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structural simulation based on China’s manufacturing companies. We find that: in the 
face of TFP systemic shocks, the industries with less structural stickiness include computer 
communication and other electronic equipment manufacturing, special equipment man-
ufacturing and general equipment manufacturing, indicating that these industries have a 
strong internal innovation power. The TFP distribution of electrical machinery and equip-
ment manufacturing industry and ferrous metal smelting and rolling industry showed 
structural differentiation, and the lower tail enterprises are not sensitive to TFP shocks. 
The industries with strong structural stickiness are non-ferrous metal processing industry 
and non-metallic mineral products industry, etc., which have weak internal innovation 
power and need exogenous innovation incentives. In addition, there is a significant posi-
tive correlation between industry correlation and information entropy, which emphasizes 
the radiation effect role of industries with high industry correlation degree. The research 
provides a new method to evaluate the innovation ability of the industry and a basis for 
the differentiation of innovation incentive policies in the industry.
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1. Introduction and literature review

Since the global financial crisis in 2008, the external uncertainty of China’s economy, espe-
cially the manufacturing industry, has intensified. In the meantime, the shocks of COVID-19 
make the upgrading of the manufacturing industry and the high-quality operation of the 
macro economy face many challenges in the “post-epidemic” period (Feng et al., 2024). Total 
factor productivity (TFP) is a combination of technological progress, technological efficiency 
improvement and industrial structural transformation (Buccirossi et al., 2013; Syverson, 2011), 
and it is also a significant manifestation of endogenous innovation capability. Acemoglu 
(2015) pointed out that China’s economic miracle in recent decades is mainly due to resource 
reallocating rather than endogenous technological innovation, and Maćkowiak and Wieder-
holt (2015) pointed out that technology shocks can explain about 80% of China’s economic 
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fluctuations. The above facts show that the improvement of TFP plays a very important role 
in China’s macro economy, and China’s current level and structure of total factor productivity 
still have a lot of room for improvement and optimization (Lin et al., 2023). The manufacturing 
industry is the foundation of China and the foundation of a strong country (Hu et al., 2023; 
Li, 2013). Therefore, effectively identifying the dynamic evolution law of TFP systemic shocks 
and evaluating its specific impact on the distribution structure of manufacturing productivity 
could provide decision-making basis for accelerating the implementation of innovation-driv-
en development strategy.

Deepening supply-side structural reform of China in recent years is to promote structural 
adjustment, reduce ineffective and low-end supply, enhance the adaptability and flexibility 
of the supply structure to changes in demand, and thus increase total factor productivity. 
Therefore, the assessment of the dynamic effects of TFP shocks should not only be concerned 
with the changes in the average value, but also pay attention to the changes in its distribu-
tion structure.

The purpose of this paper is to effectively identify the systematic shocks to TFP in China’s 
manufacturing industry at the macro level and industry level and their dynamic evolution 
laws based on the micro performance of manufacturing firms. Further, at the meso-level, it 
systematically assesses the structural stickiness of each major industry in the manufacturing 
sector in the face of TFP systemic shocks (The driving force of TFP shocks on the structure 
of TFP distributions of manufacturing firms). If the structure of industry TFP distribution is 
sensitive to TFP shocks, the structural stickiness is small which show the industry’s intrinsic 
innovation drive is relatively strong, and the government only needs to give a small amount 
of support to these industries to generate efficient economic consequences. On the contrary, 
if the structure of the industry TFP distribution is sticky, then the industry’s intrinsic incentive 
to innovate is weaker, and powerful exogenous incentives to innovate are necessary. Differ-
ences in the sticky structure of industry TFP distribution are in fact differences in the intrinsic 
innovation dynamics of different industries, which could provide a policy basis for differenti-
ated innovation incentives.

Existing methods to measure industrial innovation capability focus on input and output 
of innovation (Kaplinsky & Readman, 2005), such as TOPSIS (Li et al., 2022) and DEA (Lin 
et al., 2023). However, the selection of indicators changes with the changes of the industry. 
Patents are generally used as indicators to measure the innovation capability of high-tech 
manufacturing. For example, Grindley and Teece (1997) uses patents and other intellectual 
property rights to measure the innovation ability of high-tech industries; Tseng and Wu (2007) 
used five patent-related indicators, including the number of patents and the rate of patent 
citations, to evaluate the innovation quality of the automotive industry; Orlando et al. (2020) 
used the number of enterprises applying for patents as the innovation capability of the medi-
cal industry; Yu et al. (2020) takes the elasticity of invention patent output as an indicator of 
innovation ability in high-tech industries. However, for some light industries, most studies 
measure industry innovation ability based on new product development and service creation. 
For example, Kaplinsky and Readman (2005) uses product unit price and market share to 
measure the innovation ability of furniture industry. It can be found that it is difficult to use 
a unified index to quantify the innovation ability of an industry (Malewicki & Sivakumar, 2004; 
Moser, 2012). Although patent data are widely used, there is no single linear relationship 
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between patent and innovation output (Crepon & Duguet, 1997), and patent data in different 
patent databases vary widely (Kim & Lee, 2015). In addition, there is a problem of time lag 
in the disclosure of patent data (Fisch et al., 2017).

In fact, the growth rate of TFP is also an important characteristic of innovation capability 
(Antonelli & Scellato, 2011; Cameron et al., 2005), which is more generally applicable to most 
industries. The higher the growth rate of TFP, the stronger the innovation ability of the indus-
try, indicating that the TFP of this industry is more sensitive to a series of factors. Currently, 
although there is a large body of literature studying the effects of various shocks on TFP, 
there are relatively few literatures analyzing the impact of systemic shocks on the distribution 
structure of TFP in manufacturing. The existing literatures mainly focused on the effect of 
influencing factors on the average level of TFP, rather than the change of distribution struc-
ture. Some of them measured the quantitative relationship between technological progress, 
capital input, manufacturing agglomeration and total factor productivity of enterprises by 
means of mean regression. Examples include Griliches (1980), Griliches and Mairesse (1981) 
and Harhoff (1998). Other literatures analyzed the specific contribution of technology shocks 
to TFP based on the decomposition of TFP, such as León-Ledesma et al. (2010, 2015), Klump 
et al. (2012) and Zhen et al. (2021).

Obviously, revealing the effect of systemic shocks on the distribution structure of TFP in 
major manufacturing industries could provide more comprehensive and targeted structural 
information for the formulation and implementation of industrial policies from the perspec-
tive of the transformation and upgrading of the manufacturing industry.

In view of the above, this paper studies the specific impact of systemic shocks on the 
distribution structure of TFP in major manufacturing industries and the internal structure of 
macroeconomic operation based on the micro-data of manufacturing enterprises. Compared 
with the existing literatures, the innovations of this paper are mainly reflected as follows:

First, we construct TFP multiple shocks model and identifying TFP systemic shock factors 
at both macro and industry levels, which provides a new perspective for measuring eco-
nomic shocks at multiple levels. Second, based on panel quantile regression, we determine 
the distribution structure of TFP in the manufacturing industry with and without systemic 
shocks, and the structural stickiness of systematic shocks to TFP in each major manufacturing 
industry was comprehensively evaluated from the perspectives of information entropy and 
industry correlation degree, which clearly demonstrates the heterogeneity of the innovation 
capabilities of firms at different levels and provides a benchmark for targeted and differenti-
ated industry innovation policies. Third, unlike traditional studies that use patent aggregation 
to quantify the innovation capacity (Bena et al., 2022; Li et al., 2019; Yuan & Wen, 2018), we 
quantify industry innovation ability from the perspective of structural stickiness of TFP to 
overcome the problem of not reflecting structural changes, industry changes and the disclo-
sure time lag problem that cannot be reflected by patents (Fisch et al., 2017).

The remaining contents of this paper are arranged as follows. The second section de-
scribes the identification of systemic shocks of TFP and the measurement method of the 
viscosity of the distribution structure of TFP in manufacturing industry. The third section 
presents the sample data description and statistical description, including the measurement 
method of enterprise TFP. The fourth section reports the evaluation results and analysis of TFP 
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on structural viscosity of systemic shocks in manufacturing industry. The fifth section further 
analyzes the structural stickiness and industry correlation degree of manufacturing industry. 
The sixth section is the conclusion of this paper.

2. Methods: identification of systematic shocks in TFP  
and measurement of structural stickiness

The change of TFP of enterprise is not only affected by individual factors, such as R&D invest-
ment, technology accumulation, organizational structure and incentive mechanism, but also 
affected or restricted by external environmental factors, such as macro environmental factors 
and industry cycle factors. Different from individual factors, the shocks of macro factors are 
the same for all enterprises, and the industry factors are the same for all enterprises in the 
industry. Therefore, the shocks of macro factors and industry factors on enterprise TFP are 
systemic common shocks.

In this section, we identify macro shocks and industry shocks to TFP in manufacturing 
firms effectively first. Further, the sensitivity of the TFP distribution structure of each major 
industry in the manufacturing sector to systemic shocks is analysed, that is, the stickiness of 
the TFP distribution structure to systemic shocks is assessed.

2.1. Identification of systematic shocks in TFP

The current literatures on the identification and estimation of TFP shocks can be roughly di-
vided into four categories. The first method is constructing indicators to measure TFP shock, 
such as Glick and Rogoff (1995), Decressin and Disyatat (2008), Bussière et al. (2010) and 
El-Shagi (2023). They take the deviation of individual TFP from the weighted average TFP of 
the whole population as the TFP shocks of the individual. The second method of identification 
of TFP shocks is by processing TFP time series. For example, King et al. (1987) identified the 
persistent impulse of TFP based on the neoclassical stochastic growth model; DeJong et al. 
(2000) used seasonal time series decomposition to obtain TFP shocks. The second method 
of identification of TFP shocks is by panel data model. For example, Salgado et al. (2019) es-
tablished a dynamic panel model with TFP as the explained variable, and took the residual as 
the proxy variable of TFP shock after eliminating time and individual fixed effects. The fourth 
is to decompose TFP directly. For example, Schulze (2007) used Shift-Share Analysis to isolate 
technology shocks from TFP; Zhen et al. (2021) and Chen et al. (2022) used stochastic frontier 
analysis (SFA) or other decomposition methods to estimate TFP and decompose technical 
progress and technical efficiency.

The essence of above methods is numerical transformation or decomposition of individual 
TFP of enterprises. However, these methods cannot identify the common shocks at the macro 
and industry level which are the systemic shocks.

Systemic shocks come from the economic environment and policy changes. Among them, 
changes in domestic and foreign economic environment are mainly manifested as systemic 
macro shocks (Yang & Yang, 2023b) (such as the international financial crisis in 2008), while 
policy changes are not only manifested as systemic macro shocks, but also reflected in sys-
temic industry shocks (such as China’s supply-side reform in 2015). Because China’s industrial 
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policies are very targeted and highly interventionist, the impact on enterprises in different 
industries is significantly different. These shocks are difficult to quantify, so we choose a 
TFP multiple shocks model to identify macro TFP shocks and industry TFP shocks from the 
disturbance terms.

Given firms’ TFP, this paper identifies macro-level and industry-level systematic shocks 
through a two-level factor interaction effects panel model. The model is shown as follow:

                                                , ;s s s
it it i itTFP X ut b = + +   (1)
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where ,
s

itTFP t is the TFP of firm i in industry s in period t. s
itX  is the control variable that can 

be quantified. ui is the individual fixed effect. s
it  and s

itv  are both perturbation terms. gt is 
the macro shock that all firms face in common, and gs is the loading of gt, reflecting the 
sensitivity of the response of industry s to the macro systematic shocks. s

tf  is the common 
shock faced by industry s, and s

i  is its loading, reflecting the responsiveness of firm i within 
industry s to industry shocks.

Referring to Bai and Wang (2015), We apply the following constraints to ensure that macro 
shock factors and industry shock factors are identifiable:

 ( ), 0.s
t tCov g f =  (3)

The consistent estimation of Eq. (1) ~ Eq. (2) can be achieved, and the estimates of macro 
factors, industry factors and their loads can be obtained by referring to Bai (2009) and Yang 
and Yang (2023a, 2023b) and the iterative algorithms based on LSDV and principal compo-
nent analysis (PCA)1.

2.2. Measurement of structural stickiness

In order to clarify the effect of systematic shocks of TFP on the distribution structure of TFP 
in manufacturing industry, the distribution of TFP in each major industry with and without 
systematic shock is constructed. Then, the structural stickiness of TFP distribution to systemic 
shocks is revealed by their distribution curves and information entropy.

This analysis is essentially a counterfactual analysis. In other words, we assess the sensitiv-
ity of TFP distribution structure to systemic shocks by simulating the counterfactual distribu-
tion of TFP in the absence of systemic shocks.

2.2.1. Distribution fitting of TFP with and without shocks

Mean regression fits the distribution of the conditional expectations of the explanatory vari-
ables rather than the distribution of the variables themselves, so we need quantile regression 
to fit the empirical distribution of TFP. The equation fitted to the distribution of TFP in the 
context of a systematic shocks is as follow.

 , , .ˆˆs s s s
it it s t i t itTFP X g ft t t t tb g  ′′= + + +  (4)

1 Detailed steps of the iterative algorithm are shown in Appendix.
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Among them, t is the partial site. ˆtg  and ˆs
tf  are the macro shock factors and industry 

shock factors estimated in Eq. (1) ~ Eq. (2). Accordingly, if there are no systematic shocks, 
that is, if only individual random shocks are assumed, then the fitting equation for the coun-
terfactual distribution of TFP is as follow:

 
,
, , .s u s

it it itTFP X ut t tb= +  (5)

The above two regression equations can be uniformly estimated by panel quantile regres-
sion estimator (Powell, 2020, 2022). Based on the estimated results, the fitting quantiles of 
TFP under the two scenarios are:
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fit numerical distributions that are respectively actual and 

counterfactual distributions of the TFP2, which are distributions with and without the sys-
tematic shocks.

Referring to Adrian et al. (2019), the numerical distribution of TFP in both scenarios is 
fitted via skewness t-distribution to obtain smooth distribution curves and corresponding 
distribution parameters. The probability density function of the skewness t-distribution is:
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where m, s, a, u are mean, standard deviation, skewness and degrees of freedom parameters, 
respectively. t(.) and T(.) represent the probability density function (pdf) and the cumulative 
distribution function (cdf) of the standard t-distribution respectively. The skewness t-distri-
bution is to adjust the skew effect of probability density function by adding the skewness 
t-distribution a on the basis of traditional t-distribution. When a = 0, the distribution is a 
t-distribution with mean m, standard deviation s and u degrees of freedom.

H(t; m, s, a, u) represents the cumulative distribution function of the skewness t-distribu-
tion at the subsite t. H–1(t; m, s, a, u) is its inverse function, that is, the quantile of the skew-
ness t- distribution at the component site t. We minimize the distance between the numerical 
distribution of TFP and the skewness t-distribution to estimate the distribution parameters of 
the skewed t-distribution. The estimation model is as follows.
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Therefore, we can obtain the distribution fitting results ( )ˆ; ,ˆ,ˆ ˆ,sh TFP m s a u  and 
( ),  ˆˆ ˆ; , , ˆ,s u u u u uh TFP m s a u

 
under the condition of shock and no shock respectively. For each 

manufacturing industry, two smooth distribution fitting curves can be plotted.

2 The mean of all individual fitting results is taken to obtain the TFP value distribution on each quantile t.
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The relative deviation between the two distribution curves under shock and no shock 
conditions can intuitively depict the sensitivity of the TFP distribution in the industry to sys-
temic shocks, that is, the structural viscosity. The greater the degree of deviation between 
the two is, the more sensitive the industry is to the systemic shocks of TFP, and the smaller 
the structural viscosity is. On the contrary, the smaller the degree of deviation between the 
two is, the greater the structural viscosity is.

The TFP shocks in this paper are endogenous shocks, so the industry with weaker struc-
tural viscosity has stronger intrinsic innovation impetus. The more viscous the structure of the 
industry is, the weaker the internal innovation drive is, indicating that these industries need 
powerful external innovation incentives.

The stickiness assessment based on the distribution structure has a very important ad-
vantage that it can clarify and compare the stickiness difference between the enterprises with 
TFP on the upper side and the enterprises on the lower side so as to intuitively show the 
performance difference between backward production capacity and advanced production 
capacity under the effect of systemic shocks, which could provide more specific and targeted 
decision-making information for optimization and upgrading of industrial structure.

2.2.2. Quantification of structural viscosity

The comparative assessment of the viscosity of manufacturing to systemic shocks based on 
distribution curves has the advantage of being intuitive, but the disadvantage is that we are 
unable to obtain specific quantitative evaluation results.

Referring to Adrian et al. (2019), the difference between the two distributions can be 
specifically quantified by information entropy. Define D

sL t  as the information entropy of the 
lower quantile t, U

sL t as the information entropy of the upper quantile t, and Ls as the overall 
information entropy.
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              .D U
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Among them, ( ),ˆ ˆ, ˆ ,ˆh m s a u  represents the probability density function fitting the distribu-
tion under shocks, while ( )ˆ, , ˆˆ ˆ,u u u uh m s a u  represents the probability density function fitting 
the distribution without shocks. ( )1H t−  is under the condition of shocks fitting distribution 
in quantile t.

Based on the measurement results of information entropy, we can quantitatively evaluate 
and compare the structural stickiness of the systematic shocks of TFP in the major manu-
facturing industries. The value of information entropy (absolute value) reflects the sensitivity 
of TFP to systemic shocks of the upper and lower tail enterprises. The greater the value is, 
the weaker the viscosity is. The symbol of the value reflects the increase or decrease of the 
number of enterprises in the tail interval. The positive sign indicates that the TFP system 
shocks lead to an increase in the number of enterprises at the tail side, and vice versa, the 
number decreases.
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The advantage of the distribution curve is intuitive, and the advantage of information en-
tropy is quantitative. The combination of the fitted distribution curve and information entropy 
index can well reveal the structural viscosity of the systematic shocks of the manufacturing 
industry on TFP.

3. Description of variables and data

The sample data selected in this paper is the annual manufacturing data of China’s A-share 
listed companies from 2000 to 2021. Enterprise micro variable data are derived from CSMAR 
database. When selecting enterprises, the listed companies that have experienced ST, *ST, 
S*ST and PT during the sample period are excluded. Listed companies are usually large-scale 
enterprises in various industries with good operating conditions. Although they cannot com-
pletely represent the overall situation of the industry, such enterprises belong to the forefront 
of the industry innovation, and their innovation ability may be strongly representative of the 
technological progress and development trend of the industry. On the contrary, small enter-
prises generally acquire new technologies through imitation (König et al., 2022), so it is not 
meaningful to discuss the innovation capability of such enterprises.

The selected manufacturing industries and number of companies are: special equipment 
manufacturing (396), non-ferrous metal smelting and rolling (98), automobile industry (184), 
manufacture of electrical machinery and equipment (355), computer communications and 
other electronic equipment manufacturing (587), general machinery manufacturing (230), 
railway, ship, aerospace and other transport equipment manufacturing (99), manufacture of 
non-metallic mineral products (151), smelting and pressing of ferrous metals (47).

When extracting common factors, listed companies with missing and changing indus-
tries in the sample period were further excluded, and enterprises with balanced data were 
obtained. Among them, there are 14 special equipment manufacturers, 8 non-ferrous metal 
smelting and rolling industries, 13 automobile manufacturers, 7 electrical machinery and 
equipment manufacturers, 18 computer communication and other electronic equipment 
manufacturers, 8 general equipment manufacturers, 5 railway, ship, aerospace and other 
transportation equipment manufacturers, and 11 non-metallic mineral products industries, 
10 ferrous metal smelting and rolling industries.

3.1. Quantification of structural viscosity

We measure TFP through Cobb-Douglas production function(C-D) of manufacturing enter-
prises based on Syverson (2011).

   .it it it itY A K Lba=  (14)

It can be obtained by logarithmic linearization as follow:

 ln ln ln .it it it itY K L ua b= + +  (15)

Referring to Salgado et al. (2019), ˆitu  is the estimated TFP value of enterprise i at time t 
by OP method (Olley & Pakes, 1996). Where, Y which is denote by company’s main business 
income is the output. K is capital input, and we use net fixed assets of the company as a proxy 
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variable for it. L is the labor input, and we use the company shall pay salaries to its employees 
as a proxy variable for it. The company’s main business income and salaries payable to em-
ployees are deflated by the GDP deflator, and the company’s net fixed assets are deflated by 
the fixed assets investment price index, both of which are based on the year 2000. Both GDP 
deflator and fixed assets deflator are derived from China Statistical Yearbook (2001–2022)3 
(National Bureau of Statistics of China, 2022). In addition, we also use LP method to measure 
enterprises TFP (Levinsohn & Petrin, 2003)4.

The estimated parameter value and standard error of Eq. (15) are respectively: a = 0.703 
(0.0265), b = 0.278 (0.0135). This result shows that the returns to scale of China’s manufactur-
ing industry are approximately constant.

Table 1 shows the basic statistical parameters of TFP for sample enterprises, and Figure 1 
and Figure 2 report the distribution histograms and density curve of TFP for various industries 
and the whole sample.

Table 1. Descriptive statistics of TFP of enterprises by industry

Industry N Mean SD Min Max Skewness Kurtosis

Special equipment manufacturing 
industry

2,627 4.944 0.695 1.221 13.11 0.676 11.14

Smelting and pressing of non-ferrous 
metals

981 5.464 0.817 2.009 8.760 0.161 3.575

Automobile industry 1,536 5.118 0.717 1.814 7.585 0.276 3.471
Manufacture of electrical machinery 
and equipment

2,706 5.215 0.689 2.743 8.446 0.218 3.712

Computer communications and other 
electronic equipment manufacturing

4,291 5.063 0.827 0.689 10.47 0.569 5.099

General machinery manufacturing 1,716 4.867 0.639 2.322 7.699 0.133 3.957
Railway, ship, aerospace and 
other transportation equipment 
manufacturing

734 5.210 0.736 2.926 7.185 –0.240 2.755

Manufacture of non-metallic mineral 
products

1,404 4.702 0.604 0.943 8.503 0.247 7.158

Smelting and pressing of ferrous 
metals

636 5.756 0.598 2.885 11.08 –0.563 13.880

Total 16,631 5.080 0.759 0.689 13.11 0.415 5.191

Notes: Numbers 1 to 9 in the figure represent special equipment manufacturing, nonferrous metal smelt-
ing and rolling processing industry, automobile manufacturing industry, electrical machinery and equip-
ment manufacturing industry, computer communication and other electronic equipment manufacturing 
industry, general equipment manufacturing industry, railway, ship, aerospace and other transportation 
equipment manufacturing industry, non-metallic mineral products industry, ferrous metal smelting and 
rolling processing industry in turn.

3 The actual statistical years are 2000–2001.
4 The results of LP method are presented in Figure 9 of Appendix.
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The results of Figure 1 show that the standard deviation of TFP in computer communi-
cation and other electronic equipment manufacturing industry is the largest (0.827), which 
indicates that the productivity of enterprises in this industry varies greatly, which may be 
because the structure of this industry is more diversified and the industrial chain is relatively 
long. The standard deviation of TFP in ferrous metal smelting and rolling processing industry 
is the smallest (0.598), and the kurtosis is the largest (13.880), which may be because the 
ferrous metal industry is a basic industry, with earlier development, more mature technology, 
and relatively high degree of product homogenization.

Figure 1. TFP distribution by industry

Figure 2. TFP distribution of the whole sample
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3.2. Other variables

When estimating the systemic impact of TFP, we select company age, asset-liability ratio, 
nature of enterprise ownership, capital intensity, ROE, cash flow and GDP as control variables 
after considering the completeness and availability of data referring to Song et al. (2022), Ma 
et al. (2023), Cheng et al. (2023). If the company is established and listed less than one year, 
it is calculated as one year. The descriptive statistics of each variable are shown in Table 2.

Table 2. Descriptive statistics of other variables

variable Implication N Mean SD Min Max

Revenue Log (revenue) 16,631 20.73 1.477 13.51 26.88
Asset Log (net fixed assets) 16,631 20.06 1.576 4.615 26.16
Wage Log (wage) 16,631 16.87 1.683 4.783 23.18
Age Corporate age 16,631 15.21 6.434 1 41
Lev Debt to asset ratio 16,631 0.425 0.199 0.00912 3.625
Nature State owned = 1, Nonstate owned = 0 16,631 0.375 0.484 0 1
Intensity Capital intensity 16,631 2.395 11.35 0.131 1039
Roe Net profit/Net assets 16,631 0.0563 0.533 –60.15 2.379
Cf (Cash flow) Current net cash flow/Current 

total assets
16,631 0.0419 0.0744 –1.938 0.523

GDP Log (GDP) 16,631 8.577 1.268 0.0677 10.67

4. Evaluation results and analysis of structural  
stickiness in manufacturing industry

4.1. TFP shock factors

Figure 3 and Figure 4 are macro shock and industry factors of TFP identified based on  
Eq. (1) and Eq. (2).

It should be noted that the systematic impact factors are standardized in the identifica-
tion algorithm. What is identified here is the dynamic trend of the shocks, and the impact 
effect size is reflected by its load coefficient. Therefore, the value of the shock factors has no 
economic significance5.

In general, during the sample period, the dynamic evolution of TFP macro shocks in 
China’s manufacturing industry can be divided into three stages: the macro shocks continued 
to rise from 2000 to 2008; the macro shocks showed a downward trend from 2008 to 2016; 
the macro shocks began to stabilize after 2016, and there is a significant recovery in 2021.

Specifically speaking, first of all, the dividends of China’s reform and opening up con-
tinued to be released, and the process of international economic globalization continued to 
accelerate, which made the internal and external markets of China’s manufacturing industry 
develop rapidly, and the macro systemic shocks of TFP showed a continuous upward trend 
before 2008. Some studies attributed the driving force of TFP growth in China at this stage 

5 The specific values of TFP shock factors are shown in Table 9 and Table 10 of Appendix.
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Figure 3. Macro shocks factors of TFP

Figure 4. Estimates of industry TFP shock factors

Notes: Numbers 1 to 9 in the figure represent special equipment manufacturing, general equipment 
manufacturing, computer, communication and other electronic equipment manufacturing, electrical ma-
chinery and equipment manufacturing, railway, ship, aerospace and other transportation equipment 
manufacturing, automobile manufacturing, non-ferrous metal smelting and rolling processing industry, 
non-metallic mineral products industry and ferrous metal smelting and rolling processing industry in turn.
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to several aspects: first, the demographic dividend formed by the increase of labor popula-
tion and the transfer of rural surplus labor; second, the deepening of capital brought about 
by urbanization and industrialization; third, the increasingly prominent role of the market in 
resource allocation. These factors have formed a sustained positive shock on TFP in China’s 
manufacturing industry.

The systematic shocks of TFP in China’s manufacturing industry showed a continuous 
downward trend from 2008 to 2016, because the global financial crisis in 2008 was a water-
shed for economic globalization. Since then, the international trade protectionism continues 
to heat up, and the external uncertainty of China’s economy continues to intensify, thus 
forming a systematic negative shock on China’s manufacturing TFP.

The supply-side structural reform aimed at improving the quality and efficiency of the 
supply system began to advance and continue to deepen after 2016, which optimized and 
upgraded the structure of China’s manufacturing industry. Meanwhile, the macro systemic 
shocks of TFP in the manufacturing industry began to stabilize. In addition, the policy of 
“Build a new development pattern of ‘double cycle’” and “Enhance the autonomous and 
controllable ability of the industrial chain and supply chain to solve a number of ‘stuck neck’ 
problems” has had an obvious positive impact on manufacturing TFP since 2020.

Given the macro shock factors, the industry factor mainly reflects the cyclical characteris-
tics of the industry. Overall, the dynamic trend of TFP shocks in various industries are quite 
different. The estimated results are shown as follows.

In comparison, the impact volatility of the electrical machinery and equipment manu-
facturing industry is strong, and the volatility of the non-ferrous metal smelting and rolling 
processing industry is relatively weak. Non-metallic mineral products industry shows a rela-
tively stable upward trend. The trend of automobile manufacturing industry is similar to that 
of railway, ferrous metal smelting and rolling processing industry, which has experienced the 
process of first rising, then falling, and then rising. The computer communications and other 
electronic equipment manufacturing industry has similar trend characteristics as the general 
equipment manufacturing industry. This similarity between industries may be related to the 
proximity of the industry’s location nodes in the industrial chain and supply chain.

4.2. Evaluation of structural viscosity
4.2.1. Changes in the TFP distribution curve

In order to visually present the changes of TFP distribution structure in various industries, 
Figure 5 depicts the probability density curve of TFP distribution with and without shocks in 
various industries based on the fitting of Eq. (9) and Eq. (10)6.

In comparison, there are obvious differences in the sensitivity of TFP distribution structure 
to systemic shocks in different industries. First of all, the industries that are more sensitive 
to the systemic shocks of TFP are computer communication and other electronic equipment 
manufacturing, special equipment manufacturing, and general equipment manufacturing. 
Moreover, these industries have a common feature that the systemic impact of TFP pushes 

6 The results of panel quantile regression by industry are shown in Tables 11–19 of Appendix. The fitting results of 
skewness t-distribution parameters of TFP in various industries are shown in Table 20 of Appendix.
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the industry distribution curve to the right as a whole, significantly improving the overall 
TFP level of the industry, indicating that these industries have a strong internal impetus for 
innovation. This result is quite consistent with the actual background. On the one hand, dur-
ing the sample period, the technology update of the computer communication industry is 
significantly faster than that of other industries. On the other hand, both special equipment 
manufacturing and general equipment manufacturing are typically technology-intensive in-
dustries and are indeed more vulnerable to systemic shocks from TFP.

Besides, the electrical machinery and equipment manufacturing industry and the ferrous 
metal smelting and rolling industry are also more sensitive to the systemic shocks of TFP, 
indicating that these industries also have a certain inherent impetus for innovation. Moreover, 
the performance of the two is similar: both the upper and lower tail firms are less sensitive 
to TFP systemic shocks, and the affected firms are mainly near the median. This structural 

Notes: Numbers 1 to 9 in the figure represent special equipment manufacturing, nonferrous metal smelt-
ing and rolling processing industry, automobile manufacturing industry, electrical machinery and equip-
ment manufacturing industry, computer communication and other electronic equipment manufacturing 
industry, general equipment manufacturing industry, railway, ship, aerospace and other transportation 
equipment manufacturing industry, non-metallic mineral products industry, ferrous metal smelting and 
rolling processing industry in turn.

Figure 5. Probability density curve of TFP distribution by industry
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differentiation shows that the two industries are not performing well in the adjustment of 
backward production capacity. Compared with the above industries, non-ferrous metal smelt-
ing and pressing processing industry and non-metallic mineral products industry all show 
strong structural viscosity to the systemic shocks of TFP. Obviously, these industries have 
weak internal innovation motivation and need external innovation incentives.

4.2.2. Quantification of structural viscosity

Although the change of the probability density curve of TFP distribution can intuitively show 
its sensitivity to systemic shocks, there is no index of specific quantitative evaluation. Referring 
to Adrian et al. (2019), this paper further quantifies the difference between TFP distributions 
under shock and non-shock conditions by means of information entropy. Table 3 reports 
the quantification results of information entropy of various industries calculated based on  
Eqs (11)–(13).

Table 3. Information entropy by industry

Number Upper 50% Lower 50% Total Upper 30% Lower 30%

1 0.0714 –0.0444 0.0270 0.0557 –0.0458
2 –0.0059 0.0011 –0.0048 –0.0003 0.0013
3 0.0339 –0.0357 –0.0018 0.0286 –0.0286
4 0.0433 –0.0214 0.0219 0.0331 –0.0215
5 0.0737 –0.0318 0.0419 0.0591 –0.0314
6 0.0530 –0.0366 0.0164 0.0415 –0.0384
7 0.0159 –0.0235 –0.0076 0.0147 –0.0187
8 0.0044 –0.0144 –0.0100 0.0015 –0.0120
9 –0.0059 –0.0077 –0.0136 –0.0034 –0.0089

Notes: Numbers 1 to 9 in the table represent special equipment manufacturing, nonferrous metal smelt-
ing and rolling processing industry, automobile manufacturing industry, electrical machinery and equip-
ment manufacturing industry, computer communication and other electronic equipment manufacturing 
industry, general equipment manufacturing industry, railway, ship, aerospace and other transportation 
equipment manufacturing industry, non-metallic mineral products industry, ferrous metal smelting and 
rolling processing industry in turn.

Figure 6a and Figure 6b are the corresponding bar chart about Table 3. From the per-
spective of industrial optimization and upgrading and elimination of backward production 
capacity, it is hoped that the proportion of efficient enterprises will increase and the propor-
tion of inefficient enterprises will decrease in the structural change of TFP distribution in the 
industry. This goal is reflected in information entropy that the upper side tends to be positive 
and the lower side tends to be negative. The changes in the distribution structure of TFP in 
the computer communication and other electronic equipment manufacturing industry fully 
conform to this feature obviously, indicating that the industry presents typical characteristics 
of structural optimization and upgrading under the systematic shocks of TFP. On the con-
trary, the non-ferrous metal smelting and rolling processing industry is very insensitive to the 
systemic shocks of TFP, and the optimization and upgrading of the industry level is facing 
strong constraints.
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Basically consistent with the results of the distribution probability density curve, both the 
upper and lower 50% and the upper and lower 30% information entropy results show that the 
information entropy (absolute value) value of computer communication and other electronic 
equipment manufacturing and professional equipment manufacturing is large, that is, its TFP 
distribution structure is sensitive to systemic impact and its viscosity is weak. Other industries 
with high information entropy (absolute value) are: general equipment manufacturing, electri-
cal machinery and equipment manufacturing, etc. However, the information entropy (absolute 
value) of non-ferrous metal processing industry and non-metallic mineral products industry is 
small, indicating that the TFP structure of these industries is not sensitive to systemic shocks, 
and the viscosity is the strongest.

It should be noted that the sensitivity of the ferrous metal smelting and rolling industry 
to the systemic impact of TFP is greater than that of the automobile manufacturing industry 
from the point of view of the distribution curve. However, the value of ferrous metal smelting 

Figure 6. Information entropy

Notes: t is the quantile which is defined in Eqs (11)–(13).
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and rolling processing industry is significantly smaller than that of automobile manufactur-
ing industry from the point of view of information entropy, because the distribution curve of 
ferrous metal smelting and rolling industry with and without impact shows a cross shape on 
the upper side. Specifically, in the region near the middle point, the probability density value 
of impact is greater than that of no shock; on the contrary, in the region near the upper tail, 
the probability density value of no shock is greater than that of shock. Thus, when calculating 
the information entropy, the two will cancel each other and obtain the information entropy 
with a smaller absolute value.

This problem shows that information entropy also has its disadvantages although it has 
the advantage of quantitative evaluation. When the distribution curves with and without 
shocks cross in the examined interval, the information entropy is difficult to accurately reflect 
the real structural viscosity, which is precisely the reason why the two methods of distribution 
curve and information entropy are integrated in this paper.

4.3. Factor loadings of macro shocks

The size of factor loadings of macro shocks can also reflect the sensitivity of industry TFP to 
macro systemic shocks. However, the loadings of macro factor reflect the average impact of 
macro shocks on industry TFP different from the above distribution curve and information 
entropy, rather than the change of distribution structure. The greater the factor loadings 
are, the more sensitive the TFP of the industry is on average to macro systemic shocks, and 
vice versa, the more viscous it is. Table 4 reports estimates of loadings of macro TFP shock 
factors by industry.

Obviously, the industries with large factor loads (the average viscosity is weak) are: non-
ferrous metal smelting and rolling industry, special equipment manufacturing, computer com-
munications and other electronic equipment manufacturing. In other words, these sectors 
are less sticky to macro systemic shocks on average. It can be seen from the distribution 
curve that the structural viscosity of these shocks on TFP by industry is also relatively small. 

Table 4. Loadings of TFP macro shock factors in different industries

Number Industry Loadings of macro TFP shock factors

1 special equipment manufacturing 0.118
2 nonferrous metal smelting and rolling processing 

industry
0.162

3 automobile manufacturing industry 0.076
4 electrical machinery and equipment manufacturing 

industry
0.041

5 computer communication and other electronic 
equipment manufacturing industry

0.114

6 general equipment manufacturing industry 0.039
7 railway, ship, aerospace and other transportation 

equipment manufacturing industry
0.075

8 non-metallic mineral products industry 0.034
9 ferrous metal smelting and rolling processing 

industry
0.014
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However, the order of size between structural viscosity and average viscosity is not exactly 
the same. The weakest structural stickiness is in the computer communications and other 
electronic equipment manufacturing industry, while the weakest average stickiness is in the 
ferrous metal smelting and rolling processing industry.

In order to directly reflect the relationship between structural viscosity and average vis-
cosity, the scatterplots between the absolute value of 30% and 50% information entropy 
on the upper and lower sides and the loadings of macroscopic shocks factors are drawn in 
Figure 77. The dashed line is the fitted straight line without considering smelting and pressing 
of non-ferrous metals. Combined with the OLS regression results in Table 5 and Table 6, it 
is obvious that if smelting and pressing of non-ferrous metals are not considered, there is a 
significant positive correlation between the average viscosity (factor loadings) and structural 
viscosity (information entropy) (Table 5). However, considering all industries comprehensively, 
the value of R2 (goodness of fit) between Factor load and information entropy is low, and the 
estimated coefficient of Factor loading is not significant (Table 6), indicating that the correla-
tion between the two is not obvious.

In summary, the factor load can only reflect the average viscosity of the industry, but not 
really reflect the structural viscosity of the industry. Therefore, it is necessary to fully reveal 
the evolution law of the industry TFP distribution structure under the systematic shocks based 
on the distribution curve and information entropy.

7 The serial number next to the scatter in the figure indicates the industry number, and the corresponding industry name 
is detailed in Table 4.

Figure 7. Scatterplots of factor loadings of TFP shocks and information entropy
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Table 5. Regression results of factor loadings of TFP shocks and information entropy (excluding 
smelting and pressing of non-ferrous metals (number = 2))

Lower 30% Upper 30% Lower 50% Upper 50%

Factor loading 0.2304** 0.4381*** 0.5288*** 0.2420**

(0.0867) (0.1056) (0.1347) (0.0800)
R2 0.4755 0.5770 0.5393 0.5612

Notes: Values in brackets are robust standard errors. *, ** and *** indicate that the statistic is statistically 
significant at the significance level of 10%, 5% and 1%, respectively.

Table 6. Regression results of factor loadings of TFP shocks and information entropy (Total)

Lower 30% Upper 30% Lower 50% Upper 50%

Factor loading 0.0124 0.1021 0.1404 0.0119
(0.1493) (0.2265) (0.2659) (0.1534)

R2 0.0017 0.0470 0.0597 0.0016

Notes: Values in brackets are robust standard errors. *, ** and *** indicate that the statistic is statistically 
significant at the significance level of 10%, 5% and 1%, respectively.

5. Further analysis: structural stickiness and industry correlation

Industries with similar positions in the supply chain of the industrial chain show similar struc-
tural stickiness to a certain extent (Leontief, 1936) in the face of the systemic shocks of TFP. 
So, is the structural stickiness of industry TFP to systemic shocks related to its industry status? 
A reasonable assumption is that the more connected an industry is to other industries, the 
more likely it is to be affected by shocks from other industries, and the less sticky it will be. 
In order to test this hypothesis, the correlation between industry structure stickiness and 
industry correlation degree is further analyzed.

5.1. Industry correlation degree

According to Baqaee and Farhi (2019), the correlation degree between industry i and industry 
j can be expressed as:
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where W denotes the matrix of direct consumption coefficients in the input-output table for 

the national economic sector. Specifically, j ij
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The comprehensive industry correlation degree between industry i and all other industries 
is:

 
COV cov .i ikk i≠

=∑  (18)

The input-output table used to calculate the industry correlation index is from the Na-
tional Bureau of Statistics of the People’s Republic of China (2020), and the specific results 
are shown in Table 7. It can be found that the industries with a greater degree of correla-
tion with other industries in order are: special equipment manufacturing, general equipment 
manufacturing, computer communications and other electronic equipment manufacturing. 
The least relevant industries are the ferrous metal smelting and rolling processing industry 
and the non-ferrous metal smelting and rolling processing industry.

Table 7.  Results of industry correlation degree

Number Industry industry correlation 
degree

1 special equipment manufacturing 0.9100
2 nonferrous metal smelting and rolling processing industry 0.4995
3 automobile manufacturing industry 0.4674
4 electrical machinery and equipment manufacturing industry 0.7771
5 computer communication and other electronic equipment 

manufacturing industry
0.8542

6 general equipment manufacturing industry 0.9038
7 railway, ship, aerospace and other transportation equipment 

manufacturing industry
0.6781

8 non-metallic mineral products industry 0.6210
9 ferrous metal smelting and rolling processing industry 0.2689

5.2. Industry correlation degree and structural stickiness

Figure 8a and Figure 8b plot the scatter plot of the industry correlation degree and the ab-
solute value of 30% and 50% information entropy on the upper and lower sides to directly 
reflect the correlation between the two. Table 8 shows the OLS regression results of industry 
correlation degree and information entropy. We can find that, although the ranking of indus-
try correlation degree is not the same as that of information entropy, both scatter plot and 
OLS regression results show that industry correlation degree has a very significant positive 
correlation with information entropy, which indicates that industries with stronger correlation 
with other industries are more likely to be affected by the impact of other industries (the 
weaker the structural stickiness), thus verifying our hypothesis. The above results not only 
show that industry correlation is another important indicator reflecting the stickiness of in-
dustry structure, but also highlight an important economic significance: industries with high 
industry correlation can exert radiation power, and then drive other industries to coordinate 
innovation and development.
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Table 8. Regression results of industry correlation degree and information entropy

Lower 30% Upper 30% Lower 50% Upper 50% Total

Industry correlation degree 0.0491** 0.0810*** 0.1001*** 0.0449** 0.0361*

(0.0151) (0.0201) (0.0236) (0.0158) (0.0187)

R2 0.5636 0.6146 0.6310 0.4737 0.4027

Notes: Values in brackets are robust standard errors. *, ** and *** indicate that the statistic is statistically 
significant at the significance level of 10%, 5% and 1%, respectively.

Figure 8. Scatterplots of industry correlation degree and information entropy
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6. Conclusions and discussion

A systematic analysis of the response of TFP distribution structure and the internal structure 
of macroeconomic equilibrium path to the systematic impact of productivity and its evolu-
tion law can provide decision-making reference for the implementation of innovation-driven 
strategy.

This paper effectively identifies and decomposes the systemic impact of manufacturing 
TFP at the macro level and industry level based on the micro data of China’s manufacturing 
listed companies. Then, the structural stickiness of TFP systemic impact of major manufactur-
ing industries is evaluated based on the distribution curve, information entropy and industry 
correlation degree of TFP under the condition of shock and no shock.

The research results are mainly reflected in the following three points.
First, the results of estimation of TFP macro shock factors show that the supply-side 

structural reform in 2016 effectively reversed the downward trend of TFP shock in China’s 
manufacturing industry.

Second, the evaluation results of the structural stickiness of the manufacturing indus-
try show that: (1) the industries that are more sensitive to the systemic shocks of TFP are 
computer communication and other electronic equipment manufacturing, special equipment 
manufacturing, and general equipment manufacturing. These industries have a strong internal 
impetus for innovation, and the systemic shocks of TFP has significantly improved the overall 
TFP level of the industry. (2) The electrical machinery and equipment manufacturing industry 
and the ferrous metal smelting and rolling industry also have a certain inherent innovation 
power, but they show structural differentiation, and the lower tail enterprises are not sensi-
tive to the systemic shocks of TFP. (3) Non-ferrous metal smelting and pressing processing 
industry and non-metallic mineral products industry all show strong structural viscosity to 
the systematic shocks of TFP, and their internal innovation power is weak, requiring external 
innovation incentives.

Third, there is a significant positive relationship between industry correlation degree and 
information entropy, indicating that industry correlation degree is another important index 
reflecting the viscosity of industry structure. In addition, the industry with a higher degree 
of industry correlation can give play to its industrial chain supply chain position advantages 
and drive the innovation and coordinated development of other related industries. For ex-
ample, the government only needs to give a small amount of policy support to the special 
equipment manufacturing industry, general equipment manufacturing industry, computer 
communications and other electronic equipment manufacturing industry, which is related to 
the weak structural stickiness of the industry, and the small amount of policy support can 
effectively promote the development of other industries, and play the effect of half the effort. 
For industries with very strong structural stickiness (such as the non-ferrous metal processing 
industry and the non-metallic mineral products industry), targeted and strong exogenous 
incentive policies should be given. In a word, this differentiated industry innovation incentive 
policy is different from the traditional extensive scientific and technological innovation capital 
investment policy, which avoids the waste of resources and the low efficiency of the policy.
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Finally, the research of this paper provides a new method to evaluate the innovation 
ability of the industry, and reveals the significant differences in the inherent innovation mo-
tivation of different industries in China’s manufacturing industry, so as to provide a targeted 
basis for the differentiation of industry innovation incentives.
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APPENDIX

1. Detailed steps of iterative algorithm

Step 1: Ignoring macro shock factors and industry shock factors, LSDV method or GLS meth-
od are used to estimate Eq. (1) to obtain the initial value jb  of jb  and the initial residual 
value of sit .

Step 2: Let  's s
it s t itg g= +  , ignoring the industry impact factor and use principal component 

analysis (PCA) to obtained tg , 'ig  and sit .

Step 3: Let  's s s s
it i t itf = + , principal component analysis is performed for each industry s to 

obtain stf , then we get orthogonalized equation   

( ) ' /s s
t T t t tf I g g T f= −  based on the Eq. (3), 

and we get 's
i  and sit further.

Step 4:   's s s s
it it i tf  = − , and replace sit  with sit ,  and iterative operations for Step 2 and Step 3;

Step 5: Let  



' 's s s s
it it s t i tTFP TFP g fg = − + .

Step 6: Repeat Step 2 to Step 5 until the estimated parameter results converge. In this case, 
the results of all parameter estimates are consistent.

Finally, we can obtain the macroscopic system technical shock factor estimates   tg and the 
industrial technical shock factor estimates stf  and their loadings '

sg , 's
i .

2. Specific estimates of TFP shock factors

Table 9. TFP macro shock factors

Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Shock –0.094 –0.315 –0.164 0.001 0.625 0.761 1.040 1.272 1.829 1.503 1.406
Year 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
Shock 0.714 0.086 –0.268 –0.782 –1.058 –1.300 –1.229 –1.097 –0.988 –1.087 –0.853

https://doi.org/10.1016/j.ijpe.2019.06.002
https://doi.org/10.1016/j.jcorpfin.2017.12.015
https://doi.org/10.1016/j.rser.2021.111136
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Table 10. Factors of TFP industry shock

Number 1 2 3 4 5 6 7 8 9

2000 –0.063 –0.602 0.557 –0.851 –0.992 –0.831 1.024 –1.793 0.937
2001 0.174 –0.653 0.836 –1.735 –0.703 –0.838 0.811 –1.545 1.140
2002 0.419 –0.706 1.620 –1.145 –0.427 –0.487 1.137 –1.442 1.052
2003 0.307 –0.207 1.366 0.007 –0.729 0.002 0.867 –1.289 1.485
2004 0.086 –0.115 1.629 0.309 –1.088 –0.609 0.545 –0.261 1.495
2005 –0.213 –0.383 0.864 –0.601 –1.083 –1.335 0.599 –0.793 1.322
2006 –0.260 0.155 0.326 –0.337 –1.314 –1.429 0.487 –0.284 –0.089
2007 0.063 0.257 –0.514 0.542 0.003 –0.197 –0.234 –0.042 0.023
2008 –0.386 0.268 –0.748 1.458 0.514 0.163 –0.816 0.923 –0.561
2009 –0.274 0.369 –0.764 0.410 0.748 1.066 –0.975 0.785 –1.321
2010 0.630 0.373 –0.611 0.192 0.923 0.679 –0.413 0.810 –0.801
2011 0.337 1.265 –0.250 0.075 0.709 1.337 –0.324 0.892 –1.145
2012 –0.214 –0.082 –0.874 –0.676 0.946 0.745 –0.101 0.781 –0.769
2013 –0.479 –1.001 –1.166 –1.310 1.080 0.978 –0.118 0.190 –0.245
2014 –0.902 –1.908 –1.182 –0.578 0.954 0.023 –0.074 0.205 –0.304
2015 –1.227 –0.576 –1.018 1.669 0.644 0.089 0.125 0.280 –1.434
2016 –0.944 –0.535 –0.405 0.860 0.602 –0.656 0.959 0.396 –0.741
2017 –0.056 0.768 –0.436 0.556 0.289 –0.462 –0.441 0.576 –0.582
2018 0.435 –0.231 –0.127 0.416 –0.042 0.602 –0.693 0.482 –0.339
2019 0.394 –0.970 –0.324 0.916 –0.334 0.728 –0.740 0.345 0.173
2020 0.946 2.048 0.643 0.120 –0.536 0.424 –0.676 0.219 0.117
2021 1.230 2.466 0.578 –0.296 –0.166 0.007 –0.950 0.566 0.589

Notes: Numbers 1 to 9 in the table represent special equipment manufacturing, nonferrous metal smelt-
ing and rolling processing industry, automobile manufacturing industry, electrical machinery and equip-
ment manufacturing industry, computer communication and other electronic equipment manufacturing 
industry, general equipment manufacturing industry, railway, ship, aerospace and other transportation 
equipment manufacturing industry, non-metallic mineral products industry, ferrous metal smelting and 
rolling processing industry in turn.

3. Significant results of quantile regression  
for each industry in the presence of shocks

Due to space constraints, only the regression results for 5%, 25%, 50%, 75% and 95% of the 
significant quantiles for each industry are given here.

Table 11. Special equipment manufacturing industry

Quantile 5% 25% 50% 75% 95%

Age –0.0004 –0.0004 –0.0019 –0.0029 0.0021
(0.0023) (0.0023) (0.0021) (0.0031) (0.0039)

Lev 0.4816*** 0.4816*** 0.5703*** 0.7362*** 0.5337***

(0.0636) (0.0636) (0.0724) (0.0937) (0.1591)
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Quantile 5% 25% 50% 75% 95%

Nature 0.1543*** 0.1543*** 0.1663*** 0.2099*** 0.3012***

(0.0274) (0.0274) (0.0269) (0.0413) (0.0629)
Intensity –0.1966*** –0.1966*** –0.1650*** –0.1217*** –0.0341

(0.0096) (0.0096) (0.0152) (0.0218) (0.0350)
Roe 0.8038*** 0.8038*** 1.0283*** 1.0713*** 0.3649

(0.0258) (0.0258) (0.0833) (0.1828) (0.3195)
Cf –0.7802*** –0.7802*** –0.7135*** –0.6353*** –0.3053

(0.1586) (0.1586) (0.1780) (0.2267) (0.4463)
GDP –0.0298*** –0.0298*** –0.0357*** –0.0381** 0.0253

(0.0107) (0.0107) (0.0113) (0.0157) (0.0234)
Factor of TFP macro shock 0.1500*** 0.1500*** 0.1313*** 0.1642*** 0.2197***

(0.0209) (0.0209) (0.0226) (0.0291) (0.0416)
Factor of TFP industry shock –0.0379*** –0.0379*** –0.0164 0.0072 –0.0255

(0.0146) (0.0146) (0.0146) (0.0200) (0.0325)
N 2627 2627 2627 2627 2627

Notes: Values in brackets are robust standard errors. *, ** and *** indicate that the statistic is statistically 
significant at the significance level of 10%, 5% and 1%, respectively.

Table 12. General machinery manufacturing

Quantile 5% 25% 50% 75% 95%

Age 0.0041 0.0041 0.0048 0.0002 0.0150*

(0.0028) (0.0028) (0.0038) (0.0066) (0.0091)
Lev 0.4672*** 0.4672*** 0.3618*** 0.2698 0.4759

(0.0772) (0.0772) (0.1157) (0.1888) (0.3340)
Nature –0.0501 –0.0501 –0.0782* –0.0786 –0.3439***

(0.0332) (0.0332) (0.0438) (0.0696) (0.1109)
Intensity –0.4891*** –0.4891*** –0.4970*** –0.4309*** –0.2006**

(0.0247) (0.0247) (0.0302) (0.0741) (0.0853)
Roe 0.3909** 0.3909** 0.1035 –0.1282 –0.0143

(0.1671) (0.1671) (0.0898) (0.2207) (0.1080)
Cf –0.5087** –0.5087** –1.0965*** –0.5705 –0.8096

(0.1988) (0.1988) (0.2592) (0.3523) (0.6592)
GDP –0.0526*** –0.0526*** –0.0867*** –0.0427 0.0108

(0.0114) (0.0114) (0.0188) (0.0272) (0.0566)
Factor of TFP macro shock 0.0503** 0.0503** 0.0228 0.0171 0.1031*

(0.0244) (0.0244) (0.0233) (0.0364) (0.0574)
Factor of TFP industry shock 0.0068 0.0068 0.0034 –0.0421 0.0167

(0.0177) (0.0177) (0.0253) (0.0378) (0.0719)
N 981 981 981 981 981

Notes: Values in brackets are robust standard errors. *, ** and *** indicate that the statistic is statistically 
significant at the significance level of 10%, 5% and 1%, respectively.

End of Table 11
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Table 13. Computer, communications and other electronic equipment manufacturing

Quantile 5% 25% 50% 75% 95%

Age –0.0025 –0.0025 –0.0023 –0.0051 0.0009
(0.0022) (0.0022) (0.0030) (0.0035) (0.0064)

Lev 1.0015*** 1.0015*** 1.4830*** 1.3854*** 1.7523***

(0.0860) (0.0860) (0.1096) (0.1074) (0.2039)
Nature 0.4274*** 0.4274*** 0.4127*** 0.3532*** 0.5754***

(0.0298) (0.0298) (0.0364) (0.0391) (0.0866)
Intensity –0.2166*** –0.2166*** –0.0888** –0.0802*** –0.0598***

(0.0250) (0.0250) (0.0401) (0.0259) (0.0034)
Roe 1.0591*** 1.0591*** 1.0352*** 1.1852*** 1.2572***

(0.0844) (0.0844) (0.1434) (0.1362) (0.1888)
Cf –0.1303 –0.1303 0.2570 –0.0063 –1.2476**

(0.1892) (0.1892) (0.2567) (0.2578) (0.5436)
GDP 0.0136 0.0136 0.0234 –0.0054 –0.0290

(0.0117) (0.0117) (0.0164) (0.0177) (0.0342)
Factor of TFP macro shock 0.0708*** 0.0708*** 0.1667*** 0.1828*** 0.2051***

(0.0214) (0.0214) (0.0280) (0.0247) (0.0580)
Factor of TFP industry shock 0.0748** 0.0748** 0.0250 0.0362 0.1513*

(0.0342) (0.0342) (0.0407) (0.0408) (0.0888)
N 1536 1536 1536 1536 1536

Notes: Values in brackets are robust standard errors. *, ** and *** indicate that the statistic is statistically 
significant at the significance level of 10%, 5% and 1%, respectively.

Table 14. Manufacture of electrical machinery and equipment

Quantile 5% 25% 50% 75% 95%

Age –0.0001 –0.0001 0.0039* 0.0077*** –0.0035
(0.0021) (0.0021) (0.0022) (0.0028) (0.0061)

Lev 0.8330*** 0.8330*** 0.8109*** 0.8095*** 0.7121**

(0.1150) (0.1150) (0.0753) (0.1231) (0.3003)
Nature 0.1509*** 0.1509*** 0.1949*** 0.2470*** 0.4294***

(0.0335) (0.0335) (0.0301) (0.0399) (0.0829)
Intensity –0.2660*** –0.2660*** –0.2312*** –0.2031*** –0.1881***

(0.0127) (0.0127) (0.0143) (0.0139) (0.0426)
Roe 0.2353 0.2353 0.1351 0.0304 0.0370

(0.4610) (0.4610) (0.2281) (0.1723) (0.9028)
Cf –0.5962** –0.5962** –0.4789** –0.1356 –0.3342

(0.2674) (0.2674) (0.1862) (0.2357) (0.6701)
GDP 0.0274** 0.0274** 0.0303** 0.0394*** 0.0268

(0.0123) (0.0123) (0.0118) (0.0150) (0.0286)
Factor of TFP macro shock 0.0957*** 0.0957*** 0.1010*** 0.1378*** 0.2329***

(0.0187) (0.0187) (0.0186) (0.0240) (0.0593)
Factor of TFP industry shock –0.0693*** –0.0693*** –0.1037*** –0.1090*** –0.0129

(0.0177) (0.0177) (0.0164) (0.0203) (0.0481)
N 2706 2706 2706 2706 2706

Notes: Values in brackets are robust standard errors. *, ** and *** indicate that the statistic is statistically 
significant at the significance level of 10%, 5% and 1%, respectively.
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Table 15. Railway, Marine, aerospace and other transportation equipment manufacturing

Quantile 5% 25% 50% 75% 95%

Age –0.0014 –0.0014 –0.0026 –0.0027 –0.0123**

(0.0014) (0.0014) (0.0020) (0.0027) (0.0051)
Lev 0.7894*** 0.7894*** 1.1403*** 1.3629*** 1.3671***

(0.0496) (0.0496) (0.0733) (0.0915) (0.1809)
Nature 0.2344*** 0.2344*** 0.2975*** 0.3374*** 0.3168***

(0.0216) (0.0216) (0.0272) (0.0403) (0.0657)
Intensity –0.1920*** –0.1920*** –0.1361*** –0.1141*** –0.0599***

(0.0100) (0.0100) (0.0127) (0.0103) (0.0214)
Roe 0.7592*** 0.7592*** 0.7538*** 0.5157*** 0.3980

(0.1015) (0.1015) (0.0829) (0.0891) (0.2441)
Cf –1.3664*** –1.3664*** –1.5015*** –1.3574*** –1.1623***

(0.1302) (0.1302) (0.1605) (0.2079) (0.4398)
GDP 0.0489*** 0.0489*** 0.0830*** 0.0903*** 0.0403

(0.0058) (0.0058) (0.0110) (0.0169) (0.0293)
Factor of TFP macro shock 0.0704*** 0.0704*** 0.1086*** 0.1389*** 0.1067**

(0.0122) (0.0122) (0.0171) (0.0197) (0.0436)
Factor of TFP industry shock –0.0142 –0.0142 –0.0260** –0.0384** 0.0240

(0.0091) (0.0091) (0.0124) (0.0166) (0.0319)
N 4291 4291 4291 4291 4291

Notes: Values in brackets are robust standard errors. *, ** and *** indicate that the statistic is statistically 
significant at the significance level of 10%, 5% and 1%, respectively.

Table 16. Automobile industry

Quantile 5% 25% 50% 75% 95%

Age 0.0024 0.0024 –0.0025 –0.0118* –0.0253**

(0.0027) (0.0027) (0.0039) (0.0070) (0.0112)
Lev 0.9107*** 0.9107*** 1.3377*** 1.3097*** 0.9427***

(0.1231) (0.1231) (0.0819) (0.1774) (0.1589)
Nature 0.2200*** 0.2200*** 0.1581*** 0.1905** 0.1390

(0.0311) (0.0311) (0.0515) (0.0797) (0.1989)
Intensity –0.0372 –0.0372 –0.0029 –0.0032 –0.0035

(0.1203) (0.1203) (0.1916) (0.2805) (0.4563)
Roe 1.7826*** 1.7826*** 1.5255*** 1.2274 1.2328

(0.3989) (0.3989) (0.3522) (1.1059) (1.1664)
Cf –0.4287* –0.4287* –0.0904 –0.7081 –1.6619**

(0.2280) (0.2280) (0.3811) (0.6482) (0.7858)
GDP 0.0534*** 0.0534*** 0.0263 0.0579*** 0.0900**

(0.0151) (0.0151) (0.0352) (0.0166) (0.0455)
Factor of TFP macro shock 0.0343 0.0343 0.0965** 0.0895* 0.0776

(0.0284) (0.0284) (0.0392) (0.0479) (0.0994)
Factor of TFP industry shock –0.0333*** –0.0333*** –0.0025 0.0089 0.0504*

(0.0129) (0.0129) (0.0114) (0.0223) (0.0263)
N 1716 1716 1716 1716 1716

Notes: Values in brackets are robust standard errors. *, ** and *** indicate that the statistic is statistically 
significant at the significance level of 10%, 5% and 1%, respectively.
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Table 17. Smelting and pressing of non-ferrous metals

Quantile 5% 25% 50% 75% 95%

Age 0.0070* 0.0070* –0.0032 –0.0017 0.0182**

(0.0038) (0.0038) (0.0045) (0.0037) (0.0083)
Lev 0.3477*** 0.3477*** 0.5764*** 0.3597*** –0.0541

(0.1278) (0.1278) (0.1497) (0.1246) (0.2271)
Nature 0.2911*** 0.2911*** 0.2510*** 0.1600*** 0.1359

(0.0534) (0.0534) (0.0565) (0.0619) (0.0855)
Intensity –0.2806*** –0.2806*** –0.2997*** –0.2456*** –0.1876***

(0.0152) (0.0152) (0.0233) (0.0245) (0.0349)
Roe 0.3816* 0.3816* 0.2504** 0.2771*** 0.2897

(0.2153) (0.2153) (0.1091) (0.0889) (0.4092)
Cf –0.6469* –0.6469* 0.0435 0.4551 0.0347

(0.3863) (0.3863) (0.4044) (0.2966) (0.6345)
GDP 0.0375 0.0375 0.0472** 0.0491** 0.0242

(0.0236) (0.0236) (0.0225) (0.0223) (0.0203)
Factor of TFP macro shock 0.0392 0.0392 0.0341 0.0328 0.1151**

(0.0351) (0.0351) (0.0379) (0.0348) (0.0580)
Factor of TFP industry shock –0.0264 –0.0264 –0.0169 0.0166 –0.0542

(0.0295) (0.0295) (0.0335) (0.0278) (0.0590)
N 734 734 734 734 734

Notes: Values in brackets are robust standard errors. *, ** and *** indicate that the statistic is statistically 
significant at the significance level of 10%, 5% and 1%, respectively.

Table 18. Manufacture of non-metallic mineral products

Quantile 5% 25% 50% 75% 95%

Age –0.0054 –0.0054 –0.0050** –0.0063* 0.0014
(0.0048) (0.0048) (0.0025) (0.0036) (0.0085)

Lev 0.5322*** 0.5322*** 0.6423*** 0.7364*** 0.5081
(0.1689) (0.1689) (0.0883) (0.1427) (0.3281)

Nature 0.0168 0.0168 0.0792** 0.1220*** 0.1812*

(0.0354) (0.0354) (0.0333) (0.0376) (0.1014)
Intensity –0.0214 –0.0214 –0.0041 –0.0042 –0.0044

(0.0234) (0.0234) (0.0121) (0.0198) (0.0644)
Roe 1.2080*** 1.2080*** 1.1579*** 0.7315*** 0.4054

(0.1561) (0.1561) (0.0764) (0.2189) (0.5481)
Cf 0.6086 0.6086 0.1098 –0.1910 –0.6851

(0.4770) (0.4770) (0.1991) (0.4510) (0.9966)
GDP –0.0011 –0.0011 0.0179 0.0603*** 0.0862**

(0.0213) (0.0213) (0.0115) (0.0169) (0.0364)
Factor of TFP macro shock 0.0441* 0.0441* 0.0182 0.0109 0.1347*

(0.0245) (0.0245) (0.0204) (0.0270) (0.0704)
Factor of TFP industry shock –0.0077 –0.0077 0.0123 0.0012 –0.0015

(0.0239) (0.0239) (0.0217) (0.0245) (0.0516)
N 1404 1404 1404 1404 1404

Notes: Values in brackets are robust standard errors. *, ** and *** indicate that the statistic is statistically 
significant at the significance level of 10%, 5% and 1%, respectively.
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Table 19. Smelting and pressing of ferrous metals

Quantile 5% 25% 50% 75% 95%

Age –0.0117*** –0.0117*** –0.0097*** –0.0189*** –0.0054
(0.0036) (0.0036) (0.0030) (0.0053) (0.0063)

Lev –0.0966 –0.0966 –0.0129 0.3173** –0.5454***

(0.1396) (0.1396) (0.0830) (0.1476) (0.1485)
Nature 0.1925*** 0.1925*** 0.2516*** 0.3163*** 0.0783

(0.0625) (0.0625) (0.0262) (0.0493) (0.1739)
Intensity –0.3316*** –0.3316*** –0.3409*** –0.2975*** –0.1786**

(0.0608) (0.0608) (0.0176) (0.0666) (0.0743)
Roe 0.1253 0.1253 0.0941 0.1412 –0.0002

(0.1846) (0.1846) (0.0645) (0.1211) (0.1802)
Cf 0.1973 0.1973 0.0653 0.2062 0.2510

(0.2673) (0.2673) (0.1913) (0.3746) (0.5194)
GDP 0.0339** 0.0339** 0.0117 –0.0316 –0.0614***

(0.0139) (0.0139) (0.0083) (0.0208) (0.0202)
Factor of TFP macro shock 0.0944*** 0.0944*** 0.0793*** 0.0194 0.2057***

(0.0230) (0.0230) (0.0157) (0.0381) (0.0324)
Factor of TFP industry shock –0.0271 –0.0271 0.0134 –0.0255 0.0198

(0.0296) (0.0296) (0.0148) (0.0181) (0.1827)
N 636 636 636 636 636

Notes: Values in brackets are robust standard errors. *, ** and *** indicate that the statistic is statistically 
significant at the significance level of 10%, 5% and 1%, respectively.

4. Estimation results of skew t-distribution  
parameters of TFP in various industries

Table 20. Estimation results of skew t-distribution parameters of TFP m, s, a, u

Industry shock m  
(Mean)

s  
(SD)

a  
(Skewness)

u  
(degree of freedom)

Special equipment manufacturing 
industry

Yes 5.1289 0.6612 0.1812 5
No 4.9967 0.6498 0.1443 5

Smelting and pressing of non-ferrous 
metals

Yes 5.7972 0.5231 0.1471 5
No 5.8002 0.5222 0.1551 5

Automobile industry Yes 5.1737 0.8844 0.2166 4
No 5.1140 0.8659 0.2265 4

Manufacture of electrical machinery and 
equipment

Yes 4.8831 0.6117 –0.1512 5
No 4.8165 0.6186 –0.1319 5

Computer, communications and other 
electronic equipment manufacturing

Yes 5.2813 0.6228 0.1272 18
No 5.1664 0.5941 0.1705 14

General machinery manufacturing Yes 5.3664 0.7030 0.2167 4
No 5.2622 0.6961 0.1632 4

Railway, Marine, aerospace and other 
transportation equipment manufacturing

Yes 5.2011 0.7011 –0.2531 17
No 5.1587 0.7103 –0.2250 17
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Industry shock m  
(Mean)

s  
(SD)

a  
(Skewness)

u  
(degree of freedom)

Manufacture of non-metallic mineral 
products

Yes 4.7524 0.6241 0.0533 4
No 4.7432 0.6348 0.0829 4

Smelting and pressing of ferrous metals Yes 5.5504 0.8012 –0.3839 19
No 5.5242 0.8185 –0.2902 15

5. The enterprise TFP results of LP method

Figure 9. TFP distribution by industry (LP method)
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End of Table 20


