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1. Introduction

Credit risk assessment has become a prominent topic for both academic researchers and 
business practitioners (Yu et al., 2022). The main aim of credit risk evaluation is to predict 
whether an applicant will default in the future. Misclassifying bad credit as good credit is 
particularly problematic, as it can lead to significant economic losses for banks and other 
financial institutions. Therefore, developing an effective credit risk assessment model is es-
sential to minimize potential losses. Over recent decades, various credit classification models 
have been employed, which is categorized into traditional methods and artificial intelligence 
(AI) methods.

Traditional methods, such as k-nearest neighbor (k-NN), linear discriminant analysis (LDA) 
(Huang et al., 2022), and decision trees (DT), have been widely used in credit risk assessment 
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by financial institutions. However, these methods rely on certain assumptions about feature 
variables, which can hinder improvements in model accuracy. Consequently, AI-based models, 
including support vector machines (SVM) (Maldonado et al., 2017), artificial neural networks 
(ANN) (Costea et al., 2017), genetic algorithms (GA) (Norat et al., 2023), clustering learning 
(Baser et al., 2023), and deep learning (Gunnarsson et al., 2021), have been introduced. Com-
pared to traditional methods, AI techniques effectively handle large-scale, nonlinear prob-
lems. Beyond individual models, ensemble and hybrid models, which offer higher accuracy 
than individual models, are utilized in credit risk assessment (Belás et al., 2018; Gonçalves 
et al., 2016). These models combine the strengths of various classifiers to enhance perfor-
mance. Typical ensemble learning techniques such as AdaBoost (Sankhwar et al., 2020), XG-
Boost (Yun et al., 2021), Bagging (Niu et al., 2020), and Random Forest (RF) (Rao et al., 2020) 
are widely applied in many different areas.

The studies indicated that no single classification model can consistently perform well 
across all datasets, primarily due to the inherent traits of the data. Real-world credit datasets 
exhibit traits such as data sparsity, class imbalance, data scarcity, and high dimensionality 
(Zhang & Yu, 2024). High dimensionality in credit datasets often results in increasing compu-
tational complexity and can exacerbate the “curse of dimensionality”. The existing solutions 
are primarily categorized into feature selection (FS) (including filter, wrapper, and embedded 
methods) and feature extraction (FE). For example, a novel credit risk assessment model is 
proposed by using a hierarchical attention method to enhance important features, integrate 
multi-view data, and manage feature acquisition costs for improved performance (Liu et al., 
2024). Additionally, an improved multilayer restricted Boltzmann machine (RBM) FE method is 
proposed to address high-dimensional issue in credit risk assessment, demonstrating signifi-
cant performance improvements on real-world datasets (Zhu et al., 2024). However, notable 
limitations are observed in current FS and FE methods for high-dimensional data. These tech-
niques are prone to be overfitting, often fail to effectively eliminate redundant features, and 
frequently do not capture the relationships between features in complex credit datasets. As a 
result, the accuracy of the classifier and the quality of decision-making are adversely affected. 
To overcome these challenges, a novel hybrid clustering and boosted tree feature selection 
(CBTFS) method has been proposed, with the aim of improving credit risk assessment by ef-
ficiently addressing high-dimensionality issue, thereby enhancing prediction accuracy.

To address the challenges posed by high-dimensional data in credit risk assessment, a 
novel hybrid CBTFS method is introduced. This approach begins with an improved minimum 
spanning tree model, which efficiently eliminates redundant and irrelevant features. Subse-
quently, three embedded feature selection algorithms – RF, XGBoost, and AdaBoost – are 
employed to identify the highest-ranked features from the aforementioned methods. This in-
tegration aims to formulate an optimal feature set, effectively achieving the goal of “selecting 
the best among the best” and enhancing prediction performance. Furthermore, the proposed 
hybrid CBTFS method is experimentally verified to be an effective solution for addressing 
high-dimensional challenges in credit risk assessment in this paper.

The main contributions of this paper are summarized into two-fold. On the one hand, 
a new framework for credit risk assessment is first proposed, integrating a clustering tech-
nique (i.e., an improved minimum spanning tree (IMST)), and three hybrid feature selection 
methods based on boosted tree modeling. This framework addresses feature redundancy in 
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high-dimensional data through a hybrid CBTFS method, thereby enhancing prediction perfor-
mance. On the other hand, the framework employs improved MST along with several classical 
clustering methods and combines them with three embedded feature selection methods – RF, 
XGBoost, and AdaBoost – to increase feature ranking efficiency and eliminate a significant 
number of redundant features. This hybrid clustering model does not only remove redundant 
and irrelevant features but also aids in setting effective thresholds for MST, thus improving 
the model’s clustering performance. Thus, the proposed hybrid method effectively addresses 
credit risk assessment challenges associated with high dimensionality.

The primary motivation of this paper is to propose a hybrid CBTFS method for credit risk 
assessment with high dimensionality, and attempt to improve the classification predictive per-
formance of high-dimensional sample modeling. The rest of the paper is structured as follows. 
The literature review is described Section 2. Section 3 recommends the components of the 
proposed hybrid CBTFS method in detail. Section 4 presents the experimental study. Section 
5 presents the experimental results by describing performance evaluation and comparative 
analysis. Section 6 concludes the paper and meantime provides guidelines for future work.

2. Literature review

In the big data era, financial institutions increasingly contend with high-dimensional data-
sets due to the vast array of data attributes available from credit applicants. However, these 
datasets often contain redundant and irrelevant features, which can diminish the accuracy of 
classifiers and increase computational complexity. To mitigate these issues, FE (Tsafrir et al., 
2023) and FS (Sun et al., 2015; Zhang et al., 2022) methods are commonly employed. 

FE transforms the original data into a new space by using mathematical techniques, im-
proving training efficiency and predictive accuracy. For example, PCA has been used for 
credit risk classification (Yu et al., 2021), but it can be ineffective when the feature dimensions 
exceed the sample size, leading to a loss of interpretability and data integrity. 

Generally speaking, FS aims to retain essential information while reducing dimensionality 
and is generally categorized into filters, wrappers, and embedded methods. Some advanced 
techniques such as feature clustering and minimum spanning tree (MST) (Liu et al., 2022) 
offer additional dimensionality reduction capabilities. Feature clustering identifies redundant 
features and enhances model interpretability by grouping similar features, using methods 
like Birch, Spectral Clustering (SC) (Yang et al., 2023), K-modes, K-means, K-means++ (Li & 
Wang, 2023), Agglomerative Clustering (AC) (Jáñez-Martino et al., 2023), and K-prototypes 
(Kuo & Wang, 2022). However, these methods face challenges related to similarity measures, 
scalability, and cluster interpretation. MST facilitates dimensionality reduction by identifying 
a minimal subset of edges in a weighted graph that connects all vertices with minimal total 
edge weight. Although algorithms like Kruskal and Prim are computationally efficient, MST’s 
emphasis on edge weight minimization may neglect factors such as reliability and latency, 
and its performance can be sensitive to the accuracy of edge weights. Balancing the strengths 
and limitations of these FS methods is crucial for effective feature selection. Therefore, to en-
hance organization and provide a concise overview of prior research, Table 1 was introduced 
to compare the primary attributes of previous studies, emphasizing their definitions. These 
methodologies are outlined in Table 1, with each category highlighting its unique strengths. 
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Table 1. Typical feature selection methods

Methods Definitions Researches

Filters Feature importance is assessed using 
statistical modeling to identify the most 
relevant features.

Li et al. (2024b); Macedo et al. (2022); 
Maldonado et al. (2017); Ouaderhman et al. 
(2024); Sankhwar et al. (2020)

Wrappers Feature are assessed in conjunction 
with classifier performance.

Chandrashekar and Sahin (2014); Chaudhuri 
(2024); Li et al. (2024a); Zhao et al. (2023); 
Zorarpaci (2024)

Embedded 
methods

The most relevant features are selected 
during model training.

Hu et al. (2023); Kozodoi et al. (2019); Qian 
et al. (2022); Tsai et al. (2021); Zhao et al. 
(2023)

Ensemble 
methods

Integrating feature selection results 
from multiple methods.

He et al. (2018); Osanaiye et al. (2016); Seijo-
Pardo et al. (2017); Song et al. (2013); Tsai 
et al. (2024); Zhang et al. (2015) 

Hybrid 
methods

The methods are combined to enhance 
accuracy and efficiency by statistical 
measures and model-based techniques.

Wang et al. (2018b); Naseriparsa et al. (2013); 
Pashaei and Pashaei (2022); Sahu and Dash 
(2024)

In summary, FE and FS, including feature clustering and MST, are critical for managing 
high-dimensional data. These methods effectively reduce dimensionality, eliminate redun-
dancy, and enhance model performance, although they encounter challenges related to inter-
pretability, scalability, and accuracy. Existing FS and feature clustering methods in credit risk 
assessment reveal several significant issues. First, these techniques are prone to be overfitting 
and can be time-consuming, necessitating rigorous validation, particularly in high-dimen-
sional contexts – an area often overlooked in previous research. Second, current methods 
often fail to eliminate redundant and irrelevant features in high-dimensional datasets, which 
adversely affects classifier accuracy. Financial institutions frequently encounter credit datas-
ets characterized by sparsity and class imbalance, where irrelevant features introduce noise 
and obscure meaningful patterns. Traditional FS methods struggle to capture the complex 
relationships among features, underscoring the need for advanced methods that effectively 
identify essential features while discarding those that do not contribute to predictive power. 
Finally, many feature clustering methods encounter challenges related to scalability and clarity 
in cluster formation, complicating the analysis of complex credit datasets. Although tech-
niques such as K-means and MST are capable of grouping similar features, their significance 
is often not conveyed clearly, which hinders informed decision-making in credit risk assess-
ment. Therefore, the development of clustering methods that effectively scale and provide 
clear insights is essential for improving these outcomes. To address these challenges, this 
paper proposes a hybrid CBTFS method. This methodology includes a preprocessing phase, 
utilizes multiple feature clustering methods along with the IMST for initial FS, and employs 
powerful boosting trees for further refinement. The effectiveness of this method is assessed 
by using high-dimensional credit datasets and relevant evaluation criteria.
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3. The proposed hybrid CBTFS method

In this section, a hybrid CBTFS paradigm is proposed to address the high dimensionality 
challenge in credit classification. The general framework of the proposed method is illustrated 
in Figure 1. 

As can be seen from Table 1, this hybrid method incorporates the IMST model, which is 
designed to reduce computational time within a hybrid CBTFS structure. At the same time, 
three advanced boosting tree algorithms – RF, XGBoost, and AdaBoost – are employed due 
to their robust learning capabilities and their use of feature importance techniques to select 
valuable feature information effectively. This combination is intended to enhance processing 
efficiency and improve the quality of feature selection, ultimately leading to superior clas-
sification performance.

As shown in Figure  1, four main stages, preprocessing and partitioning data, cluster-
ing based feature selection, boosting tree-based feature selection, and final output results 
are included. To clearly articulate the details of the hybrid CBTES method, the operational 
steps of the proposed hybrid CBTFS can be presented by Algorithm 1. Furthermore, detailed 
description of the four stages and models used are given in the following Sections 3.1–3.4, 
respectively.

Algorithm 1 The proposed hybrid CBTFS method

1: Input: high dimensional credit datasets
2: Output: optimal feature subset
3: Procedure hybrid CBTFS
4:     Stage 1: Preprocessing and partitioning data
5:         for data preprocessing do
6:         The mean imputation and standardization of data
7:         Divide into training set and testing set
7:         end for
8:     Stage 2: Clustering based feature selection
9:         for multiple clustering models do 
10:       Choosing multiple clustering models for ensemble
11:       Generating optimal clusters using the DBI model 
12:       Generating clustering results p*(D) using the consistency function
13:       end for
14:       for improved minimum spanning tree clustering model do
15:       Constructing the Minimum Spanning Tree (MST) Network
16:       Disconnect the node and set the threshold τ
17:       Obtaining multiple feature subsets 
18:       end for
19:       end for
20:   Stage 3: Boosting tree-based feature selection 
21:       Three boosting trees were employed to evaluate feature importance
22:       Obtaining optimal subset of features for each case.
23:       end for
24:   Stage 4: Final output results
25:       The results from the Stage 3 form the new optimal subset
26:       Classification by classifiers
27:       end for
28: end procedure
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3.1. Preprocessing and partitioning data

In this Section, the dataset was split into training and testing sets in an 80/20 ratio (He et al., 
2018). First, the mean is employed to impute missing values in the dataset. Second, the credit 
dataset is processed by using normalization techniques, where the credit dataset is mapped 
to a range between 0 and 1, as shown in Equation (1) below.

Figure 1. General framework for a hybrid CBTFS method
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where xi and *
ix  represent the values before and after the normalization of the sample data, 

respectively. xmin and xmax denote the minimum and maximum values in the sample data, 
respectively. 

Finally, the Synthetic Minority Oversampling Technique (SMOTE) and Edited Nearest 
Neighbor (ENN) methods were used to balance the two classes (Xie et al., 2019). Experiments 
were conducted ten times to obtain average prediction results.

3.2. Clustering based feature selection

This section outlines how combining multiple clustering models with IMST leverages their 
strengths to select the most informative and least redundant features. Feature clustering, 
unlike conventional methods, reduces dimensionality to enhance model efficiency and speed 
while mitigating overfitting. It groups related features to aid in feature engineering, creating 
more relevant and informative features, and improves model performance by eliminating 
redundancy and highlighting key patterns. This method is essential for achieving high classifi-
cation accuracy in complex, high-dimensional datasets, as detailed in Subsections 3.2.1–3.2.2.

3.2.1. Multiple clustering models for feature selection

To mitigate the bias introduced by using a single clustering algorithm in feature selection, a 
technique integrating multiple clustering algorithms is proposed. This approach consists of 
three primary steps.

Step 1: Selecting multiple clustering models for the ensemble. In this paper, seven clus-
tering models (SC, K-means++, AC, Birch, K-prototypes, K-means, and K-modes) are applied 
to the training datasets to obtain the optimal clustering subsets, denoted as pn–k, where n is 
the number of models and k is the number of clusters. 

Step 2: Optimal clusters are generated by using the Davies-Bouldin Index (DBI) model 
(Ros et al., 2023). The DBI, which measures the average maximum similarity within clusters, is 
used to formulate multiple optimal clusters. These clusters are combined into a base cluster-
ing, denoted as p*. The value of k in pn–k is determined by the DBI model. For n-dimensional 
points, let Ci represent a cluster, and Xj denote an n-dimensional feature vector assigned to 
cluster Ci.
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where Ai represents the centroid of cluster Ci, and Ti denotes its size. Si is the qth root of the 
qth moment of the points in cluster Ci about the mean. Typically, p is set to 2, making this 
distance a Euclidean metric. It is crucial that the distance metric used aligns with that of the 
clustering algorithm to ensure meaningful results.
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where Mi,j quantifies the separation between clusters Ci and Cj. In the n-dimensional centroid 
Ai, ak,i denotes the kth element, where k indexes the data features, with n elements in total. 
The effectiveness of the clustering scheme is evaluated by Rij, which maximizes Mi,j and min-
imizes Si, the scatter within cluster Ci. The DBI is then calculated as the ratio of Si to Mi,j, as 
shown in the following Equation.
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where Si or Sj denotes the diameter of the class i or j, Mij denotes the distance between the 
centroid of class i and j. Through the above formula, the maximum value max( )i ijR R=  is 
selected from ( ) ijR i j≠ , the value of the largest similarity in the similarity between class i 
and other classes. Finally, the mean of these maximum similarities for each class is calculated 
to obtain the DBI value.
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where N represents the number of classes. The smaller the DBI value, the better the cluster-
ing results.

Step 3: Clustering results p*(D) are generated by using a consistency function. Co-matrix-
based methods are currently the most effective consistency functions. The DBI value guides 
the selection of optimal pn–k clusters. Let D represent a dataset, the ith clustering of D, pi 
(D), is defined by: 
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constructed, where each element of the matrix is represented by:
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where M represents the total number of clusters and m denotes a specific cluster within 
the clustering. ( ),i jCO x x  represents the similarity between samples xi and xj, resulting in a 
symmetric similarity matrix. In this matrix, ( )m iv x  denotes the class label of sample xi in the 
base clustering pi, if ( ) ( )m i m jv x v x= , then ( ), 1m i jS x x = , otherwise ( ), 0m i jS x x = . Since CO 
is a co-matrix, it can serve as input for any similarity-based clustering model to generate the 
final clustering result p*(D).

In summary, the three steps outlined above effectively cluster features, it does not only 
enhance dimensionality reduction, interpretability, and model performance, but also deepens 
data understanding, making it a valuable technique for improving data quality and optimizing 
machine learning results.
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3.2.2. Improved minimum spanning tree clustering model for feature selection

The minimum spanning tree (MST) is a fundamental concept in graph theory, widely recog-
nized for its ability to represent relationships within sets of data. The MST algorithm minimiz-
es the total edge weights, a principle analogous to clustering, which groups data points based 
on their similarity. This makes MST effective in capturing data relationships and aiding in 
the process of clustering. However, MST clustering faces some limitations. On the one hand, 
it is sensitive to outliers and noise. On the other hand, it struggles with high-dimensional 
datasets due to the “curse of dimensionality”. To address these limitations, the improved 
MST (IMST) algorithm was developed. IMST leverages the similarity matrix generated by the 
feature clustering model to optimize feature subsets and effectively manage the complexities 
of high-dimensional data clustering. Algorithm 2 is the pseudo-code for the IMST model.

Algorithm 2: Improved Minimum spanning tree clustering model

Input: Weighted connected graph G = (V, E), where V is the vertex set and E is the edge set.
Output: Some small subset of features and a large number of feature subsets;
1.	 Initialization: Vnew = {X}, X is any node in set V, Enew = V;
2.	 Repeat steps 2-4 until V = Enew;
3.	 Select edge (u, v) with the minimum weight in set E, where u Î Vnew and V is not included in Vnew (if 

there are multiple edges that meet the above conditions, then select the edge randomly);
4.	 Add v to Vnew and (u, v) to Enew;
5.	 Obtaining updated Vnew;
6.	 Nodes X are disconnected using pruning technique, resulting in the automatic generation of multiple 

clusters;
7.	 Setting threshold t for dividing into clusters (a small subset of features and a large number of feature 

subsets).

To enhance the clarity and effectiveness of the improved IMST methodology, three key 
improvements are proposed in this paper.

First, pruning technique is introduced to disconnect tree nodes that link clusters, effective-
ly reducing the complexity and improving the performance of the IMST in high-dimensional 
settings. This pruning process ensures that the IMST can identify and separate clusters more 
accurately, even when the data is dense and features are numerous. By isolating clusters that 
are connected through weak links, a clearer and more meaningful clustering structure can 
be obtained.

Second, the IMST method is designed to identify both clusters with many features and 
those with few features. This dual capability is essential for high-dimensional data where 
feature distribution can vary widely. Clusters with a large number of features are treated 
differently than those with fewer features, ensuring that the FS process is balanced and 
comprehensive.

Finally, to address MST’s sensitivity to outliers, a threshold parameter τ is introduced to 
distinguish between majority and minority clusters. Minority clusters, identified as outliers, are 
directly included in the optimal feature subset for the boosting tree-based FS method. This 
inclusion ensures valuable but sparse features are retained. Majority clusters are processed 
by using three robust boosting tree models: RF, XGBoost, and AdaBoost, known for their 
effectiveness in high-dimensional data. Integrating these models can enhance the accuracy 
and robustness of feature selection. 
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The IMST method effectively addresses the challenges of high-dimensional data and out-
liers by employing pruning techniques and a threshold parameter τ. By distinguishing be-
tween majority and minority clusters, IMST ensures the retention of crucial features, thereby 
enhancing the quality of feature selection. The integration of robust boosting tree models, 
such as RF, XGBoost, and AdaBoost, further refines feature subsets, leading to improved 
model accuracy and robustness. These enhancements enable IMST as a powerful tool for FS 
in complex, high-dimensional datasets.

3.3. Boosting tree-based feature selection

Feature selection (FS) is a critical step of machine learning, and three prominent tree-based 
ensemble models – Random Forest (RF), Extreme Gradient Boosting (XGBoost), and Adap-
tive Boosting (AdaBoost) – are particularly effective for this purpose. Each model possesses 
unique strengths that enhance the feature selection process. By integrating these models, 
their combined strengths are leveraged for a robust FS process. Feature importance scores 
are combined in this ensemble method, yielding a more reliable and informative subset of 
features. The balanced feature importance of these methods enhances model accuracy and 
generalizability, making it proficient in handling complex, high-dimensional datasets.

Furthermore, the advantages of RF, XGBoost, and AdaBoost are considered complemen-
tary, rendering them particularly effective for feature selection. Overfitting is reduced and 
feature importance is evaluated through the ensemble method of RF, ensuring that only the 
most relevant features are retained. Accuracy is improved by XGBoost through the sequential 
correction of errors and the incorporation of regularization techniques, which help to main-
tain model performance. The capacity of AdaBoost to focus on misclassified instances enables 
significant features to be highlighted, which might otherwise be overlooked. By leveraging 
the strengths of these three methods, a more reliable and informative subset of features can 
be obtained, ultimately enhancing model accuracy and generalizability.

Connecting the FS process with the results from the previous stage is essential for ensur-
ing a systematic approach. In this integration, the majority feature clusters are input into RF, 
XGBoost, and AdaBoost, enabling these models to select significant features based on their 
importance rankings. This connection does not only facilitate a refined selection process 
but also prioritizes relevant features while maintaining model performance. By systematically 
incorporating insights from the previous stage, the coherence and effectiveness of the FS 
process can be ensured. 

The significance of RF, XGBoost, and AdaBoost lies in their capacity to effectively handle 
complex, high-dimensional datasets. The rationale for selecting the top 10%, 20%, and 30% 
features in each majority cluster is considered to be multi-faceted. First, these thresholds fa-
cilitate a systematic examination of feature importance, prioritizing the most relevant features 
while managing model complexity, which is essential for high predictive performance. Second, 
using multiple percentage thresholds accounts for variability in feature significance across 
clusters, thereby improving model generalization. Selecting the top 10% focuses on critical 
features, reducing computational complexity, while including the top 20% and 30% allows 
for broader exploration without compromising key features. Finally, integrating top-ranked 
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features with minority clusters ensures a comprehensive feature set, combining impactful and 
unique features and leveraging the strengths of boosting tree models. This stepwise approach 
accommodates varying degrees of feature importance, leading to more accurate and reliable 
classifications, especially in applications like credit risk assessment.

3.4. Final output results

After obtaining the optimal input feature set from the CBTFS method, a classification strategy 
needs to be selected from a variety of individual classifiers and ensemble classifiers for final 
output results. Three individual classifiers, decision tree (DT), k-nearest neighbor (KNN), and 
naïve Bayes (NB) (Niu et al., 2020) are chosen as the single classifier model for the optimal 
feature subset. In the meantime, to enhance comparison and achieve balanced results, en-
semble models such as RF, AdaBoost, and XGBoost (Avuçlu, 2021) are also employed. Com-
bining these ensemble methods with individual classifiers generally improves classification 
performance under similar conditions.

4. Experimental design

To validate the proposed methodology, two real-world credit datasets were utilized. For 
comparison purposes, several FS methods were applied, as presented in Table 2. 

Table 2. Comparison of FS method categories

Types FS methods Researches

Filters Variance (VAR) Wang and Hong (2015)
Relief Palma-Mendoza et al. (2018)
ReliefF Palma-Mendoza et al. (2018)
Minimum Redundancy
Maximum Relevance (mRMR)

Pashaei and Pashaei (2022)

Wrappers Genetic algorithm (GA) Norat et al. (2023)
Whale optimization algorithm (WOA) Mirjalili and Lewis (2016); Said et al. (2023)
Particle swarm optimization (PSO) Tran et al. (2019); Wang et al. (2018a)

Furthermore, Section 4.1 describes the data, while Section 4.2 presents the evaluation 
criteria.

4.1. Data descriptions

In this experiment, two public high-dimensional credit data sets, China Union Pay (CUP for 
short) and Kaggle datasets are applied. The CUP credit dataset is obtained from the data 
competition created by China Union Pay (Zhang et al., 2022), and Kaggle credit risk dataset is 
got from the UCI Machine Learning Repository (https://www.kaggle.com/jacklizhi/creditcard). 
The description of the two real-world datasets is listed in Table 3.

https://www.kaggle.com/jacklizhi/creditcard
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Table 3. Description of two real-world high-dimensional credit datasets

Dataset No. Instances No. Paid as Agreed No. Default No. Total feature

CUP 11,017 8,873 2,144 199
Kaggle 105,471 95,688 9,783 534

Table 3 indicates that the CUP credit dataset comprises 11,017 credit applicants with 199 
variables, which is divided into 8,873 ‘paid as agreed’ (80%) and 2,144 ‘default’ (20%) cases. 
The Kaggle dataset includes 105,471 applicants with 534 features, with 95,688 (90%) classi-
fied as ‘paid as agreed’ and 9,783 (10%) as ‘default’. To address class imbalance and ensure 
comparability, 5,500 samples from each class were randomly selected, aligning with the CUP 
dataset size for subsequent classification.

4.2. Evaluation metrics

To assess the performance of proposed CBTFS method, accuracy (ACC for short), area under 
ROC curve (AUC), Precision, and G-means are used as evaluation metrics for credit classifica-
tions (Chowdhury et al., 2022). The most commonly applied measure of classification perfor-
mance is accuracy, which is the percentage of correct predictions. The AUC value of receiver 
operating characteristic (ROC) ranges from 0.5 to 1, and values above 0.8 can be considered 
as a good partition between the two classes of the target variable (Görüş et al., 2024). Preci-
sion measures the proportion of positively predicted labels that are truly correct, and recall 
represents the ability to correctly predict the positives out of actual positives. G-means is a 
harmonic combination of Recall and Precision. 

All experimental analyses were conducted on a laptop with an Intel Core i7-9700F 3.00 
GHz processor and 16 GB of RAM. The model parameters were set as follows. The KNN’s 
parameter k was set to 10, the ensemble learning classifier used 100 trees, and AdaBoost was 
configured with 100 iterations. Each experiment was repeated 10 times, with results averaged 
to ensure robustness.

To assess the statistical significance of different FS methods, two tests were performed. 
A paired t-test evaluated the significance of CBTFS across various classification methods, 
while the non-parametric Wilcoxon test compared different classification models on various 
datasets.

5. Experimental results

In this Section, experimental results are presented to verify the superiority of the proposed 
CBTFS method. To highlight the effectiveness of the proposed method in this paper, the 
corresponding experimental results are presented in Sections 5.1–5.2. 

5.1. Results of optimal clustering models selected by Davies Bouldin Index

In this Section, the DBI was utilized over the Elbow method (Liu & Deng, 2021) and Silhou-
ette Analysis (Gramegna & Giudici, 2021) due to the complexities of credit risk data. The DBI 
measures the ratio of within-cluster scatter to between-cluster separation, focusing on both 
compactness and separation. The smaller this ratio, the better, as larger distances between 
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classes and smaller distances within classes indicate improved clustering. This measurement 
is crucial for high-dimensional credit risk data, which often has overlapping and intricate 
cluster structures. A more nuanced evaluation of clustering performance is provided by the 
DBI compared to the Elbow method, which mainly focuses on variance explained.

The results of DBI are shown in Figures 2  and 3, where the seven popular clustering 
models (SC, K-means++, AC, Birch, K-prototypes, K-means, and K-modes) are demonstrated 
on the coordinates of the horizontal axis and the DBI values are revealed on the vertical axis.  

Figure 2. DBI values of the CUP dataset

Figure 3. DBI values of the Kaggle dataset
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The average values of 10 times in seven popular clustering models are shown in the line chart. 
As shown in Figures 2, all the DBI values for the top four clustering models (SC, K-means++, 
AC, and Birch) on the CUP dataset are less than 1, indicating superior clustering performance. 
The selection of these four models for ensemble clustering is based on the following three 
critical factors.

First, low DBI values indicate that the models effectively balance within-cluster compact-
ness and between-cluster separation, which is essential for distinguishing credit risk profiles. 
Second, the diversity among SC, K-means++, AC, and Birch enhances the ensemble model 
by leveraging various clustering methods. That is, SC captures complex shapes, K-means++ 
optimizes initial centroids, AC is effective with hierarchical data, and Birch handles large 
datasets efficiently. Finally, the inclusion of K-prototypes accommodates mixed data types 
prevalent in credit risk datasets, further validating the model’s effectiveness. This integration 
of methods capitalizes on the strengths of each algorithm, resulting in a robust model for 
accurate credit risk classification. 

Based on the average results of seven clustering models with tested ten times, the top 
four methods were selected for ensemble clustering (p*). IMST was then employed to auto-
matically cluster features and identify the most useful ones. In the CUP dataset, 199 features 
were grouped into 10 clusters with sizes of 1, 5, 1, 25, 116, 2, 1, 25, 4, and 19. With a threshold 
τ set to 10, six clusters with fewer than 10 features were chosen for their superior discrimi-
nation and independence. Consequently, 14 features were selected for further analysis. The 
remaining clusters (i.e., 25, 116, 25, and 19) proceeded to Stage 3 of the boosting tree-based 
feature selection, where AdaBoost, RF, and XGBoost were used to identify the top 10 %–30% 
of features. Finally, features from both steps were combined for classification evaluation.

Similarly, in the Kaggle dataset, 769 features are automatically clustered into 21 clusters 
(i.e., 28, 21, 72, 3, 3, 65, 54, 85, 27, 257, 8, 4, 11, 110, 2, 4, 2, 5, 5, 2, and 1). A threshold value 
of 10 effectively separates these clusters. Features in clusters with less than 10 features are 
first selected, as they exhibit better discrimination and independence. This results in 39 fea-
tures being selected. The remaining clusters with more than 10 features (i.e., 28, 21, 72, 65, 
54, 85, 27, 257, 11, and 110) undergo boosting tree-based feature selection using AdaBoost, 
RF, and XGBoost to obtain the top 10%–30% features. Finally, the features from both steps 
are combined for classification evaluation.

5.2. Experimental results of two real-world credit datasets

The experimental results underscore the importance of selecting an optimal number of fea-
tures. While too few features can reduce model effectiveness, an excessive number can lead 
to increased computational time. The final feature set, optimized for comparison with other 
FS methods, strikes a balance between these considerations. The detailed methodology and 
results are presented in Sections 5.2.1–5.2.3.

5.2.1. Results of the tree-based feature importance ranking method

Each of the four assessment metrics (ACC, Precision, G-mean, and AUC) was evaluated by 
repeating the experiments 10 times to validate the proposed hybrid CBTFS method. The av-
erage results from these repetitions were compared with those of other FS methods. Tables 
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4–6 present the top 10%, 20%, and 30% features for two real-world credit datasets using the 
hybrid CBTFS method. The tables are organized by testing set, with the top results highlighted 
in bold. The first column of each table lists the FS method used in Stage 3, while the second 
column shows the five individual and four ensemble classification methods applied.

As can be seen from Table 4, three interesting results can be found. 
First of all, from the viewpoint of different feature ranking methods, all feature ranking 

methods enhance prediction performance to some extents. Notably, FS methods effectively 
address the challenges of high dimensionality. In this experiment, using XGBoost as a rank-
ing method yields the highest performance in ACC, Precision, G-mean, and AUC. This is likely 
attributable to its gradient boosting technique, which iteratively corrects errors, manages 
complex feature interactions, and incorporates built-in regularization. Similarly, when Ada-
Boost is employed, it also performs exceptionally well in ACC, Precision, G-mean, and AUC. 
This can be attributed to two factors: the top 10% of features selected by XGBoost, and the 
robust classification capabilities of the XGBoost classifier.

Table 4. The top 10% features selected by the tree-based feature importance ranking methods 

FS
Methods

Classification 
Methods

The CUP dataset The Kaggle dataset
ACC Precision G-mean AUC ACC Precision G-mean AUC

AdaBoost

LDA 0.6686 0.9155 0.6989 0.7012 0.4359 0.9099 0.5359 0.5979
LogR 0.6054 0.9141 0.6634 0.6727 0.2805 0.9230 0.3335 0.5379
KNN 0.6327 0.9079 0.6723 0.6764 0.4347 0.8177 0.4968 0.5138
NB 0.6196 0.9153 0.6689 0.6793 0.4510 0.8774 0.5392 0.5776
DT 0.6544 0.8758 0.6389 0.6414 0.5833 0.8367 0.5535 0.5560
RF 0.7171 0.9159 0.7223 0.7225 0.6005 0.8559 0.5890 0.5901
XGBoost 0.7294 0.9116 0.7210 0.7212 0.6730 0.8483 0.5760 0.5920
AdaBoost 0.6839 0.9253 0.7175 0.7204 0.5911 0.8534 0.5837 0.5845
Bagging 0.7207 0.8997 0.6983 0.6994 0.6341 0.8362 0.5495 0.5623

RF

LDA 0.6392 0.9166 0.6846 0.6900 0.4277 0.9113 0.5250 0.5958
LogR 0.5999 0.9175 0.6629 0.6741 0.2952 0.9262 0.3480 0.5435
KNN 0.6079 0.9051 0.6567 0.6631 0.3996 0.8079 0.4727 0.5069
NB 0.6644 0.9074 0.6819 0.6880 0.4489 0.8762 0.5364 0.5784
DT 0.6901 0.8828 0.6592 0.6612 0.5755 0.8234 0.5380 0.5413
RF 0.7155 0.9173 0.7235 0.7238 0.5812 0.8538 0.5886 0.5894
XGBoost 0.7350 0.9046 0.7115 0.7126 0.6642 0.8459 0.5819 0.5945
AdaBoost 0.7115 0.9200 0.7253 0.7259 0.5783 0.8534 0.5870 0.5882
Bagging 0.7152 0.8972 0.6922 0.6933 0.6386 0.8289 0.5417 0.5586

XGBoost

LDA 0.6686 0.9136 0.6966 0.6987 0.4093 0.9167 0.5110 0.5914
LogR 0.6229 0.9122 0.6713 0.6779 0.3322 0.9420 0.4174 0.5680
KNN 0.6066 0.8980 0.6490 0.6539 0.4036 0.8201 0.4815 0.5150
NB 0.6819 0.9047 0.6913 0.6918 0.4989 0.8747 0.5703 0.5892
DT 0.7093 0.8825 0.6632 0.6671 0.5782 0.8356 0.5525 0.5541
RF 0.7245 0.9075 0.7126 0.7129 0.5692 0.8575 0.5854 0.5862
XGBoost 0.7452 0.8997 0.7059 0.7086 0.6803 0.8557 0.5969 0.6085
AdaBoost 0.7188 0.9126 0.7182 0.7183 0.6190 0.8558 0.5935 0.5949
Bagging 0.7279 0.8945 0.6912 0.6937 0.6224 0.8270 0.5282 0.5437
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Second, for four evaluation criteria, it is easy to find that Precision can obtain the best 
performance. Furthermore, in comparison with the evaluation performances using the Kaggle 
dataset, the CUP dataset performs relatively better in terms of these metrics. Therefore, the 
evaluation performances of RF as a feature ranking method in the CUP dataset are better than 
those of other feature ranking methods, and RF is chosen as the feature ranking method for 
the next step of comparison. Similarly, the evaluation performances of XGBoost as a feature 
ranking method in the Kaggle dataset are better than those of other feature ranking meth-
ods, and XGBoost is chosen as the feature ranking method for the next step of comparison. 

Finally, from the classifier perspective, the evaluation performances in terms of these 
metrics obtained by using an ensemble classification method (i.e., RF, XGBoost, AdaBoost, 
and Bagging) are better than those obtained by using an individual classification method 
(i.e., LDA, KNN, NB, and DT) in most circumstances. Surprisingly, the LogR surpasses other 
single classifiers in performance. The possible reason is that LogR is simple and robust for 
linear relationships, excels in binary classification, and is highly interpretable, making it more 
efficient and reliable than other single classifiers. 

To explore which feature ranking is suitable for different datasets, the selection features 
are increased to the top 20%. Accordingly, the performance comparison results are presented 
in Table 5.

As can be seen from Table 5, four important results are summarized. 
First, considering various feature ranking methods, these methods were able to improve 

the performance of the classification methods. Notably, AdaBoost achieved the best results 
in ACC, G-mean, and AUC. This can be attributed to two-fold. On the one hand, AdaBoost 
selected more relevant features than RF and XGBoost. On the other hand, these significant 
features help avoid overfitting, thus improving predictive performance.

Second, across four evaluation criteria, the LogR and XGBoost classifiers demonstrate 
the highest performance in ACC, Precision, G-mean, and AUC when employing various fea-
ture ranking methods. The possible reason is when AdaBoost is used as the feature rank-
ing method, the selected top 20% of features are more relevant to the classification label. 
In particular, XGBoost classifier can obtain better performance in terms of the aggregative 
metrics, G-mean and AUC. 

Third, considering the classifiers, the evaluation performance based on these metrics 
achieved through ensemble classification methods, such as RF, XGBoost, AdaBoost, and Bag-
ging, is typically superior to that obtained from individual classification methods like LDA, 
KNN, NB, and DT. Notably, both LogR and NB outperform other individual classifiers in terms 
of performance. This implies that LogR and NB are simple and effective in handling differ-
ent data distributions, and can obtain the robust performance with small to medium-sized 
datasets, making them highly effective and reliable in various scenarios.

Finally, in both the CUP and Kaggle datasets, ensemble classifiers consistently outperform 
individual methods across most metrics. The CUP dataset demonstrates stronger overall per-
formance, leading to the selection of AdaBoost as the feature ranking method. Meanwhile, 
RF is chosen for the Kaggle dataset due to its superior evaluation results.

At this time, no consistent conclusions have been reached in the two real-world datasets. 
Therefore, the top 30% of features need to be further selected for the experimental analysis, 
and the corresponding performance comparison results are reported in Table 6. 
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Table 5. The top 20% features selected by the tree-based feature importance ranking methods

FS
Methods

Classification 
Methods

The CUP dataset The Kaggle dataset
ACC Precision G-mean AUC ACC Precision G-mean AUC

AdaBoost

LDA 0.6559 0.9179 0.6951 0.6988 0.4305 0.8935 0.5253 0.5852
LogR 0.6025 0.9184 0.6651 0.6764 0.2959 0.9363 0.3486 0.5464
KNN 0.6239 0.9065 0.6666 0.6712 0.3769 0.8069 0.4568 0.5053
NB 0.4877 0.9185 0.5789 0.6265 0.4565 0.8666 0.5388 0.5725
DT 0.6989 0.8860 0.6674 0.6694 0.5612 0.8238 0.5387 0.5402
RF 0.7139 0.9189 0.7250 0.7254 0.5719 0.8491 0.5800 0.5806
XGBoost 0.7369 0.9110 0.7229 0.7234 0.6441 0.8413 0.5722 0.5824
AdaBoost 0.7206 0.9184 0.7273 0.7275 0.5817 0.8499 0.5831 0.5839
Bagging 0.7233 0.8985 0.6970 0.6984 0.6128 0.8290 0.5467 0.5554

RF

LDA 0.6350 0.9207 0.6863 0.6931 0.4394 0.9058 0.5379 0.5962
LogR 0.6002 0.9264 0.6698 0.6840 0.2946 0.9192 0.3574 0.5431
KNN 0.5998 0.9035 0.6509 0.6580 0.4100 0.8128 0.4808 0.5067
NB 0.7146 0.8969 0.6910 0.6924 0.4336 0.8801 0.5259 0.5744
DT 0.6862 0.8883 0.6679 0.6687 0.5622 0.8248 0.5311 0.5336
RF 0.7107 0.9179 0.7222 0.7226 0.5664 0.8677 0.5968 0.5997
XGBoost 0.7330 0.9064 0.7138 0.7146 0.6549 0.8578 0.5995 0.6057
AdaBoost 0.7144 0.9198 0.7264 0.7268 0.5834 0.8608 0.5927 0.5937
Bagging 0.7127 0.9006 0.6969 0.6975 0.6127 0.8395 0.5594 0.5653

XGBoost

LDA 0.6471 0.9182 0.6904 0.6955 0.4337 0.9033 0.5301 0.5933
LogR 0.6107 0.9180 0.6696 0.6795 0.3094 0.9356 0.3759 0.5533
KNN 0.6123 0.9053 0.6591 0.6651 0.3781 0.8037 0.4572 0.5023
NB 0.7026 0.8990 0.6901 0.6911 0.4882 0.8676 0.5602 0.5822
DT 0.7013 0.8857 0.6675 0.6697 0.5681 0.8199 0.5312 0.5346
RF 0.7218 0.9164 0.7250 0.7251 0.5694 0.8546 0.5865 0.5878
XGBoost 0.7366 0.9092 0.7199 0.7205 0.6509 0.8438 0.5769 0.5879
AdaBoost 0.7154 0.9176 0.7239 0.7242 0.6050 0.8499 0.5879 0.5890
Bagging 0.7306 0.9007 0.7032 0.7047 0.6290 0.8328 0.5538 0.5646

As can be seen from Table 6, the following findings can be drawn from Table 6. 
First of all, from the viewpoint of various feature ranking methods, these methods are able 

to improve the performance of the model. In particular, it is easy to find that AdaBoost as a 
feature ranking method can obtain the best performance in terms of Precision, G-mean, and 
AUC. The underlying reasons for this phenomenon are identical to those detailed in Table 4.

Second, across four evaluation criteria, it is clear that the highest performance is achieved 
by utilizing the AdaBoost-based feature ranking method among various ranking methods. 
However, the best evaluation performances of ACC, G-mean, and AUC could be obtained 
when XGBoost is used as the feature ranking method in the Kaggle dataset, the possible 
reason is the proficiency of XGBoost in handling high-dimensional data, effective feature 
utilization, intricate interaction capture, and the employment of strong regularization to pre-
vent from overfitting. 
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Table 6. The top 30% features selected by the tree-based feature importance ranking methods

FS
Methods

Classification 
Methods

The CUP dataset The Kaggle dataset
ACC Precision G-mean AUC ACC Precision G-mean AUC

AdaBoost

LDA 0.6282 0.9215 0.6830 0.6911 0.4282 0.8849 0.5211 0.5782
LogR 0.6029 0.9223 0.6685 0.6808 0.3100 0.9351 0.3728 0.5522
KNN 0.6136 0.9106 0.6649 0.6720 0.3688 0.8069 0.4502 0.5049
NB 0.4726 0.9010 0.5514 0.6074 0.4521 0.8659 0.5353 0.5705
DT 0.6777 0.8847 0.6594 0.6602 0.5548 0.8243 0.5393 0.5404
RF 0.7051 0.9246 0.7282 0.7294 0.5620 0.8517 0.5810 0.5822
XGBoost 0.7186 0.9136 0.7192 0.7195 0.6305 0.8414 0.5727 0.5800
AdaBoost 0.7186 0.9148 0.7209 0.7213 0.5766 0.8513 0.5834 0.5845
Bagging 0.7153 0.9022 0.7004 0.7010 0.6074 0.8313 0.5523 0.5587

RF

LDA 0.6272 0.9236 0.6842 0.6930 0.4326 0.8814 0.5240 0.5775
LogR 0.5934 0.9249 0.6642 0.6793 0.3085 0.9312 0.3686 0.5512
KNN 0.5912 0.9117 0.6530 0.6640 0.3827 0.8065 0.4613 0.5058
NB 0.4344 0.8815 0.5155 0.5816 0.4270 0.8617 0.5144 0.5601
DT 0.6775 0.8872 0.6636 0.6641 0.5630 0.8230 0.5377 0.5394
RF 0.7050 0.9178 0.7194 0.7199 0.5587 0.8503 0.5778 0.5793
XGBoost 0.7265 0.9100 0.7172 0.7175 0.6442 0.8457 0.5827 0.5905
AdaBoost 0.7054 0.9185 0.7204 0.7210 0.5712 0.8481 0.5787 0.5793
Bagging 0.7072 0.9003 0.6947 0.6951 0.6132 0.8327 0.5550 0.5620

XGBoost

LDA 0.6427 0.9193 0.6893 0.6949 0.4671 0.8909 0.5560 0.5966
LogR 0.6091 0.9176 0.6685 0.6782 0.3397 0.9231 0.4212 0.5629
KNN 0.6157 0.9078 0.6635 0.6696 0.3896 0.8056 0.4659 0.5048
NB 0.5664 0.9037 0.6269 0.6451 0.4867 0.8659 0.5585 0.5801
DT 0.6909 0.8886 0.6699 0.6710 0.5694 0.8260 0.5425 0.5446
RF 0.7104 0.9176 0.7216 0.7220 0.5741 0.8514 0.5841 0.5845
XGBoost 0.7261 0.9105 0.7179 0.7181 0.6562 0.8387 0.5651 0.5799
AdaBoost 0.7138 0.9180 0.7237 0.7240 0.6066 0.8440 0.5781 0.5801
Bagging 0.7172 0.9029 0.7025 0.7030 0.6275 0.8297 0.5467 0.5588

Third, the classifier performance in Table 6 indicates that using AdaBoost as the feature 
ranking method results in superior Precision, G-mean, and AUC for the RF, LogR, and NB clas-
sifiers. This improvement is attributed to AdaBoost’s ability to prioritize key features, thereby 
enhancing the accuracy and robustness of these algorithms. Conversely, when XGBoost ranks 
features, both XGBoost and RF excel in ACC and G-mean, while LDA, DT, and KNN exhibit 
moderate improvements, and bagging performs the worst. XGBoost’s effectiveness in man-
aging complex feature interactions and regularization enhances the performance of both 
XGBoost and RF. Simple models like LDA, DT, and KNN benefit less from this method, while 
bagging struggles with nuanced feature importance. Overall, ensemble models such as RF, 
XGBoost, and AdaBoost, along with LogR, demonstrate strong classification capabilities. The 
slightly inferior performance of bagging may result from its inability to capture informative 
features in high-dimensional spaces and its susceptibility to local minima. 
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Finally, for both the CUP and Kaggle datasets, the evaluation performance for each metric 
achieved by individual classification methods is typically lower than that obtained through 
ensemble classification methods. The possible reason is that the ensemble classification 
methods combine the strengths of multiple classifiers, reducing errors and improving overall 
prediction robustness. Also, in comparison with the evaluation performances using the Kaggle 
dataset, the CUP dataset performs relatively better in terms of these metrics. This superiority 
is likely attributed to the higher discriminative power of its features and their better align-
ment with the employed classification methods, as indicated by consistently higher values 
in Precision and AUC.

Therefore, the evaluation performances of AdaBoost as a feature ranking method in the 
CUP dataset are better than those of other feature ranking methods, and AdaBoost is selected 
as the feature ranking method in the CUP dataset for the next step of comparison. Similarly, 
the evaluation performances of XGBoost as a feature ranking method in Kaggle dataset is 
better than those of other feature ranking methods, and XGBoost is selected as the feature 
ranking method in the Kaggle dataset for the next step of comparison. 

Based on the results presented in Tables 4–6, the optimal evaluation metrics were se-
lected to determine the most effective feature ranking methods for two real-world credit 
datasets. The outcomes for the CUP and Kaggle datasets are illustrated in Figures 4 and 5, 
respectively, where the horizontal axis represents the classification methods, and the vertical 
axis illustrates the scores for each evaluation metric. From Figure 4, it is found that the first 
9 classifiers utilize RF to select the top 10% of features, the subsequent 9 classifiers employ 
AdaBoost to select the top 20%, and the final 9 classifiers use AdaBoost to select the top 
30%. Meantime, AdaBoost, selecting the top 30% of features, outperforms the other methods 
across all metrics, establishing it as the preferred method for the CUP dataset when compared 
to traditional FS methods.

Similarly, in Figure 5, the horizontal and vertical axes represent the classification methods 
and evaluation metric scores, respectively. XGBoost, selecting the top 10% of features, sur-
passes RF (selecting 20%) and XGBoost (selecting 30%) in all metrics. Consequently, XGBoost, 
selecting the top 10% of features, is the preferred method for the Kaggle dataset relative to 
traditional FS methods.

5.2.2. Comparison of FS techniques

Based on the results presented in Section 5.2.1 and the traits of various high-dimensional 
credit datasets, optimal FS methods were selected for comparison with traditional methods. 
The AdaBoost method was applied to the CUP dataset, selecting the top 30% of features, 
while the XGBoost method was utilized for the Kaggle dataset, selecting the top 10% fea-
tures. The results of the proposed CBTFS method are shown in Table 7 alongside traditional 
FS methods, comparing four evaluation metrics across the two datasets. The best result for 
each metric is highlighted in bold, with rankings indicated in parentheses.
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As can be seen from Table 7, in the CUP dataset, the ACC of the CBTFS model is weaker 
than that of traditional FS methods and those without FS. This may result from overfitting 
or inadequate FS that fails to capture relevant data features, as well as performance bias 
towards the majority class due to dataset imbalance. Conversely, the Precision, G-mean, and 
AUC metrics of the CBTFS are superior to those of traditional FS methods, likely because the 
hybrid CBTFS model effectively identifies and retains the most informative features, thereby 
enhancing its ability to correctly identify positive instances. Notably, the top three best results, 
particularly for G-mean and AUC, are attributed to the CBTFS model. Similarly, in the Kaggle 
dataset, the CBTFS model demonstrates poorer ACC but better Precision, G-mean, and AUC 
compared to traditional FS methods. This may be attributed to the CBTFS model’s focus on 
prioritizing relevant features, which can result in a higher number of misclassifications in the 
overall dataset, particularly among negative instances.

Figure 4. Ranking the importance of the top features for the CUP dataset

Figure 5. Ranking the importance of the for the Kaggle dataset



Technological and Economic Development of Economy, 2025, 31(6), 1687–1719 1707

Table 7. Comparison of the proposed CBTFS model and other FS methods

FS 
methods

Classification 
Method

The CUP dataset (AdaBoost 30%) The Kaggle dataset (XGBoost 10%)
ACC Precision G-mean AUC ACC Precision G-mean AUC

Proposed
Method
(CBTFS)

LDA 0.6282 0.9215(3) 0.6830 0.6911 0.4093 0.9167(2) 0.5110 0.5914
LogR 0.6029 0.9223(2) 0.6685 0.6808 0.3322 0.9420(1) 0.4174 0.5680
KNN 0.6136 0.9106 0.6649 0.6720 0.4036 0.8201 0.4815 0.5150
NB 0.4726 0.9010 0.5514 0.6074 0.4989 0.8747(3) 0.5703 0.5892
DT 0.6777 0.8847 0.6594 0.6602 0.5782 0.8356 0.5525 0.5541
RF 0.7051 0.9246(1) 0.7282(1) 0.7294(1) 0.5692 0.8575 0.5854 0.5862
XGBoost 0.7186 0.9136 0.7192(3) 0.7195(3) 0.6803 0.8557 0.5969(1) 0.6085(2)
AdaBoost 0.7186 0.9148 0.7209(2) 0.7213(2) 0.6190 0.8558 0.5935(2) 0.5949
Bagging 0.7153 0.9022 0.7004 0.7010 0.6224 0.8270 0.5282 0.5437

VAR

LDA 0.8086 0.8365 0.4685 0.5903 0.8324(1) 0.8422 0.4875 0.6095(1)
LogR 0.8126(2) 0.8332 0.4422 0.5821 0.7973 0.8162 0.3090 0.5328
KNN 0.8021 0.8180 0.3212 0.5385 0.7967 0.8059 0.1315 0.5015
NB 0.2794 0.8564 0.3390 0.5193 0.5886 0.8563 0.5861 0.5888
DT 0.7293 0.8388 0.5324 0.5840 0.6898 0.8172 0.4589 0.5294
RF 0.8073 0.8245 0.3786 0.5576 0.8026 0.8059 0.0776 0.5016
XGBoost 0.8067 0.8417 0.5028 0.6035 0.7930 0.8145 0.2973 0.5275
AdaBoost 0.8060 0.8371 0.4751 0.5917 0.7982 0.8137 0.2760 0.5256
Bagging 0.7964 0.8284 0.4251 0.5673 0.7881 0.8089 0.2312 0.5107

Relief

LDA 0.8111 0.8350 0.4574 0.5868 0.8060(3) 0.8173 0.2953 0.5363
LogR 0.8094 0.8284 0.4085 0.5686 0.8019 0.8108 0.2187 0.5168
KNN 0.7882 0.8303 0.4453 0.5712 0.7764 0.8115 0.2979 0.5183
NB 0.7133 0.8827 0.6611 0.6667 0.5783 0.8522 0.5508 0.5746
DT 0.7301 0.8366 0.5236 0.5793 0.6955 0.8208 0.4720 0.5382
RF 0.8078 0.8261 0.3901 0.5620 0.8044 0.8064 0.0979 0.5033
XGBoost 0.8038 0.8386 0.4863 0.5952 0.7921 0.8144 0.2969 0.5271
AdaBoost 0.8038 0.8328 0.4490 0.5800 0.7999 0.8109 0.2268 0.5171
Bagging 0.7944 0.8284 0.4273 0.5671 0.7908 0.8200 0.2417 0.5141

ReliefF

LDA 0.8172(1) 0.8407 0.4966 0.6061 0.7858 0.8390 0.4726 0.5948
LogR 0.8156 0.8339 0.4536 0.5881 0.7916 0.8103 0.2959 0.5284
KNN 0.8074 0.8190 0.3348 0.5456 0.7925 0.8007 0.1125 0.4997
NB 0.7391 0.8807 0.6648 0.6736 0.6147 0.8352 0.5606 0.5666
DT 0.6255 0.8229 0.5207 0.5402 0.6547 0.8103 0.4729 0.5223
RF 0.8043 0.8161 0.3056 0.5369 0.7989 0.8019 0.1057 0.5033
XGBoost 0.8001 0.8245 0.3906 0.5600 0.7900 0.8085 0.2759 0.5230
AdaBoost 0.7998 0.8111 0.2383 0.5216 0.7960 0.8088 0.2646 0.5243
Bagging 0.7273 0.8168 0.4280 0.5345 0.7711 0.8060 0.2898 0.5152

mRMR

LDA 0.8039 0.8061 0.0766 0.5021 0.4706 0.8491 0.5381 0.5565
LogR 0.8038 0.8060 0.0737 0.5019 0.4702 0.8490 0.5379 0.5563
KNN 0.7937 0.8096 0.2184 0.5129 0.5519 0.8235 0.5301 0.5320
NB 0.7844 0.8181 0.3324 0.5364 0.4510 0.8494 0.5267 0.5527
DT 0.6821 0.8226 0.4908 0.5422 0.4038 0.8201 0.4645 0.5145
RF 0.7791 0.8156 0.3258 0.5297 0.4967 0.8233 0.5213 0.5264
XGBoost 0.7829 0.8097 0.2521 0.5129 0.3472 0.8400 0.3882 0.5207
AdaBoost 0.8038 0.8053 0.0233 0.4997 0.4787 0.8340 0.5285 0.5384
Bagging 0.7528 0.8144 0.3673 0.5254 0.4689 0.8263 0.5059 0.5280

Original

LDA 0.8086 0.8358 0.4645 0.5886 0.8323(2) 0.8418 0.4845 0.6083(3)
LogR 0.8112(2) 0.8319 0.4345 0.5786 0.7979 0.8166 0.3122 0.5339
KNN 0.8039 0.8199 0.3378 0.5440 0.7979 0.8061 0.1271 0.5021
NB 0.2811 0.8516 0.3413 0.5185 0.5897 0.8573 0.5898(3) 0.5911
DT 0.7378 0.8438 0.5492 0.5967 0.6953 0.8187 0.4626 0.5335
RF 0.8089 0.8255 0.3847 0.5606 0.8021 0.8058 0.0813 0.5013
XGBoost 0.8039 0.8386 0.4870 0.5953 0.7909 0.8135 0.2903 0.5246
AdaBoost 0.8073 0.8380 0.4800 0.5942 0.7979 0.8133 0.2699 0.5241
Bagging 0.8025 0.8312 0.4389 0.5756 0.7880 0.8091 0.2356 0.5113
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To further verify the effectiveness of the proposed hybrid CBTFS method, this paper extends 
its analysis beyond the comparison of the four typical filtered methods listed in Table  7. 
Additionally, a comparative evaluation is conducted by using three commonly utilized intel-
ligent algorithms, genetic algorithm (GA), whale optimization algorithm (WOA), and particle 
swarm optimization (PSO). At the same time, two real-world credit datasets including CUP 
credit dataset and the Kaggle credit dataset are used. The results of the five FS methods in 
two datasets are listed in Table 8, with the best results in bold to represent the optimization 
impact of each method. 

Table 8. Comparison of the proposed CBTFS model and other evolutionary algorithm FS methods

FS 
methods

Classification 
Methods

The CUP dataset The Kaggle dataset
ACC Precision G-mean AUC ACC Precision G-mean AUC

Proposed
Method
(CBTFS)

LDA 0.6282 0.9215(3) 0.6830 0.6911 0.4093 0.9167(3) 0.5110 0.5914(3)
LogR 0.6029 0.9223(2) 0.6685 0.6808 0.3322 0.9420(2) 0.4174 0.5680
KNN 0.6136 0.9106 0.6649 0.6720 0.4036 0.8201 0.4815 0.5150
DT 0.6777 0.8847 0.6594 0.6602 0.5782 0.8356 0.5525 0.5541
RF 0.7051 0.9246(1) 0.7282(1) 0.7294(1) 0.5692 0.8575 0.5854 0.5862

XGBoost 0.7186 0.9136 0.7192(3) 0.7195(3) 0.6803 0.8557 0.5969(1) 0.6085(1)
AdaBoost 0.7186 0.9148 0.7209(2) 0.7213(2) 0.6190 0.8558 0.5935(2) 0.5949(2)
Bagging 0.7153 0.9022 0.7004 0.7010 0.6224 0.8270 0.5282 0.5437
Average 0.6725 0.9117 0.6930 0.6969 0.5267 0.8638 0.5333 0.5702

GA

LDA 0.4738 0.8632 0.5230 0.5658 0.4770 0.9060 0.4941 0.4971
LogR 0.7566 0.8375 0.5087 0.5847 0.6438 0.9122 0.4967 0.5197
KNN 0.8008(2) 0.8048 0.0279 0.4982 0.9072 0.9072 0.0000 0.5000
DT 0.4404 0.8083 0.2795 0.4932 0.3442 0.8879 0.3121 0.4747
RF 0.5655 0.8214 0.4408 0.5183 0.1203 0.9002 0.1270 0.4980

XGBoost 0.6842 0.8193 0.3715 0.5250 0.1960 0.9162 0.3186 0.5091
AdaBoost 0.8053(1) 0.8053 0.0000 0.5000 0.9037 0.9075 0.0457 0.5020
Bagging 0.4556 0.8155 0.3781 0.5168 0.3147 0.9029 0.3336 0.5097
Average 0.6227 0.8219 0.3161 0.5252 0.4883 0.9050 0.2659 0.5012

WOA

LDA 0.4719 0.8492 0.5287 0.5526 0.5753 0.9489(1) 0.5187 0.6194
LogR 0.7846 0.8171 0.3317 0.5343 0.6382 0.9134 0.5054 0.5244
KNN 0.7720 0.8078 0.1214 0.5053 0.9072 0.9072 0.0000 0.5000
DT 0.5024 0.7928 0.3302 0.4710 0.2976 0.8821 0.3305 0.5141
RF 0.4186 0.8350 0.4325 0.5137 0.1224 0.9126 0.1653 0.5001

XGBoost 0.5681 0.8277 0.4447 0.5300 0.3269 0.9071 0.4225 0.5059
AdaBoost 0.8053(1) 0.8053 0.0000 0.5000 0.9072 0.9072 0.0000 0.5000
Bagging 0.5408 0.7963 0.3734 0.4724 0.2163 0.8874 0.3325 0.4907
Average 0.6079 0.8164 0.3203 0.5099 0.4988 0.9082 0.2843 0.5193

PSO

LDA 0.6287 0.8287 0.4960 0.5487 0.1987 0.9071 0.3168 0.4973
LogR 0.7738(3) 0.8120 0.2978 0.5193 0.7588 0.9105 0.4208 0.5160
KNN 0.7486 0.8135 0.3010 0.5211 0.9072 0.9072 0.0000 0.5000
DT 0.4148 0.7302 0.3661 0.4840 0.3707 0.9128 0.4185 0.5044
RF 0.4495 0.7660 0.4354 0.5353 0.1040 0.9218 0.1072 0.5001

XGBoost 0.6389 0.8258 0.3851 0.5276 0.5066 0.9129 0.4069 0.5094
AdaBoost 0.6868 0.9114 0.7015 0.7023 0.9064 0.9073 0.0370 0.5007
Bagging 0.6995 0.9016 0.6927 0.6930 0.1782 0.8798 0.3023 0.4845
Average 0.6300 0.8236 0.4594 0.5664 0.4913 0.9074 0.2511 0.5015
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As can be seen from Table 8, three interesting results can be found below.
First, the proposed hybrid CBTFS methodology consistently outperforms other intelligent 

FS methods, including GA, WOA, and PSO, across different metrics such as ACC, Precision, 
G-mean, and AUC. Mean value comparisons further demonstrate the superiority of the CBTFS 
method over other intelligent algorithms. The possible reason is that the CBTFS method en-
hances the accuracy and stability of FS by integrating multiple strategies, leading to superior 
performance across various metrics. 

Second, the performance of the RF, AdaBoost, and XGBoost classifiers within the CBTFS 
framework generally exceeds that of other FS methods. The possible reason is that these 
ensemble classifiers inherently possess strong generalization capabilities and can capture 
complex patterns. The CBTFS framework further enhances their performance by efficiently 
selecting some typical features that excel across various datasets and metrics. 

Finally, although the CBTFS method excels in most metrics, its ACC performance is rela-
tively lower, likely due to data imbalance that results in the misclassification of some cred-
itworthy samples. Nevertheless, the CBTFS method averages better than other intelligent FS 
algorithms.

Overall, the proposed hybrid CBTFS method outperforms other FS methods across various 
evaluation metrics. In both the CUP and Kaggle datasets, the ensemble classifier based on 
CBTFS achieves superior results compared to traditional FS methods in terms of ACC, G-mean, 
and AUC. However, the individual classifier utilizing CBTFS demonstrates better Precision 
than traditional FS methods. This phenomenon can be attributed to two reasons. First, the 
hybrid CBTFS method employs an advanced FS process that captures relevant data attributes, 
thereby enhancing model accuracy and robustness. Second, while the ensemble classifier 
excels in ACC, G-mean, and AUC by leveraging multiple models, individual classifiers achieve 
higher Precision by focusing on accurately identifying specific instances. This underscores the 
effectiveness of the CBTFS method in high-dimensional credit datasets.

5.2.3. Comparison of ablation experiments

A well-designed credit risk classification model must have components that are both essential 
and compatible. To further validate the effectiveness of the proposed CBTFS methodology, 
ablation experiments are conducted. These experiments assess the key components to verify 
the structural integrity of the CBTFS method. Additionally, to present the experimental results 
clearly, Table 9 displays the average performance of the eight classifiers, with the best results 
highlighted in bold to emphasize the optimization effects of each method. For detailed per-
formance metrics of each classifier, please refer in Appendix.

As can be seen from Table 9, some interesting results can be found below.
First, from an overall perspective, the proposed CBTFS method is generally considered 

to be reasonable since the exclusion of any module can adversely affect the performance. 
In most cases, the CBTFS method proposed in this paper achieves best performance, which 
further highlights that the CBTFS method proposed in this paper is effective.

Second, the poorest performance occurs when only IMST (i.e., w/o AdaBoost, RF, and 
XGBoost) is used for FS, excluding AdaBoost, RF, and XGBoost. This may be due to IMST’s 
inability to adequately account for feature interactions, leading to unresolved feature redun-
dancy issues. 
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Table 9. Comparison of ablation experiments 

FS methods
The CUP dataset The Kaggle dataset

ACC Precision G-mean AUC ACC Precision G-mean AUC
Proposed CBTFS 0.6725 0.9117 0.6930 0.6969 0.5267 0.8638 0.5333 0.5702
w/o AdaBoost, RF,  
and XGBoost

0.4170 0.7739 0.3524 0.4983 0.5652 0.8147 0.3104 0.5066

w/o IMST, RF,  
and XGBoost

0.6520 0.9062 0.6752 0.6801 0.4834 0.8882 0.5542 0.5907

w/o IMST, AdaBoost,  
and XGBoost

0.6551 0.9000 0.6693 0.6730 0.4312 0.8981 0.5159 0.5833

w/o IMST, AdaBoost,  
and RF

0.6878 0.9008 0.6849 0.6867 0.5117 0.8800 0.5652 0.5167

Third, when only AdaBoost (i.e., w/o IMST, RF, and XGBoost) is used, excluding IMST, RF, 
and XGBoost, the performance surpasses that of using only RF and IMST. That is, AdaBoost 
effectively addresses feature importance and enhances weak classifiers through a weighting 
mechanism. Although performance decreases with only XGBoost (i.e., w/o IMST, AdaBoost, 
and RF), it provides the best results in the ablation experiments. This is slightly lower than 
CBTFS, likely due to the absence of diversity and complementary information from other 
methods. 

Finally, CBTFS outperforms on the CUP dataset compared to the Kaggle dataset, possibly 
because the features of CUP dataset are more compatible than those of Kaggle dataset within 
the CBTFS framework. Meanwhile, the performance of the CBTFS method is observed to be 
slightly lower than that of other post-ablation methods in the ablation experiments. This may 
be attributed to the higher levels of noise and redundancy among features in the Kaggle da-
taset, which hinder the CBTFS model’s ability to effectively extract useful information. In con-
trast, the CUP dataset exhibits greater compatibility among features, enabling CBTFS to lever-
age its strengths and enhance performance. Overall, the ablation experiments further confirm 
that the proposed CBTFS method can achieve better results than other alternative methods. 

5.2.4. Statistical test results on the two datasets

In this Section, a significance test was conducted to compare the performance differences 
among various models. The paired sample t-test and Wilcoxon test were used to assess dis-
crepancies between the CBTFS model and four traditional FS methods across ACC, Precision, 
G-mean, and AUC, as shown in Tables 10 and 11.

From Table 10, the CBTFS method significantly outperforms the traditional FS methods 
in ACC, Precision, G-mean, and AUC at the 5% significance level in the CUP dataset. In the 
Kaggle dataset, most metrics for CBTFS also show significant differences compared to the 
traditional FS methods. Notably, results for ACC and G-mean differ markedly from the mRMR 
FS model, likely due to data imbalance trait of Kaggle dataset. To address this issue, minority 
classes were augmented by using Synthetic Minority Oversampling Technique (SMOTE) and 
Edited Nearest Neighbor (ENN) methods. The results confirm CBTFS’s substantial advantage 
over other methods in both datasets, with generally higher evaluation metrics. This demon-
strates CBTFS’s superior performance and sorting abilities with minimal impact on accuracy.
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Table 10. Results of paired t-test (p-value) for comparison of five evaluation metrics

Metrics CBTFS vs VAR CBTFS vs Relief CBTFS vs ReliefF CBTFS vs mRMR

ACC –2.2210* –6.0010*** –3.5050*** –3.8700***

Precision 11.6700*** 8.7340*** 9.2110*** 16.5720***

G-mean 10.5990*** 4.7390*** 4.2950*** 7.3610***

AUC 11.9790*** 4.6390*** 4.4490*** 10.6880***

Metrics CBTFS vs VAR CBTFS vs Relief CBTFS vs ReliefF CBTFS vs mRMR

ACC –4.9390*** –5.0130*** –4.9110*** 1.2090
Precision 3.7110*** 3.2830*** 4.3860*** 2.8720**

G-mean 3.7810*** 5.0010*** 4.0050*** 1.0530
AUC 3.0010* 4.1890*** 3.9800*** 3.5450***

Note: * represents significance at the 10% level. ** represents significance at the 5% level. *** represents 
significance at the 1% level.

Similarly, the Wilcoxon test is a nonparametric statistical method that effectively compares 
the median differences between two related sample groups, making it particularly suitable for 
data that do not follow a normal distribution. Therefore, the Wilcoxon test is employed in this 
paper to further validate the usefulness and stability of the CBTFS method. The significance of 
this test for the performance metrics of the CBTFS models on the CUP and Kaggle datasets 
is presented in Table 11.

The null hypothesis for each metric, as shown in Table 11, is that no performance dif-
ference exists between the two methods. Significance levels are established at 1%, 5%, and 
10%. The null hypothesis is rejected when the p-values fall below these thresholds. It is shown 
in Table 11 that most p-values for ACC, Precision, G-mean, and AUC are below 1% (i.e., the 
presence of 3 stars *** significantly), with only a few insignificant p-values indicated in bold. 
This demonstrates that significant differences exist between the CBTFS method and the four 
traditional FS methods, demonstrating that the CBTFS method outperforms these alternatives 
in high-dimensional credit datasets.

5.3. Summarizations

By comparing the results of all models in Tables 3–11 and Figures 2–5, the proposed hybrid 
CBTFS technique can effectively solve the high dimensionality issue in credit risk dataset 
and improve AUC, ACC, Precision, and G-mean of the credit classification models, therefore 
minimizing possible loss for financial institutions.

In terms of the empirical results of the above two experiments, three main conclusions 
can be drawn below.

(1)	 The proposed hybrid CBTFS method can improve classification performance greatly in 
both credit datasets. There are some differences in the findings obtained from these 
two credit datasets, which may be mainly due to the inconsistency in the structural 
characteristics of these two datasets. Generally, the overall performance of the pro-
posed hybrid CBTFS method is better than that of other traditional FS methods, as 
shown in Table 5. It can also address the high dimensionality issue well in credit risk 
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assessment. However, by comparing the predictive results when the top 10 %, 20% 
and 30% features are selected, the principle of “the more features, the better perfor-
mance” does not hold.

(2)	 The proposed hybrid CBTFS method is an effective method to enhance general per-
formance and address the high-dimensional data issue. The comparison between the 
proposed hybrid CBTFS method and other widely used intelligent algorithms dem-
onstrates its superior performance relative to alternative intelligent methods. Further-
more, FS is necessary after feature construction to improve the classification perfor-
mance when facing the high-dimensional data issue. 

(3)	 Compared with all the different single classification methods (linear and non-linear) 
and ensemble classification methods, the proposed hybrid CBTFS method with linear 
classifiers and ensemble classifiers perform the best when hybrid CBTFS is applied to 
FS. For financial institutions, this means that the risk of financial losses can be mini-
mized.

Table 11. Results of non-parametric Wilcoxon test for evaluation metrics on two datasets

Metrics FS
The CUP dataset The Kaggle dataset

VAR Relief ReliefF mRMR Proposed VAR Relief ReliefF mRMR Proposed

ACC

VAR – –0.6520 –0.3560 –1.5990 –1.7180* – –0.2960 –1.8360* –2.6660*** –2.6680***

Relief – – –0.0590 –1.2600 –2.668*** – – –1.1250 –2.6660*** –2.6680***

ReliefF – – – –0.2960 –2.4290*** – – – –2.6660*** –2.6680***

mRMR – – – – –2.6660*** – – – – –1.2440

Precision

FS VAR Relief ReliefF mRMR Proposed VAR Relief ReliefF mRMR Proposed
VAR – –0.1400 –1.0070 –2.6660*** –2.6660*** – –0.1780 –2.6660*** –2.3740** –2.6680***

Relief – – –2.0730** –2.6700*** –2.6660*** – – –1.5990 –2.3100** –2.6660***

ReliefF – – – –2.6660*** –2.6660*** – – – –2.6660*** –2.6660***

mRMR – – – – –2.6660*** – – – – –2.4290**

G-mean

FS VAR Relief ReliefF mRMR Proposed VAR Relief ReliefF mRMR Proposed
VAR – –0.0590 –0.1780 –2.6660*** –2.6660*** – –0.6520 –0.2960 –2.310** –2.5470**

Relief – – –1.1250 –2.6660*** –2.5470** – – –1.1250 –2.310** –2.6660***

ReliefF – – – –2.5470** –2.5470** – – – –2.310** –2.6660***

mRMR – – – – –2.6660*** – – – – –1.0070

AUC

FS VAR Relief ReliefF mRMR Proposed VAR Relief ReliefF mRMR Proposed
VAR – –0.2960 –0.8890 –25470** –2.6660*** – –0.5330 –1.7790* –0.1780 –2.3100**

Relief – – –1.9550* –2.6660*** –2.5470** – – –0.1400 –0.8890 –2.5470**

ReliefF – – – –2.5470** –2.5470** – – – –0.7700 –2.5470**

mRMR – – – – –2.6660*** – – – – –2.3100**

Note: * represents significance at the 10% level. ** represents significance at the 5% level. *** represents 
significance at the 1% level.
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6. Conclusions and future directions

In this paper, a hybrid clustering and boosting tree-based feature selection (CBTFS) method 
is proposed for high-dimensional credit risk classification. Given the high-dimensional data 
features, an improved minimum spanning tree (IMST) model is first employed to remove 
redundant and irrelevant features. Subsequently, three embedded feature selection meth-
ods – RF, XGBoost, and AdaBoost  – are used to further improve the efficiency of feature 
ranking. Thus, a hybrid CBTFS method is proposed to address the high-dimensional problem 
of credit datasets. 

For validation and comparison, two credit datasets and three types of classifiers are used 
to test the effectiveness of the proposed method. The results reported in both experiments 
clearly show that the hybrid CBTFS method can improve classification performance and sig-
nificantly outperforms the other algorithms listed in this study. The empirical results indicate 
that the proposed hybrid method can effectively solve the high-dimensional feature dataset 
problem in credit risk assessment, suggesting that the proposed CBTFS method provides a 
promising solution for high-dimensional credit risk assessment.

Moreover, the study provides valuable insights for credit risk management, particularly 
in addressing high-dimensional data challenges in financial institutions through the innova-
tive CBTFS method. By prioritizing relevant features and minimizing redundancy, the CBTFS 
method improves the performance of credit risk assessments, reduces defaults, and enhances 
financial stability. Its scalability makes it especially valuable for global institutions handling 
diverse high-dimensional datasets. At the same time, the study also emphasizes the impor-
tance of continuously refining feature selection methods to keep pace with evolving credit 
risks. Integrating advanced techniques like CBTFS into risk management frameworks can help 
anticipate threats and improve data processing. The adoption of CBTFS strengthens credit risk 
models, enhances risk-adjusted returns, and promotes equitable lending practices. In sum-
mary, the CBTFS method offers both technical and strategic advantages, reinforcing decision-
making and financial resilience in credit risk management.

Although the CBTFS method effectively addresses feature redundancy and irrelevance, but 
several aspects require further research. First, some novel techniques should be developed 
to handle high-dimensional datasets with limited sample sizes, ensuring robust performance 
despite small data volumes. Second, enhancing model predictive power through data-trait-
driven modeling, which tailors feature selection to specific data traits, is a promising direction. 
Third, testing the method on more diverse real-world datasets will validate its effectiveness 
and robustness in various contexts. Finally, exploring CBTFS applications in different domains 
like fraud detection, peer-to-peer lending, and credit rating will demonstrate its versatility 
and broader impact. In summary, CBTFS represents a significant advancement in credit risk 
classification with high dimensionality, offering a robust solution for financial analytics and 
paving the way for future research and applications.



1714 J. Zhu et al. A hybrid clustering and boosting tree feature selection (CBTFS) method for credit risk assessment ...

Funding 

This work is partially supported by grants from the Technical Field Fund of Basic Research 
Strengthening Program (Project no. 2021-JCJQ-JJ-0003), the Fundamental Research Special 
Funds for the Central Universities-Research and Innovation Fund for Doctoral Students (No. 
XK2090021029), the Nature Science Foundation of Heilongjiang (No. LH2022G00), and the 
National Natural Science Foundation of China (No. 72361014). 

Disclosure statement 

The authors declare that they have no known competing financial interests or personal rela-
tionships that could have appeared to influence the work reported in this paper.

Author contributions

The contribution of every author in the above paper is shown below: 
Jianxin Zhu: conceptualization, investigation, and writing – review. 
Xiong Wu: data curation, investigation, software python, visualization, validation, writing-

original draft preparation.
Lean Yu: conceptualization, methodology, investigation, writing – review & editing, and 

Supervision.
Xiaoming Zhang: conceptualization, methodology, investigation, writing – review & edit-

ing.

References

Avuçlu, E. (2021). A new data augmentation method to use in machine learning algorithms using statisti-
cal measurements. Measurement, 180, Article 109577. 
https://doi.org/10.1016/j.measurement.2021.109577

Baser, F., Koc, O., & Selcuk-Kestel, A. S. (2023). Credit risk evaluation using clustering based fuzzy clas-
sification method. Expert Systems with Applications, 223, Article 119882. 
https://doi.org/10.1016/j.eswa.2023.119882

Belás,  J., Smrcka,  L., Gavurova, B., & Dvorsky,  J. (2018). The impact of social and economic factors in 
the credit risk management of SME. Technological and Economic Development of Economy, 24(3), 
1215–1230. https://doi.org/10.3846/tede.2018.1968

Chandrashekar, G., & Sahin, F. (2014). A survey on feature selection methods. Computers & Electrical 
Engineering, 40(1), 16–28. https://doi.org/10.1016/j.compeleceng.2013.11.024

Chaudhuri, A. (2024). Search space division method for wrapper feature selection on high-dimensional 
data classification. Knowledge-Based Systems, 291, Article 111578. 
https://doi.org/10.1016/j.knosys.2024.111578

Chowdhury, N. K., Kabir, M. A., Rahman, M. M., & Islam, S. M. S. (2022). Machine learning for detecting 
COVID-19 from cough sounds: An ensemble-based MCDM method. Computers in Biology and Medi-
cine, 145, Article 105405. https://doi.org/10.1016/j.compbiomed.2022.105405

https://doi.org/10.1016/j.measurement.2021.109577
https://doi.org/10.1016/j.eswa.2023.119882
https://doi.org/10.3846/tede.2018.1968
https://doi.org/10.1016/j.compeleceng.2013.11.024
https://doi.org/10.1016/j.knosys.2024.111578
https://doi.org/10.1016/j.compbiomed.2022.105405


Technological and Economic Development of Economy, 2025, 31(6), 1687–1719 1715

Costea, A., Ferrara, M., & Serban, F. (2017). An integrated two-stage methodology for optimising the ac-
curacy of performance classification models. Technological and Economic Development of Economy, 
23(1), 111–139. https://doi.org/10.3846/20294913.2016.1213196

Gonçalves, T. S., Ferreira, F. A., Jalali, M. S., & Meidutė-Kavaliauskienė, I. (2016). An idiosyncratic decision 
support system for credit risk analysis of small and medium-sized enterprises. Technological and 
Economic Development of Economy, 22(4), 598–616. https://doi.org/10.3846/20294913.2015.1074125

Görüş, V., Bahşı, M. M., & Çevik, M. (2024). Machine learning for the prediction of problems in steel tube 
bending process. Engineering Applications of Artificial Intelligence, 133, Article 108584. 
https://doi.org/10.1016/j.engappai.2024.108584

Gramegna, A., & Giudici, P. (2021). Shap and LIME: An evaluation of discriminative power in credit risk. 
Frontiers in Artificial Intelligence, 4, Article 752558. https://doi.org/10.3389/frai.2021.752558

Gunnarsson, B. R., vanden Broucke, S., Baesens, B., Óskarsdóttir, M., & Lemahieu, W. (2021). Deep learning 
for credit scoring: Do or don’t? European Journal of Operational Research, 295(1), 292–305. 
https://doi.org/10.1016/j.ejor.2021.03.006

He, H., Zhang, W., & Zhang, S. (2018). A novel ensemble method for credit scoring: Adaption of different 
imbalance ratios. Expert Systems with Applications, 98, 105–117. 
https://doi.org/10.1016/j.eswa.2018.01.012

Hu, Y., Zhang, Y., Gao, X., Gong, D., Song, X., Guo, Y., & Wang, J. (2023). A federated feature selection 
algorithm based on particle swarm optimization under privacy protection. Knowledge-Based Systems, 
260, Article 110122. https://doi.org/10.1016/j.knosys.2022.110122

Huang, S., Zhang, J., Yang, C., Gu, Q., Li, M., & Wang, W. (2022). The interval grey QFD method for new 
product development: Integrate with LDA topic model to analyze online reviews. Engineering Appli-
cations of Artificial Intelligence, 114, Article 105213. https://doi.org/10.1016/j.engappai.2022.105213

Jáñez-Martino, F., Alaiz-Rodríguez, R., González-Castro, V., Fidalgo, E., & Alegre, E. (2023). Classifying 
spam emails using agglomerative hierarchical clustering and a topic-based approach. Applied Soft 
Computing, 139, Article 110226. https://doi.org/10.1016/j.asoc.2023.110226

Kozodoi, N., Lessmann, S., Papakonstantinou, K., Gatsoulis, Y., & Baesens, B. (2019). A multi-objective ap-
proach for profit-driven feature selection in credit scoring. Decision Support Systems, 120, 106–117. 
https://doi.org/10.1016/j.dss.2019.03.011

Kuo, T., & Wang, K.‑J. (2022). A hybrid k-prototypes clustering approach with improved sine-cosine algo-
rithm for mixed-data classification. Computers & Industrial Engineering, 169, Article 108164. 
https://doi.org/10.1016/j.cie.2022.108164

Li,  H., & Wang,  J. (2023). CAPKM++2.0: An upgraded version of the collaborative annealing power  
k-means++ clustering algorithm. Knowledge-Based Systems, 262, Article 110241. 
https://doi.org/10.1016/j.knosys.2022.110241

Li, M., Ma, H., Lv, S., Wang, L., & Deng, S. (2024a). Enhanced NSGA-II-based feature selection method for 
high-dimensional classification. Information Sciences, 663, Article 120269. 
https://doi.org/10.1016/j.ins.2024.120269

Li,  Q., Zhao,  S., He,  T., & Wen,  J. (2024b). A simple and efficient filter feature selection method via 
document-term matrix unitization. Pattern Recognition Letters, 181, 23–29. 
https://doi.org/10.1016/j.patrec.2024.02.025

Liu, F., & Deng, Y. (2021). Determine the number of unknown targets in open world based on elbow meth-
od. IEEE Transactions on Fuzzy Systems, 29(5), 986–995. https://doi.org/10.1109/TFUZZ.2020.2966182

Liu, H., Zhang, J., Liu, Q., & Cao, J. (2022). Minimum spanning tree based graph neural network for emo-
tion classification using EEG. Neural Networks: The Official Journal of the International Neural Network 
Society, 145, 308–318. https://doi.org/10.1016/j.neunet.2021.10.023

Liu, X, Li,  Y., Dai,  C., & Zhang,  H. (2024). A hierarchical attention-based feature selection and fusion 
method for credit risk assessment. Future Generation Computer Systems, 160, 537–546. 
https://doi.org/10.1016/j.future.2024.06.036

https://doi.org/10.3846/20294913.2016.1213196
https://doi.org/10.3846/20294913.2015.1074125
https://doi.org/10.1016/j.engappai.2024.108584
https://doi.org/10.3389/frai.2021.752558
https://doi.org/10.1016/j.ejor.2021.03.006
https://doi.org/10.1016/j.eswa.2018.01.012
https://doi.org/10.1016/j.knosys.2022.110122
https://doi.org/10.1016/j.engappai.2022.105213
https://doi.org/10.1016/j.asoc.2023.110226
https://doi.org/10.1016/j.dss.2019.03.011
https://doi.org/10.1016/j.cie.2022.108164
https://doi.org/10.1016/j.knosys.2022.110241
https://doi.org/10.1016/j.ins.2024.120269
https://doi.org/10.1016/j.patrec.2024.02.025
https://doi.org/10.1109/TFUZZ.2020.2966182
https://doi.org/10.1016/j.neunet.2021.10.023
https://doi.org/10.1016/j.future.2024.06.036


1716 J. Zhu et al. A hybrid clustering and boosting tree feature selection (CBTFS) method for credit risk assessment ...

Macedo, F., Valadas, R., Carrasquinha, E., Oliveira, M. R., & Pacheco, A. (2022). Feature selection using 
decomposed mutual information maximization. Neurocomputing, 513, 215–232. 
https://doi.org/10.1016/j.neucom.2022.09.101

Maldonado, S., Pérez, J., & Bravo, C. (2017). Cost-based feature selection for support vector machines: An 
application in credit scoring. European Journal of Operational Research, 261(2), 656–665. 
https://doi.org/10.1016/j.ejor.2017.02.037

Mirjalili, S., & Lewis, A. (2016). The whale optimization algorithm. Advances in Engineering Software, 95, 
51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008

Naseriparsa, M., Bidgoli, A.‑M., & Varaee, T. (2013). A hybrid feature selection method to improve perfor-
mance of a group of classification algorithms. International Journal of Computer Applications, 69(17), 
28–35. https://doi.org/10.5120/12065-8172

Niu, K., Zhang, Z., Liu, Y., & Li, R. (2020). Resampling ensemble model based on data distribution for 
imbalanced credit risk evaluation in P2P lending. Information Sciences, 536, 120–134. 
https://doi.org/10.1016/j.ins.2020.05.040

Norat, R., Wu, A. S., & Liu, X. (2023). Genetic algorithms with self-adaptation for predictive classification 
of Medicare standardized payments for physical therapists. Expert Systems with Applications, 218, 
Article 119529. https://doi.org/10.1016/j.eswa.2023.119529

Osanaiye, O., Cai, H., Choo, K.‑K. R., Dehghantanha, A., Xu, Z., & Dlodlo, M. (2016). Ensemble-based multi-
filter feature selection method for DDoS detection in cloud computing. EURASIP Journal on Wireless 
Communications and Networking, 2016, Article 130. https://doi.org/10.1186/s13638-016-0623-3

Ouaderhman, T., Chamlal, H., & Janane, F. Z. (2024). A new filter-based gene selection approach in the 
DNA microarray domain. Expert Systems with Applications, 240, Article 122504. 
https://doi.org/10.1016/j.eswa.2023.122504

Palma-Mendoza, R.‑J., Rodriguez, D., & de-Marcos, L. (2018). Distributed relieff-based feature selection in 
Spark. Knowledge and Information Systems, 57(1), 1–20. https://doi.org/10.1007/s10115-017-1145-y

Pashaei, E., & Pashaei, E. (2022). Hybrid binary arithmetic optimization algorithm with simulated anneal-
ing for feature selection in high-dimensional biomedical data. The Journal of Supercomputing, 78(13), 
15598–15637. https://doi.org/10.1007/s11227-022-04507-2

Qian, H., Wang, B., Yuan, M., Gao, S., & Song, Y. (2022). Financial distress prediction using a corrected 
feature selection measure and gradient boosted decision tree. Expert Systems with Applications, 190, 
Article 116202. https://doi.org/10.1016/j.eswa.2021.116202

Rao, C., Liu, M., Goh, M., & Wen, J. (2020). 2-stage modified random forest model for credit risk assess-
ment of P2P network lending to “Three Rurals” borrowers. Applied Soft Computing, 95, Article 106570. 
https://doi.org/10.1016/j.asoc.2020.106570

Ros, F., Riad, R., & Guillaume, S. (2023). PDBI: A partitioning Davies-Bouldin index for clustering evalua-
tion. Neurocomputing, 528, 178–199. https://doi.org/10.1016/j.neucom.2023.01.043

Sahu, B., & Dash, S. (2024). Optimal feature selection from high-dimensional microarray dataset employ-
ing hybrid IG-Jaya model. Current Materials Science, 17(1), 21–43. 
https://doi.org/10.2174/2666145416666230124143912

Said, R., Elarbi, M., Bechikh, S., Coello Coello, C. A., & Said, L. B. (2023). Discretization-based feature selec-
tion as a bilevel optimization problem. IEEE Transactions on Evolutionary Computation, 27(4), 893–907. 
https://doi.org/10.1109/TEVC.2022.3192113

Sankhwar, S., Gupta, D., Ramya, K. C., Sheeba Rani, S., Shankar, K., & Lakshmanaprabu, S. K. (2020). Im-
proved grey wolf optimization-based feature subset selection with fuzzy neural classifier for financial 
crisis prediction. Soft Computing, 24(1), 101–110. https://doi.org/10.1007/s00500-019-04323-6

Seijo-Pardo, B., Porto-Díaz, I., Bolón-Canedo, V., & Alonso-Betanzos, A. (2017). Ensemble feature selection: 
Homogeneous and heterogeneous approaches. Knowledge-Based Systems, 118, 124–139. 
https://doi.org/10.1016/j.knosys.2016.11.017

https://doi.org/10.1016/j.neucom.2022.09.101
https://doi.org/10.1016/j.ejor.2017.02.037
https://doi.org/10.1016/j.advengsoft.2016.01.008
https://doi.org/10.5120/12065-8172
https://doi.org/10.1016/j.ins.2020.05.040
https://doi.org/10.1016/j.eswa.2023.119529
https://doi.org/10.1186/s13638-016-0623-3
https://doi.org/10.1016/j.eswa.2023.122504
https://doi.org/10.1007/s10115-017-1145-y
https://doi.org/10.1007/s11227-022-04507-2
https://doi.org/10.1016/j.eswa.2021.116202
https://doi.org/10.1016/j.asoc.2020.106570
https://doi.org/10.1016/j.neucom.2023.01.043
https://doi.org/10.2174/2666145416666230124143912
https://doi.org/10.1109/TEVC.2022.3192113
https://doi.org/10.1007/s00500-019-04323-6
https://doi.org/10.1016/j.knosys.2016.11.017


Technological and Economic Development of Economy, 2025, 31(6), 1687–1719 1717

Song, Q., Ni, J., & Wang, G. (2013). A fast clustering-based feature subset selection algorithm for high-
dimensional data. IEEE Transactions on Knowledge and Data Engineering, 25(1), 1–14. 
https://doi.org/10.1109/TKDE.2011.181

Sun, J., Lee, Y.-C., Li, H., & Huang, Q.-H. (2015). Combining B&B-based hybrid feature selection and the 
imbalance-oriented multiple-classifier ensemble for imbalanced credit risk assessment. Technological 
and Economic Development of Economy, 21(3), 351–378. 
https://doi.org/10.3846/20294913.2014.884024

Tran, B., Xue, B., & Zhang, M. (2019). Variable-length particle swarm optimization for feature selection 
on high-dimensional classification. IEEE Transactions on Evolutionary Computation, 23(3), 473–487. 
https://doi.org/10.1109/TEVC.2018.2869405

Tsafrir, T., Cohen, A., Nir, E., & Nissim, N. (2023). Efficient feature extraction methodologies for unknown 
MP4-Malware detection using machine learning algorithms. Expert Systems with Applications, 219, 
Article 119615. https://doi.org/10.1016/j.eswa.2023.119615

Tsai, C.‑F., Sue, K.‑L., Hu, Y.‑H., & Chiu, A. (2021). Combining feature selection, instance selection, and 
ensemble classification techniques for improved financial distress prediction. Journal of Business Re-
search, 130, 200–209. https://doi.org/10.1016/j.jbusres.2021.03.018

Tsai, C.‑F., Chen, K.‑C., & Lin, W.‑C. (2024). Feature selection and its combination with data over-sampling 
for multi-class imbalanced datasets. Applied Soft Computing, 153, Article 111267. 
https://doi.org/10.1016/j.asoc.2024.111267

Wang, H., & Hong, M. (2015). Distance variance score: An efficient feature selection method in text clas-
sification. Mathematical Problems in Engineering, 2015, 1–10. https://doi.org/10.1155/2015/695720

Wang, D., Tan, D., & Liu, L. (2018a). Particle swarm optimization algorithm: An overview. Soft Computing, 
22(2), 387–408. https://doi.org/10.1007/s00500-016-2474-6

Wang, D., Zhang, Z., Bai, R., & Mao, Y. (2018b). A hybrid system with filter approach and multiple popula-
tion genetic algorithm for feature selection in credit scoring. Journal of Computational and Applied 
Mathematics, 329, 307–321. https://doi.org/10.1016/j.cam.2017.04.036

Xie, Y., Peng, L., Chen, Z., Yang, B., Zhang, H., & Zhang, H. (2019). Generative learning for imbalanced data 
using the Gaussian mixed model. Applied Soft Computing, 79, 439–451. 
https://doi.org/10.1016/j.asoc.2019.03.056

Yang, G., Deng, S., Chen, X., Chen, C., Yang, Y., Gong, Z., & Hao, Z. (2023). RESKM: A general framework 
to accelerate large-scale spectral clustering. Pattern Recognition, 137, Article 109275. 
https://doi.org/10.1016/j.patcog.2022.109275

Yu, L., Yu, L., & Yu, K. (2021). A high-dimensionality-trait-driven learning paradigm for high dimensional 
credit classification. Financial Innovation, 7, Article 32. https://doi.org/10.1186/s40854-021-00249-x

Yu, L., Zhang, X., & Yin, H. (2022). An extreme learning machine based virtual sample generation method 
with feature engineering for credit risk assessment with data scarcity. Expert Systems with Applica-
tions, 202, Article 117363. https://doi.org/10.1016/j.eswa.2022.117363

Yun, K. K., Yoon, S. W., & Won, D. (2021). Prediction of stock price direction using a hybrid GA-XGBoost 
algorithm with a three-stage feature engineering process. Expert Systems with Applications, 186, 
Article 115716. https://doi.org/10.1016/j.eswa.2021.115716

Zhang, X., Wu, G., Dong, Z., & Crawford, C. (2015). Embedded feature-selection support vector machine 
for driving pattern recognition. Journal of the Franklin Institute, 352(2), 669–685. 
https://doi.org/10.1016/j.jfranklin.2014.04.021

Zhang, X., Yu, L., Yin, H., & Lai, K. K. (2022). Integrating data augmentation and hybrid feature selection 
for small sample credit risk assessment with high dimensionality. Computers & Operations Research, 
146, Article 105937. https://doi.org/10.1016/j.cor.2022.105937

Zhang, X., & Yu, L. (2024). Consumer credit risk assessment: A review from the state-of-the-art classifi-
cation algorithms, data traits, and learning methods. Expert Systems with Applications, 237, Article 
121484. https://doi.org/10.1016/j.eswa.2023.121484

https://doi.org/10.1109/TKDE.2011.181
https://doi.org/10.3846/20294913.2014.884024
https://doi.org/10.1109/TEVC.2018.2869405
https://doi.org/10.1016/j.eswa.2023.119615
https://doi.org/10.1016/j.jbusres.2021.03.018
https://doi.org/10.1016/j.asoc.2024.111267
https://doi.org/10.1155/2015/695720
https://doi.org/10.1007/s00500-016-2474-6
https://doi.org/10.1016/j.cam.2017.04.036
https://doi.org/10.1016/j.asoc.2019.03.056
https://doi.org/10.1016/j.patcog.2022.109275
https://doi.org/10.1186/s40854-021-00249-x
https://doi.org/10.1016/j.eswa.2022.117363
https://doi.org/10.1016/j.eswa.2021.115716
https://doi.org/10.1016/j.jfranklin.2014.04.021
https://doi.org/10.1016/j.cor.2022.105937
https://doi.org/10.1016/j.eswa.2023.121484


1718 J. Zhu et al. A hybrid clustering and boosting tree feature selection (CBTFS) method for credit risk assessment ...

Zhao, B., Yang, D., Karimi, H. R., Zhou, B., Feng, S., & Li, G. (2023). Filter-wrapper combined feature selec-
tion and adaboost-weighted broad learning system for transformer fault diagnosis under imbalanced 
samples. Neurocomputing, 560, Article 126803. https://doi.org/10.1016/j.neucom.2023.126803

Zhu, J., Wu, X., Yu, L., & Ji, J. (2024). Improved RBM‐based feature extraction for credit risk assessment 
with high dimensionality. International Transactions in Operational Research, (2024), 1–26.
https://doi.org/10.1111/itor.13467

Zorarpaci,  E. (2024). A fast intrusion detection system based on swift wrapper feature selection and 
speedy ensemble classifier. Engineering Applications of Artificial Intelligence, 133, Article 108162. 
https://doi.org/10.1016/j.engappai.2024.108162

https://doi.org/10.1016/j.neucom.2023.126803
https://doi.org/10.1111/itor.13467
https://doi.org/10.1016/j.engappai.2024.108162


Technological and Economic Development of Economy, 2025, 31(6), 1687–1719 1719

APPENDIX

Table A1 presents the complete details of the ablation experiment. It provides a clear overview 
of each component after ablation, ensuring easy comprehension for the reader.

Table A1. Comparison of ablation experiments

FS 
methods

Classification 
Methods

The CUP dataset The Kaggle dataset

ACC Precision G-mean AUC ACC Precision G-mean AUC

Proposed
CBTFS

LDA 0.6282 0.9215(3) 0.6830 0.6911 0.4093 0.9167 0.5110 0.5914
LogR 0.6029 0.9223(2) 0.6685 0.6808 0.3322 0.9420(1) 0.4174 0.5680
KNN 0.6136 0.9106 0.6649 0.6720 0.4036 0.8201 0.4815 0.5150
DT 0.6777 0.8847 0.6594 0.6602 0.5782 0.8356 0.5525 0.5541
RF 0.7051 0.9246(1) 0.7282(1) 0.7294(1) 0.5692 0.8575 0.5854 0.5862
XGBoost 0.7186(2) 0.9136 0.7192(3) 0.7195(3) 0.6803(3) 0.8557 0.5969(3) 0.6085(2)
AdaBoost 0.7186(2) 0.9148 0.7209(2) 0.7213(2) 0.6190 0.8558 0.5935 0.5949
Bagging 0.7153(3) 0.9022 0.7004 0.7010 0.6224 0.8270 0.5282 0.5437
Average 0.6725 0.9117 0.6930 0.6969 0.5267 0.8638 0.5333 0.5702

w/o 
AdaBoost, 

RF, and 
XGBoost

LDA 0.2684 0.8363 0.3149 0.5069 0.5922 0.7906 0.4040 0.4883
LogR 0.5200 0.8408 0.5376 0.5541 0.7550(2) 0.8080 0.3079 0.5188
KNN 0.5940 0.8277 0.5372 0.5459 0.2165 0.8202 0.1613 0.5010
DT 0.5604 0.7991 0.4362 0.4792 0.6245 0.7985 0.3274 0.4962
RF 0.4246 0.7746 0.4495 0.4608 0.7874(1) 0.7999 0.1113 0.4973
XGBoost 0.2143 0.6381 0.0778 0.4973 0.3506 0.8754 0.3638 0.5316
AdaBoost 0.2036 0.7030 0.0772 0.5018 0.5425 0.8284 0.4444 0.5250
Bagging 0.5514 0.7719 0.3894 0.4405 0.6529 0.7968 0.3636 0.4953
Average 0.4170 0.7739 0.3524 0.4983 0.5652 0.8147 0.3104 0.5066

w/o IMST, 
RF, and 
XGBoost

LDA 0.5627 0.9140 0.6361 0.6539 0.4108 0.9289(3) 0.5131 0.5990
LogR 0.5963 0.9191 0.6613 0.6737 0.4159 0.9270 0.5183 0.6002
KNN 0.6103 0.8995 0.6516 0.6562 0.3784 0.8794 0.4737 0.5569
DT 0.6635 0.8838 0.6521 0.6528 0.5320 0.8526 0.5680 0.5722
RF 0.6952 0.9135 0.7081 0.7087 0.5105 0.8853 0.5843 0.6045
XGBoost 0.7147 0.9045 0.7024 0.7031 0.5819 0.8800 0.6174(1) 0.6012
AdaBoost 0.6767 0.9162 0.7029 0.7047 0.4870 0.8853 0.5685 0.5966
Bagging 0.6969 0.8993 0.6878 0.6883 0.5513 0.8671 0.5907 0.5955
Average 0.6520 0.9062 0.6752 0.6801 0.4834 0.8882 0.5542 0.5907

w/o IMST, 
AdaBoost, 

and 
XGBoost

LDA 0.5754 0.9020 0.6352 0.6459 0.3685 0.9299(2) 0.4649 0.5802
LogR 0.5911 0.9111 0.6518 0.6627 0.3644 0.9290 0.4598 0.5778
KNN 0.6357 0.8951 0.6581 0.6597 0.3226 0.9017 0.4048 0.5490
DT 0.6783 0.8794 0.6484 0.6505 0.4981 0.8596 0.5593 0.5729
RF 0.6814 0.9098 0.6970 0.6979 0.4527 0.8998 0.5480 0.5971
XGBoost 0.7072 0.8979 0.6889 0.6900 0.5063 0.8862 0.5821 0.6040
AdaBoost 0.6782 0.9117 0.6981 0.6992 0.4391 0.9008 0.5365 0.5927
Bagging 0.6936 0.8937 0.6774 0.6784 0.4985 0.8782 0.5724 0.5933
Average 0.6551 0.9000 0.6693 0.6730 0.4312 0.8981 0.5159 0.5833

w/o IMST, 
AdaBoost, 

and RF

LDA 0.6597 0.9072 0.6840 0.6856 0.4229 0.9211 0.5251 0.6002
LogR 0.6439 0.9110 0.6805 0.6841 0.4324 0.9212 0.5346 0.6044
KNN 0.6556 0.8962 0.6679 0.6685 0.4227 0.8683 0.5135 0.5621
DT 0.6983 0.8823 0.6581 0.6615 0.5527 0.8414 0.5598 0.5603
RF 0.7088 0.9047 0.7009 0.7012 0.5441 0.8778 0.5927 0.6068(3)
XGBoost 0.7237(1) 0.8971 0.6927 0.6948 0.6169 0.8656 0.6101(2) 0.6108(1)
AdaBoost 0.6980 0.9143 0.7103 0.7110 0.5165 0.8854 0.5879 0.6065
Bagging 0.7144 0.8943 0.6850 0.6869 0.5857 0.8592 0.5930 0.5935
Average 0.6878 0.9008 0.6849 0.6867 0.5117 0.8800 0.5652 0.5167


