS-RTB) normalization approach 

By considering the matrix presented in Table 1, the following steps are suggested for WASPAS 
method with range target-based normalization approach (WASPAS-RTB).

Step 1) The decision matrix is normalized using Eq. (7), where the normalized generic 
element of the decision matrix is denoted by nij. The target range [Tlj, Tuj] will be somewhere 
in the universe of data [A, B].
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When a range target-based criterion changes to a point target-based criterion, Tlj and 
Tuj close together in which Tlj = Tuj = Tj. The above formula can be also used for cost and 
benefit criteria. For benefit criteria, target is the maximum value in the universe of data (Tj = 
B), and for cost criteria target, it is the minimum value in the universe of data (Tj = A). It 
should be noted that in the WASPAS-RTB method, Eq. (7) is applied instead of Eqs. (8 and 
9) that were used in the original version of WASPAS method.

For benefit attributes: 
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For non-benefit attributes: 
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Step 2) To compute WASPAS-RTB weighted normalized decision matrix, these two ac-
tions must be performed. The first one is assigned to the summarization process of WASPAS: 

 , ( *100) *ij sum ij jx n w= ,  j = 1, …, n; i = 1, …, m  (10)

and for multiplication part; 
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Given that the normalized values (nij) are between zero and one [0, 1], multiplication 
to 100 (Eq. (11)) helps to avoid obtaining less amount for the weighted normalized values 
( ,ij multx ). Furthermore, ,ij multx  would be 1 (neutral) when nij is 0. Multiplication to 100 is 
also added to Eq. (10) to provide a final result between 0 and 100 in step 3.

Step 3) A joint equation of the weighted aggregation of additive and multiplicative meth-
ods to determine the total relative importance of the alternatives was defined as follows:

 
, ,

1 1
(1 )

nn

i ij sum ij mult
j j

Q x xλ

= =
= λ + −λ∑ ∏  ,  j = 1, …, n; i = 1, …, m.  (12)

Finally, the candidate alternatives can be ranked based on the Q-values, i.e. the best alter-
native would be the one having the highest Q-value. When the value of l is 0, the WASPAS 
method coincides with WPM, while for l = 1, WASPAS corresponds to WSM.

3. Results

3.1. Analysis of simulation experimental results  
for the promising Point Target-Based criteria

Measure of performance, the angle between original data and the normalized one were ana-
lyzed using Design Expert software version 7. Table 3 shows the result of analysis of variance 
(ANOVA), so that the Model F-value of 67.97 implies that the model is significant. There 
is only a 0.01% chance that a “Model F-Value” this large could occur due to other reasons. 

Table 3. ANOVA results for angle between original data and the normalized values

Source Sum of Squares Df Mean Square F Value p-value (Prob > F)

Model 131198.6 25 5247.946 67.96762 <0.0001
A-Location of target value 39608.64 2 19804.32 256.4913 <0.0001
B-Variability 744.7832 1 744.7832 9.645896 0.0021
C-Number of alternatives 1318.269 1 1318.269 17.07327 <0.0001
D-Normalization method 44383.59 2 22191.8 287.4122 <0.0001
AB 16351.76 2 8175.881 105.8881 <0.0001
AC 127.0686 2 63.53428 0.82285 0.4401
AD 5713.156 4 1428.289 18.49817 <0.0001
BC 6.708377 1 6.708377 0.086882 0.7684
BD 19760.99 2 9880.494 127.9651 <0.0001
CD 850.8209 2 425.4104 5.50961 0.0044
ABC 512.8463 2 256.4231 3.321008 0.0373
ABD 1820.012 4 455.0029 5.89287 0.0001
Residual 25788.96 334 77.21244
Lack of Fit 1212.984 10 121.2984 1.59915 0.1055
Pure Error 24575.97 324 75.85176
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Values of “Prob > F” less than 0.05 indicates that the model terms are significant.  
Therefore, this table is quite revealing in several ways. In this case, A, B, C, D, AB, AD, BD, 
CD, ABC, ABD are significant model terms.

Values greater than 0.1 indicate that the model terms are not significant.  
Therefore, ACD, BCD, and ABCD were removed. BC was kept to support hierarchy (ABC).

The “Lack of Fit F-value” of 1.60 implies that the Lack of Fit is not significant relative to 
the pure error. There is a 10.55% chance that a “Lack of Fit F-value” this large could occur 
due to noise. Non-significant lack of fit is good; since we want the model to fit. As shown 
in Figure 7, when the target value is in the middle of data, the methods present more rea-
sonable outputs (the less is the angle, the better is). However, when there is high variability 
in the data, the quality of normalization methods is the same for target values between and 
bigger than data.

Figure 7. Interaction effects of variability and location of target values on angle between vectors

Figure 8. Interaction effects of normalization methods and location of target values  
on angle between vectors
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Figure 8 shows that Norm 1 is more sensitive to location of target value comparing to the 
other normalization techniques. 

Figure 9 shows that although in Norm 3 the angle between original data and normalized 
values is less than other methods, the error increases by increasing the variability of data. 

Figure 10 reveals, that Norm 3 is not too much sensitive to the number of criteria com-
paring to other normalization methods.

It seems that normalized values by Norm 3 have less sensitivity to the location of target 
value, variability of data, and number of alternatives. It can be concluded that Norm 3 has 
the best structure followed by Norm 2 and Norm1 due to less sensitivity to the simulation 
parameters (source of noise variations). 

Figure 9. Interaction effects of variability and normalization methods on angle between vectors

Figure 10. Interaction effects of normalization methods and number of alternatives  
on angle between vectors
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3.2. Application of WASPAS-RTB method for protective coating material selection

This case study deals with the selection of coating material on a substrate made of aluminium 
alloy (Al-7075, 175 HV), in order to protect the substrate from the abrasive wear occurred 
during the sliding movement against a high-strength cast iron (290 HV) counterpart. Fig-
ure 11 shows the components schematically in which the aluminium component with its 
coating moves while the cast iron is stationary. A critical issue is the surface integrity of 
aluminium substrate with the coating material, while the mating part (i.e. cast iron) under-
goes a limited wear. Furthermore, the strength of Al-7075 matrix is an important mechani-
cal characteristic to be preserved and strengthened. Thus, in this application, the choice of 
material requires constraining by compatibility with other materials. The ceramic particles 
were used to reinforce the Al-7075 matrix using Cold Spray process (Cavallini et al. 2013).

Appropriate filler hardness can improve the Al-7075substrate resistance to abrasive wear 
and reduce damaging actions to the integrity of the counterpart made of cast iron. Young’s 
modulus of the filler is influential in load distribution between the components and it should 
be ascertained that the contribution of filler in the Young’s modulus of the cermet (ECM) is 
such that the ECM is close to that of substrate (ES). The Young’s modulus of cermet can be 
gained by the Eq. (13).

 CM m m f fE  E v E v∝ + . (13)

Where Em signifies the Young’s modulus of the Al-7075 matrix, which in this case study is 
the same as the substrate, ES, and Ef is the Young’s modulus of the filler. The vm and vf stand 
for the volume fraction of the matrix and the volume fraction of filler, respectively. Another 
important criterion is the coefficient of thermal expansion (CTE) of filler, which should not 
cause differential thermal expansion between matrix and reinforcement, and between the 
cermet and substrate. Thermal conductivity is also considered to protect the Al-7075 sub-
strate from heat. Moreover, the filler should have adequate wettability by the Al-7075 matrix 
to provide cohesive links with the matrix. In addition to these cases, density, workability and 
cost are also considered to select the best material. By applying this case study, the capability 
of WASPAS-RTB approach to explicitly address the target criteria is demonstrated. Here, ap-
proximately 40% of the attributes are point and range target-based, and the rest are cost and 
benefit criteria. This implies the importance of this class of criteria in the MADM algorithm. 

Figure 11. Schematic of the wear couple: protective coating material selection
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A set of candidate materials that can be used to make filler to reinforce the Al-7075 matrix 
is listed in Table 4, which include Al2O3 (94% purity), TiN (99% purity), TiC (99% purity), 
TiO2 (99% purity), SiC (99% purity), SiN (99% purity), WC (99% purity), CrN (99% purity), 
AlN (99% purity). In addition to the list of the materials, Table 4 shows the importance of 
selection criteria (weights) and the technical data regarding the candidate materials for the 
required criteria.

Table 5 shows the normalized decision-making matrix. The normalized values were ob-
tained from Eq. (7). Tables 6 and 7 present the weighted normalized decision matrix that 
was respectively calculated according to Eqs (10 and 11). Table 8 presents three criteria of 
optimality, which are calculated according to Eq. (12), where l = 0.5. There is a good agree-
ment between (1)

iQ  and (2)
iQ , and this can contribute to verifying the extended WASPAS-

RTB method. 
As shown in Table 8, TiO2 is the best option based on WASPAS-RTB method. There are 

considerable similarities between the obtained results and the ranking is calculated according 
to C-VIKOR method (Cavallini et al. 2013). However, the first choice in these two methods 
is different. In addition to the dissimilarity of the used algorithms, there is a slight change in 
the input data. In this study, criterion of filler Young’s modulus, extended from point target 
to range target to is used to demonstrate the capabilities of the proposed method. C-VIKOR 
recommended materials to designers as Al2O3> TiO2> SiC > SiN > CrN> WC > TiN> TiC > 
AlN. Target value for the criterion of filler Young’s modulus was 300 GPa, while range target 
value was considered from 200 to 300 GPa. 

Table 4. Material selection for protective coating on an aluminium alloy substrate

Filler 
hardness 

(HV)

Filler 
Young’s

Modulus 
(GPa)

Filler 
CTE

(10–6/°C)

Filler 
density
(gr/cc)

Filler 
thermal

conductivity 
(W/m K)

Wetta-
bility
(null)

Work-
ability
[null]

Cost
(€/kg)

Objective 
type Point target Range 

target
Point  
target Min Max Max Max Min

Universe 
of data
[A, B]

[1100, 2900] [300, 720] [2.3, 23] [3.1, 15.72] [11.7, 160] [2, 5] [1, 3] [8.5, 100]

Target
[Tlj, Tuj] [1100, 1100] [200, 300] [23, 23] [3.1, 3.1] [160, 160] [5, 5] [3, 3] [8.5, 8.5]

Al2O3 1175 300 8.1 3.69 18 5 3 8.5
TiN 2500 600 9.4 5.22 19.25 4 1 38
TiC 2900 439 8.3 4.94 20 2 1 40
TiO2 1100 230 9 4.25 11.7 4 3 22
SiC 2800 410 4 3.1 120 2 1 13
SiN 1580 310 3.3 3.3 30 4 2 33
WC 2300 720 3.8 15.72 84.82 2 1 17
CrN 1100 400 2.3 6 19.2 4 3 100
AlN 1100 330 4.5 3.26 160 4 3 100
Weight 0.184 0.172 0.172 0.043 0.086 0.064 0.086 0.193
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Table 5. Normalized decision-making matrix

Filler 
hardness 

(HV)

Filler 
Young’s

Modulus 
(GPa)

Filler 
CTE

(10–6/°C)

Filler 
density
(gr/cc)

Filler 
thermal
conduc-

tivity 
(W/m K)

Wettability
(null)

Workability
[null]

Cost
(€/kg)

Objective 
type

Point 
target

Range 
target

Point 
target Min Max Max Max Min

Al2O3 9.583 100.000 28.019 95.325 4.248 100.000 100.000 100.000
TiN 2.222 28.571 34.300 83.201 5.091 66.667 0.000 67.760
TiC 0.000 66.905 28.986 85.420 5.597 0.000 0.000 65.574
TiO2 100.000 100.000 32.367 90.887 0.000 66.667 100.000 85.246
SiC 0.556 73.810 8.213 100.000 73.028 0.000 0.000 95.082
SiN 7.333 97.619 4.831 98.415 12.340 66.667 50.000 73.224
WC 3.333 0.000 7.246 0.000 49.305 0.000 0.000 90.710
CrN 100.000 76.190 0.000 77.021 5.057 66.667 100.000 0.000
AlN 100.000 92.857 10.628 98.732 100.000 66.667 100.000 0.000

Table 6. Weighted normalized decision matrix: Summation ( ,ij sumx ) 

Filler 
hardness 

(HV)

Filler 
Young’s

Modulus 
(GPa)

Filler 
CTE

(10–6/°C)

Filler 
density
(gr/cc)

Filler 
thermal
conduc-

tivity 
(W/m K)

Wettability
(null)

Workability
[null]

Cost
(€/kg)

Al2O3 1.763 17.200 4.819 4.099 0.365 6.400 8.600 19.300
TiN 0.409 4.914 5.900 3.578 0.438 4.267 0.000 13.078
TiC 0.000 11.508 4.986 3.673 0.481 0.000 0.000 12.656
TiO2 18.400 17.200 5.567 3.908 0.000 4.267 8.600 16.452
SiC 0.102 12.695 1.413 4.300 6.280 0.000 0.000 18.351
SiN 1.349 16.790 0.831 4.232 1.061 4.267 4.300 14.132
WC 0.613 0.000 1.246 0.000 4.240 0.000 0.000 17.507
CrN 18.400 13.105 0.000 3.312 0.435 4.267 8.600 0.000
AlN 18.400 15.971 1.828 4.245 8.600 4.267 8.600 0.000

As indicated by the ranking order, TiO2 and Al2O3 are the first and second ranked 
materials. This can be mainly due to their hardness, Young’s modulus, coefficient of thermal 
expansion, and wettability as well as workability. The hardness values of these materials are 
much lower than WC, SiC, TiC and TiN. However, high hardness is preferable to avoid wear, 
so that materials with extremely high hardness suffer from brittleness. In addition, their 
wettability is also better than carbide ceramics, which contributes to the articulation and 
reduction of wear. The moduli of these materials are closer to those of substrate rather than 
the other alternatives. This contributes to more uniform stress distribution and load transfer 
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Table 7. Weighted normalized decision matrix: Multiplication ( ,ij multx )

Filler 
hardness 

(HV)

Filler 
Young’s

Modulus 
(GPa)

Filler 
CTE

(10–6/°C)

Filler 
density
(gr/cc)

Filler 
thermal
conduc-

tivity 
(W/m K)

Wettability
(null)

Workability
[null]

Cost
(€/kg)

Al2O3 1.516 2.208 1.774 1.216 1.132 1.343 1.486 2.432
TiN 1.158 1.780 1.837 1.209 1.150 1.308 1.000 2.256
TiC 1.000 2.061 1.784 1.211 1.160 1.000 1.000 2.242
TiO2 2.333 2.208 1.819 1.214 1.000 1.308 1.486 2.358
SiC 0.897 2.096 1.436 1.219 1.446 1.000 1.000 2.409
SiN 1.443 2.199 1.311 1.218 1.241 1.308 1.400 2.290
WC 1.248 1.000 1.406 1.000 1.398 1.000 1.000 2.387
CrN 2.333 2.107 1.000 1.205 1.150 1.308 1.486 1.000
AlN 2.333 2.180 1.502 1.218 1.486 1.308 1.486 1.000

between the components. Meanwhile, the CTEs of both TiO2 and Al2O3 are higher than 
the other materials except for TiN, so that provide smaller difference in thermal expansion 
and reduce the risk of thermal cracks. These properties make them suitable for using as filler 
materials in this application. On the other hand, tungsten carbide as the last ranked material 
is extremely hard and stiff (hardness of 2300 HV and modulus of 720 GPa) with limited 
workability and machinability. Meanwhile, WC has high density and extremely low CTE.

Table 8. Three criteria of optimality

(1)
iQ (2)

iQ iQ Raking

Al2O3 62.547 39.691 51.119 2
TiN 32.582 15.551 24.067 7
TiC 33.303 11.574 22.439 8
TiO2 74.394 52.156 63.275 1
SiC 43.141 11.473 27.307 6
SiN 46.963 26.384 36.673 4
WC 23.607 5.856 14.731 9
CrN 48.118 13.246 30.682 5
AlN 61.912 26.885 44.398 3

4. Discussion 

There is a need to study the strengths and weaknesses of different decision-making methods 
(Zavadskas et al. 2014c). Many decision methods developed for engineering design have 
neglected a number of specific elements that should be taken into account for materials and 
design selection problems.
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4.1. Discussion of effectiveness of the new method

To make dimensionless methods applied and accepted more widely in design decision-mak-
ing problems, from materials to civil engineering, as well as other applications of MADM 
such as medical decision-making problems, extensions to model architectures for problem 
settings are needed. Despite all progress made in the development of different target-based 
dimensionless methods, there is no definite answer to question: which technique is the most 
appropriate one? The sensitivity analysis of promising target-based normalization methods 
was conducted in the presence of finite changes in one or more of the decision matrix param-
eters. Although, it is hardly possible to evaluate the effect of various methods of normaliza-
tion of a decision-making matrix on the obtained numerical results. This research attempted 
to compare the effectiveness of three promising techniques. Monte Carlo simulation method 
was applied for the generation of the attribute values. Simulation parameters were the num-
ber of alternatives, distribution of data, and locations of target criteria. It was shown that 
the dimensionless method with Linear-max-min structure (Norm (3)) is more appropriate 
than “Non-monotonic normalization” and “Comprehensive normalization method” (Norms 
(1), and (2)) due to less sensitivity to the source of noise variations/simulation parameters. 
Although, it has been attempted to generate realistic data, for simulation, based on material 
selection environment, the results on the comparison of target-based normalization methods 
might not be extendable to all data ranges of different problems.

It was revealed that, for the range target-based criteria, the suggested method can over-
come the shortcomings of available techniques. The proposed normalization approach that 
applied for WASPAS method, can provide acceptable results from the view point of symme-
try in the normalized values for the same data, when criteria type is either “cost”, or “benefit”. 
For example, in the criterion of thermal conductivity, and based on the data presented in 
Table 4, Figure 12 demonstrates the symmetry of normalized values using the proposed 
normalization method. It is worth noting that most of dimensionless methods suffer from 
asymmetry issue (Jahan, Edwards 2015).

The ranking orders of alternatives in the proposed WASPAS-RTB method will not be 
affected by adding or removing options, while this issue (Rank Reversal) weakens most 
of MADM methods. Negative values are also converted to positive values using the new 

Figure 12. Symmetry of normalized values by the proposed normalization method:  
Criterion of thermal conductivity considered one time as “cost” type and then as “benefit”

0.0

20.0

40.0

60.0

80.0

100.0

Al2O3TiNTiCTiO2SiCSiNWCCrNAlN

N
or

m
al

iz
ed

 v
al

ue
s

Candidate Materials

Cost

Benefit



1382 A. Jahan. Developing WASPAS-RTB method for range target-based criteria ...

approach. Totally, all expected properties from the viewpoint of normalizing process were 
covered. The generalizability of these results, however, may subject to some limitations. For 
instance, it might not be possible to apply the proposed normalization method to all MADM 
problems and also use the extended approach (WASPAS-RTB) to all decision-making prob-
lems.

4.2. Discussion on material selection for robust design

During the past decades, there was a great focus on product improvement through manu-
facturing methods, while the emphasis of recent efforts has now moved upstream, such as 
refining the materials and design. The importance of Quality Function Deployment (QFD) 
in design process has been emphasized in the literature (Liu 2011), since it can facilitate 
the identification of preliminary target values in both material and design by taking the 
customer’s voice into account. On the other hand, meeting continuous growing of customer 
expectations needs innovative designs at lower prices, and faster response times. Designers 
must be able to either anticipate changes in customer requirements that may occur during the 
product development process or provide additional design flexibility. It seems that the latter 
is more practical. Although, recently, the role of QFD in material selection was described 
(Jahan et al. 2016; Prasad, Chakraborty 2013), it has not been well tied with practical mate-
rial selection in this regard.

Material selection is usually conducted in the early stages of design. Decisions made 
during this phase are often difficult due to the uncertainty caused by the lack of objective 
data. However, material selection criteria should be as specific as the design definition will 
allow. Early in design, the criteria might be “must be transparent”, “should be easily manufac-
tured”, “must be tough,” or “must have low specific modulus”. During configuration design, 
the criteria might be “toughness exceeding 60 MPa”, “electrical conductivity between 0.1 and 
0.4 mΩ”. Designers, may have some knowledge of the range of these design requirements, 
but may not be clear as to the exact targets that should be met. Range target helps to readily 
adaptable, and changing customer requirements, which are also particularly important for 
robust design. According to (Arvidsson, Gremyr 2008), robust design methodology means 
“systematic efforts to achieve insensitivity to noise factors [so that] these efforts are based 
on an awareness of variation and are applicable in all stages of product design”. Although 
many useful statistical tools available for creating robust designs, there is limited attention 
and even no official introduced technique to consider the concepts of robust design in ma-
terials selection stage. The literature emphasizing the more mathematical modelling and 
predictive aspects of subject, while the author emphasizes how the application of extended 
decision-making tool provides an opportunity to have flexible design. The connection of 
material selection with the quality engineering concepts, robust design in particular, on the 
head of MCDM has not well discovered yet, and more work remains to make an integrated 
fully robust design methodology.
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Conclusions

Different MADM approaches are the results of diverse aggregation, weighing and normal-
ization methods. Normalization is a foundation of a rational decision in engineering design 
problems, and it must cover target-based criteria from point to range, in addition to cost and 
benefit criteria that are used in other selection problems. During the early stages of product 
design, from conceptual design selection to choice of materials, when little is known con-
cerning the design requirements, it is desirable to allow the target design parameters/mate-
rial properties vary within a certain range rather than setting point targets. In this manner, 
designs are more flexible in the later stages and can be readily adapted to changing design 
requirements allowing companies to respond more quickly and at lower costs than their com-
petitors. This verifies the need to update well-accepted MADM methods in this regard. In 
this paper, at the first stage, the best formula structure of normalization for target-based cri-
teria was selected from promising methods through numerical simulation. Then, the selected 
one was extended to overcome the shortcomings of available methods. The developed range 
target-based normalization method was applied in WASPAS technique, and the method was 
adjusted accordingly. The capability of WASPAS-RTB method in dealing with all types of 
criteria was demonstrated using a material selection case study. However, the promises of 
the proposed normalization methods as well as the developed WASPAS technique will be 
fulfilled only when practical research progress is achieved by implementing the best deci-
sions. Further studies regarding the role of promising normalization methods on increasing 
quality of MADM methods would be interesting.
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