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Introduction and literature review

�e seismic performance of school buildings is crucially important in disaster response, as
they are expected to serve as temporary shelters a�er major earthquakes. However, such
buildings’ seismic resistance is o�en inadequate, due to poor seismic design and/or ongoing
processes of aging and deterioration. �erefore, a rapid and reliable methodology for holisti-
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cally assessing the macroscale vulnerability buildings confronting seismic hazards has been of 
special importance to those tasked with seismic-disaster mitigation (N. Alam, M. S. Alam, & 
Tesfamariam, 2012). For example, Taiwan’s National Center of Research on Earthquake Engi-
neering (NCREE) has developed a framework for assessing the seismic performance of exist-
ing school buildings (Chen, Cheng, & Wu, 2012a). The methodology proposed by NCREE 
comprises three steps: (1) brief investigation, (2) preliminary assessment, and (3) detailed 
assessment (Kao, Chen, & Chou, 2011). The first step involves a field survey based merely 
on buildings’ appearance, to identify structures whose seismic performance is potentially in-
adequate. Then, in the second step, professionals assess those buildings identified as possibly 
inadequate in the first step. Finally, those buildings that are still deemed inadequate after the 
completion of the second step undergo a detailed assessment to determine the amount and 
type of work that will be required to retrofit them to a particular required level of seismic re-
sistance. The third step also includes a determination of buildings’ seismic capability, includ-
ing yielding acceleration and ultimate acceleration, using computational structural modeling, 
e.g., pushover analysis (Cheng, Wu, & Syu, 2014). Such modeling can serve as a practical 
means of evaluating the inelastic displacement response of structures in earthquakes, and 
thus has become a powerful tool for accurately assessing buildings’ seismic performance. 
However, its computations require detailed information about the buildings being modeled, 
including their material strength, the original design of any concrete reinforcement, and 
their deterioration status, all of which require significant time, financial resources, and expert 
knowledge to determine accurately. As such, public bodies’ implementation of such detailed 
assessments of large numbers of buildings has been rare. Likewise, due to limited financial 
resources, buildings that are found to have inadequate seismic resistance are often retrofit-
ted only to the minimum requirements of current building codes. From the point of view of 
life-cycle risk assessment, however, the optimal retrofitting level can and should be arrived 
at not through present-day cost considerations alone, but by taking into account the seismic 
hazards a building is likely to confront throughout its existence.

Machine learning (ML) techniques are powerful tools for solving immense multi-dimen-
sional problems, insofar as they (1) require no assumptions to be made about data distribu-
tions and (2) have superior data-mining abilities when tackling highly multi-dimensional 
and large-scale data (Nakhaeizadeh & Taylor, 1998). As such, ML has been widely and ef-
fectively used to solve prioritization or selection problems (Khandekar, Antuchevičienė, & 
Chakraborty, 2015), economy prediction (Gupta, Ye, & Sako, 2013) and optimization prob-
lem (Koo, Hong, & Kim, 2015; Tsehayae & Fayek, 2016), by taking into account thousands 
to millions of multi-dimensional datasets. As one powerful inference model evolved from 
statistical-learning theory, the support vector machine (SVM) has been used to solve seismic-
risk problems by mapping the underlying relationships among buildings’ vulnerability levels 
and a wide range of their other attributes (Guéguen, Michel, & LeCorre, 2007; Kao, et al. 
2011; Chen, Kao, & Tsai, 2012b; Riedel et al., 2015; Guettiche, Guéguen, & Mimoune, 2017). 
The results have demonstrated SVM’s powerful ability to predict building vulnerability in the 
absence of the detailed data needed for computational modeling. Such SVM-based studies, 
however, have hitherto only addressed seismic performance under particular earthquake 
scenarios, and failed to take into account the future seismic risks that buildings will face over 
their entire life-cycles. Additionally, few if any studies have attempted to create frameworks 
for determining optimal retrofitting levels for existing school buildings based on consider-
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ation of seismic risks during their entire service lives. Accordingly, the present study proposes 
a novel evolutionary support vector machine (ESVM), in which SVM is coupled with a fast 
messy genetic algorithm (FMGA). �e proposed ESVM model can e¥ciently search for the 
most appropriate model parameters with the help of FMGA, and then use SVM to map the 
relationship between inputs (basic building characteristics) and outputs (the costs of retro-
�tting to particular levels of seismic performance). Based on the proposed ESVM model, 
this study involved the development of two inference models: the �rst for judging whether 
or not a building needs to be retro�tted, and the second, for estimating the retro�t cost of 
given buildings to particular seismic-resistance levels. Both inference models utilize the same 
input variables, i.e., 18 building characteristics that were selected based on expert opinion.

To take into account the seismic risk a building may be exposed to during its entire 
service life, the present research also proposes a life-cycle seismic risk framework to help 
determine the economically optimal level of retro�t to school buildings. To validate it, case 
studies of a school building in Taiwan were conducted using the two proposed models and 
framework. It is hoped that this work will serve as a basis for further research on the assess-
ment of school buildings’ seismic performance and life-cycle seismic risk, with the wider aim 
of arriving at economically optimal building-retro�t policies.

1. Methodology

1.1. Building seismic-damage index

An e�ective seismic design is expected to protect human life by preventing a building from 
collapsing in a severe earthquake, while allowing limit structural and non-structural elements 
damage under low-to-moderate earthquakes. To aid the design process, several seismic-dam-
age indices have been proposed (Ghosh, Datta, & Katakdhond, 2011). Generally, damage 
indices are dimensionless parameters ranging between 0 (for an undamaged structure) to 
1 (for a collapsed structure). For instance, Park and Ang (1985) proposed an index (Dp&A) 
that expresses damage to reinforced-concrete structures as a linear function of maximum 
deformation and the e�ect of repeated cyclic loading. �is index combines ductility and 
cumulative hysteretic energy demand can be obtained by Eq. (1): 
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where du  – ultimate deformation (capacity) under monotonic static loading; dM  – maxi-
mum deformation (demand) under dynamic loading; dE – incremental hysteretic energy 
(demand); Fy – yield strength; and β – a non-negative non-dimensional parameter. �e as-
sociated damage levels are illustrated in Table 1. �e present study adopts the capacity-
spectrum method (CSM) proposed by the Applied Technology Council (ATC) (ATC, 1996) 
to identify ultimate deformation capacity (du), yielding the strength (Fy) of a single degree of 
freedom (SDOF) system for a building. It is worth noting that the key parameter in a CSM 
is the factor used to adjust equivalent hysteretic damping by measuring of how much the 
actual hysteretic behavior of the building di�ers from the theoretical elastic-plastic behavior 
(Cardone, 2007). �e value of this factor was assigned by 1/3 by assuming poor hysteretic 
behaviors of the school buildings in the present study. 
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Table 1. Seismic-damage index (source: Chiu & Wang, 2012)

Damage index Damage state Description

0–0.2 No Slight cracks in non-structural components
0.2–0.4 Slight Slight cracks in structural components 

0.4–0.6 Moderate
Flexure shear cracks in the top or bottom ends of columns; 
spalling of concrete cover; shear cracks in the middle part of 
columns connected with windowsills

0.6–0.9 Severe Crushing of concrete in the core of columns; 
extensive loosing of stirrups; buckling of main bars

0.9 Collapse Extensive crushing of the core concrete in columns without 
su¥cient loading capacity

1.2. Modeling of earthquake events

It is assumed in the present study that the frequency of earthquakes f(x) follows a Poisson 
process, as shown in Eq. (2),
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where x is the number of occurrences of earthquakes within a speci�ed period (TH), and v 
is the average number of earthquakes that occur in TH.

In a Poisson process, the time interval between two occurrences follows an exponential 
distribution, and thus the time of occurrence of the tM+1 earthquake can be expressed using 
Eq. (3):
 tM+1 = tM + Δt, (3)

where tM is the time at which the M earthquake occurs, and Δt is the time interval between 
two earthquakes.

Now, assuming that the average number of earthquakes within a speci�ed period (TH) 
is known, the frequency of the earthquakes of a given magnitude within that period can be 
expressed using Eq. (4):
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For the purposes hereof, TH is the number of years in a building’s service lifetime, and 
f(Δt) is calculated by the design earthquake return period.

1.3. Repair cost of seismic damage to buildings

�e repair cost associated with seismic damage to a building has been found to correlate 
strongly with its cycle ductility ratio (Takahashi, Nakano, & Shiohara, 2006). Assuming that 
seismic-repair costs generally correspond to the maximum displacement response of rein-
forced-concrete buildings reaching a speci�c threshold, known as cracking displacement, 
(Chiu & Wang, 2012) proposed a repair-estimation index (IRep) that uses a convex curve to 
normalize the cost of replacing damaged buildings or restoring them to their original condi-
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tions, as shown in Eq. (5). �us, the corresponding repair cost CRep to a given IRep can be 
obtained by the multiplication of IRep and the initial construction cost of buildings (Cc), as 
shown in Eq. (6). 

 

3
&1

1 ,
1

P A
Rep

D
I

 -  = - - g   

 (5)

where g = dc / du, and dc is cracking displacement.

 CRep = IRep × Cc . (6)

1.4. Evolutionary support vector machine inference model (ESIM)

SVM and FMGA have recently emerged as powerful ML techniques. SVMs were first pro-
posed by Vapnik (Drucker, Burges, Kaufman, Smola, & Vapnik, 1996) and have recently 
been applied to a range of engineering problems including pattern recognition, bioinfor-
matics, and text categorization. A SVM arranges data into di�erent classes by determining 
a set of support vectors, each of which is a member of a set of training inputs that outline 
a hyperplane in a feature space. In a SVM model, one must choose a kernel function, set 
kernel parameters, and determine a penalty parameter. Penalty parameters must be obtained 
simultaneously based on users’ proposed optimal kernel parameters. �erefore, proper set-
tings of kernel parameters, such as the gamma of the radial basis function (RBF) kernel, can 
improve the prediction accuracy of the model.

Traditionally, a grid algorithm is used to determine the best penalty parameter and gam-
ma of an RBF kernel function. However, such algorithms are vulnerable to the local-optimum 
problem (Huang & Wang, 2006). For this reason, Goldberg, Deb, & Korb (1991) developed 
the FMGA technique, by utilizing fixed-length strings to represent possible solutions, and 
applying messy chromosomes to form strings of various lengths. FMGA’s ability to identify 
solutions of optimal e¥ciency to large-scale permutation problems gives it the potential to 
generate SVM-model penalty and gamma parameters simultaneously. Based on Goldberg et 
al.’s (1991) model, (Cheng & Wu, 2009) developed an ESVM inference model (ESIM) to ar-
rive at the fittest penalty and gamma parameters with minimal prediction error. �e ESIM, 
which the present study adopts, provide a generic mechanism that uses a kernel function to 
fit the hyperplane surface to training data, and allows users to select SVM kernel functions 
(e.g., linear or polynomial ones) during the training process, which identifies support vectors 
along the function surface. As shown in Figure 1, in the ESIM model, the SVM is employed 
primarily to address learning and curve fitting, while FMGA addresses optimization issues.

K-fold cross-validation was used to ensure the reliability of the ESIM model adopted 
for the present research. �is validation approach can discover whether a model generates 
adequate output only during the training process, and then fail to make reliable predictions 
based on new input data. It requires that K models be established for K tests, and model er-
ror is represented as the mean error of K testing subsets, as calculated by Eqs. (7) and (8). 
Generally, a model whose mean error is less than 10% is considered excellent; between 10% 
and 20%, �ne; and less than 50%, acceptable. Accordingly, the accuracy rate (RA) of a model 
can be established using Eq. (9).
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root mean squared error (RMSE) is used in the proposed study to measure the performance 
of model prediction, by calculating the di�erence between inferred value ( ŷ ) and actual 
values (y) for a given number of samples (ne).

1.5. Development of inference framework for life-cycle cost  
of school buildings under seismic risk

As shown in Figure 2, the present study’s proposed framework for predicting school build-
ings’ life-cycle seismic-repair cost comprises �ve steps: (1) de�ning critical factors in the 
cost of school-building retro�tting; (2) establishing a database of retro�tted school building 
cases and their associated building characteristics; (3) developing an ESIM model for judg-
ing whether a given school building requires retro�tting; (4) developing an ESIM model for 
estimating the cost of retro�tting that building to particular levels; and (5) determining the 
optimal retro�tting level from among all possible such levels, based on considerations of both 
life-cycle cost and seismic risk.

Default
,C gamma

SVM training
model

Average accuracy
( )fitness function

Termination
criteria

Optimized
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Training data set
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search
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Figure 1. Evolutionary support vector machine inference model (source: Cheng & Wu, 2009)
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Firstly, critical building characteristics need to be determined for use as input variables 
in the proposed ESIM models. �e 27 basic items of building information that can be ob-
tained from a �eld survey, as set forth by NCREE (Chung, Hwang, & Wu, 2012), include 
the sectional areas of columns, beams and shear walls, year built, and structural de�ciencies. 
�ese 27 characteristics served as candidates for the input parameters of the proposed �rst 
ESIM model. Accordingly, the present study conducted a survey to determine the relative 
importance of each such characteristic to seismic performance, based on experts’ professional 
judgements. �e first section of the proposed expert questionnaire listed the 27 factors pro-
posed by NCREE and asked the respondents to rate the importance of each to the seismic 
performance of buildings using a 5-point Likert scale (1 = least important and 5 = most 
important). As shown in Table 2, a total of 31 questionnaires were disseminated to engineers 
and other relevant professionals by means of email, phone calls and personal interviews. 
Table 3 shows, in descending order, the 18 factors that received average scores greater than 
three in the survey. In order to ensure the consistency of input units for the proposed ESIM 
models, the 18 factors (X) were then normalized to between 0 and 1 using Eq. (10):
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where Xn is the normalized value, and Xmax and Xmin are the maximum and minimum val-
ues, respectively. A database containing the 18 normalized factors (Xn) for a total of 3,100 
school buildings in Taiwan was then established.

In the proposed �rst ESIM model, developed to judge if a given school building needs to 
be retro�tted based on the above-mentioned 18 factors, the present study set 1 as the output 
in cases where the building needs to be retro�tted, and –1 as the output in cases where no 
retro�tting is needed. Once a given building’s need for retro�tting is identi�ed, the proposed 
second ESIM model estimates the cost of retro�tting it to a given level of seismic resistance 

Figure 2. Inference framework for life-cycle cost of school buildings under seismic risk
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for the cost of retrofit
for school buildings
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(CR). The life-cycle cost (CL) of a building that is retrofitted to a certain level of design peak 
ground acceleration (SaD) is defined as the sum of the upfront cost of retrofit (CR) and the 
repair cost (CRep) obtained from Eq. (6). Finally, in order to determine the minimum life-
cycle cost of a building under a given level of seismic risk, the present study investigated the 
minimum value of all life-cycle costs associated with a range of SaD from 0.28 to 0.40, in 
increments of 0.01: 0.28 of SaD is determined as the minimum design peak ground accelera-
tion for a 475-return-period earthquake; 0.40 represents a 2500-return-period earthquake by 
the current Taiwan Seismic Design Codes for Buildings (Chai & Teng, 2012).

Table 2. Characteristics of respondents to the expert survey

Organization type Number of 
respondents Education level Average 

experience

Universities 5 B.S. 3; PhD 2

7.6 years
Consulting firms 10 B.S. 4; M.S. 6
Governmental bodies 9 B.S 1; M.S. 7; PhD 1
NCREE 4 M.S. 2; PhD 2
Architectural firms 3 M.S. 3

Table 3. Building-characteristic input factors (in descending order by seismic relevance)

1. Design peak ground acceleration (SaD) 10. Total sectional area of brick  
      walls on first floor

2. Number of stories above-ground of building 11. Effective strength of walls
3. Number of stories underground of building 12. Seismic performance index
4. Area of second floor 13. Vertical irregularity
5. Total number of floors 14. Soft story
6. Sectional area of exterior columns on first floor 15. Deterioration
7. Sectional area of interior columns on first floor 16. Plan irregularity
8. Effective strength of columns 17. Short column
9. Total sectional area of reinforced-concrete walls on first floor 18. Year built

2. Model validation and application

2.1. Model for judging whether or not a building needs to be retrofitted

The 3.100 school buildings in the NCREE database were used for testing and training the 
proposed models. The 18 building characteristics affecting the need for retrofit, as set forth 
in Table 3, served as the input variables of the model. All output variables were either 1 
or –1, representing “yes” and “no” to retrofit, respectively. The 3.100 buildings were randomly 
grouped into 10 sets of 310 buildings each. One of these 10 sets was then sequentially selected 
to serve as the model’s testing case, and the remaining nine sets were used as training cases. 
Such will guarantee that every subset will serve as a testing case once, nine times as a training 
case. The accuracy rate (RA) of a model – defined as the difference between its target output 
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values and the inferred output values of the training and testing cases – can be obtained us-
ing Eq. (8). As shown in Table 4, the model achieved average accuracy rates for training and 
testing of 93.57% and 92.9%, respectively, clearly indicating its validity. The kernel (g) and 
penalty (C) parameters for each group of testing and training cases are shown in Table 5.

2.2. Model for estimating the cost of retrofitting buildings  
to a given level of seismic performance

Of the 3.100 school buildings in the sample of the proposed model, 543 had detailed retrofit 
costs included in the NCREE database, and these buildings were therefore used as the pro-
posed model-testing and model-training cases. The 18 factors in Table 3 served as the input 
variables of the model, and the output variables were the costs of retrofitting the buildings 
to given levels of seismic performance. The 543 buildings were randomly divided into three 
groups of 181. One of the three groups was then selected sequentially to serve as the model’s 
testing cases, and the remaining two groups became the training cases. To validate the pro-
posed model, RMSE of the difference between target output values and inferred output values 
for the training and testing cases were both calculated using Eq. (8). As shown in Table 6, 
the model was found to be valid: with RMSE averages for training and testing of 0.105782 
and 0.102538, respectively. The kernel (g) and penalty (C) parameters for each group are 
shown in Table 7.

Table 4. Accuracy rates (RA) for testing and train-
ing cases (%)

Group Training Testing

0 93.06 93.87
1 93.31 94.52
2 94.21 92.58
3 92.78 95.81
4 93.24 90.97
5 94.10 92.26
6 93.42 92.58
7 93.78 92.90
8 94.21 91.29
9 93.60 92.26

Average 93.57 92.90

Table 5. Kernel (g) and penalty (C) parameters

Group g C

0 0.1842 20

1 0.8417 10

2 0.9469 30

3 0.1579 45

4 0.1842 145

5 0.9732 35

6 0.9091 6

7 0.4849 66

8 0.5152 156

9 0.8821 10

Table 7. Kernel (g) and penalty (C) parameters

Group g C

1 0.8417 10
2 0.9469 30
3 0.1579 45

Table 6. RMSE for testing and training sets (%)

Group Training Testing

1 0.127321 0.122545
2 0.073151 0.072235
3 0.116875 0.112844

Average 0.105782 0.102538
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2.3. Inference framework for life-cycle cost  
of school buildings under seismic risk

One school building was randomly selected from the NCREE database for a case study aimed 
at determining its optimal seismic retrofit level using the proposed framework. Following 
the procedure of the proposed framework (Fig. 2), the repair cost (CRep) for seismic damage 
within an SaD range of 0.28 to 0.40 (in increments of 0.01) were calculated using Eq. (6). 
After the building was identified as needing retrofitting via the first proposed model, the cost 
of retrofitting it (CR) to a given level (SaD) was estimated using the second proposed model. 
The life-cycle cost (CL) of a building that is retrofitted to SaD can be obtained by summing 
the upfront cost of retrofit (CR) and the repair cost (CRep). As shown in Table 8, the life-
cycle cost of the case building, if retrofitted to the minimum seismic resistance required by 
current building codes (SaD = 0.28), is NT$6,839,118. However, its optimal life-cycle cost 
(NT$6,512,147) was attained when SaD  = 0.33. This result indicates that a higher cost of 
retrofit (CR) aimed at achieving a higher level of seismic performance may be more than 
offset by lower repair costs (CRep), if seismic risk to the building during its entire service life 
is taken into consideration.

                Table 8. Life-cycle cost of a retrofitted school building under seismic risk (NTD)

SaD CRep CR CL

0.28 1,479,398 5,359,720 6,839,118
0.29 1,220,241 5,477,785 6,698,026
0.30 1,005,270 5,596,169 6,601,440
0.31 827,350 5,714,853 6,542,203
0.32 680,366 5,833,813 6,514,178
0.33 559,120 5,953,027 6,512,147
0.34 459,228 6,072,475 6,531,703
0.35 377,013 6,192,134 6,569,147
0.36 309,402 6,311,982 6,621,384
0.37 253,839 6,431,997 6,685,836
0.38 208,203 6,552,158 6,760,361
0.39 170,736 6,672,442 6,843,178
0.40 139,988 6,792,827 6,932,815

Conclusions

School buildings are expected to serve as public shelters after major earthquakes. Unfortu-
nately, like all other buildings, they continuously deteriorate as they age, and this negatively 
affects their seismic resistance. Therefore, assessment and enhancement of the seismic perfor-
mance of existing school buildings has been of special importance in seismic-disaster plan-
ning. Existing approaches to the assessment of the seismic performance of buildings, such as 
pushover analysis, are expensive and time-consuming, and tend to ignore the seismic risks a 
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building may confront over its entire service life. Utilizing a support vector machine coupled 
with a fast messy genetic algorithm, this study developed two inference models: the �rst 
model to judge whether or not a building needs to be retro�tted, and the second, to estimate 
the cost of retro�tted it to speci�ed levels. Both models used the same set of input variables, 
i.e., 18 building characteristics selected based on a survey of experts. Additionally, by taking 
into account the seismic risk during a building’s entire life, a life-cycle seismic risk framework 
was proposed to help determine the economically optimal level of retro�t to school buildings.

�e �rst proposed model was applied to a sample of 3.100 school buildings that were 
randomly grouped into 10 sets, of which nine were sequentially chosen as model training 
cases and one as the testing case. �e 18 building characteristics pertaining to seismic per-
formance, selected based on a questionnaire survey of 31 engineers and other professionals, 
served as input variables, while the output variable was whether or not a given building 
needed to be retro�tted. �e �rst model was valid, with average accuracy rates of 93.57% 
and 92.9% for the training and testing cases, respectively. �e second proposed model was 
applied to a sample of 543 school buildings randomly grouped into three sets, of which two 
were sequentially chosen as model-training cases and one as the testing case. �e same 18 
selected building characteristics again served as input variables, and retro�t cost as the out-
put variable. �e second model was also valid, with average RMSE values for the training 
and testing cases being 0.105782 and 0.102538, respectively. Finally, a school building was 
randomly selected from the NCREE database to serve as a case study for the determination 
of its optimal seismic-retro�tting level/cost using the proposed framework. �e results show 
that the minimum requirements of the current building code in Taiwan were not optimal in 
terms of life-cycle cost. Instead, this building’s optimal life-cycle cost was found to occur if 
it was retro�tted to a somewhat higher level of seismic performance (SaD = 0.33 rather than 
0.28). In other words, the higher upfront cost of doing more than the minimum was more 
than o�set by lower repair costs in the long run.

�e proposed models and framework appear to be a powerful tool for e�ectively and 
e¥ciently determining optimal building-retro�t levels. Despite this advantage, the proposed 
methodology can be improved in the future study by taking into account a repair loss thresh-
old. For better and practical estimation of repair cost, a repair loss threshold should be 
incorporated into a seismic loss model, in order to recognize that a threshold beyond which 
replacing the building is more convenient than repairing always exist for stakeholders like 
building owners or relevant public agencies (Cardone & Perrone, 2017; Cardone, Sullivan, 
Gesualdi, & Perrone, 2017). It is hoped that this research will serve as a basis for further stud-
ies of the assessment of seismic performance and life-cycle seismic risk to school buildings, 
with the wider aim of arriving at an economically optimal building-retro�t policy.
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