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1. Introduction

Credit risk assessment has become a prominent topic for both academic researchers and
business practitioners (Yu et al.,, 2022). The main aim of credit risk evaluation is to predict
whether an applicant will default in the future. Misclassifying bad credit as good credit is
particularly problematic, as it can lead to significant economic losses for banks and other
financial institutions. Therefore, developing an effective credit risk assessment model is es-
sential to minimize potential losses. Over recent decades, various credit classification models
have been employed, which is categorized into traditional methods and artificial intelligence
(Al) methods.

Traditional methods, such as k-nearest neighbor (k-NN), linear discriminant analysis (LDA)
(Huang et al., 2022), and decision trees (DT), have been widely used in credit risk assessment
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by financial institutions. However, these methods rely on certain assumptions about feature
variables, which can hinder improvements in model accuracy. Consequently, Al-based models,
including support vector machines (SVM) (Maldonado et al., 2017), artificial neural networks
(ANN) (Costea et al., 2017), genetic algorithms (GA) (Norat et al.,, 2023), clustering learning
(Baser et al., 2023), and deep learning (Gunnarsson et al., 2021), have been introduced. Com-
pared to traditional methods, Al techniques effectively handle large-scale, nonlinear prob-
lems. Beyond individual models, ensemble and hybrid models, which offer higher accuracy
than individual models, are utilized in credit risk assessment (Belas et al., 2018; Gongalves
et al,, 2016). These models combine the strengths of various classifiers to enhance perfor-
mance. Typical ensemble learning techniques such as AdaBoost (Sankhwar et al., 2020), XG-
Boost (Yun et al., 2021), Bagging (Niu et al., 2020), and Random Forest (RF) (Rao et al., 2020)
are widely applied in many different areas.

The studies indicated that no single classification model can consistently perform well
across all datasets, primarily due to the inherent traits of the data. Real-world credit datasets
exhibit traits such as data sparsity, class imbalance, data scarcity, and high dimensionality
(Zhang & Yu, 2024). High dimensionality in credit datasets often results in increasing compu-
tational complexity and can exacerbate the “curse of dimensionality”. The existing solutions
are primarily categorized into feature selection (FS) (including filter, wrapper, and embedded
methods) and feature extraction (FE). For example, a novel credit risk assessment model is
proposed by using a hierarchical attention method to enhance important features, integrate
multi-view data, and manage feature acquisition costs for improved performance (Liu et al.,
2024). Additionally, an improved multilayer restricted Boltzmann machine (RBM) FE method is
proposed to address high-dimensional issue in credit risk assessment, demonstrating signifi-
cant performance improvements on real-world datasets (Zhu et al,, 2024). However, notable
limitations are observed in current FS and FE methods for high-dimensional data. These tech-
niques are prone to be overfitting, often fail to effectively eliminate redundant features, and
frequently do not capture the relationships between features in complex credit datasets. As a
result, the accuracy of the classifier and the quality of decision-making are adversely affected.
To overcome these challenges, a novel hybrid clustering and boosted tree feature selection
(CBTFS) method has been proposed, with the aim of improving credit risk assessment by ef-
ficiently addressing high-dimensionality issue, thereby enhancing prediction accuracy.

To address the challenges posed by high-dimensional data in credit risk assessment, a
novel hybrid CBTFS method is introduced. This approach begins with an improved minimum
spanning tree model, which efficiently eliminates redundant and irrelevant features. Subse-
quently, three embedded feature selection algorithms — RF, XGBoost, and AdaBoost — are
employed to identify the highest-ranked features from the aforementioned methods. This in-
tegration aims to formulate an optimal feature set, effectively achieving the goal of “selecting
the best among the best” and enhancing prediction performance. Furthermore, the proposed
hybrid CBTFS method is experimentally verified to be an effective solution for addressing
high-dimensional challenges in credit risk assessment in this paper.

The main contributions of this paper are summarized into two-fold. On the one hand,
a new framework for credit risk assessment is first proposed, integrating a clustering tech-
nique (i.e., an improved minimum spanning tree (IMST)), and three hybrid feature selection
methods based on boosted tree modeling. This framework addresses feature redundancy in
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high-dimensional data through a hybrid CBTFS method, thereby enhancing prediction perfor-
mance. On the other hand, the framework employs improved MST along with several classical
clustering methods and combines them with three embedded feature selection methods — RF,
XGBoost, and AdaBoost — to increase feature ranking efficiency and eliminate a significant
number of redundant features. This hybrid clustering model does not only remove redundant
and irrelevant features but also aids in setting effective thresholds for MST, thus improving
the model’s clustering performance. Thus, the proposed hybrid method effectively addresses
credit risk assessment challenges associated with high dimensionality.

The primary motivation of this paper is to propose a hybrid CBTFS method for credit risk
assessment with high dimensionality, and attempt to improve the classification predictive per-
formance of high-dimensional sample modeling. The rest of the paper is structured as follows.
The literature review is described Section 2. Section 3 recommends the components of the
proposed hybrid CBTFS method in detail. Section 4 presents the experimental study. Section
5 presents the experimental results by describing performance evaluation and comparative
analysis. Section 6 concludes the paper and meantime provides guidelines for future work.

2. Literature review

In the big data era, financial institutions increasingly contend with high-dimensional data-
sets due to the vast array of data attributes available from credit applicants. However, these
datasets often contain redundant and irrelevant features, which can diminish the accuracy of
classifiers and increase computational complexity. To mitigate these issues, FE (Tsafrir et al.,
2023) and FS (Sun et al., 2015; Zhang et al., 2022) methods are commonly employed.

FE transforms the original data into a new space by using mathematical techniques, im-
proving training efficiency and predictive accuracy. For example, PCA has been used for
credit risk classification (Yu et al., 2021), but it can be ineffective when the feature dimensions
exceed the sample size, leading to a loss of interpretability and data integrity.

Generally speaking, FS aims to retain essential information while reducing dimensionality
and is generally categorized into filters, wrappers, and embedded methods. Some advanced
techniques such as feature clustering and minimum spanning tree (MST) (Liu et al., 2022)
offer additional dimensionality reduction capabilities. Feature clustering identifies redundant
features and enhances model interpretability by grouping similar features, using methods
like Birch, Spectral Clustering (SC) (Yang et al., 2023), K-modes, K-means, K-means++ (Li &
Wang, 2023), Agglomerative Clustering (AC) (Jafiez-Martino et al., 2023), and K-prototypes
(Kuo & Wang, 2022). However, these methods face challenges related to similarity measures,
scalability, and cluster interpretation. MST facilitates dimensionality reduction by identifying
a minimal subset of edges in a weighted graph that connects all vertices with minimal total
edge weight. Although algorithms like Kruskal and Prim are computationally efficient, MST's
emphasis on edge weight minimization may neglect factors such as reliability and latency,
and its performance can be sensitive to the accuracy of edge weights. Balancing the strengths
and limitations of these FS methods is crucial for effective feature selection. Therefore, to en-
hance organization and provide a concise overview of prior research, Table 1 was introduced
to compare the primary attributes of previous studies, emphasizing their definitions. These
methodologies are outlined in Table 1, with each category highlighting its unique strengths.
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Table 1. Typical feature selection methods

Methods Definitions Researches
Filters Feature importance is assessed using Li et al. (2024b); Macedo et al. (2022);
statistical modeling to identify the most | Maldonado et al. (2017); Ouaderhman et al.
relevant features. (2024); Sankhwar et al. (2020)
Wrappers | Feature are assessed in conjunction Chandrashekar and Sahin (2014); Chaudhuri
with classifier performance. (2024); Li et al. (2024a); Zhao et al. (2023);
Zorarpaci (2024)
Embedded | The most relevant features are selected | Hu et al. (2023); Kozodoi et al. (2019); Qian
methods during model training. et al. (2022); Tsai et al. (2021); Zhao et al.
(2023)
Ensemble |Integrating feature selection results He et al. (2018); Osanaiye et al. (2016); Seijo-
methods from multiple methods. Pardo et al. (2017); Song et al. (2013); Tsai
et al. (2024); Zhang et al. (2015)
Hybrid The methods are combined to enhance | Wang et al. (2018b); Naseriparsa et al. (2013);
methods accuracy and efficiency by statistical Pashaei and Pashaei (2022); Sahu and Dash
measures and model-based techniques. | (2024)

In summary, FE and FS, including feature clustering and MST, are critical for managing
high-dimensional data. These methods effectively reduce dimensionality, eliminate redun-
dancy, and enhance model performance, although they encounter challenges related to inter-
pretability, scalability, and accuracy. Existing FS and feature clustering methods in credit risk
assessment reveal several significant issues. First, these techniques are prone to be overfitting
and can be time-consuming, necessitating rigorous validation, particularly in high-dimen-
sional contexts — an area often overlooked in previous research. Second, current methods
often fail to eliminate redundant and irrelevant features in high-dimensional datasets, which
adversely affects classifier accuracy. Financial institutions frequently encounter credit datas-
ets characterized by sparsity and class imbalance, where irrelevant features introduce noise
and obscure meaningful patterns. Traditional FS methods struggle to capture the complex
relationships among features, underscoring the need for advanced methods that effectively
identify essential features while discarding those that do not contribute to predictive power.
Finally, many feature clustering methods encounter challenges related to scalability and clarity
in cluster formation, complicating the analysis of complex credit datasets. Although tech-
niques such as K-means and MST are capable of grouping similar features, their significance
is often not conveyed clearly, which hinders informed decision-making in credit risk assess-
ment. Therefore, the development of clustering methods that effectively scale and provide
clear insights is essential for improving these outcomes. To address these challenges, this
paper proposes a hybrid CBTFS method. This methodology includes a preprocessing phase,
utilizes multiple feature clustering methods along with the IMST for initial FS, and employs
powerful boosting trees for further refinement. The effectiveness of this method is assessed
by using high-dimensional credit datasets and relevant evaluation criteria.
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3. The proposed hybrid CBTFS method

In this section, a hybrid CBTFS paradigm is proposed to address the high dimensionality
challenge in credit classification. The general framework of the proposed method is illustrated
in Figure 1.

As can be seen from Table 1, this hybrid method incorporates the IMST model, which is
designed to reduce computational time within a hybrid CBTFS structure. At the same time,
three advanced boosting tree algorithms — RF, XGBoost, and AdaBoost — are employed due
to their robust learning capabilities and their use of feature importance techniques to select
valuable feature information effectively. This combination is intended to enhance processing
efficiency and improve the quality of feature selection, ultimately leading to superior clas-
sification performance.

As shown in Figure 1, four main stages, preprocessing and partitioning data, cluster-
ing based feature selection, boosting tree-based feature selection, and final output results
are included. To clearly articulate the details of the hybrid CBTES method, the operational
steps of the proposed hybrid CBTFS can be presented by Algorithm 1. Furthermore, detailed
description of the four stages and models used are given in the following Sections 3.1-3.4,
respectively.

Algorithm 1 The proposed hybrid CBTFS method

1: Input: high dimensional credit datasets
2: Output: optimal feature subset
3: Procedure hybrid CBTFS

4:  Stage 1: Preprocessing and partitioning data

5: for data preprocessing do

6: The mean imputation and standardization of data

7: Divide into training set and testing set

7: end for

8:  Stage 2: Clustering based feature selection

9: for multiple clustering models do

10: Choosing multiple clustering models for ensemble

11:  Generating optimal clusters using the DBl model

12: Generating clustering results 1t'(D) using the consistency function
13: end for

14: for improved minimum spanning tree clustering model do

15: Constructing the Minimum Spanning Tree (MST) Network
16: Disconnect the node and set the threshold t
17: Obtaining multiple feature subsets

18: end for

19: end for

20: Stage 3: Boosting tree-based feature selection

21: Three boosting trees were employed to evaluate feature importance
22:  Obtaining optimal subset of features for each case.

23: end for

24: Stage 4: Final output results

25:  The results from the Stage 3 form the new optimal subset

26: Classification by classifiers

27: end for

28: end procedure
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Figure 1. General framework for a hybrid CBTFS method

3.1. Preprocessing and partitioning data

In this Section, the dataset was split into training and testing sets in an 80/20 ratio (He et al.,
2018). First, the mean is employed to impute missing values in the dataset. Second, the credit
dataset is processed by using normalization techniques, where the credit dataset is mapped
to a range between 0 and 1, as shown in Equation (1) below.
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x = Xi ~ Xmin , (1)

Xmax ~ Xmin

where x; and x; represent the values before and after the normalization of the sample data,
respectively. X, and X,ax denote the minimum and maximum values in the sample data,
respectively.

Finally, the Synthetic Minority Oversampling Technique (SMOTE) and Edited Nearest
Neighbor (ENN) methods were used to balance the two classes (Xie et al., 2019). Experiments
were conducted ten times to obtain average prediction results.

3.2. Clustering based feature selection

This section outlines how combining multiple clustering models with IMST leverages their
strengths to select the most informative and least redundant features. Feature clustering,
unlike conventional methods, reduces dimensionality to enhance model efficiency and speed
while mitigating overfitting. It groups related features to aid in feature engineering, creating
more relevant and informative features, and improves model performance by eliminating
redundancy and highlighting key patterns. This method is essential for achieving high classifi-
cation accuracy in complex, high-dimensional datasets, as detailed in Subsections 3.2.1-3.2.2.

3.2.1. Multiple clustering models for feature selection

To mitigate the bias introduced by using a single clustering algorithm in feature selection, a
technique integrating multiple clustering algorithms is proposed. This approach consists of
three primary steps.

Step 1: Selecting multiple clustering models for the ensemble. In this paper, seven clus-
tering models (SC, K-means++, AC, Birch, K-prototypes, K-means, and K-modes) are applied
to the training datasets to obtain the optimal clustering subsets, denoted as m,_,, where n is
the number of models and k is the number of clusters.

Step 2: Optimal clusters are generated by using the Davies-Bouldin Index (DBI) model
(Ros et al., 2023). The DBI, which measures the average maximum similarity within clusters, is
used to formulate multiple optimal clusters. These clusters are combined into a base cluster-
ing, denoted as 1". The value of k in 1t,_; is determined by the DBI model. For n-dimensional
points, let C; represent a cluster, and X; denote an n-dimensional feature vector assigned to
cluster C;. 179

T
1
Si = fzxj _Aig 1 (2)
Jj=1

where A, represents the centroid of cluster C, and T; denotes its size. S; is the g root of the
g™ moment of the points in cluster C; about the mean. Typically, p is set to 2, making this
distance a Euclidean metric. It is crucial that the distance metric used aligns with that of the
clustering algorithm to ensure meaningful results.

1/p
A4 [Z] | &)
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where M;; quantifies the separation between clusters C; and C;. In the n-dimensional centroid
A ay; denotes the k" element, where k indexes the data features, with n elements in total.
The effectiveness of the clustering scheme is evaluated by R; which maximizes M;; and min-

imizes S, the scatter within cluster C;. The DBI is then calculated as the ratio of S; to M;; as
shown in the following Equation.
S+ Sj
R; = , (4)
My

where S; or SJ denotes the diameter of the class i or j, Mij denotes the distance between the
centroid of class i and j. Through the above formula, the maximum value R; =max(R;) is
selected from Rl-j (i * j), the value of the largest similarity in the similarity between class {
and other classes. Finally, the mean of these maximum similarities for each class is calculated
to obtain the DBI value.
1 N

DBl = N i=1R[’ 5)
where N represents the number of classes. The smaller the DBI value, the better the cluster-
ing results.

Step 3: Clustering results (D) are generated by using a consistency function. Co-matrix-
based methods are currently the most effective consistency functions. The DBI value guides
the selection of optimal m,_, clusters. Let D represent a dataset, the it clustering of D, T;
(D), is defined by:

}, (6)

where C; denotes the j cluster of (D) ,Where 1< < ‘n: (D)‘ , and satisfies D = U TZ
For example, given a set of clustering, H(D):{m(D), nZ(D),...,nn(D)}, it is essjential to

(D) = {c“,ciz,..., c[‘ﬁ o)

D
ele,

identify the optimal cluster n*(D)—{C{,C;,...,C;f(D) . Therefore, an nxn co-matrix CO is

constructed, where each element of the matrix is represented by:

CO(xi,xj):WMZM 1Sm(xi,xj)(1:[,an),CO(xi,xj)e[O,ﬂ, @)
e

where M represents the total number of clusters and m denotes a specific cluster within
the clustering. CO(xi,xj) represents the similarity between samples x; and x; resulting in a
symmetric similarity matrix. In this matrix, v, (x;) denotes the class label of sample x; in the
base clustering T if v, (Xz) =v,, (xj), then S (xi,xj) =1, otherwise S (X,-,Xj) =0. Since CO
is a co-matrix, it can serve as input for any similarity-based clustering model to generate the
final clustering result (D).

In summary, the three steps outlined above effectively cluster features, it does not only
enhance dimensionality reduction, interpretability, and model performance, but also deepens
data understanding, making it a valuable technique for improving data quality and optimizing
machine learning results.
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3.2.2. Improved minimum spanning tree clustering model for feature selection

The minimum spanning tree (MST) is a fundamental concept in graph theory, widely recog-
nized for its ability to represent relationships within sets of data. The MST algorithm minimiz-
es the total edge weights, a principle analogous to clustering, which groups data points based
on their similarity. This makes MST effective in capturing data relationships and aiding in
the process of clustering. However, MST clustering faces some limitations. On the one hand,
it is sensitive to outliers and noise. On the other hand, it struggles with high-dimensional
datasets due to the "curse of dimensionality”. To address these limitations, the improved
MST (IMST) algorithm was developed. IMST leverages the similarity matrix generated by the
feature clustering model to optimize feature subsets and effectively manage the complexities
of high-dimensional data clustering. Algorithm 2 is the pseudo-code for the IMST model.

Algorithm 2: Improved Minimum spanning tree clustering model

Input: Weighted connected graph G = (V, E), where V is the vertex set and E is the edge set.

Output: Some small subset of features and a large number of feature subsets;

1. Initialization: V,,, = {X}, X is any node in set V, E,,, = V;

2. Repeat steps 2-4 until V = £,

3. Select edge (u, v) with the minimum weight in set £, where u € V,,,, and V is not included in V,,,, (if
there are multiple edges that meet the above conditions, then select the edge randomly);

4. Add vto V,,, and (u, v) to E, o,

Obtaining updated V.,

6. Nodes X are disconnected using pruning technique, resulting in the automatic generation of multiple
clusters;

7. Setting threshold T for dividing into clusters (a small subset of features and a large number of feature
subsets).

vt

To enhance the clarity and effectiveness of the improved IMST methodology, three key
improvements are proposed in this paper.

First, pruning technique is introduced to disconnect tree nodes that link clusters, effective-
ly reducing the complexity and improving the performance of the IMST in high-dimensional
settings. This pruning process ensures that the IMST can identify and separate clusters more
accurately, even when the data is dense and features are numerous. By isolating clusters that
are connected through weak links, a clearer and more meaningful clustering structure can
be obtained.

Second, the IMST method is designed to identify both clusters with many features and
those with few features. This dual capability is essential for high-dimensional data where
feature distribution can vary widely. Clusters with a large number of features are treated
differently than those with fewer features, ensuring that the FS process is balanced and
comprehensive.

Finally, to address MST's sensitivity to outliers, a threshold parameter T is introduced to
distinguish between majority and minority clusters. Minority clusters, identified as outliers, are
directly included in the optimal feature subset for the boosting tree-based FS method. This
inclusion ensures valuable but sparse features are retained. Majority clusters are processed
by using three robust boosting tree models: RF, XGBoost, and AdaBoost, known for their
effectiveness in high-dimensional data. Integrating these models can enhance the accuracy
and robustness of feature selection.
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The IMST method effectively addresses the challenges of high-dimensional data and out-
liers by employing pruning techniques and a threshold parameter 1. By distinguishing be-
tween majority and minority clusters, IMST ensures the retention of crucial features, thereby
enhancing the quality of feature selection. The integration of robust boosting tree models,
such as RF, XGBoost, and AdaBoost, further refines feature subsets, leading to improved
model accuracy and robustness. These enhancements enable IMST as a powerful tool for FS
in complex, high-dimensional datasets.

3.3. Boosting tree-based feature selection

Feature selection (FS) is a critical step of machine learning, and three prominent tree-based
ensemble models — Random Forest (RF), Extreme Gradient Boosting (XGBoost), and Adap-
tive Boosting (AdaBoost) — are particularly effective for this purpose. Each model possesses
unique strengths that enhance the feature selection process. By integrating these models,
their combined strengths are leveraged for a robust FS process. Feature importance scores
are combined in this ensemble method, yielding a more reliable and informative subset of
features. The balanced feature importance of these methods enhances model accuracy and
generalizability, making it proficient in handling complex, high-dimensional datasets.

Furthermore, the advantages of RF, XGBoost, and AdaBoost are considered complemen-
tary, rendering them particularly effective for feature selection. Overfitting is reduced and
feature importance is evaluated through the ensemble method of RF, ensuring that only the
most relevant features are retained. Accuracy is improved by XGBoost through the sequential
correction of errors and the incorporation of regularization techniques, which help to main-
tain model performance. The capacity of AdaBoost to focus on misclassified instances enables
significant features to be highlighted, which might otherwise be overlooked. By leveraging
the strengths of these three methods, a more reliable and informative subset of features can
be obtained, ultimately enhancing model accuracy and generalizability.

Connecting the FS process with the results from the previous stage is essential for ensur-
ing a systematic approach. In this integration, the majority feature clusters are input into RF,
XGBoost, and AdaBoost, enabling these models to select significant features based on their
importance rankings. This connection does not only facilitate a refined selection process
but also prioritizes relevant features while maintaining model performance. By systematically
incorporating insights from the previous stage, the coherence and effectiveness of the FS
process can be ensured.

The significance of RF, XGBoost, and AdaBoost lies in their capacity to effectively handle
complex, high-dimensional datasets. The rationale for selecting the top 10%, 20%, and 30%
features in each majority cluster is considered to be multi-faceted. First, these thresholds fa-
cilitate a systematic examination of feature importance, prioritizing the most relevant features
while managing model complexity, which is essential for high predictive performance. Second,
using multiple percentage thresholds accounts for variability in feature significance across
clusters, thereby improving model generalization. Selecting the top 10% focuses on critical
features, reducing computational complexity, while including the top 20% and 30% allows
for broader exploration without compromising key features. Finally, integrating top-ranked
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features with minority clusters ensures a comprehensive feature set, combining impactful and
unique features and leveraging the strengths of boosting tree models. This stepwise approach
accommodates varying degrees of feature importance, leading to more accurate and reliable
classifications, especially in applications like credit risk assessment.

3.4. Final output results

After obtaining the optimal input feature set from the CBTFS method, a classification strategy
needs to be selected from a variety of individual classifiers and ensemble classifiers for final
output results. Three individual classifiers, decision tree (DT), k-nearest neighbor (KNN), and
naive Bayes (NB) (Niu et al., 2020) are chosen as the single classifier model for the optimal
feature subset. In the meantime, to enhance comparison and achieve balanced results, en-
semble models such as RF, AdaBoost, and XGBoost (Avuclu, 2021) are also employed. Com-
bining these ensemble methods with individual classifiers generally improves classification
performance under similar conditions.

4. Experimental design

To validate the proposed methodology, two real-world credit datasets were utilized. For
comparison purposes, several FS methods were applied, as presented in Table 2.

Table 2. Comparison of FS method categories

Types FS methods Researches

Filters Variance (VAR) Wang and Hong (2015)
Relief Palma-Mendoza et al. (2018)
ReliefF Palma-Mendoza et al. (2018)
Minimum Redundancy Pashaei and Pashaei (2022)
Maximum Relevance (MRMR)

Wrappers | Genetic algorithm (GA) Norat et al. (2023)
Whale optimization algorithm (WOA) Mirjalili and Lewis (2016); Said et al. (2023)
Particle swarm optimization (PSO) Tran et al. (2019); Wang et al. (2018a)

Furthermore, Section 4.1 describes the data, while Section 4.2 presents the evaluation
criteria.

4.1. Data descriptions

In this experiment, two public high-dimensional credit data sets, China Union Pay (CUP for
short) and Kaggle datasets are applied. The CUP credit dataset is obtained from the data
competition created by China Union Pay (Zhang et al,, 2022), and Kaggle credit risk dataset is
got from the UCI Machine Learning Repository (https://www.kaggle.com/jacklizhi/creditcard).
The description of the two real-world datasets is listed in Table 3.
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Table 3. Description of two real-world high-dimensional credit datasets

Dataset No. Instances No. Paid as Agreed No. Default No. Total feature
CcupP 11,017 8,873 2,144 199
Kaggle 105,471 95,688 9,783 534

Table 3 indicates that the CUP credit dataset comprises 11,017 credit applicants with 199
variables, which is divided into 8,873 ‘paid as agreed’ (80%) and 2,144 ‘default’ (20%) cases.
The Kaggle dataset includes 105,471 applicants with 534 features, with 95,688 (90%) classi-
fied as ‘paid as agreed’ and 9,783 (10%) as ‘default’. To address class imbalance and ensure
comparability, 5,500 samples from each class were randomly selected, aligning with the CUP
dataset size for subsequent classification.

4.2. Evaluation metrics

To assess the performance of proposed CBTFS method, accuracy (ACC for short), area under
ROC curve (AUQ), Precision, and G-means are used as evaluation metrics for credit classifica-
tions (Chowdhury et al., 2022). The most commonly applied measure of classification perfor-
mance is accuracy, which is the percentage of correct predictions. The AUC value of receiver
operating characteristic (ROC) ranges from 0.5 to 1, and values above 0.8 can be considered
as a good partition between the two classes of the target variable (Gorus et al., 2024). Preci-
sion measures the proportion of positively predicted labels that are truly correct, and recall
represents the ability to correctly predict the positives out of actual positives. G-means is a
harmonic combination of Recall and Precision.

All experimental analyses were conducted on a laptop with an Intel Core i7-9700F 3.00
GHz processor and 16 GB of RAM. The model parameters were set as follows. The KNN's
parameter k was set to 10, the ensemble learning classifier used 100 trees, and AdaBoost was
configured with 100 iterations. Each experiment was repeated 10 times, with results averaged
to ensure robustness.

To assess the statistical significance of different FS methods, two tests were performed.
A paired t-test evaluated the significance of CBTFS across various classification methods,
while the non-parametric Wilcoxon test compared different classification models on various
datasets.

5. Experimental results

In this Section, experimental results are presented to verify the superiority of the proposed
CBTFS method. To highlight the effectiveness of the proposed method in this paper, the
corresponding experimental results are presented in Sections 5.1-5.2.

5.1. Results of optimal clustering models selected by Davies Bouldin Index

In this Section, the DBI was utilized over the Elbow method (Liu & Deng, 2021) and Silhou-
ette Analysis (Gramegna & Giudici, 2021) due to the complexities of credit risk data. The DBI
measures the ratio of within-cluster scatter to between-cluster separation, focusing on both
compactness and separation. The smaller this ratio, the better, as larger distances between
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classes and smaller distances within classes indicate improved clustering. This measurement
is crucial for high-dimensional credit risk data, which often has overlapping and intricate
cluster structures. A more nuanced evaluation of clustering performance is provided by the
DBI compared to the Elbow method, which mainly focuses on variance explained.

The results of DBI are shown in Figures 2 and 3, where the seven popular clustering
models (SC, K-means++, AC, Birch, K-prototypes, K-means, and K-modes) are demonstrated
on the coordinates of the horizontal axis and the DBI values are revealed on the vertical axis.

—@— CUP dataset means

175

150

125

Davies-Bouldin Index

0.75

0.50

SC

AC

Birch
k-means
K-modes

K-means++
K-prototypes

Clustering Algorithm

Figure 2. DBI values of the CUP dataset

—8— Kaggle dataset means

2.00
175

150

Davies-Bouldin Index

SC
K-means++
AC
K-prototypes
k-means
Birch
K-modes

Clustering Algorithm

Figure 3. DBI values of the Kaggle dataset
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The average values of 10 times in seven popular clustering models are shown in the line chart.
As shown in Figures 2, all the DBI values for the top four clustering models (SC, K-means++,
AC, and Birch) on the CUP dataset are less than 1, indicating superior clustering performance.
The selection of these four models for ensemble clustering is based on the following three
critical factors.

First, low DBI values indicate that the models effectively balance within-cluster compact-
ness and between-cluster separation, which is essential for distinguishing credit risk profiles.
Second, the diversity among SC, K-means++, AC, and Birch enhances the ensemble model
by leveraging various clustering methods. That is, SC captures complex shapes, K-means++
optimizes initial centroids, AC is effective with hierarchical data, and Birch handles large
datasets efficiently. Finally, the inclusion of K-prototypes accommodates mixed data types
prevalent in credit risk datasets, further validating the model’s effectiveness. This integration
of methods capitalizes on the strengths of each algorithm, resulting in a robust model for
accurate credit risk classification.

Based on the average results of seven clustering models with tested ten times, the top
four methods were selected for ensemble clustering (1t"). IMST was then employed to auto-
matically cluster features and identify the most useful ones. In the CUP dataset, 199 features
were grouped into 10 clusters with sizes of 1, 5, 1, 25, 116, 2, 1, 25, 4, and 19. With a threshold
T set to 10, six clusters with fewer than 10 features were chosen for their superior discrimi-
nation and independence. Consequently, 14 features were selected for further analysis. The
remaining clusters (i.e., 25, 116, 25, and 19) proceeded to Stage 3 of the boosting tree-based
feature selection, where AdaBoost, RF, and XGBoost were used to identify the top 10 %-30%
of features. Finally, features from both steps were combined for classification evaluation.

Similarly, in the Kaggle dataset, 769 features are automatically clustered into 21 clusters
(i.e., 28,21, 72,3, 3,65, 54, 85, 27, 257, 8,4, 11,110, 2, 4, 2, 5, 5, 2, and 1). A threshold value
of 10 effectively separates these clusters. Features in clusters with less than 10 features are
first selected, as they exhibit better discrimination and independence. This results in 39 fea-
tures being selected. The remaining clusters with more than 10 features (i.e, 28, 21, 72, 65,
54, 85, 27, 257, 11, and 110) undergo boosting tree-based feature selection using AdaBoost,
RF, and XGBoost to obtain the top 10%—-30% features. Finally, the features from both steps
are combined for classification evaluation.

5.2. Experimental results of two real-world credit datasets

The experimental results underscore the importance of selecting an optimal number of fea-
tures. While too few features can reduce model effectiveness, an excessive number can lead
to increased computational time. The final feature set, optimized for comparison with other
FS methods, strikes a balance between these considerations. The detailed methodology and
results are presented in Sections 5.2.1-5.2.3.

5.2.1. Results of the tree-based feature importance ranking method

Each of the four assessment metrics (ACC, Precision, G-mean, and AUC) was evaluated by
repeating the experiments 10 times to validate the proposed hybrid CBTFS method. The av-
erage results from these repetitions were compared with those of other FS methods. Tables
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4-6 present the top 10%, 20%, and 30% features for two real-world credit datasets using the
hybrid CBTFS method. The tables are organized by testing set, with the top results highlighted
in bold. The first column of each table lists the FS method used in Stage 3, while the second
column shows the five individual and four ensemble classification methods applied.

As can be seen from Table 4, three interesting results can be found.

First of all, from the viewpoint of different feature ranking methods, all feature ranking
methods enhance prediction performance to some extents. Notably, FS methods effectively
address the challenges of high dimensionality. In this experiment, using XGBoost as a rank-
ing method yields the highest performance in ACC, Precision, G-mean, and AUC. This is likely
attributable to its gradient boosting technique, which iteratively corrects errors, manages
complex feature interactions, and incorporates built-in regularization. Similarly, when Ada-
Boost is employed, it also performs exceptionally well in ACC, Precision, G-mean, and AUC.
This can be attributed to two factors: the top 10% of features selected by XGBoost, and the
robust classification capabilities of the XGBoost classifier.

Table 4. The top 10% features selected by the tree-based feature importance ranking methods

ES Classification The CUP dataset The Kaggle dataset

Methods | Methods ACC |Precision| G-mean | AUC ACC  |Precision| G-mean | AUC
LDA 0.6686 | 0.9155 | 0.6989 | 0.7012 | 0.4359 | 0.9099 | 0.5359 | 0.5979
LogR 0.6054 | 09141 | 0.6634 | 0.6727 | 0.2805 | 0.9230 | 0.3335 | 0.5379
KNN 0.6327 | 0.9079 | 0.6723 | 0.6764 | 0.4347 | 0.8177 | 0.4968 | 0.5138
NB 0.6196 | 0.9153 | 0.6689 | 0.6793 | 0.4510 | 0.8774 | 0.5392 | 0.5776

AdaBoost | DT 0.6544 | 0.8758 | 0.6389 | 0.6414 | 0.5833 | 0.8367 | 0.5535 | 0.5560
RF 0.7171 | 0.9159 | 0.7223 | 0.7225 | 0.6005 | 0.8559 | 0.5890 | 0.5901

XGBoost 0.7294 | 0.9116 | 0.7210 | 0.7212 | 0.6730 | 0.8483 | 0.5760 | 0.5920
AdaBoost 0.6839 | 0.9253 | 0.7175 | 0.7204 | 0.5911 | 0.8534 | 0.5837 | 0.5845
Bagging 0.7207 | 0.8997 | 0.6983 | 0.6994 | 0.6341 | 0.8362 | 0.5495 | 0.5623

LDA 0.6392 | 0.9166 | 0.6846 | 0.6900 | 0.4277 | 0.9113 | 0.5250 | 0.5958
LogR 0.5999 | 0.9175 | 0.6629 | 0.6741 | 0.2952 | 0.9262 | 0.3480 | 0.5435
KNN 0.6079 | 0.9051 | 0.6567 | 0.6631 | 0.3996 | 0.8079 | 0.4727 | 0.5069
NB 0.6644 | 0.9074 | 0.6819 | 0.6880 | 0.4489 | 0.8762 | 0.5364 | 0.5784
RF DT 0.6901 | 0.8828 | 0.6592 | 0.6612 | 0.5755 | 0.8234 | 0.5380 | 0.5413
RF 0.7155 | 0.9173 | 0.7235 | 0.7238 | 0.5812 | 0.8538 | 0.5886 | 0.5894

XGBoost 0.7350 | 0.9046 | 0.7115 | 0.7126 | 0.6642 | 0.8459 | 0.5819 | 0.5945
AdaBoost 0.7115 | 0.9200 | 0.7253 | 0.7259 | 0.5783 | 0.8534 | 0.5870 | 0.5882
Bagging 0.7152 | 0.8972 | 0.6922 | 0.6933 | 0.6386 | 0.8289 | 0.5417 | 0.5586

LDA 0.6686 | 0.9136 | 0.6966 | 0.6987 | 0.4093 | 0.9167 | 0.5110 | 0.5914
LogR 0.6229 | 09122 | 0.6713 | 0.6779 | 0.3322 | 0.9420 | 0.4174 | 0.5680
KNN 0.6066 | 0.8980 | 0.6490 | 0.6539 | 0.4036 | 0.8201 | 0.4815 | 0.5150
NB 0.6819 | 0.9047 | 0.6913 | 0.6918 | 0.4989 | 0.8747 | 0.5703 | 0.5892
XGBoost | DT 0.7093 | 0.8825 | 0.6632 | 0.6671 | 0.5782 | 0.8356 | 0.5525 | 0.5541
RF 0.7245 | 0.9075 | 0.7126 | 0.7129 | 0.5692 | 0.8575 | 0.5854 | 0.5862

XGBoost 0.7452 | 0.8997 | 0.7059 | 0.7086 | 0.6803 | 0.8557 | 0.5969 | 0.6085
AdaBoost 0.7188 [ 0.9126 | 0.7182 | 0.7183 | 0.6190 | 0.8558 | 0.5935 | 0.5949
Bagging 0.7279 | 0.8945 | 0.6912 | 0.6937 | 0.6224 | 0.8270 | 0.5282 | 0.5437
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Second, for four evaluation criteria, it is easy to find that Precision can obtain the best
performance. Furthermore, in comparison with the evaluation performances using the Kaggle
dataset, the CUP dataset performs relatively better in terms of these metrics. Therefore, the
evaluation performances of RF as a feature ranking method in the CUP dataset are better than
those of other feature ranking methods, and RF is chosen as the feature ranking method for
the next step of comparison. Similarly, the evaluation performances of XGBoost as a feature
ranking method in the Kaggle dataset are better than those of other feature ranking meth-
ods, and XGBoost is chosen as the feature ranking method for the next step of comparison.

Finally, from the classifier perspective, the evaluation performances in terms of these
metrics obtained by using an ensemble classification method (i.e., RF, XGBoost, AdaBoost,
and Bagging) are better than those obtained by using an individual classification method
(i.e., LDA, KNN, NB, and DT) in most circumstances. Surprisingly, the LogR surpasses other
single classifiers in performance. The possible reason is that LogR is simple and robust for
linear relationships, excels in binary classification, and is highly interpretable, making it more
efficient and reliable than other single classifiers.

To explore which feature ranking is suitable for different datasets, the selection features
are increased to the top 20%. Accordingly, the performance comparison results are presented
in Table 5.

As can be seen from Table 5, four important results are summarized.

First, considering various feature ranking methods, these methods were able to improve
the performance of the classification methods. Notably, AdaBoost achieved the best results
in ACC, G-mean, and AUC. This can be attributed to two-fold. On the one hand, AdaBoost
selected more relevant features than RF and XGBoost. On the other hand, these significant
features help avoid overfitting, thus improving predictive performance.

Second, across four evaluation criteria, the LogR and XGBoost classifiers demonstrate
the highest performance in ACC, Precision, G-mean, and AUC when employing various fea-
ture ranking methods. The possible reason is when AdaBoost is used as the feature rank-
ing method, the selected top 20% of features are more relevant to the classification label.
In particular, XGBoost classifier can obtain better performance in terms of the aggregative
metrics, G-mean and AUC.

Third, considering the classifiers, the evaluation performance based on these metrics
achieved through ensembile classification methods, such as RF, XGBoost, AdaBoost, and Bag-
ging, is typically superior to that obtained from individual classification methods like LDA,
KNN, NB, and DT. Notably, both LogR and NB outperform other individual classifiers in terms
of performance. This implies that LogR and NB are simple and effective in handling differ-
ent data distributions, and can obtain the robust performance with small to medium-sized
datasets, making them highly effective and reliable in various scenarios.

Finally, in both the CUP and Kaggle datasets, ensemble classifiers consistently outperform
individual methods across most metrics. The CUP dataset demonstrates stronger overall per-
formance, leading to the selection of AdaBoost as the feature ranking method. Meanwhile,
RF is chosen for the Kaggle dataset due to its superior evaluation results.

At this time, no consistent conclusions have been reached in the two real-world datasets.
Therefore, the top 30% of features need to be further selected for the experimental analysis,
and the corresponding performance comparison results are reported in Table 6.
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Table 5. The top 20% features selected by the tree-based feature importance ranking methods

FS Classification The CUP dataset The Kaggle dataset

Methods Methods ACC |Precision| G-mean| AUC ACC |Precision|G-mean| AUC
LDA 0.6559 | 0.9179 | 0.6951 | 0.6988 | 0.4305 | 0.8935 | 0.5253 | 0.5852
LogR 0.6025 | 0.9184 | 0.6651 | 0.6764 | 0.2959 | 0.9363 | 0.3486 | 0.5464
KNN 0.6239 | 0.9065 | 0.6666 | 0.6712 | 0.3769 | 0.8069 | 0.4568 | 0.5053
NB 0.4877 | 0.9185 | 0.5789 | 0.6265 | 0.4565 | 0.8666 | 0.5388 | 0.5725

AdaBoost | DT 0.6989 | 0.8860 | 0.6674 | 0.6694 | 0.5612 | 0.8238 | 0.5387 | 0.5402
RF 0.7139 | 09189 | 0.7250 | 0.7254 | 0.5719 | 0.8491 | 0.5800 | 0.5806

XGBoost 0.7369 | 09110 | 0.7229 | 0.7234 | 0.6441 | 0.8413 | 0.5722 | 0.5824
AdaBoost 0.7206 | 0.9184 | 0.7273 | 0.7275 | 0.5817 | 0.8499 | 0.5831 | 0.5839

Bagging 0.7233 | 0.8985 | 0.6970 | 0.6984 | 0.6128 | 0.8290 | 0.5467 | 0.5554
LDA 0.6350 | 0.9207 | 0.6863 | 0.6931 | 0.4394 | 0.9058 | 0.5379 | 0.5962
LogR 0.6002 | 0.9264 | 0.6698 | 0.6840 | 0.2946 | 0.9192 | 0.3574 | 0.5431
KNN 0.5998 | 0.9035 | 0.6509 | 0.6580 | 0.4100 | 0.8128 | 0.4808 | 0.5067
NB 0.7146 | 0.8969 | 0.6910 | 0.6924 | 0.4336 | 0.8801 | 0.5259 | 0.5744
RF DT 0.6862 | 0.8883 | 0.6679 | 0.6687 | 0.5622 | 0.8248 | 0.5311 | 0.5336
RF 0.7107 | 09179 | 0.7222 | 0.7226 | 0.5664 | 0.8677 | 0.5968 | 0.5997

XGBoost 0.7330 | 0.9064 | 0.7138 | 0.7146 | 0.6549 | 0.8578 | 0.5995 | 0.6057
AdaBoost 0.7144 | 09198 | 0.7264 | 0.7268 | 0.5834 | 0.8608 | 0.5927 | 0.5937

Bagging 0.7127 | 0.9006 | 0.6969 | 0.6975 | 0.6127 | 0.8395 | 0.5594 | 0.5653
LDA 0.6471 | 09182 | 0.6904 | 0.6955 | 0.4337 | 0.9033 | 0.5301 | 0.5933
LogR 0.6107 | 0.9180 | 0.6696 | 0.6795 | 0.3094 | 0.9356 | 0.3759 | 0.5533
KNN 0.6123 | 0.9053 | 0.6591 | 0.6651 | 0.3781 | 0.8037 | 0.4572 | 0.5023
NB 0.7026 | 0.8990 | 0.6901 | 0.6911 | 0.4882 | 0.8676 | 0.5602 | 0.5822
XGBoost | DT 0.7013 | 0.8857 | 0.6675 | 0.6697 | 0.5681 | 0.8199 | 0.5312 | 0.5346
RF 0.7218 | 0.9164 | 0.7250 | 0.7251 | 0.5694 | 0.8546 | 0.5865 | 0.5878

XGBoost 0.7366 | 0.9092 | 0.7199 | 0.7205 | 0.6509 | 0.8438 | 0.5769 | 0.5879
AdaBoost 0.7154 | 09176 | 0.7239 | 0.7242 | 0.6050 | 0.8499 | 0.5879 | 0.5890
Bagging 0.7306 | 0.9007 | 0.7032 | 0.7047 | 0.6290 | 0.8328 | 0.5538 | 0.5646

As can be seen from Table 6, the following findings can be drawn from Table 6.

First of all, from the viewpoint of various feature ranking methods, these methods are able
to improve the performance of the model. In particular, it is easy to find that AdaBoost as a
feature ranking method can obtain the best performance in terms of Precision, G-mean, and
AUC. The underlying reasons for this phenomenon are identical to those detailed in Table 4.

Second, across four evaluation criteria, it is clear that the highest performance is achieved
by utilizing the AdaBoost-based feature ranking method among various ranking methods.
However, the best evaluation performances of ACC, G-mean, and AUC could be obtained
when XGBoost is used as the feature ranking method in the Kaggle dataset, the possible
reason is the proficiency of XGBoost in handling high-dimensional data, effective feature
utilization, intricate interaction capture, and the employment of strong regularization to pre-
vent from overfitting.
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Table 6. The top 30% features selected by the tree-based feature importance ranking methods

FS Classification The CUP dataset The Kaggle dataset

Methods Methods ACC |Precision| G-mean| AUC ACC |Precision| G-mean| AUC
LDA 0.6282 | 0.9215 | 0.6830 | 0.6911 | 0.4282 | 0.8849 | 0.5211 | 0.5782
LogR 0.6029 | 0.9223 | 0.6685 | 0.6808 | 0.3100 | 0.9351 | 0.3728 | 0.5522
KNN 0.6136 | 0.9106 | 0.6649 | 0.6720 | 0.3688 | 0.8069 | 0.4502 | 0.5049
NB 0.4726 | 0.9010 | 0.5514 | 0.6074 | 0.4521 | 0.8659 | 0.5353 | 0.5705

AdaBoost | DT 0.6777 | 0.8847 | 0.6594 | 0.6602 | 0.5548 | 0.8243 | 0.5393 | 0.5404
RF 0.7051 | 0.9246 | 0.7282 | 0.7294 | 0.5620 | 0.8517 | 0.5810 | 0.5822

XGBoost 0.7186 | 0.9136 | 0.7192 | 0.7195 | 0.6305 | 0.8414 | 0.5727 | 0.5800
AdaBoost 0.7186 | 0.9148 | 0.7209 | 0.7213 | 0.5766 | 0.8513 | 0.5834 | 0.5845

Bagging 0.7153 | 0.9022 | 0.7004 | 0.7010 | 0.6074 | 0.8313 | 0.5523 | 0.5587

LDA 0.6272 | 0.9236 | 0.6842 | 0.6930 | 0.4326 | 0.8814 | 0.5240 | 0.5775

LogR 0.5934 | 0.9249 | 0.6642 | 0.6793 | 0.3085 | 0.9312 | 0.3686 | 0.5512

KNN 0.5912 | 0.9117 | 0.6530 | 0.6640 | 0.3827 | 0.8065 | 0.4613 | 0.5058

NB 0.4344 | 0.8815 | 0.5155 | 0.5816 | 0.4270 | 0.8617 | 0.5144 | 0.5601

RF DT 0.6775 | 0.8872 | 0.6636 | 0.6641 | 0.5630 | 0.8230 | 0.5377 | 0.5394
RF 0.7050 | 0.9178 | 0.7194 | 0.7199 | 0.5587 | 0.8503 | 0.5778 | 0.5793

XGBoost 0.7265 | 0.9100 | 0.7172 | 0.7175 | 0.6442 | 0.8457 | 0.5827 | 0.5905
AdaBoost 0.7054 | 0.9185 | 0.7204 | 0.7210 | 0.5712 | 0.8481 | 0.5787 | 0.5793

Bagging 0.7072 | 0.9003 | 0.6947 | 0.6951 | 0.6132 | 0.8327 | 0.5550 | 0.5620

LDA 0.6427 | 09193 | 0.6893 | 0.6949 | 0.4671 | 0.8909 | 0.5560 | 0.5966

LogR 0.6091 | 0.9176 | 0.6685 | 0.6782 | 0.3397 | 0.9231 | 04212 | 0.5629

KNN 0.6157 | 0.9078 | 0.6635 | 0.6696 | 0.3896 | 0.8056 | 0.4659 | 0.5048

NB 0.5664 | 0.9037 | 0.6269 | 0.6451 | 0.4867 | 0.8659 | 0.5585 | 0.5801

XGBoost | DT 0.6909 | 0.8886 | 0.6699 | 0.6710 | 0.5694 | 0.8260 | 0.5425 | 0.5446
RF 0.7104 | 09176 | 0.7216 | 0.7220 | 0.5741 | 0.8514 | 0.5841 | 0.5845

XGBoost 0.7261 | 0.9105 | 0.7179 | 0.7181 | 0.6562 | 0.8387 | 0.5651 | 0.5799
AdaBoost 0.7138 | 0.9180 | 0.7237 | 0.7240 | 0.6066 | 0.8440 | 0.5781 | 0.5801
Bagging 0.7172 | 0.9029 | 0.7025 | 0.7030 | 0.6275 | 0.8297 | 0.5467 | 0.5588

Third, the classifier performance in Table 6 indicates that using AdaBoost as the feature
ranking method results in superior Precision, G-mean, and AUC for the RF, LogR, and NB clas-
sifiers. This improvement is attributed to AdaBoost's ability to prioritize key features, thereby
enhancing the accuracy and robustness of these algorithms. Conversely, when XGBoost ranks
features, both XGBoost and RF excel in ACC and G-mean, while LDA, DT, and KNN exhibit
moderate improvements, and bagging performs the worst. XGBoost's effectiveness in man-
aging complex feature interactions and regularization enhances the performance of both
XGBoost and RF. Simple models like LDA, DT, and KNN benefit less from this method, while
bagging struggles with nuanced feature importance. Overall, ensemble models such as RF,
XGBoost, and AdaBoost, along with LogR, demonstrate strong classification capabilities. The
slightly inferior performance of bagging may result from its inability to capture informative
features in high-dimensional spaces and its susceptibility to local minima.
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Finally, for both the CUP and Kaggle datasets, the evaluation performance for each metric
achieved by individual classification methods is typically lower than that obtained through
ensemble classification methods. The possible reason is that the ensemble classification
methods combine the strengths of multiple classifiers, reducing errors and improving overall
prediction robustness. Also, in comparison with the evaluation performances using the Kaggle
dataset, the CUP dataset performs relatively better in terms of these metrics. This superiority
is likely attributed to the higher discriminative power of its features and their better align-
ment with the employed classification methods, as indicated by consistently higher values
in Precision and AUC.

Therefore, the evaluation performances of AdaBoost as a feature ranking method in the
CUP dataset are better than those of other feature ranking methods, and AdaBoost is selected
as the feature ranking method in the CUP dataset for the next step of comparison. Similarly,
the evaluation performances of XGBoost as a feature ranking method in Kaggle dataset is
better than those of other feature ranking methods, and XGBoost is selected as the feature
ranking method in the Kaggle dataset for the next step of comparison.

Based on the results presented in Tables 4-6, the optimal evaluation metrics were se-
lected to determine the most effective feature ranking methods for two real-world credit
datasets. The outcomes for the CUP and Kaggle datasets are illustrated in Figures 4 and 5,
respectively, where the horizontal axis represents the classification methods, and the vertical
axis illustrates the scores for each evaluation metric. From Figure 4, it is found that the first
9 classifiers utilize RF to select the top 10% of features, the subsequent 9 classifiers employ
AdaBoost to select the top 20%, and the final 9 classifiers use AdaBoost to select the top
30%. Meantime, AdaBoost, selecting the top 30% of features, outperforms the other methods
across all metrics, establishing it as the preferred method for the CUP dataset when compared
to traditional FS methods.

Similarly, in Figure 5, the horizontal and vertical axes represent the classification methods
and evaluation metric scores, respectively. XGBoost, selecting the top 10% of features, sur-
passes RF (selecting 20%) and XGBoost (selecting 30%) in all metrics. Consequently, XGBoost,
selecting the top 10% of features, is the preferred method for the Kaggle dataset relative to
traditional FS methods.

5.2.2. Comparison of FS techniques

Based on the results presented in Section 5.2.1 and the traits of various high-dimensional
credit datasets, optimal FS methods were selected for comparison with traditional methods.
The AdaBoost method was applied to the CUP dataset, selecting the top 30% of features,
while the XGBoost method was utilized for the Kaggle dataset, selecting the top 10% fea-
tures. The results of the proposed CBTFS method are shown in Table 7 alongside traditional
FS methods, comparing four evaluation metrics across the two datasets. The best result for
each metric is highlighted in bold, with rankings indicated in parentheses.
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Figure 4. Ranking the importance of the top features for the CUP dataset

Figure 5. Ranking the importance of the for the Kaggle dataset

As can be seen from Table 7, in the CUP dataset, the ACC of the CBTFS model is weaker
than that of traditional FS methods and those without FS. This may result from overfitting
or inadequate FS that fails to capture relevant data features, as well as performance bias
towards the majority class due to dataset imbalance. Conversely, the Precision, G-mean, and
AUC metrics of the CBTFS are superior to those of traditional FS methods, likely because the
hybrid CBTFS model effectively identifies and retains the most informative features, thereby
enhancing its ability to correctly identify positive instances. Notably, the top three best results,
particularly for G-mean and AUC, are attributed to the CBTFS model. Similarly, in the Kaggle
dataset, the CBTFS model demonstrates poorer ACC but better Precision, G-mean, and AUC
compared to traditional FS methods. This may be attributed to the CBTFS model’s focus on
prioritizing relevant features, which can result in a higher number of misclassifications in the
overall dataset, particularly among negative instances.
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Table 7. Comparison of the proposed CBTFS model and other FS methods

ES Classification The CUP dataset (AdaBoost 30%) The Kaggle dataset (XGBoost 10%)

methods Method ACC Precision | G-mean AUC ACC Precision | G-mean AUC
LDA 0.6282 [0.9215(3)| 0.6830 | 0.6911 0.4093 |0.9167(2)| 05110 | 05914

LogR 0.6029 [0.9223(2)| 06685 | 06808 | 03322 [0.9420(1)| 04174 | 0.5680

KNN 06136 | 09106 | 06649 | 06720 | 04036 | 0.8201 04815 | 05150

Proposed | NB 04726 | 09010 | 05514 | 06074 | 04989 [0.8747(3)| 0.5703 | 0.5892
Method | DT 06777 | 08847 | 06594 | 06602 | 05782 | 08356 | 0.5525 | 0.5541
(CBTFS) | RF 0.7051 |0.9246(1)|0.7282(1)[0.7294(1)| 05692 | 0.8575 0.5854 | 0.5862
XGBoost 07186 | 09136 |0.7192(3)|0.7195(3)| 0.6803 | 0.8557 |0.5969(1)|0.6085(2)

AdaBoost 07186 | 0.9148 [0.7209(2)|0.7213(2)| 06190 | 0.8558 |0.5935(2)| 0.5949

Bagging 07153 | 09022 | 07004 | 07010 | 06224 | 08270 | 05282 | 0.5437
LDA 0.8086 | 0.8365 | 04685 | 05903 [0.8324(1) 08422 | 04875 |0.6095(1)

LogR 0.8126(2)| 08332 | 04422 | 05821 07973 | 08162 | 03090 | 0.5328

KNN 0.8021 0.8180 | 03212 | 05385 | 07967 | 08059 | 0.1315 | 0.5015

NB 02794 | 08564 | 03390 | 05193 | 05886 | 08563 | 0.5861 0.5888

VAR DT 07293 | 0.8388 | 05324 | 05840 | 06898 | 08172 | 04589 | 0.5294
RF 0.8073 | 0.8245 | 03786 | 05576 | 0.8026 | 0.8059 | 0.0776 | 05016

XGBoost 0.8067 | 08417 | 05028 | 06035 | 07930 | 08145 | 02973 | 05275

AdaBoost 0.8060 | 0.8371 0.4751 05917 | 07982 | 08137 | 02760 | 0.5256

Bagging 07964 | 08284 | 04251 0.5673 | 0.7881 0.8089 | 02312 | 05107

LDA 0.8111 0.8350 | 04574 | 05868 [0.8060(3)| 08173 | 0.2953 | 0.5363

LogR 0.8094 | 08284 | 04085 | 05686 | 08019 | 08108 | 02187 | 05168

KNN 0.7882 | 08303 | 04453 | 05712 | 07764 | 08115 | 02979 | 05183

NB 07133 | 08827 | 06611 0.6667 | 05783 | 08522 | 05508 | 0.5746

Relief DT 0.7301 0.8366 | 05236 | 05793 | 06955 | 08208 | 04720 | 0.5382
RF 0.8078 | 0.8261 0.3901 05620 | 0.8044 | 08064 | 00979 | 05033

XGBoost 0.8038 | 0.8386 | 04863 | 05952 | 0.7921 0.8144 | 02969 | 0.5271

AdaBoost 0.8038 | 0.8328 | 04490 | 05800 | 07999 | 08109 | 02268 | 0.5171

Bagging 07944 | 08284 | 04273 | 05671 07908 | 0.8200 | 02417 | 05141

LDA 0.8172(1)| 0.8407 | 04966 | 0.6061 07858 | 0.8390 | 04726 | 05948

LogR 0.8156 | 0.8339 | 04536 | 0.5881 07916 | 08103 | 02959 | 05284

KNN 0.8074 | 08190 | 03348 | 05456 | 07925 | 08007 | 0.1125 | 0.4997

NB 0.7391 0.8807 | 06648 | 06736 | 06147 | 08352 | 0.5606 | 0.5666

ReliefF DT 0.6255 | 08229 | 05207 | 05402 | 06547 | 08103 | 04729 | 05223
RF 0.8043 | 08161 03056 | 05369 | 07989 | 08019 | 0.1057 | 0.5033

XGBoost 0.8001 0.8245 | 03906 | 05600 | 07900 | 0.8085 | 0.2759 [ 0.5230

AdaBoost 07998 | 0.8111 02383 | 05216 | 07960 | 08088 | 0.2646 | 0.5243

Bagging 07273 | 08168 | 04280 | 05345 | 07711 0.8060 | 02898 | 0.5152

LDA 0.8039 | 0.8061 0.0766 | 0.5021 04706 | 0.8491 0.5381 0.5565

LogR 0.8038 | 0.8060 | 00737 | 05019 | 04702 | 08490 | 05379 | 0.5563

KNN 0.7937 | 08096 | 02184 | 05129 | 05519 | 0.8235 | 0.5301 0.5320

NB 0.7844 | 0.8181 03324 | 05364 | 04510 | 08494 | 05267 | 0.5527

mRMR [ DT 0.6821 0.8226 | 04908 | 05422 | 04038 | 08201 04645 | 05145
RF 0.7791 0.8156 | 03258 | 05297 | 04967 | 08233 | 05213 | 05264

XGBoost 0.7829 | 08097 | 0.2521 05129 | 03472 | 08400 | 03882 | 0.5207

AdaBoost 0.8038 | 0.8053 | 00233 | 04997 | 04787 | 08340 | 05285 | 0.5384

Bagging 07528 | 08144 | 03673 | 05254 | 04689 | 08263 | 05059 | 0.5280
LDA 0.8086 | 08358 | 04645 | 05886 [0.8323(2)| 0.8418 | 0.4845 |0.6083(3)

LogR 0.8112(2)| 08319 | 04345 | 05786 | 07979 | 08166 | 03122 | 05339

KNN 0.8039 | 08199 | 03378 | 05440 | 07979 | 0.8061 0.1271 0.5021

NB 0.2811 0.8516 | 03413 | 05185 [ 05897 | 08573 [0.5898(3) 0.5911

Original | DT 07378 | 08438 | 05492 | 05967 | 06953 | 08187 | 04626 | 0.5335
RF 0.8089 | 0.8255 | 03847 | 05606 | 0.8021 0.8058 | 00813 | 0.5013

XGBoost 0.8039 | 08386 | 04870 | 05953 | 07909 | 08135 | 02903 | 0.5246

AdaBoost 0.8073 | 0.8380 | 04800 | 05942 [ 07979 [ 08133 | 02699 | 0.5241

Bagging 0.8025 | 0.8312 | 04389 | 05756 | 0.7880 | 0.8091 02356 | 05113
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To further verify the effectiveness of the proposed hybrid CBTFS method, this paper extends
its analysis beyond the comparison of the four typical filtered methods listed in Table 7.
Additionally, a comparative evaluation is conducted by using three commonly utilized intel-
ligent algorithms, genetic algorithm (GA), whale optimization algorithm (WOA), and particle
swarm optimization (PSO). At the same time, two real-world credit datasets including CUP
credit dataset and the Kaggle credit dataset are used. The results of the five FS methods in
two datasets are listed in Table 8, with the best results in bold to represent the optimization
impact of each method.

Table 8. Comparison of the proposed CBTFS model and other evolutionary algorithm FS methods

FS Classification The CUP dataset The Kaggle dataset
methods | Methods ACC | Precision| G-mean | AUC ACC | Precision| G-mean | AUC
LDA 0.6282 ]0.9215(3)| 0.6830 0.6911 0.4093 ]0.9167(3)| 0.5110 (0.5914(3)
LogR 0.6029 10.9223(2)| 0.6685 0.6808 0.3322 10.9420(2)| 0.4174 0.5680
KNN 0.6136 0.9106 0.6649 0.6720 0.4036 0.8201 0.4815 0.5150
proposed | DT 06777 | 0.8847 | 0.6594 | 06602 | 05782 | 08356 | 0.5525 | 0.5541
Method RF 0.7051 ]0.9246(1)|0.7282(1)|0.7294(1)| 0.5692 0.8575 0.5854 0.5862

(CBTFS) | XGBoost | 0.7186 | 0.9136 [0.7192(3)[0.7195(3)| 0.6803 | 0.8557 |0.5969(1)|0.6085(1)
AdaBoost | 0.7186 | 0.9148 [0.7209(2)[0.7213(2)] 0.6190 | 0.8558 [0.5935(2)[0.5949(2)
Bagging | 0.7153 | 09022 | 07004 | 07010 | 0.6224 | 0.8270 | 05282 | 0.5437
Average | 0.6725 | 0.9117 | 0.6930 | 0.6969 | 0.5267 | 0.8638 | 0.5333 | 0.5702

LDA 0.4738 | 0.8632 | 0.5230 | 0.5658 | 04770 | 0.9060 | 0.4941 0.4971

LogR 0.7566 | 0.8375 | 0.5087 | 0.5847 | 0.6438 | 0.9122 | 04967 | 0.5197

KNN 0.8008(2)( 0.8048 | 0.0279 | 0.4982 | 0.9072 | 0.9072 | 0.0000 | 0.5000

DT 0.4404 | 0.8083 | 0.2795 | 0.4932 | 0.3442 | 0.8879 | 03121 0.4747

GA RF 0.5655 | 0.8214 | 04408 | 05183 | 0.1203 | 0.9002 | 0.1270 | 0.4980

XGBoost 0.6842 | 0.8193 | 03715 | 05250 | 0.1960 | 0.9162 | 0.3186 | 0.5091
AdaBoost |0.8053(1)| 0.8053 | 0.0000 | 0.5000 | 0.9037 | 0.9075 | 0.0457 | 0.5020
Bagging 04556 | 0.8155 | 0.3781 0.5168 | 03147 | 0.9029 | 0.3336 | 0.5097
Average 0.6227 | 0.8219 | 0.3161 0.5252 | 04883 | 0.9050 | 0.2659 | 0.5012

LDA 04719 | 0.8492 | 0.5287 | 05526 | 0.5753 (0.9489(1)( 0.5187 | 0.6194

LogR 0.7846 | 0.8171 0.3317 | 0.5343 | 0.6382 | 09134 | 0.5054 | 0.5244

KNN 0.7720 | 0.8078 | 0.1214 | 05053 | 0.9072 | 0.9072 | 0.0000 | 0.5000

DT 0.5024 | 0.7928 | 0.3302 | 0.4710 | 0.2976 | 0.8821 0.3305 | 0.5141

WOA RF 04186 | 0.8350 | 04325 | 05137 | 0.1224 | 09126 | 0.1653 | 0.5001

XGBoost 0.5681 0.8277 | 0.4447 | 0.5300 | 0.3269 | 0.9071 0.4225 | 0.5059
AdaBoost |0.8053(1)| 0.8053 | 0.0000 | 0.5000 | 0.9072 | 0.9072 | 0.0000 | 0.5000
Bagging 0.5408 | 0.7963 | 0.3734 | 04724 | 0.2163 | 0.8874 | 03325 | 0.4907
Average 0.6079 | 0.8164 | 0.3203 | 0.5099 | 04988 | 0.9082 | 0.2843 | 0.5193

LDA 0.6287 | 0.8287 | 0.4960 | 0.5487 | 0.1987 | 0.9071 0.3168 | 0.4973

LogR 0.7738(3)[ 0.8120 | 0.2978 | 0.5193 | 0.7588 | 0.9105 | 0.4208 | 0.5160

KNN 0.7486 | 0.8135 | 0.3010 | 0.5211 0.9072 | 0.9072 | 0.0000 | 0.5000

DT 0.4148 | 0.7302 | 0.3661 0.4840 | 0.3707 | 0.9128 | 0.4185 | 0.5044

PSO RF 0.4495 | 0.7660 | 04354 | 05353 | 0.1040 | 0.9218 | 0.1072 | 0.5001

XGBoost 0.6389 | 0.8258 | 0.3851 0.5276 | 0.5066 | 0.9129 | 0.4069 | 0.5094
AdaBoost 0.6868 | 09114 | 0.7015 | 0.7023 | 09064 | 0.9073 | 0.0370 | 0.5007
Bagging 0.6995 | 0.9016 | 0.6927 | 0.6930 | 0.1782 | 0.8798 | 0.3023 | 0.4845
Average 0.6300 | 0.8236 | 04594 | 05664 | 04913 | 0.9074 | 0.2511 0.5015
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As can be seen from Table 8, three interesting results can be found below.

First, the proposed hybrid CBTFS methodology consistently outperforms other intelligent
FS methods, including GA, WOA, and PSO, across different metrics such as ACC, Precision,
G-mean, and AUC. Mean value comparisons further demonstrate the superiority of the CBTFS
method over other intelligent algorithms. The possible reason is that the CBTFS method en-
hances the accuracy and stability of FS by integrating multiple strategies, leading to superior
performance across various metrics.

Second, the performance of the RF, AdaBoost, and XGBoost classifiers within the CBTFS
framework generally exceeds that of other FS methods. The possible reason is that these
ensemble classifiers inherently possess strong generalization capabilities and can capture
complex patterns. The CBTFS framework further enhances their performance by efficiently
selecting some typical features that excel across various datasets and metrics.

Finally, although the CBTFS method excels in most metrics, its ACC performance is rela-
tively lower, likely due to data imbalance that results in the misclassification of some cred-
itworthy samples. Nevertheless, the CBTFS method averages better than other intelligent FS
algorithms.

Overall, the proposed hybrid CBTFS method outperforms other FS methods across various
evaluation metrics. In both the CUP and Kaggle datasets, the ensemble classifier based on
CBTFS achieves superior results compared to traditional FS methods in terms of ACC, G-mean,
and AUC. However, the individual classifier utilizing CBTFS demonstrates better Precision
than traditional FS methods. This phenomenon can be attributed to two reasons. First, the
hybrid CBTFS method employs an advanced FS process that captures relevant data attributes,
thereby enhancing model accuracy and robustness. Second, while the ensemble classifier
excels in ACC, G-mean, and AUC by leveraging multiple models, individual classifiers achieve
higher Precision by focusing on accurately identifying specific instances. This underscores the
effectiveness of the CBTFS method in high-dimensional credit datasets.

5.2.3. Comparison of ablation experiments

A well-designed credit risk classification model must have components that are both essential
and compatible. To further validate the effectiveness of the proposed CBTFS methodology,
ablation experiments are conducted. These experiments assess the key components to verify
the structural integrity of the CBTFS method. Additionally, to present the experimental results
clearly, Table 9 displays the average performance of the eight classifiers, with the best results
highlighted in bold to emphasize the optimization effects of each method. For detailed per-
formance metrics of each classifier, please refer in Appendix.

As can be seen from Table 9, some interesting results can be found below.

First, from an overall perspective, the proposed CBTFS method is generally considered
to be reasonable since the exclusion of any module can adversely affect the performance.
In most cases, the CBTFS method proposed in this paper achieves best performance, which
further highlights that the CBTFS method proposed in this paper is effective.

Second, the poorest performance occurs when only IMST (i.e, w/o AdaBoost, RF, and
XGBoost) is used for FS, excluding AdaBoost, RF, and XGBoost. This may be due to IMST's
inability to adequately account for feature interactions, leading to unresolved feature redun-
dancy issues.
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Table 9. Comparison of ablation experiments

The CUP dataset The Kaggle dataset
FS methods — —
ACC [Precision| G-mean AUC ACC [Precision| G-mean AUC
Proposed CBTFS 0.6725 | 0.9117 | 0.6930 | 0.6969 | 0.5267 | 0.8638 | 0.5333 | 0.5702

w/o AdaBoost, RF,
and XGBoost

w/o IMST, RF,

and XGBoost

w/o IMST, AdaBoost,
and XGBoost

w/o IMST, AdaBoost,
and RF

04170 | 0.7739 | 0.3524 | 04983 | 0.5652 | 0.8147 | 0.3104 | 0.5066

0.6520 | 0.9062 | 0.6752 | 0.6801 | 0.4834 | 0.8882 | 0.5542 | 0.5907

0.6551 | 0.9000 | 0.6693 | 0.6730 | 0.4312 | 0.8981 | 0.5159 | 0.5833

0.6878 | 0.9008 | 0.6849 | 0.6867 | 0.5117 | 0.8800 | 0.5652 | 0.5167

Third, when only AdaBoost (i.e., w/o IMST, RF, and XGBoost) is used, excluding IMST, RF,
and XGBoost, the performance surpasses that of using only RF and IMST. That is, AdaBoost
effectively addresses feature importance and enhances weak classifiers through a weighting
mechanism. Although performance decreases with only XGBoost (i.e., w/o IMST, AdaBoost,
and RF), it provides the best results in the ablation experiments. This is slightly lower than
CBTFS, likely due to the absence of diversity and complementary information from other
methods.

Finally, CBTFS outperforms on the CUP dataset compared to the Kaggle dataset, possibly
because the features of CUP dataset are more compatible than those of Kaggle dataset within
the CBTFS framework. Meanwhile, the performance of the CBTFS method is observed to be
slightly lower than that of other post-ablation methods in the ablation experiments. This may
be attributed to the higher levels of noise and redundancy among features in the Kaggle da-
taset, which hinder the CBTFS model’s ability to effectively extract useful information. In con-
trast, the CUP dataset exhibits greater compatibility among features, enabling CBTFS to lever-
age its strengths and enhance performance. Overall, the ablation experiments further confirm
that the proposed CBTFS method can achieve better results than other alternative methods.

5.2.4. Statistical test results on the two datasets

In this Section, a significance test was conducted to compare the performance differences
among various models. The paired sample t-test and Wilcoxon test were used to assess dis-
crepancies between the CBTFS model and four traditional FS methods across ACC, Precision,
G-mean, and AUC, as shown in Tables 10 and 11.

From Table 10, the CBTFS method significantly outperforms the traditional FS methods
in ACC, Precision, G-mean, and AUC at the 5% significance level in the CUP dataset. In the
Kaggle dataset, most metrics for CBTFS also show significant differences compared to the
traditional FS methods. Notably, results for ACC and G-mean differ markedly from the mRMR
FS model, likely due to data imbalance trait of Kaggle dataset. To address this issue, minority
classes were augmented by using Synthetic Minority Oversampling Technique (SMOTE) and
Edited Nearest Neighbor (ENN) methods. The results confirm CBTFS's substantial advantage
over other methods in both datasets, with generally higher evaluation metrics. This demon-
strates CBTFS's superior performance and sorting abilities with minimal impact on accuracy.



Technological and Economic Development of Economy, 2025, 31(6), 1687-1719

Table 10. Results of paired t-test (p-value) for comparison of five evaluation metrics

Metrics CBTFS vs VAR CBTEFS vs Relief CBTEFS vs ReliefF CBTFS vs mRMR
ACC -2.2210" -6.0010™" -3.5050™" -3.8700™"
Precision 11.6700™" 8.7340™ 9.2110™ 16.5720™"
G-mean 10.5990™ 4.7390™ 4.2950™ 7.3610™
AUC 11.9790™ 4.6390™ 4.4490™ 10.6880™"

Metrics CBTFS vs VAR CBTEFS vs Relief CBTEFS vs ReliefF CBTFS vs mRMR
ACC -4.9390™ -5.0130™ -49110™ 1.2090
Precision 3.7110™ 3.2830™ 4.3860™ 2.8720™
G-mean 3.7810™ 5.0010™" 4.0050™ 1.0530
AUC 3.0010 4.1890™ 3.9800™ 3.5450™"

Note: * represents significance at the 10% level. ** represents significance at the 5% level. *** represents
significance at the 1% level.

Similarly, the Wilcoxon test is a nonparametric statistical method that effectively compares
the median differences between two related sample groups, making it particularly suitable for
data that do not follow a normal distribution. Therefore, the Wilcoxon test is employed in this
paper to further validate the usefulness and stability of the CBTFS method. The significance of
this test for the performance metrics of the CBTFS models on the CUP and Kaggle datasets
is presented in Table 11.

The null hypothesis for each metric, as shown in Table 11, is that no performance dif-
ference exists between the two methods. Significance levels are established at 1%, 5%, and
10%. The null hypothesis is rejected when the p-values fall below these thresholds. It is shown
in Table 11 that most p-values for ACC, Precision, G-mean, and AUC are below 1% (i.e., the
presence of 3 stars *** significantly), with only a few insignificant p-values indicated in bold.
This demonstrates that significant differences exist between the CBTFS method and the four
traditional FS methods, demonstrating that the CBTFS method outperforms these alternatives
in high-dimensional credit datasets.

5.3. Summarizations

By comparing the results of all models in Tables 3—11 and Figures 2-5, the proposed hybrid
CBTEFS technique can effectively solve the high dimensionality issue in credit risk dataset
and improve AUC, ACC, Precision, and G-mean of the credit classification models, therefore
minimizing possible loss for financial institutions.

In terms of the empirical results of the above two experiments, three main conclusions
can be drawn below.

(1) The proposed hybrid CBTFS method can improve classification performance greatly in
both credit datasets. There are some differences in the findings obtained from these
two credit datasets, which may be mainly due to the inconsistency in the structural
characteristics of these two datasets. Generally, the overall performance of the pro-
posed hybrid CBTFS method is better than that of other traditional FS methods, as
shown in Table 5. It can also address the high dimensionality issue well in credit risk
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()

(3)

assessment. However, by comparing the predictive results when the top 10 %, 20%
and 30% features are selected, the principle of “the more features, the better perfor-
mance” does not hold.

The proposed hybrid CBTFS method is an effective method to enhance general per-
formance and address the high-dimensional data issue. The comparison between the
proposed hybrid CBTFS method and other widely used intelligent algorithms dem-
onstrates its superior performance relative to alternative intelligent methods. Further-
more, FS is necessary after feature construction to improve the classification perfor-
mance when facing the high-dimensional data issue.

Compared with all the different single classification methods (linear and non-linear)
and ensemble classification methods, the proposed hybrid CBTFS method with linear
classifiers and ensemble classifiers perform the best when hybrid CBTFS is applied to
FS. For financial institutions, this means that the risk of financial losses can be mini-
mized.

Table 11. Results of non-parametric Wilcoxon test for evaluation metrics on two datasets

. The CUP dataset The Kaggle dataset

Metrics FS

VAR | Relief | ReliefF | mRMR |Proposed| VAR | Relief | Relieff mRMR [ Proposed

VAR - [-0.6520/-0.3560 | -1.5990 | -1.7180" | - |-0.2960| —1.8360" |-2.6660"" | —2.6680""

Relief - - -0.0590 | -1.2600 | -2.668™" | - - -1.1250 [-2.6660™" [ -2.6680""

AcC ReliefF - - - -0.2960 |-2.4290™"| - - - -2.6660™" | -2.6680""

mRMR | - - - - -2.6660"| - - - - -1.2440

FS VAR | Relief | ReliefF | mRMR |Proposed| VAR | Relief | ReliefF mRMR [ Proposed

VAR - [-0.1400(-1.0070 [-2.6660""|-2.6660""| - |-0.1780|-2.6660"" | -2.3740"" | -2.6680""

Precision | Relief - - |-2.0730"[-2.6700""|-2.6660""| - - -1.5990 |-2.3100" | -2.6660"

ReliefF - - - —-2.6660""|-2.6660""| - - - —-2.6660™" | -2.6660™"

mRMR | - - - - -2.6660™"| - - - - —-2.4290™

FS VAR | Relief | ReliefF | mRMR |Proposed| VAR | Relief | ReliefF mRMR | Proposed

VAR - [-0.0590/-0.1780 [-2.6660""|-2.6660""| - |-0.6520( -0.2960 | -2.310™ | -2.5470™

G-mean | Relief - - -1.1250 [-2.6660™"| -2.5470™ | - - -1.1250 | -2.310™ | -2.6660""

ReliefF - - - —2.5470™ | -2.5470™| - - - -2.310" | -2.6660™"

mRMR | - - - - -2.6660""| - - - - -1.0070

FS VAR | Relief | ReliefF | mRMR |Proposed| VAR | Relief | ReliefF mRMR | Proposed

VAR - [-0.2960/-0.8890 | -25470™ |-2.6660"| - |-0.5330( -1.7790" | -0.1780 | -2.3100™

AUC | Relief - - [-1.9550"[-2.6660""| -2.5470"| - - -0.1400 | -0.8890 | -2.5470™

ReliefF - - - -2.5470" | -2.5470™| - - - -0.7700 | -2.5470™

mRMR | - - - - -2.6660""| - - - - -2.3100™

Note: * represents significance at the 10% level. ** represents significance at the 5% level. *** represents
significance at the 1% level.



Technological and Economic Development of Economy, 2025, 31(6), 1687-1719 1713

6. Conclusions and future directions

In this paper, a hybrid clustering and boosting tree-based feature selection (CBTFS) method
is proposed for high-dimensional credit risk classification. Given the high-dimensional data
features, an improved minimum spanning tree (IMST) model is first employed to remove
redundant and irrelevant features. Subsequently, three embedded feature selection meth-
ods — RF, XGBoost, and AdaBoost — are used to further improve the efficiency of feature
ranking. Thus, a hybrid CBTFS method is proposed to address the high-dimensional problem
of credit datasets.

For validation and comparison, two credit datasets and three types of classifiers are used
to test the effectiveness of the proposed method. The results reported in both experiments
clearly show that the hybrid CBTFS method can improve classification performance and sig-
nificantly outperforms the other algorithms listed in this study. The empirical results indicate
that the proposed hybrid method can effectively solve the high-dimensional feature dataset
problem in credit risk assessment, suggesting that the proposed CBTFS method provides a
promising solution for high-dimensional credit risk assessment.

Moreover, the study provides valuable insights for credit risk management, particularly
in addressing high-dimensional data challenges in financial institutions through the innova-
tive CBTFS method. By prioritizing relevant features and minimizing redundancy, the CBTFS
method improves the performance of credit risk assessments, reduces defaults, and enhances
financial stability. Its scalability makes it especially valuable for global institutions handling
diverse high-dimensional datasets. At the same time, the study also emphasizes the impor-
tance of continuously refining feature selection methods to keep pace with evolving credit
risks. Integrating advanced techniques like CBTFS into risk management frameworks can help
anticipate threats and improve data processing. The adoption of CBTFS strengthens credit risk
models, enhances risk-adjusted returns, and promotes equitable lending practices. In sum-
mary, the CBTFS method offers both technical and strategic advantages, reinforcing decision-
making and financial resilience in credit risk management.

Although the CBTFS method effectively addresses feature redundancy and irrelevance, but
several aspects require further research. First, some novel techniques should be developed
to handle high-dimensional datasets with limited sample sizes, ensuring robust performance
despite small data volumes. Second, enhancing model predictive power through data-trait-
driven modeling, which tailors feature selection to specific data traits, is a promising direction.
Third, testing the method on more diverse real-world datasets will validate its effectiveness
and robustness in various contexts. Finally, exploring CBTFS applications in different domains
like fraud detection, peer-to-peer lending, and credit rating will demonstrate its versatility
and broader impact. In summary, CBTFS represents a significant advancement in credit risk
classification with high dimensionality, offering a robust solution for financial analytics and
paving the way for future research and applications.
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APPENDIX

Table A1 presents the complete details of the ablation experiment. It provides a clear overview
of each component after ablation, ensuring easy comprehension for the reader.

Table A1. Comparison of ablation experiments

FS Classification The CUP dataset The Kaggle dataset

methods Methods ACC Precision | G-mean AUC ACC Precision | G-mean AUC
LDA 06282 |0.9215(3)| 06830 | 06911 | 04093 | 09167 | 05110 | 0.5914

LogR 06029 |0.9223(2)| 06685 | 06808 | 03322 |0.9420(1)| 04174 | 0.5680

KNN 06136 | 09106 | 06649 | 06720 | 04036 | 08201 | 04815 | 05150

DT 06777 | 08847 | 06594 | 06602 | 05782 | 0.8356 | 0.5525 | 0.5541

Prgé’T";;d RF 0.7051 |0.9246(1)|0.7282(1)|0.7294(1)| 05692 | 0.8575 | 0.5854 | 0.5862
XGBoost  |0.7186(2)| 09136 |0.7192(3)|0.7195(3)|0.6803(3)| 0.8557 |0.5969(3)|0.6085(2)

AdaBoost  |0.7186(2)| 09148 |0.7209(2) |0.7213(2)| 06190 | 0.8558 | 05935 | 0.5949

Bagging 0.7153(3)| 09022 | 07004 | 07010 | 06224 | 0.8270 | 05282 | 0.5437

Average 06725 | 0.9117 | 0.6930 | 0.6969 | 05267 | 08638 | 05333 | 0.5702

LDA 02684 | 08363 | 03149 | 05069 | 05922 | 0.7906 | 0.4040 | 0.4883

LogR 05200 | 0.8408 | 05376 | 05541 |0.7550(2)] 0.8080 | 0.3079 | 0.5188

KNN 05940 | 0.8277 | 05372 | 05459 | 02165 | 0.8202 | 0.1613 | 0.5010

w/o Dy 0.5604 | 07991 | 04362 | 04792 | 06245 | 0.7985 | 03274 | 0.4962
A‘;E,B::St' RF 04246 | 07746 | 04495 | 04608 |0.7874(1)| 07999 | 0.1113 | 0.4973
XGBoost | XGBoost 02143 | 06381 | 00778 | 04973 | 03506 | 0.8754 | 03638 | 0.5316
AdaBoost 02036 | 07030 | 00772 | 05018 | 05425 | 0.8284 | 04444 | 0.5250

Bagging 05514 | 07719 | 03894 | 04405 | 06529 | 07968 | 03636 | 0.4953

Average 04170 | 07739 | 03524 | 04983 | 05652 | 0.8147 | 03104 | 0.5066

LDA 05627 | 09140 | 06361 | 06539 | 04108 |0.9289(3)| 05131 | 0.5990

LogR 05963 | 09191 | 06613 | 06737 | 04159 | 09270 | 05183 | 0.6002

KNN 06103 | 08995 | 06516 | 06562 | 03784 | 08794 | 04737 | 0.5569

w/o IMST, | DT 0.6635 | 0.8838 | 06521 | 06528 | 05320 | 08526 | 0.5680 | 0.5722
RF,and |RF 06952 | 09135 | 07081 | 0.7087 | 05105 | 0.8853 | 0.5843 | 0.6045
XGBoost [ xGBoost 07147 | 09045 | 07024 | 07031 | 05819 | 0.8800 |0.6174(1)| 0.6012
AdaBoost 06767 | 09162 | 07029 | 07047 | 0.4870 | 0.8853 | 0.5685 | 0.5966

Bagging 06969 | 08993 | 06878 | 06883 | 05513 | 08671 | 05907 | 0.5955

Average 06520 | 09062 | 06752 | 06801 | 04834 | 08882 | 05542 | 0.5907

LDA 05754 | 09020 | 06352 | 06459 | 03685 |0.9299(2)| 04649 | 0.5802

LogR 05911 | 09111 | 06518 | 06627 | 03644 | 09290 | 04598 | 0.5778

KNN 06357 | 08951 | 06581 | 06597 | 03226 | 09017 | 04048 | 0.5490

w/o IMST, o7 06783 | 08794 | 06484 | 06505 | 04981 | 08596 | 05593 | 0.5729
Adzi‘(’fst RF 06814 | 09098 | 06970 | 06979 | 04527 | 0.8998 | 0.5480 | 0.5971
XGBoost | XGBoost 07072 | 08979 | 06889 | 06900 | 05063 | 0.8862 | 0.5821 | 0.6040
AdaBoost 06782 | 09117 | 06981 | 06992 | 04391 | 09008 | 05365 | 0.5927

Bagging 06936 | 08937 | 06774 | 06784 | 04985 | 0.8782 | 05724 | 05933

Average 06551 | 09000 | 06693 | 06730 | 04312 | 0.8981 | 05159 | 0.5833

LDA 06597 | 09072 | 06840 | 06856 | 04229 | 09211 | 05251 | 0.6002

LogR 06439 | 09110 | 06805 | 06841 | 04324 | 09212 | 05346 | 0.6044

KNN 06556 | 0.8962 | 06679 | 06685 | 0.4227 | 0.8683 | 05135 | 0.5621

w/o IMsT, | DT 06983 | 08823 | 06581 | 06615 | 05527 | 08414 | 05598 | 0.5603
AdaBoost, |RF 07088 | 09047 | 07009 | 07012 | 05441 | 0.8778 | 0.5927 |0.6068(3)
and RF [ XGBoost 0.7237(1) | 08971 | 06927 | 06948 | 06169 | 0.8656 |0.6101(2)0.6108(1)
AdaBoost 06980 | 09143 | 07103 | 07110 | 05165 | 0.8854 | 05879 | 0.6065

Bagging 07144 | 08943 | 06850 | 06869 | 05857 | 08592 | 05930 | 0.5935

Average 0.6878 | 090008 | 06849 | 06867 | 05117 | 0.8800 | 0.5652 | 0.5167




