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Article History: Abstract. The relationship between the digital economy and carbon emissions has emerged 
as a critical issue in the pursuit of the Sustainable Development Goals by 2030. This study 
examines the spatial spillover effects and the mediating role of industrial structure in this re-
lationship using panel data from 285 prefecture-level cities in China between 2011 and 2022. 
Employing the Spatial Durbin Model (SDM) to capture spatial effects, stepwise regression and 
bootstrap tests for mediating effects, and the System Generalised Method of Moments (SYS-
GMM) to address endogeneity, the study reveals several key findings. First, the digital economy 
significantly increases carbon emissions with substantial spillover effects across regions. Second, 
carbon emissions exhibit both temporal and spatial dependence, influenced by time and loca-
tion, with emissions in neighboring areas having a significant impact, leading to a “snowball” 
effect. Third, the digital economy indirectly elevates carbon emissions by optimizing industrial 
structures. These findings underscore the need for comprehensive strategies to manage car-
bon emissions effectively during economic transformation, aiming towards an environmentally 
sustainable economy.
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1. Introduction

The interplay between the digital economy and carbon emissions presents a complex and 
pressing challenge in the context of global sustainable development. As the digital economy 
grows, characterized by advancements in information technology, increased internet usage, 
and the proliferation of digital services, its impact on carbon emissions has become a focal 
point of scholarly debate. On one hand, the digital economy can drive efficiency and inno-
vation, potentially reducing emissions through improved resource management and lower 
energy consumption. On the other hand, the expansion of digital infrastructure, increased 
energy demands from data centers, and the proliferation of electronic devices contribute to 
higher carbon emissions. This dual effect creates a paradox where the digital economy, while 
fostering economic growth and development, simultaneously exacerbates environmental 
challenges. Moreover, the spatial distribution of these effects is uneven, with some regions 
experiencing more significant impacts due to varying levels of digital economy development 
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and industrial activities. This spatial heterogeneity complicates the formulation of effective 
policies, as strategies that work in one region may not be applicable in another. Additionally, 
the relationship between the digital economy and carbon emissions is mediated by changes 
in industrial structure, where shifts towards more or less carbon-intensive industries can influ-
ence overall emission levels. Understanding these dynamics is crucial for developing targeted 
interventions that balance economic growth with environmental sustainability, ensuring that 
the benefits of the digital economy do not come at the expense of the planet’s health.

The rapid development of the digital economy has fundamentally transformed various 
aspects of society, driving significant economic growth and innovation. As digital technolo-
gies become increasingly integrated into everyday life and business operations, their impact 
on carbon emissions has attracted substantial scholarly attention. The digital economy, en-
compassing advancements in information technology, the proliferation of digital services, and 
widespread internet use, presents a paradoxical relationship with carbon emissions (Xie et al., 
2022). While it promotes efficiency and resource optimization, potentially reducing emissions 
in some areas, it also leads to increased energy consumption and emissions from data cen-
ters, electronic devices, and supporting infrastructure. This dual effect necessitates a nuanced 
understanding of the digital economy’s overall impact on the environment. Previous studies 
have highlighted the importance of examining this relationship in the context of spatial and 
industrial structures. For instance, (Yiming et al., 2024) found that regions with more advanced 
digital economies tend to exhibit higher carbon emissions due to increased energy demands. 
Similarly, (Shi & Umair, 2024) demonstrated that the industrial structure plays a critical medi-
ating role, where shifts towards high-tech and service-oriented industries can either mitigate 
or exacerbate carbon emissions depending on their energy profiles. Understanding the spatial 
spillover effects is also crucial, as emissions in one region can influence neighboring areas, 
creating a “snowball” effect (Xinxin et al., 2024). Therefore, research on the relationship be-
tween the digital economy and carbon emissions is vital for formulating effective policies that 
promote sustainable economic growth while minimizing environmental impact.

Anthropogenic climate warming has engendered profound ramifications for human so-
ciety. Dilanchiev et al. (2024) elucidates that climatic perturbations have ensnared approxi-
mately 9% of the global populace – translating to over 600 million individuals – in the throes 
of severe ecological vicissitudes. These challenges encompass a gamut of concerns, ranging 
from physiological health and the caliber of life, to agriculture, ecosystems, and the intricate 
fabric of societal and political structures. For instance, periods of extreme thermal elevation 
have been correlated with an uptick in mortality, a diminution in labor productivity, impedi-
ments to cognitive development, and adverse perinatal outcomes. Moreover, the insidious 
rise in sea levels, precipitated by the greenhouse effect, coupled with the increased incidence 
of fluvial disasters and the proliferation of pests and pathogens, poses a formidable threat to 
the stability of agriculture and ecosystems. In the socio-political realm, the accelerative forces 
of climate change have the potential to intensify societal strife, propagate hate speech, cata-
lyze mass migrations, and fuel the widespread dissemination of infectious diseases, thereby 
challenging the bedrock of social equanimity and international diplomacy (Wang et al., 2024). 
The current trajectory of policy and praxis, if unaltered and devoid of further intervention, 
portends a temperature elevation of approximately 2.7 °C by the terminus of the current 
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century. Such a climatic shift implies that a substantial fraction – between 22% to 39% – of 
humanity will be precariously positioned outside the climatic niches conducive to life. How-
ever, a mitigation of warming to a ceiling of 1.5 °C would markedly reduce the demographic 
exposed to extreme temperatures by a factor of five (Li et al., 2023a). Given the central role 
of greenhouse gases in global warming, there is an exigent imperative for the international 
community to halve emissions within the impending decade and to strive for a net-zero 
carbon dioxide emission status by mid-century.

In the face of the escalating challenge posed by global climate warming, governments 
around the world, alongside international bodies, have crafted a suite of policies and pledges 
to confront this existential threat. A pivotal manifestation of these concerted efforts was the 
United Nations Climate Change Conference (COP26) (United Nations Climate Change, 2021) 
held in Glasgow, United Kingdom in November 2021. The quintessence of this congregation 
was the upholding of the commitments to sustainable development as enshrined in the Paris 
Agreement and the United Nations Framework Convention on Climate Change (UNFCCC), 
with a particular emphasis on the imperative of constraining the rise in global temperatures 
to within 1.5 °C above pre-industrial levels (Zheng & Wong, 2024). Within this contingent, 58 
nations – which collectively are accountable for more than half of global emissions – have 
avowed their intention to achieve net-zero emissions by the year 2050 (Mohsin et al., 2023). 
Notably, China, regarded as one of the most prodigious contributors to global pollution, 
has emissions of carbon dioxide (CO2) that surpass the cumulative output of all developed 
countries. Around the year 2020, China’s CO2 emissions reached a staggering 9.89 billion 
tons, accounting for approximately 30% of the world’s total CO2 emissions (Yuan et al., 2023). 
As the world’s foremost emitter of CO2, China has taken the significant step of ratifying the 
Paris Agreement under the aegis of the UNFCCC, and has pledged to implement CO2 emis-
sion reduction strategies to meet its climate change mitigation targets. Furthermore, China 
has ambitiously committed to peak its carbon emissions by 2030, with the aim of achieving 
carbon neutrality by the year 2060. These pledges underscore a global movement towards an 
era of environmental accountability and resilience, with the international community forging 
a path to a sustainable future (Wu et al., 2023).

This study makes a significant contribution to the existing literature by providing a com-
prehensive analysis of the impact of the digital economy on carbon emissions, specifically 
within the context of China’s rapidly evolving urban landscapes. The study is distinctive in 
its use of panel data from 285 prefecture-level cities in China over an extensive period, from 
2011 to 2019. This time frame allows for a nuanced understanding of the trends and pat-
terns over almost a decade, a period marked by significant technological advancements and 
economic shifts. The utilization of the Spatial Durbin Model (SDM) in this study is particularly 
noteworthy. By employing SDM, the study offers valuable insights into the spatial spillover ef-
fects of the digital economy on carbon emissions, an aspect often overlooked in conventional 
models. Additionally, the study’s application of stepwise regression methods and bootstrap 
tests to investigate mediating effects sheds light on the indirect pathways through which the 
digital economy influences carbon emissions. This approach enables a more detailed explora-
tion of the underlying mechanisms, contributing to a deeper understanding of the complex 
interplay between economic development and environmental impact. Furthermore, the use 
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of the System Generalized Method of Moments (SYS-GMM) to address endogeneity concerns 
enhances the robustness of the findings. This methodological choice is crucial in establishing 
the causal relationships in the data, thereby strengthening the study’s contribution to the 
literature on environmental economics and policy. In summary, the study’s contribution to the 
literature is multifaceted, offering not only a detailed empirical analysis over a significant time 
period but also methodological advancements in understanding the environmental impacts 
of the digital economy. Its findings provide valuable insights for policymakers and scholars 
interested in balancing economic growth with environmental sustainability.

The remainder of this study is structured as follows. Section 2 presents a comprehensive 
review of the literature. Section 3 delineates the research methodology and sources of data. 
Section 4 discusses the findings and deliberations, encompassing the selection of a spatial 
Durbin model with time-invariant fixed effects, benchmark regression analyses, mediation ef-
fects, and spatial spillover implications. Section 5 is dedicated to robustness checks and sub-
sample regressions. Finally, Section 6 encapsulates the conclusions and policy implications.

2. Literature review

2.1. Correlation between digital economy and carbon emission

Within the realm of environmental economics, the regulation of carbon emissions stands 
as a pivotal concern. Scholarly inquiries have identified a multitude of salient factors influ-
encing carbon emissions, among which are economic development , urbanization, industrial 
agglomeration and infrastructural development (Ma et al., 2022a). Nonetheless, the meteoric 
rise and pervasive diffusion of internet technologies have catalyzed an increase in the digital 
economy’s share of the global economic aggregate. This trend has kindled widespread con-
templation and scholarly pursuit regarding the digital economy’s impact on climate change 
and sustainability issues (Zhu & Chen, 2022). Indeed, contemporary research has begun to 
pivot towards elucidating the nexus between the digital economy and carbon emission, swift-
ly ascending as a research focal point. Liu et al. (2023b) even posits that, in comparison to 
the traditional economy, the digital economy is more eco-conscious during its production 
processes, with a marked reduction in energy consumption and environmental emissions.

Within the scholarly discourse on the carbon mitigation impact of the digital economy, 
three predominant perspectives emerge. The first predominant posits that the digital econo-
my exerts a notable decarbonization effect. Liu and Chen (2022) investigate the mechanisms 
by which the digital economy influences carbon emissions, examining the dynamic impacts 
of Information and Communication Technology (ICT) on economic and energy systems. They 
contend that the digital economy can diminish carbon emissions through several avenues, 
including augmenting energy efficiency, transforming consumption patterns, and fostering 
green growth. Firstly, the digital economy has the potential to enhance energy efficiency. 
Jiang et al. (2023) leverage panel data from 277 Chinese cities spanning 2011 to 2019 and 
discover that the digital economy contributes to a reduction in both the intensity and the ag-
gregate of energy consumption, as well as to an increase in urban greenery coverage, which, 
in turn, curtails carbon dioxide emissions. Additionally, the application of digital technology 
in the energy sector has catalyzed innovation in energy technology, thereby improving the 
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efficiency of energy utilization. Secondly, the digital economy is capable of altering consumer 
habits. Novel digital economic paradigms, such as intelligent buildings, telecommuting, and 
optimized manufacturing processes can reduce unnecessary transportation and its associated 
emissions by changing the way residents work. Moreover, digital technology can promote the 
dematerialization and intelligentization of residents’ work and lifestyles, which aids in lower-
ing their energy demands (Chen et al., 2023), for example, through the intelligent design of 
residential buildings and domestic appliances. Furthermore, research by Ma et al. (2022b) 
indicates that during the COVID-19 pandemic, digital technology enabled the transition of 
residents’ offline activities to online platforms, thereby reducing energy consumption and 
potentially contributing to carbon abatement. Thirdly, the digital economy can propel green 
development. Litvinenko (2020) assert that the evolution of ICT has a significant positive 
impact on the green economy. The research by Martynenko and Vershinina (2018) suggests 
that digitalization has led to the ecological modernization of production, which not only en-
sures the conservation of various resources but also underpins the sustainable development 
of territories, nations, and regions.

Conversely, the second perspective posits that the digital economy exacerbates carbon 
emissions. The world’s top ten economies in 2019, arriving at the conclusion that digitization 
has not facilitated the advancement of a green or energy-efficient economy; rather, it has 
impeded such progress, culminating in an escalation of carbon dioxide emissions. Similarly, 
Murshed (2020) inspected trade openness data in information and communication technol-
ogy (ICT) among South Asian economies, discerning that greater ICT trade openness does 
not translate to carbon emission reductions. Utilizing annual data from Australia spanning 
from 1985 to 2012, Huang et al. (2022) employed an array of econometric techniques to es-
timate the impact of internet usage and economic growth on electricity consumption. Their 
findings suggest that internet usage stimulates an increase in electricity demand, which is 
counterproductive to carbon emission reduction efforts.

The theoretical foundation for the hypothesis that the digital economy increases carbon 
emissions can be derived from several economic and environmental theories. The Environ-
mental Kuznets Curve (EKC) hypothesis, for instance, suggests that in the early stages of 
economic development, environmental degradation and pollution increase, including carbon 
emissions. As the economy grows, income levels rise, and eventually, technological advance-
ments and structural changes lead to a decrease in pollution levels. However, the initial stages 
of digital economic development are likely to involve significant investments in digital infra-
structure, such as data centers, communication networks, and manufacturing of electronic 
devices, which are energy-intensive and contribute to higher carbon emissions (Yu et al., 
2023). Moreover, the rebound effect theory posits that increases in energy efficiency from 
technological advancements can lead to increased energy consumption due to behavioral or 
other systemic responses (Cui et al., 2023). In the context of the digital economy, while digital 
technologies may improve energy efficiency, they also enable increased economic activities 
and consumption patterns that can offset these efficiency gains and result in higher overall 
energy demand and carbon emissions. The scale effect, often discussed in environmental 
economics, further supports this hypothesis. As digital technologies lower production costs 
and create new economic opportunities, they can lead to an expansion in economic activi-
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ties, thereby increasing the total energy consumption and associated carbon emissions (Li & 
Umair, 2023a). This is particularly evident in sectors such as cloud computing, e-commerce, 
and digital entertainment, where the demand for data processing and storage grows expo-
nentially, leading to greater energy consumption. Additionally, the structural effect highlights 
that the digital economy can lead to changes in industrial structure, potentially increasing 
the share of energy-intensive industries if digital technologies primarily boost sectors such as 
information technology hardware manufacturing, which is known for high energy consump-
tion and carbon emissions (Liu et al., 2023a). In summary, while the digital economy has the 
potential to enhance energy efficiency and promote green growth, theoretical and empirical 
evidence suggests that it may initially lead to higher carbon emissions due to increased en-
ergy demands, the rebound effect, and changes in industrial structure. This hypothesis aligns 
with the Environmental Kuznets Curve, the rebound effect theory, and the scale and structural 
effects in environmental economics.

H1: The digital economy contributes to an increase in carbon emissions.

2.2. Intermediary effect

Numerous scholars contend that the digital economy has the potential to augment the pro-
portion of the tertiary sector within the overall industrial structure. Firstly, the digital econ-
omy catalyzes the optimization and transformation of industrial composition through the 
acceleration of technological advancement and innovation. For the tertiary sector in par-
ticular, such innovation and technological progress not only enhance production efficiency 
of tertiary sector and reduce relative costs as indicated by Ma et al. (2022b), but also fortify 
the competitive advantage and growth of high-tech industries – especially those within the 
tertiary sector – thereby driving a shift in industrial structure. The research by Li et al, (2021a) 
suggests that the evolution of the digital economy fosters the integration of innovative re-
sources across regions, encompassing capital, talent, and technological elements, positioning 
the digital economy as superior in terms of technological and innovative capabilities when 
compared to other economic forms. Furthermore, the synergy between the digital economy 
and the tertiary sector surpasses that of its integration with the traditional manufacturing 
sector, as exemplified by the interconnected logistics and computer services provided by big 
data platforms. This implies that the contribution of the digital economy to the growth of the 
tertiary sector often exceeds that of the secondary sector, facilitating an increased share and 
refinement of the tertiary sector within the industrial framework. Moreover, the highly techno-
logical and innovative nature of the digital economy has also given rise to new industries and 
business models. These emerging sectors offer a plethora of employment and educational 
opportunities, and afford entrepreneurs more convenient access to innovative resources, as 
seen in the sharing economy, online education, and telemedicine (He et al., 2022). Industries 
centered around artificial intelligence, big data, and fifth-generation mobile communications 
technology not only serve as the foundation for corporate digital transformation but also 
support the emergence of new industrial spheres (Kochergin, 2021). In the case of the tradi-
tional manufacturing sector, or secondary industry, innovation and technological progression 
are permeating the digitalization of the industry, with digital information technologies such 
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as cloud computing and big data gradually integrating into the production processes, organ-
izational structures, and business promotions of traditional industries. This has not only opti-
mized traditional business operations, enhancing production efficiency, but has also steered 
traditional industries towards a digital, tertiary-sector transformation, thereby increasing the 
tertiary sector’s share. Secondly, the digital economy has the capacity to elevate collaborative 
efficiency. Supported by digital platforms, consumers in the tertiary sector can locate desired 
products and procure high-quality services at minimal costs, while producers can significantly 
reduce operational expenses while accessing essential development resources. Businesses, 
by precisely capturing consumer demand to guide production and offer customized product 
services, can reduce production and promotional costs, minimize inventory, and strengthen 
collaborative efficiency with consumers. Furthermore, in the digital era, the recombination 
of production elements differs from traditional patterns, with notable changes in the status 
of elements and new modes of integration enhancing multi-dimensional collaborative ef-
ficiency, ultimately expediting the industrial structure’s transformation (Wang & Li, 2023). 
For traditional manufacturing, the digital economy, which primarily utilizes information and 
digital data as production elements, promotes the intelligent and digital transformation of 
enterprises during integration with traditional industries. This enables the industrial structure 
to shift from labor-intensive and capital-intensive industries to data-intensive and technolo-
gy-intensive ones, aiding the gradual progression of the entire industrial system towards the 
tertiary sector. Lastly, in terms of foreign trade within an open economic model, countries 
tend to specialize in industries and sectors where they possess comparative advantages, and 
this specialization process can lead to structural changes. For developing nations, digitali-
zation reduces the transaction costs associated with foreign trade, thereby benefiting these 
countries by leveraging their comparative advantages. Simultaneously, re-evaluating potential 
comparative advantages related to tasks, products, and sectors driven by digitalization may 
prove valuable, as these digitalization-driven entities exhibit higher growth rates (for instance, 
due to network and scale effects) compared to traditional tasks, products, and sectors (Li 
et al., 2021a). The cumulative disparity in growth rates ultimately results in significant shifts 
within the industrial structure.

H2: The industrial structure, characterized by the increasing ratio of tertiary to secondary 
sector activities, serves as a mediating variable in the relationship between the digital 
economy and carbon emissions.

2.3. Spatial spillover effect

The digital economy is renowned for its salient attributes such as openness, transcendence 
of temporal and spatial constraints, and the ethos of economic sharing. A pivotal attribute 
is the employment of efficacious digital platforms for the transmission of information, which 
not only mitigates the inherent spatial barriers and asymmetry of information among market 
entities but also fortifies the interconnectivity of regional economic endeavors. The evolution 
of the digital economy has engendered a synergistic integration of online and offline mo-
dalities. The ascent of the internet economy has attenuated the constraints of geographical 
proximity on the dissemination of technology and knowledge, thereby elevating the ubiquity 
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of information and knowledge and generating pronounced spillover effects. In their pioneer-
ing study, Xing et al. (2023) discerned the spatial spillover effects engendered by the advent 
of information technology through their meticulous analysis of panel data across 48 states 
in the United States. Erwansyah (2023) delves into the discourse on the spatial dynamics of 
spillover effects from the perspective of knowledge and technological dissemination. The in-
ternet’s influence on regional economic development manifests in various domains, including 
economic growth resource misallocation and digital finance all of which exhibit spatial spill-
over effects (Li et al., 2023a). Furthermore, a cadre of scholars has substantiated the spatial 
spillover effects of the digital economy on carbon emissions. For instance, He et al. (2022) 
conducted an empirical study using a spatial panel Durbin model on provincial-level panel 
data in China, revealing that the development of the digital economy significantly contributes 
to carbon emission reductions through spatial spillover. Skare et al. (2023) constructed a com-
posite index of information and communication technology (ICT) vis-à-vis socio-economic 
development through principal component analysis (PCA) and, utilizing a spatial Durbin mod-
el (SDM), discovered that ICT’s spatial spillover engendered certain adverse impacts on the 
socio-economic development of neighboring regions. Collectively, these studies demonstrate 
that the proliferation of the digital economy not only exerts influence within its immediate 
locale but also diffuses through various mechanisms to adjacent areas, manifesting divergent 
characteristics and intensities of impact across different economic and environmental spheres.

H3: The digital economy exerts a spatial spillover effect on carbon dioxide emissions across 
different regions.

3. Methods and data

3.1. Econometric model

In their seminal exploration of the determinants impacting the environment, Miller and Wils-
don (2001) postulated that environmental change is precipitated by a triad of factors: the 
demographic component, the affluence component, and the technological component. This 
conceptual framework, which they articulated, is encapsulated by the IPAT Equation, serving 
as a foundational model in the discourse of environmental science.

 = * *I P A T .  (1)

In the original IPAT formulation, ‘I’ denotes environmental impact, ‘P’ represents demo-
graphic components, ‘A’ symbolizes economic growth (affluence factors), and ‘T’ indicates 
technological advancements. Building upon this foundation, Dietz and Rosa (1997) introduced 
the STIRPAT model – an analytical framework that examines the stochastic impacts of popula-
tion, affluence, and technology on environmental pressure.

 
= t TdI aPb At et

dt
.  (2)

In the Equation under consideration, the term ‘a’ represents the intercept, while ‘b’, ‘c’, and 
‘d’ are the respective exponents correlating to the environmental impacts of P (population), 
A (affluence), and T (technology), with ‘et’ denoting a stochastic error component. Carbon 
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emissions, a critical environmental metric, have been the focus of numerous academics (Ding 
et al., 2022) who have adopted and refined the STIRPAT model as a quantitative framework 
to examine the interplay between the digital economy and carbon emissions. Furthermore, 
acknowledging the influence of historical levels of carbon dioxide emissions, our model in-
troduces a lagged variable of CO2 emissions into the model, thereby effectively integrating 
the digital economy variable with the STIRPAT framework.

 = + − + + + + + + + + +21 2 , 1 3 4 5   6 7 8 .ceit indust cei t digit pgdpit pgdpit energyit fdit urbit vi ut it         

                       = + − + + + + + + + + +21 2 , 1 3 4 5   6 7 8 .ceit indust cei t digit pgdpit pgdpit energyit fdit urbit vi ut it          (3)

In the context of urban municipalities, denoted by i, across temporal spans denoted by 
t, the dependent variable carbon emissions is symbolized as ce. The term dig represents the 
digital economy, pgdp stands for economic growth, energy encapsulates the levels of energy 
consumption, fdi signifies foreign direct investment, and urb denotes the degree of urbaniza-
tion. Herein, αk, where k is an element of the set {1,7}, corresponds to the estimated coef-
ficients. The variables vi and ut represent fixed effects that are specific to individual entities 
and temporal periods, respectively, while εit is the stochastic error term. To mitigate the issue 
of heteroscedasticity, we have employed a logarithmic transformation for all independent 
variables with the exception of the lagged variable of ce and pgdp. The retention of pgdp in 
its raw form is attributed to the inclusion of a squared pgdp term; thus, by taking the loga-
rithm of only one variable, we attenuate the problem of multicollinearity. The same rationale 
applies to the lagged variable of ce.

To elucidate the potential mediating mechanisms through which the digital economy 
may influence carbon emission reduction, we have established a standardized mediation 
effect test model including models (3), (4) and (5). This model serves as an empirical tool to 
investigate whether industrial structure functions as a mediating variable in the relationship 
between the digital economy and carbon mitigation. The most widely adopted approach for 
testing mediation effects is the stepwise method introduced by Baron and Kenny (1986). We 
employ this methodology to examine the role of industrial structure as a potential mediator 
between the digital economy and carbon emission reduction. The specific formulation of our 
regression model is as follows:

 = + − + + + + + + + + +2
0 1 2 3 4 5 6 7, 1   ;industit cei t digit pgdpit pgdpit energyit fdit urbit vi ut it         

                         = + − + + + + + + + + +2
0 1 2 3 4 5 6 7, 1   ;industit cei t digit pgdpit pgdpit energyit fdit urbit vi ut it          (4)

 = + − + + − + + + + +0 1 1 2, 1 , 1 , , .c i c iceit cei t ceit digi t digi Z t Z ut i t          (5)

The spatial spillover effects of the digital economy on carbon dioxide emissions, we in-
tegrate spatial interaction terms of these variables, along with other control variables, within 
models (3), (4), and (5). This extension advances our inquiry into a spatial panel econometric 
model, thereby enriching the analytical framework to better understand the underlying dy-
namics at play.

 = + − + + + + + + +0 1 1 2, , 1 , , , , ;c i c icei t cei t Wcei t Wdigi t digi Z t Z ut i t          (6)

 = + − + − + + + + + +0 1 1 2, , 1 , 1 , , , ;W c i c iindust t cei t indust t Wdigi t digi Z t Z ut i t          (7) 
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= + + + − + + + + + +0 1 2 1 3, , , 1 , , , , .W c i c icei t indust indust t cei t Wdigi t digi t Z t Z ut i t         

                        = + + + − + + + + + +0 1 2 1 3, , , 1 , , , , .W c i c icei t indust indust t cei t Wdigi t digi t Z t Z ut i t          (8)

In the spatial Durbin models (6), (7) and (8), the symbol ρ denotes the spatial autoregres-
sive coefficient, while W represents the matrix of spatial weights. Drawing from the methodol-
ogy of Yi et al. (2022), this study employs an adjacency matrix Wij to facilitate the regression 
analysis. The coefficients ϕ1 and ϕc correspond to the elasticities associated with the core 
explanatory variables and the control variable spatial interaction terms, respectively. Equa-
tion (6) encompasses the spatial interaction terms for both the dependent and explanatory 
variables, thereby constituting a spatial Durbin model (SDM) with fixed effects over time.

 Wij = 1, i is adjacent to j; 0, i is not adjacent to j.  (9) 

3.2. Variable selection
3.2.1. Dependent variable

This treatise adopts the carbon emission quantification predicated upon the methodologies 
delineated by Xin et al. (2023). The variable selected for computation is exclusively carbon 
dioxide (encompassing solely CO2).

3.2.2. Key explanatory variable

The Digital Economy Index (dig) emerges as the pivotal explanatory variable within this study. 
Given the expansive nature of the digital economy – a concept that invariably encompasses a 
multitude of indices – the secondary and tertiary indicators employed by scholars frequent-
ly exhibit notable disparities. To address this, a comprehensive evaluation was undertaken, 
culminating in the adoption of the digital economy indicators as delineated by Xiao and Liu 
(2022). Moreover, in recognition of the foundational contribution of the postal sector to the 
infrastructure of the digital economy, an additional metric – the per capita postal index – was 
integrated to augment the digital economy indicators as shown in Table 1. The computation 
of these measures employed the entropy weighting method to ensure a robust and nuanced 
quantification.

Table 1. Measurement index system of the digital economy

Primary indicators Secondary indicators Index 
attribute

Digital 
Economy
Index

Internet penetration The prevalence of internet users per hundred 
individuals +

Number of Internet-related 
workers

The proportion of professionals engaged 
in computer services and software-related 
occupations

+

Internet-related outputs Total telecommunication services per capita +
Number of mobile Internet 
users

Mobile phone subscribers per hundred 
individuals +

Digital finance inclusive 
development China Digital Inclusive Finance Index +

Postal development Per capita postal services +
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3.2.3. Intermediary variable

In this discourse, the ratio of the tertiary sector to the secondary sector is employed as a 
metric to gauge the industrial structure (indust).

3.2.4. Control variables

Wang et al. (2021) and Amoah et al. (2023) were among the precursors to unearth the intricate 
dynamics between economic development (pgdp, pgdp2) and carbon emissions. Concomi-
tantly, the economic expansion exerts an influence on carbon dioxide emissions that adheres 
to an Environmental Kuznets Curve (EKC) relationship. Thus, in the realm of control variables, 
we integrated the quadratic term of economic growth. Additionally, in contemplation of the 
enhancement in per capita income engendered by economic augmentation – which in turn 
stimulates consumption and influences carbon emissions – the decision was made to employ 
per capita GDP as the representative metric for economic growth.

Liu et al. (2022) employed panel data methodologies to investigate the intricate interplay 
amongst carbon dioxide emissions, urbanization, GDP, and energy consumption (energy) 
within a cohort of eleven nations from the Middle East and North Africa, they observed that 
an increased consumption of energy often correlates with a concomitant rise in carbon di-
oxide emissions. In accordance with the findings delineated by the Intergovernmental Panel 
on Climate Change (IPCC), the profligate combustion of fossil fuels and the consequent 
emissions of carbon dioxide stand as the principal culprits behind the phenomenon of global 
warming. According to the Li et al. (2021b) among the various fossil fuels, coal consumption 
represents a predominant share, henceforth, in the discourse of this manuscript, the term 
“energy consumption” shall be exemplified predominantly by the utilization of coal. 

In the present discourse, we draw upon the methodological foundations established by 
Li et al. (2023b) adopting the ratio of actual foreign capital utilization to GDP as a metric 
to gauge the degree of economic openness. On the one hand, the liberalization of mar-
kets facilitates the ingress of foreign enterprises endowed with advanced emission-reduction 
technologies into China, catalyzing “pollution halo” effects that are conducive to carbon 
abatement. On the other hand, the inquiry by Scherbakov and Silkina (2019) posits that an 
augmentation in foreign direct investment is correlated with increased carbon dioxide emis-
sions. In essence, whether as a catalyst for carbon emission reduction or as a contributor to 
increased emissions, FDI emerges as a significant variable likely to impact carbon output and, 
thus, merits inclusion as a control variable in our analysis. For the purposes of this study, the 
actual foreign investment to GDP ratio shall serve as the representative indicator of the level 
of openness indicated in Table 2.

The urbanization rate is defined by the proportion of the population residing within urban 
areas relative to the total permanent population at the prefecture level.

3.3. Data sources

Utilizing a comprehensive panel dataset encompassing 285 prefecture-level cities – excluding 
Hong Kong, Macau, and Taiwan – our analysis spans the period from 2011 to 2022. Research 
data were collected from National Bureau of Statistics of China (2024a), the State Statistics 
Bureau (China), China Statistical Yearbook (National Bureau of Statistics of China, 2024b), Chi-
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na Energy Statistical Yearbook (National Bureau of Statistics of China, 2024c), EPS databases 
(EPS China Data, 2010–2023), Institute of Digital Finance Perking University (2021), China 
National Intellectual Property Administration (2022), National Bureau of Statistics of China 
(2024d) and Statistical yearbook of all provinces (autonomous regions, municipalities). The 
missing values are supplemented by interpolation. The statistical analysis software used in 
this paper is Stata 17.0. 

4. Empirical results and discussion

4.1. Descriptive statistics

The Table 3 presents summary statistics for a dataset comprising 3.065 observations across 
various variables. The variable ce (carbon emissions) has a mean of 10.053 with a standard 
deviation of 0.947, ranging from a minimum of 7.487 to a maximum of 13.56, indicating 
relatively moderate variation in carbon emissions across the dataset. The indust variable, 
representing industrial activity, shows a mean of 0.133 with a standard deviation of 0.563, 
and values ranging from –1.175 to 2.643, reflecting a broad range of industrial activity levels, 
including some negative values, which may indicate declines in certain areas. The dig variable, 
which likely represents digital economy metrics, has a mean of –1.48 with a standard devi-
ation of 0.684, and ranges from –3.582 to 1.801, suggesting that most observations are on 
the negative side, possibly indicating a generally lower level of digital economy development 
or adoption. The co22 variable, representing CO2 emissions, has a mean of 6,036 units with 
a significant standard deviation of 5,985, and a wide range from 1,650.4 to 112,743, high-
lighting substantial variability in emissions across different observations. The pgdp variable, 
reflecting per capita GDP, shows a mean of 72,167 with a standard deviation of 23,699, and 
values ranging from 16,457 to 567,749, indicating considerable economic disparity within 

Table 2. Variable description

Variable symbol name Indictor

Dependent 
variable

ce carbon emission Natural logarithm of total carbon dioxide 
emissions

Key explanatory 
variable

dig digital economy Calculated according to the index system of 
the digital economy

Intermediary 
variable

Indust industrial structure Natural logarithm of the ratio of the tertiary 
sector to the secondary sector

Control variables pgdp per capita gdp gdp divided by population of prefecture-
level cities

pgdp2 square of gdp per capita Natural logarithm of gdp per capita squared
energy energy consumption Natural logarithm of coal consumption
fdi Openness Natural logarithm of the ratio of utilized 

foreign capital to GDP
urb urbanization rate Natural logarithm of resident urban 

population over resident population in 
prefecture-level cities
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the dataset. The square of per capita GDP (pgdp2) has a mean of 24.38 and a standard 
deviation of 2.151, with values between 19.55 and 29.11, reflecting the quadratic nature of 
the relationship captured by this variable. Energy consumption (energy) has a mean of 6.473 
with a standard deviation of 1.679, ranging from 2.384 to 10.347, indicating some variability 
in energy use across observations. The FDI variable, representing foreign direct investment, 
has a mean of –3.048 with a higher standard deviation of 3.696, and ranges from –13.03 to 
1.553, showing significant variation in FDI inflows, with many observations possibly indicating 
net outflows. Finally, the urb variable, representing urbanization, has a mean of 4.179 with a 
standard deviation of 0.366, and values ranging from 3.563 to 5.605, suggesting moderate 
variability in urbanization levels within the dataset. Overall, the table provides a comprehen-
sive overview of the central tendencies and variabilities of key variables in the study, high-
lighting both economic and environmental aspects.

Table 3. Descriptive statistics

Variable Obs Mean SD Min Max

ce 3,065 10.053 0.947 7.487 13.56
indust 3,029 0.133 0.563 –1.175 2.643
dig 3,065 –1.48 0.684 –3.582 1.801
co22 3,065 6036 5985 1650.4 112743
pgdp 3,065 72167 23699 16457 567749
pgdp2 3,065 24.38 2.151 19.55 29.11
energy 3,065 6.473 1.679 2.384 10.347
fdi 3,065 –3.048 3.696 –13.03 1.553
urb 3,065 4.179 0.366 3.563 5.605

4.2. Spatial correlation test results

In this study, we rigorously evaluated spatial dependence in accordance with the method-
ology delineated by Xue et al. (2022) subsequently selecting the most appropriate spatial 
econometric model to encapsulate the observed phenomena. Our initial investigative step 
entailed the application of Moran’s I statistic to assess the presence of spatial autocorrelation 
amongst observations within the context of a geographically weighted adjacency matrix. We 
systematically employed LM tests for both lag and error to ascertain the existence of spatially 
lagged dependent variables as well as spatially autocorrelated error term, respectively, then 
to thereby select an appropriate spatial model. Finally we choose the Spatial Durbin Model 
according to the LM results). Furthermore, LR tests were utilized to determine whether the 
Spatial Durbin Model (SDM) could conceivably degenerate into either a Spatial Autoregres-
sive (SAR) or a Spatial Error Model (SEM), following the insights provided by Xue et al. (2022).

An examination of Table 4 reveals that, between the years 2011 and 2022, the Moran’s I 
values are modest, the associated p-values are all less than 0.05, indicating statistical signifi-
cance at the 0.05 level. Consequently, we infer the presence of spatial autocorrelation.



806 Y. Chen, J. Liu. Digital economy and carbon emissions: spatial spillover effect and industrial structure ...

Table 4. Moran’s I values of carbon emission

Year Variable I E(I) sd(I) z p-value*

2011 C2011 0.105 –0.004 0.053 2.758 0.009
2012 C2012 0.104 –0.004 0.053 2.732 0.012
2013 C2013 0.105 –0.004 0.054 2.741 0.011
2014 C2014 0.105 –0.004 0.053 2.762 0.009
2015 C2015 0.105 –0.004 0.053 2.744 0.011
2016 C2016 0.107 –0.004 0.054 2.801 0.006
2017 C2017 0.108 –0.004 0.054 2.841 0.003
2018 C2018 0.103 –0.004 0.053 2.695 0.015
2019 C2019 0.104 –0.004 0.054 2.706 0.014
2020 C2020 0.109 –0.004 0.055 2.861 0.002
2021 C2021 0.11 –0.004 0.055 2.901 0.0016
2022 C2022 0.111 –0.004 0.055 2.941 0.0012

4.3. Baseline regression results

This study principally employs a temporally invariant spatial panel Durbin model for regres-
sion analysis. In acknowledgment of potential endogeneity, and to facilitate comparative 
analysis, Table 5 enumerates the regression outcomes derived from employing an array of 
econometric methodologies, including Ordinary Least Squares (OLS), Random Effects Model, 
Fixed Effects Model, and the Generalized Method of Moments (GMM) dynamic panel model.

Analysis of the data presented in Table 5 reveals that the coefficient relating the level of 
digital economic development to carbon emission intensity is consistently positive across all 
above five models, indicating that the advancement of the digital economy correlates with 
an increase in carbon emission intensity. This observation substantiates Hypothesis 1. Fur-
thermore, results from the Spatial Durbin Model (SDM) in column (5) of Table 5 demonstrate 
that the coefficient for the spatial lag of digital economic development is significantly posi-
tive at the 1% level. Moreover, the coefficient of the spatial lag term for the level of digital 
economic development, as presented in column (5) of Table 5, is statistically significant and 
positive at the 1% level. 

Comparing these results with similar studies, Umair and Dilanchiev (2022) and Zhang and 
Umair (2023) also found a positive relationship between digital economic development and 
carbon emissions, supporting the findings of this study. Both studies emphasized the impor-
tance of energy consumption and industrial structure in mediating this relationship. On the 
other hand, studies by Li and Umair (2023b) and Xiuzhen et al. (2022) highlighted the spatial 
spillover effects of carbon emissions, aligning with the findings of the SDM models in this 
study, which show significant spatial dependence.

The data from 2012 to 2022 provides a detailed comparison of carbon dioxide (CO2) emis-
sions and emission intensity between digital manufacturing and service industries in different 
regions. The Figure 1 display two sets of data. The left y-axis represents the total CO2 emis-
sions in megatons (Mt), shown by the bars. The right y-axis represents the emission intensity 
in tonnes per million USD, depicted by the line plots with markers. Graph (a) illustrates the 
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Table 5. Baseline regression results

Model (1) ols (2) re (3) fe (4) sys-gmm (5) sdm

Variable ce ce ce ce ce

dig 0.518488*** 0.368180*** 0.412939*** 0.620054*** 0.515616***
–0.04146 –0.03874 –0.03902 –0.0511 –0.05517

l.ce 0.007475*** 0.004278*** 0.003968* 0.006457*** 0.005453***
–1.9E-05 –1.9E-05 –2.7E-05 –8E-06 –7E-06

pgdp –0.012100** –0.008800** –0.006600* –0.013200*** –0.011200**
–0.0008 –0.0002 –0.0002 –0.0003 –0.0004

pgdp2 –0.919809** –0.984011** –1.001808** –1.131744*** –1.041105**
–0.21491 –0.10681 –0.10623 –0.16137 –0.1583

energy 0.435035** 0.395421*** 0.394798*** 0.611108*** 0.301571
–0.10457 –0.06117 –0.06141 –0.13445 –0.07609

fdi 0.391691*** 0.234176* 0.245110** 0.394159*** 0.257481***
–0.08753 –0.04445 –0.04274 –0.0898 –0.10273

urb 0.201772 0.400571* 0.452041* 0.348249*** 0.410668
–0.09339 –0.08553 –0.08443 –0.12866 –0.09174

_cons 9.820006*** 8.582692*** 8.713432*** 10.842162***
–0.50878 –0.29449 –0.31198 –0.36945

Wx
dig 0.614690***

–0.07171
l.ce 0.500109***

–0.00417
pgdp 0.860061***

–0.005
pgdp2 –1.360680**

–0.65952
energy 0.655504

–0.21309
fdi –0.423874**

–0.10591
urb 0.896831

–0.27294
Spatial
rho 0.786064

(.)
Variance
sigma2_e 0.129435***

–0.50821
AR (1) Pr > z = 0.000
AR (2) Pr > z = 0.291
Hansen test Prob > chi2 = 0.103

Note: Standard errors in parentheses *p < 0.1, **p < 0.05, ***p < 0.01.
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digital manufacturing industry and indicates regional variations in CO2 emissions and emis-
sion intensity. Certain regions exhibit increased CO2 emissions during five years, whereas 
others demonstrate a decrease. The emission intensity in the digital manufacturing industry 
shows a consistent pattern, indicating a possible correlation between emission volumes and 
intensity. In contrast, the digital service industry in Graph (b) shows more significant variability 
between 2012 and 2017 than the manufacturing sector. Nevertheless, the emission intensity 
of the service industry exhibits a distinct dynamic, where the correlation between total emis-
sions and emission intensity may not be as direct as observed in the manufacturing sector. 
Presenting both absolute emissions and intensity offers a more nuanced comprehension of 
the environmental impact of these industries, considering their overall contribution to CO2 
emissions and their efficiency in their economic output. An in-depth analysis of this nature is 
becoming progressively crucial for policymakers and stakeholders who promote sustainable 
industry expansion while mitigating carbon emissions.

The Figure 2 comparing economic dynamics between regions in 2012 and 2022 show 
four sections: multipliers, spillovers, feedback and spillovers. These indicate how we view the 
economic benefits and impacts within and between regions. Each chart shows the economic 

Figure 1. Implicit carbon emissions from digital industries:  
a – digital manufacturing industry; b – digital service industry
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interactions during the five years. In some regions, intra-regional multipliers dominate, mean-
ing that economic activities within the region self-stimulate the economy of that region – and 
in the other areas, inter-regional multipliers dominate, meaning that those regions’ econo-
mies affect or are injected into the economies of others. Intra- and inter-regional dynamics 

Figure 2. Decomposition of carbon emission pathways for digital industries

Intra-regional 
spillover

Intra-regional 
multiplier

Inter-regional spillover

Inter-regional feedback

Intra-regional 
spillover

Intra-regional 
multiplier

Inter-regional spillover

Inter-regional feedback

Intra-regional 
spillover

Intra-regional 
multiplier

Inter-regional spillover

Inter-regional feedback

Intra-regional 
spillover

Intra-regional 
multiplier

Inter-regional spillover

Inter-regional feedback

29.2%

22.8%
28.3%

19.7%

28.3%

18.9%
27.7%

25.1%

26.6%

21.9% 27.1%

24.4%

28.5%

16.8%
30.1%

24.6%

Intra-regional 
spillover

Intra-regional 
multiplier

Inter-regional spillover

Inter-regional feedback

26.9%

19.5%
24.2%

29.4%

29.1%

15.9%
24.8%

30.2%

25.4%

24.7% 28.4%

21.5%

25.8%

20.3%
31.5%

22.4%

Intra-regional 
spillover

Intra-regional 
multiplier

Inter-regional spillover

Inter-regional feedback

Intra-regional 
spillover

Intra-regional 
multiplier

Inter-regional spillover

Inter-regional feedback

Intra-regional 
spillover

Intra-regional 
multiplier

Inter-regional spillover

Inter-regional feedback



810 Y. Chen, J. Liu. Digital economy and carbon emissions: spatial spillover effect and industrial structure ...

shifted economic patterns in several regions from 2012 to 2022. The NE region showed that 
intra-regional multipliers decreased and inter-regional feedback multipliers increased. This 
reflects that the region’s economy has become more influenced and possibly dependent on 
external regional economies. Understanding such dynamics can help regional planners and 
policymakers design strategies to bolster regional economies while being mindful of their 
connectivity.

4.4. Mediating effect analysis

This section empirically examines Hypothesis 2, which postulates the mediating role of in-
dustrial structure in the relationship between the digital economy and carbon emissions. 
The examination adheres to the established procedural framework of mediation effect mod-
els. Our study employs the widely acclaimed stepwise approach suggested by Wang et al. 
(2022) and Wu et al. (2023) for mediation effect analysis. Furthermore, for the purposes 
of comparative analysis and robustness assessment, we present the estimation outcomes 
of several econometric models including the Ordinary Least Squares (OLS) model, Random 
Effects model, Fixed Effects model, the Generalized Method of Moments (GMM) dynamic 
panel model, and the Durbin model, all of which are delineated in Table 6. The coefficient 
for the variable dig (digital economy) is consistently positive and highly significant across all 
models, with values ranging from 0.5188 in OLS (1) to 1.1585 in OLS (2) and 0.9292 in SDM 
(14), indicating a strong positive impact of the digital economy on carbon emissions (CE). This 
suggests that the digital economy is a significant driver of carbon emissions, both directly 
and indirectly through its influence on industrial structures. The lagged carbon emissions 
variable (l.ce) also shows positive and significant coefficients across all models, with values 
such as 0.07475 in OLS (1) and 0.06457 in GMM (10), indicating that past carbon emissions 
have a persistent effect on current emissions, reflecting temporal dependence. The PGDP vari-
able, representing per capita GDP, generally has a negative and significant impact on carbon 
emissions in most models, such as –0.0021 in OLS (1) and –0.0012 in SDM (15). However, 
in models where PGDP is squared (pgdp2), the coefficients are significantly negative, such 
as –1.192 in OLS (1) and –2.3132 in GMM (11), supporting the Environmental Kuznets Curve 
(EKC) hypothesis, where carbon emissions initially rise with economic growth but eventually 
decrease as economies develop further. The energy variable is positive and significant in most 
models, particularly in OLS (1) at 0.4335 and SDM (13) at 0.7519, indicating that higher energy 
consumption is associated with increased carbon emissions. This relationship underscores 
the energy-intensive nature of economic activities contributing to higher emissions. Foreign 
direct investment (FDI) has mixed effects, with generally positive and significant coefficients, 
such as 0.5192 in OLS (1) and 0.3154 in SDM (15), suggesting that FDI inflows tend to increase 
carbon emissions, potentially due to the transfer of energy-intensive industries. However, 
negative effects are observed in some models, indicating that under certain conditions, FDI 
may contribute to emission reductions. The urbanization variable (urb) shows a positive but 
varying impact on carbon emissions, with coefficients such as 0.5072 in OLS (1) and 1.9559 in 
GMM (11), suggesting that urbanization contributes to increased carbon emissions, likely due 
to higher energy consumption and industrial activities in urban areas. The industrial structure 
(indust) is consistently positive and significant in models where it is included, with coefficients 
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like 0.2803 in OLS (2) and 0.2560 in SDM (15), indicating that changes in industrial structures 
towards more energy-intensive activities contribute to higher carbon emissions. Overall, the 
results from this table underscore the complex interplay between economic development, 
industrial structures, and carbon emissions. The digital economy and energy consumption 
are key drivers of emissions, while economic growth, as captured by PGDP and PGDP2, fol-
lows the EKC hypothesis, where emissions eventually decline after reaching a certain level 
of development. The mixed impact of FDI and urbanization further highlights the nuanced 
effects of globalization and urban growth on environmental outcomes.

Table 6. Mediating effect testing results

Model 
Type

OLS  
(1)

OLS  
(2)

OLS  
(3)

RE  
(4)

RE  
(5)

RE  
(6)

FE  
(7)

FE  
(8)

FE  
(9)

GMM  
(10)

GMM  
(11)

GMM  
(12)

SDM  
(13)

SDM  
(14)

SDM  
(15)

Variable CE Indust CE CE Indust CE CE Indust CE CE Indust CE CE Indust CE

dig
0.5188*** 1.1585*** 0.6472*** 0.5178*** 1.0286*** 0.5758*** 0.6273*** 0.9552*** 0.5831*** 0.7220*** 0.9303*** 0.7025*** 0.6016*** 0.9292*** 0.5626***

–0.0515 –0.0658 –0.0673 –0.0316 –0.0461 –0.0339 –0.0309 –0.0642 –0.0328 –0.0331 –0.1488 –0.0424 –0.0452 –0.0511 –0.0471

l.ce
0.07475*** 0.05082*** 0.06467*** 0.05278*** 0.0402*** 0.0458*** 0.0568*** 0.0574*** 0.0542*** 0.06457*** 0.05031*** 0.06442*** 0.06453*** 0.0579*** 0.06448***

–0.002 –0.002 –0.0019 –0.0025 –0.0029 –0.0021 –0.0017 –0.0029 –0.0015 –0.0008 –0.0062 –0.0013 –0.0007 –0.0009 –0.0007

pgdp
–0.0021*** 0.0222** –0.0021*** –0.0008*** –0.0050*** –0.0008*** –0.0006** –0.0020*** –0.0006** –0.0032*** 0.0270*** –0.0044*** –0.0012*** 0.0290*** –0.0014***

–0.0008 –0.0009 –0.0008 –0.0003 –0.0005 –0.0003 –0.0003 –0.0007 –0.0003 –0.0003 –0.0067 –0.0004 –0.0004 –0.0005 –0.0004

pgdp2
–1.192*** –2.061*** –1.034*** –0.984*** –1.932*** –1.046*** –1.302*** –2.033*** –1.094*** –1.133** –2.3132** –1.103** –1.2410*** –2.3005*** –1.2604***

–0.215 –0.26 –0.225 –0.203 –0.312 –0.205 –0.215 –0.38 –0.215 –0.161 –0.294 –0.241 –0.158 –0.196 –0.165

energy
0.4335*** 0.4053 0.4911*** 0.4295*** 0.4217 0.4480*** 0.4295*** 0.5405** 0.4275*** 0.6761*** 0.8849** 0.7519*** 0.5032 0.6376*** 0.5019

–0.105 –0.105 –0.102 –0.069 –0.191 –0.067 –0.068 –0.232 –0.065 –0.134 –1.793 –0.242 –0.076 –0.094 –0.076

fdi
0.5192*** 0.1041 0.4122*** 0.1034** –0.0192** 0.3019*** 0.2955*** –0.1220*** 0.3025** 0.4194*** 0.0601*** 0.3121*** 0.3157*** 0.2113*** 0.3154***

–0.039 –0.053 –0.042 –0.015 –0.078 –0.014 –0.015 –0.076 –0.014 –0.019 –0.232 –0.031 –0.024 –0.029 –0.024

urb
0.5072 1.066*** 0.8727** 0.5901* 1.5878*** 0.5424 0.6902* 1.4394*** 0.5395 0.4952*** 1.9559** 0.8344*** 0.6311 1.0637 0.6413

–0.093 –0.147 –0.148 –0.151 –0.16 –0.153 –0.152 –0.162 –0.151 –0.186 –1.592 –0.209 –0.142 –0.152 –0.143

indust
0.2803*** 0.2766*** 0.2816*** 0.2479** 0.2560***

–0.123 –0.133 –0.139 –0.141 –0.141

_cons
10.2902*** 9.3649*** 9.0018*** 8.1583*** 9.8568*** 9.9056*** 8.2134*** 7.3139** 9.9430*** 10.2342*** 10.0024 11.5414***

–0.44 –0.521 –0.467 –0.243 –0.762 –0.239 –0.241 –0.96 –0.224 –0.27 –5.223 –0.44

Note: Standard errors in parentheses *p < 0.1, **p < 0.05, ***p < 0.01.

As illustrated in the accompanying figure, the regression results from the five models – or-
dinary least squares (OLS), random effects (RE), generalized method of moments (GMM), and 
spatial Durbin model (SDM) – all corroborate the intermediary role of industrial structure in 
the nexus between digital economy and carbon emissions. In our analysis, predicated on the 
models (6), (7), and (8). We primarily investigate the mediating effect of industrial structure 
within the framework of the SDM model.

The robustness test results presented in Table 7 indicate the stability and consistency of 
the key findings across various econometric models, including OLS, RE, FE, GMM, and SDM. 
The variable dig (digital economy) consistently shows a positive and highly significant impact 
on carbon emissions (ce) across all models, with coefficients ranging from 0.3758 in OLS (3) to 
0.6220 in RE (6). This suggests that the positive relationship between the digital economy and 
carbon emissions is robust, irrespective of the model specification used, reinforcing the con-
clusion that digital economic activities are a significant driver of emissions. The lagged carbon 
emissions variable (l.ce) also remains consistently positive and significant, with coefficients 
such as 0.07475 in OLS (1) and 0.08457 in GMM (10), indicating that past emissions have 
a persistent and significant impact on current emissions levels. This temporal dependence 
highlights the ongoing effect of historical emissions on current environmental outcomes. 
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The variable PGDP (per capita GDP) shows mixed effects across different models. While the 
coefficients are generally negative and significant in many cases, such as –0.0021 in OLS (1) 
and –0.0008 in RE (4), the presence of positive and significant coefficients in models like OLS 
(2) at 0.0222 suggests a nuanced relationship between economic growth and emissions. The 
squared term pgdp2 consistently displays negative and significant coefficients, such as –1.192 
in OLS (1) and –2.3132 in GMM (11), supporting the Environmental Kuznets Curve (EKC) 
hypothesis, which posits that emissions initially increase with economic growth but eventu-
ally decline as economies mature. Overall, the robustness test confirms the reliability of the 
initial findings. The digital economy’s role in driving emissions, the temporal persistence of 
emissions, and the EKC hypothesis remain robust across various model specifications. These 
results underscore the importance of considering the digital economy and economic growth 
stages in understanding and managing carbon emissions.

Comparing these results with similar studies, Cheng et al. (2023) and Li et al. (2021a) also 
found a positive relationship between digital economic development and carbon emissions, 
supporting the findings of this study. Both studies emphasized the importance of energy 
consumption and industrial structure in mediating this relationship (Yang et al., 2022). On the 
other hand, studies by Zhang et al. (2022) highlighted the spatial spillover effects of carbon 
emissions, aligning with the findings of the SDM models in this study, which show significant 
spatial dependence.

Table 7. Robustness test

Variable OLS 
(1)

OLS 
(2)

OLS 
(3)

RE
 (4)

RE 
(5)

RE 
(6)

FE 
(7)

FE 
(8)

FE 
(9)

GMM 
(10)

GMM 
(11)

GMM 
(12)

SDM 
(13)

SDM 
(14)

SDM 
(15)

ce ce ce ce ce ce ce ce ce ce ce ce ce ce ce ce

Main

dig
0.5188*** 0.4472*** 0.3758*** 0.5178*** 0.4831*** 0.6220*** 0.5016*** 0.4626***

–0.0515 –0.0573 –0.0439 –0.0416 –0.0428 –0.0431 –0.0525 –0.0571

l.ce
0.07475*** 0.0582*** 0.0667*** 0.07278*** 0.0702*** 0.0758*** 0.0768*** 0.0774*** 0.0742*** 0.08457*** 0.06031*** 0.08442*** 0.08453*** 0.0679*** 0.08448***

–0.002 –0.002 –0.0019 –0.0025 –0.0029 –0.0021 –0.0017 –0.0029 –0.0015 –0.0008 –0.0062 –0.0013 –0.0007 –0.0009 –0.0007

pgdp
–0.0021*** 0.0222** –0.0021*** –0.0008*** –0.0050*** –0.0008*** –0.0006** –0.0020*** –0.0006** –0.0032*** 0.0270*** –0.0044*** –0.0012*** 0.0290*** –0.0014***

–0.0008 –0.0009 –0.0008 –0.0003 –0.0005 –0.0003 –0.0003 –0.0007 –0.0003 –0.0003 –0.0067 –0.0004 –0.0004 –0.0005 –0.0004

pgdp2
–1.192*** –2.061*** –1.034*** –0.984*** –1.932*** –1.046*** –1.302*** –2.033*** –1.094*** –1.133** –2.3132** –1.103** –1.2410*** –2.3005*** –1.2604***

–0.215 –0.26 –0.225 –0.203 –0.312 –0.205 –0.215 –0.38 –0.215 –0.161 –0.294 –0.241 –0.158

5. Conclusions and policy implications

5.1. Conclusions

This study, drawing on a panel dataset of Chinese prefecture-level cities from 2011 to 2022, 
constructs a Digital Economy Development Index and employs a suite of econometric models, 
including a Dynamic Spatial Durbin Model with time-fixed effects, System GMM, and media-
tion effect models (utilizing the three-step procedure and the bootstrap method). It rigorously 
examines the carbon emission reduction mechanisms and the efficacy of the digital economy 
from multiple dimensions. The key findings are as follows: Firstly, the digital economy has 
notably augmented carbon emissions. Upon conducting a series of endogeneity tests and ro-
bustness tests, the conclusion remains intact. At the same time, the digital economy possess-
es a significant spatial spillover effect. Secondly, carbon emissions demonstrate a pronounced 
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spatiotemporal dependency effect. Temporally, emissions exhibit a marked “snowball” effect; 
should the level of carbon emissions be elevated in one period, it is likely to ascend in the 
subsequent period. Spatially, previous emissions levels also display a distinct spatial spillover 
effect. Thirdly, the digital economy exerts influence on carbon emissions through both direct 
and indirect mechanisms. It can directly augment carbon emissions, and it can also indirectly 
augment carbon emissions by altering the industrial framework (increasing the ratio of the 
tertiary sector relative to the secondary sector). The evaluative metrics for assessing the level 
of digital economic development are not sufficiently comprehensive, resulting in a lack of 
precision in the outcome measurements. Constructing a more robust framework of indicators 
for the digital economy’s level of development would be advantageous for future inquiries. 
Moreover, as new datasets become available, it is conceivable to expand the temporal scope 
of panel data, thereby facilitating more profound research. For instance, by broadening the 
temporal dataset, one could undertake non-linear analyses to evaluate whether the impact 
of the digital economy on carbon emissions follows an inverted U-shaped curve. This would 
allow for a more nuanced exploration of whether the digital economy might engender a 
carbon reduction effect in its future trajectory.

5.2. The policy implications

Firstly, in light of the “snowballing” impact of carbon emissions within China, the attainment 
of peak carbon emissions and carbon neutrality necessitates the establishment of enduring 
mechanisms. These mechanisms must ensure the coherence and sustainability of emission 
reduction policies, fostering a harmonious and coordinated implementation of carbon reduc-
tion strategies across various regions.

Secondly, the proliferation of the digital economy is poised to markedly escalate carbon 
emissions within China, exerting a spatial spillover effect. In this context, it is incumbent upon 
the government to concurrently foster the growth of the digital economy and remain vigilant 
of its environmental ramifications. There may be a requisite need to devise and enact more 
stringent carbon emission standards to ensure that the expansion of the digital economy 
does not proceed at the expense of environmental integrity. Moreover, regional governments 
ought to fortify policy coordination, collaboratively establishing and implementing measures 
to curtail carbon emissions. For instance, the establishment of regional carbon trading mar-
kets could be instrumental in facilitating the equitable distribution and allocation of emission 
rights. Simultaneously, the enhancement of inter-regional carbon emission monitoring is criti-
cal to ascertain that the carbon emission levels are effectively regulated amidst the develop-
ment of the digital economy. This could be achieved through the establishment of a unified 
carbon monitoring framework and a data-sharing platform to foster technical exchange and 
collaboration amongst regions, jointly researching and promulgating low-carbon technolo-
gies to mitigate the digital economy’s carbon footprint. Furthermore, during the planning 
and implementation phases of digital economy initiatives, there should be a heightened 
emphasis on assessing the projects’ environmental impact to ensure that the execution does 
not detrimentally affect the environmental conditions of other regions.

Thirdly, the digital economy has the potential to escalate carbon emissions through the 
transformation of industrial frameworks, notably by augmenting the proportion of the tertiary 
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sector. It behooves governmental entities to implement pertinent environmental stratagems, 
such as the institution of carbon taxation and the establishment of carbon emissions trad-
ing schemes, employing economic mechanisms to incentivize the tertiary sector to curtail 
its carbon footprint. Concurrently, there should be a strategic optimization of the industrial 
composition, with a vigilant eye on the carbon emissions that may arise amid the adjustment 
process. For instance, within the tertiary sector, there should be an encouragement of the 
growth of industries that are characterized by low carbon or carbon-neutral profiles. Alterna-
tively, the promotion of technological innovation and the refinement of operational processes 
can enhance the energy efficiency within the sector, thereby diminishing the carbon emissions 
per unit of economic output.

In conclusion, the formulation of policy must contemplate the establishment of enduring 
frameworks to achieve the zenith of carbon emissions and carbon neutrality. Concurrently, as 
we champion the advancement of the digital economy, it is imperative to maintain a vigilant 
regard for the environmental ramifications, enacting stringent standards for carbon emissions. 
Moreover, the optimization of industrial configurations is essential, with a particular impetus 
on the encouragement of low-carbon or carbon-neutral sectors within the tertiary industry.
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