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impact-relation directions among them with multi SWARA based on q-ROFs and golden cut. Next, the 
performances of renewable alternatives are measured in terms of the synergy of coalition with game 
theory and Shapley value. It is concluded that solar energy is the most suitable RWB alternative for 
synergy to increase efficiency in investments. However, biomass does not have a significant influence 
on providing synergy in energy investments. Therefore, solar energy should be prioritized for hybrid 
energy investments. Especially with the effect of technological developments, the efficiency of solar en-
ergy investments increases significantly. Thus, solar energy investments have become quite suitable for 
increasing the synergy in hybrid energy projects. Furthermore, necessary research should be conducted 
to make biomass energy more efficient.
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1. Introduction

Hybrid energy investments are projects where different renewable energy sources are inte-
grated and implemented. It is possible to talk about many different advantages of these in-
vestments. First, owing to these projects, it becomes easier to produce uninterrupted energy. 
In these projects, different types of renewable energies are brought together. This situation 
also helps to achieve balance in energy production. On the other hand, energy storage pro-
cesses can also become more effective with the help of hybrid projects. This condition has 
a positive contribution to manage problems caused by fluctuations in energy demand more 
effectively (Nkwanyana et al., 2023). Moreover, hybrid energy projects also help increase 
energy production capacity. This situation contributes significantly to increasing energy rev-
enues. Thus, it is possible to increase the financial performance of projects. In addition to 
this issue, hybrid energy projects also enable greater use of clean energy. This helps reduce 
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environmental problems caused by energy production. Using fossil fuels in energy generation 
is accepted as the main reason of the carbon emission problem (Akarsu & Genç, 2022). Thus, 
renewable energy projects should be increased to overcome this problem. The main barrier 
for this situation is the high-cost problem of the renewable energy projects (Reveles-Miranda 
et al., 2024). Hence, with the help of hybrid energy investments, these problems can be solved 
in a more effective manner.

Choosing the appropriate renewable energy combination for hybrid energy projects is 
very important for the performance of the project. An incorrect combination may result in 
lower energy efficiency. This situation may negatively affect the financial performance of the 
project. Similarly, incorrect combination of renewable energy may prevent hybrid projects 
from producing uninterrupted energy (Miao et al., 2023). In this regard, an unbalanced com-
bination can lead to interruptions in energy supply. On the other hand, creating this combina-
tion incorrectly can reduce cost effectiveness. As a result, the returns on investments decrease 
significantly. Furthermore, failure to integrate different energy sources harmoniously can lead 
to technical problems. In this process, operating costs increase because of the incompatibility 
of different technologies. Similarly, incorrectly creating the energy combination also causes 
negative environmental effects (Babatunde et al., 2022). In this context, if the selected renew-
able energy type is not suitable for the geography, it may negatively affect the ecosystem. 
The energy security problem is another factor that should be taken into consideration in this 
process (Zhang et al., 2024). Choosing the wrong energy combination can cause disruptions 
in the energy production process. In summary, there is a strong need for a new study to 
understand optimal renewable energy combinations for hybrid energy projects. However, in 
the literature, there are limited studies that focused on this situation.

Accordingly, this study aims to understand the optimal renewable energy combinations 
for the effectiveness of the hybrid energy projects. For this purpose, a novel fuzzy decision-
making model is created with two different stages. First, the priorities and impact relation 
map are analyzed for the renewable energy system alternatives. In this framework, q-ROF 
M-SWARA methodology is taken into consideration. On the other side, the second stage 
includes assessing the synergy of coalition for hybrid renewable energy system alternatives 
in terms of the synergy of coalition by using the game theory and Shapley value respec-
tively. The main motivation of this study is that a novel decision-making model should be 
generated to make appropriate evaluation for hybrid energy projects. Existing models in the 
literature are criticized because of some reasons. For instance, causal directions of the factors 
should be identified in addition to the calculation of the weights. However, in models where 
techniques such as AHP and ANP are used, the causal relationship between variables cannot 
be determined (Manirathinam et al., 2023; Yazdani et al., 2023). This situation helps to reach 
more effective findings. For this purpose, a new methodology, M-SWARA, is created in this 
study to understand the causal relationships.

The main contributions of this study are given below. (i) A novel decision-making model 
is proposed in this study to make assessment regarding the hybrid energy projects. In this 
model, game theory, Shapley value and fuzzy decision-making methodology are integrated. 
Therefore, this novel model makes a more sensitive evaluation for these projects. (ii) Creating 
M-SWARA methodology has also a significant contribution to the literature. Although clas-
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sical SWARA methodology can compute the weights of the criteria, the causal directions of 
the factors cannot be identified with this technique. However, renewable energy alternatives 
may have an impact on the performance of each other. Thus, for the purpose of selecting 
effective combination of the renewable energy alternatives, causality relationship should be 
taken into consideration. For this situation, some extensions are implemented to the SWARA 
technique and M-SWARA approach is created. Thus, causal relationship between the items 
can be defined.

Literature review is conducted in the second part. Methodological information is given in 
the next part. Findings are underlined in the following section. Discussions and conclusions 
are explained in the final parts.

2. Literature review

Hybrid energy systems contribute significantly to increasing energy efficiency. The use of 
RWB helps to decrease carbon emissions. This situation also reduces the environmental pol-
lution problem. Therefore, RWB generation is important for the solution of a very important 
problem (Qi et al., 2021). On the other hand, the installation cost of RWB alternatives is quite 
high. In addition, it may not be possible to produce a stable amount of energy from these 
types of energy (Dong et al., 2023). This leads to an increase in the costs of the projects. 
Thanks to properly designed hybrid energy systems, energy investments can become more 
efficient (Liu et al., 2021). Huang et al. (2021) focused on the design of hybrid energy projects. 
They defined that for the energy efficiency, hybrid energy projects should be encouraged. 
Guo et al. (2021) made an optimization regarding the hybrid energy systems. They claimed 
that cost management process can be implemented more appropriately for RWB investments 
when hybrid systems are taken into consideration. Zhang et al. (2021) examined the benefits 
of hybrid energy system for China. They identified that energy investments can become more 
efficient with the help of hybrid systems. Besides, Abba et al. (2022) and Adefarati et al. (2023) 
evaluated methods used in the literature for assessing and mitigating the risks of renewable 
energy investment for developed and developing countries.

Some scholars also examined the importance of technological investments for the per-
formance of hybrid energy projects. Hybrid systems include more than two different RWB 
types. However, each alternative includes complex stages so that there is a strong need for 
using new technologies (Arent et al., 2021; He et al., 2022). The costs of these projects can be 
reduced by giving more importance to the technological development (Kumar & Karthikeyan, 
2024). Additionally, technological developments also help to process to run effectively (Pang 
et al., 2021). Because of this issue, hybrid energy investors should have sufficient technologi-
cal background (Wang et al., 2021; Ho et al., 2021). Otherwise, it becomes quite difficult to 
provide sustainability of these hybrid energy projects (Khosravi et al., 2021; Hoseinzadeh & 
Garcia, 2022). Peppas et al. (2021) made performance evaluation for hybrid energy projects. 
It is claimed that technological improvements play a critical role for this situation. Barelli 
et al. (2021) also highlighted the similar issues for the performance improvement of these 
projects. Kallio and Siroux (2022) and Wilberforce et al. (2023) revealed that hybridization 
amplified meaningly cost-free electricity production and eased the drop of biomass use and 
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costly exergy destruction by evaluating thermo-economically a hybrid renewable energy 
system based on cogeneration from a biomass-fueled Stirling engine micro-CHP unit and 
photovoltaic-thermal collectors.

The relationship between hybrid energy projects and carbon emission was also studied by 
many researchers. Hybrid energy projects contain more than two different RWB alternatives 
so that clean energy systems can be improved (He et al., 2021). However, RWB alternatives 
have high costs so that investors do not prefer them (Güven & Mengi, 2023). Hybrid energy 
systems have a contribution to handle high-cost problem more effectively (Ross & Bindra, 
2021). Owing to this situation, hybrid systems help to overcome carbon emission problem 
(Kamel et al., 2021; Qiu et al., 2023). Hills et al. (2021) examined hybrid energy systems with 
dynamic modelling and simulation technique. They concluded that effective hybrid systems 
have a decreasing impact on the carbon emission problem. Ali et al. (2021) evaluated hybrid 
energy systems in Pakistan and determined that there is a positive correlation between ef-
fective hybrid energy systems and carbon emission reduction. Aloini et al. (2021) suggested 
a methodology for optimum synthesis, design, and operation of the energy system for a case 
study of a farm hostel in Italy, involving a simulation engine and a multi-objective optimisa-
tion algorithm, with potential savings of up to 47 k€ and 320 tCO2. Guo et al. (2022) devel-
oped a fuzzy multi-criteria group decision making framework and detected 9 quantitative and 
7 qualitative evaluation indicators for the investment decisions of power-photovoltaic-hydro-
gen storage projects. Jahangir et al. (2022) used the Hybrid Optimization Model for Electric 
Renewables (HOMER) Pro software to discover that an on-grid photovoltaic panel, bio, diesel, 
and battery system is the most cost-effective and carbon-saving option. Carbon capture and 
storage has been shown by Lee et al. (2022) to be reasonably sustainable and can support 
accomplish emission reduction targets if costs are lowered through technological innovation.

Hybrid energy design is another important topic in the literature. In this framework, many 
different RWB alternatives can be considered for the design of these systems (Nguyen et al., 
2021; Karaaslan & Gezen, 2022). Each alternative can have some specific advantages and 
disadvantages (Gupta et al., 2021; Yazdani et al., 2023). Recent technological developments 
have a decreasing impact on the costs of solar energy projects. However, in the evening time, 
solar panels cannot generate energy (Bhattacharjee & Nandi, 2021; Alonso et al., 2023). Ad-
ditionally, for the effectiveness of the wind energy, selected location plays an essential role. 
The performance of hydroelectric power plants is very low when there is a drought (Ren 
et al., 2022; Rezk et al., 2022). Hence, the design of the hybrid energy is very important for 
the performance improvement (Huang et al., 2021; El Mezdi et al., 2023). Turkdogan (2021) 
focused on the ways to improve the performance of the hybrid energy systems and defined 
that effective design plays a very crucial role for the achievement of this purpose.

Some important conclusions can be reached as a result of the literature review. For the 
purpose of performance improvements of the hybrid energy projects, appropriate renewable 
energy combinations can be generated. The main reason behind this situation is that incorrect 
combination may negatively affect the financial performance of the project. This condition 
also leads to interruptions in energy supply that can create some problems regarding cost 
management. Consequently, there is a strong need for a new study to understand optimal 
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renewable energy combinations for hybrid energy projects. Nevertheless, the studies in the 
literature that focused on this issue are limited. Therefore, a comprehensive evaluation should 
be conducted to find answer for these questions. Fuzzy multi-criteria decision-making mod-
els were preferred by some scholars in the literature. For instance, Peirow et al. (2023) and 
Majumder et al. (2023) aimed to weight the indicators of the hybrid energy investment per-
formance by using ANP methodology. In addition to these studies, Yazdani et al. (2023) and 
Manirathinam et al. (2023) also created a model with the help of AHP approach to understand 
the key performance indicators of hybrid energy projects. However, the main limitation of 
these studies is that causality analysis cannot be performed in these evaluations. The main 
determinants of the hybrid energy investments may have an influence on each other. Thus, a 
novel decision-making model should be generated to make appropriate evaluation for hybrid 
energy projects. To fill this missing part in the literature, a new methodology, M-SWARA, is 
created in this study to understand the causal relationships among the factors.

3. Methodology

Coalition game theory and Shapley value, q-ROFSs and SWARA are explained in this section.

3.1. Coalition game theory and shapley value

Game theory refers to the situation in which two or more players are involved in a strategy 
to achieve the desired outcome. Equations (1) and (2) demonstrate group and individual 
rationalities ( ),   ( )( )v N v i . N defines the number of players whereas x represents the reward 
vector (Alhasnawi et al., 2021):
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Equation (3) demonstrates the imputation (y) that dominates x with a coalition S:
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Shapley value refers to the effects of the cooperation when the contributions the players 
are not equal (Smith & Alvarez, 2021). Equation (4) represents the details:
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3.2. q-ROFSs with golden cut

IFSs consider membership ( )( )Im   and non-membership ( )( )In   degrees (MPP and NPP) to 
give better solutions for the complex problems. Equation (5) explains these sets (Atanassov, 
1983):

 
( ) ( ){ }, , / .I II n U=  m     (5)
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Equation (6) includes the condition of IFSs:

 ( ) ( )0 1. I In≤ + ≤m    (6)

Yager (2013) generated PFSs with new grades (mP, nP) as in Equation (7):

 
( ) ( ){ }, , / .P PP n U=  m     (7)

Equation (8) should be met in this regard:
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Yager (2016) introduces q-ROFSs by extending IFSs and PFSs with new degrees (mQ, nQ) 
as in Equation (9):
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The condition of these sets is shown in Equation (10):
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Equation (11) represents indeterminacy degree:
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Operations are indicated in Equations (12)–(16):
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Equation (17) represents score function:
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In this study, degrees are calculated with golden cut (j) (Livio, 2008). Equation (18) gives 
information about this situation. In this context, large and small quantities are shown as a 
and b:

 
a
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Equation (19) includes he algebraic form:
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Golden cut-based degrees are given in Equation (20):
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Equations (21) and (22) demonstrate the integration of q-ROFSs with golden cut:
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3.3. M-SWARA with q-ROFSs

Keršuliene et al. (2010) introduced SWARA for the purpose of calculation of weights of the 
items and relation degrees. The matrix is developed with evaluations of the experts as in 
Equation (23):
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Next, q-ROFSs and score function are constructed. Equations (24)–(26) are considered to 
compute the values of sj (significance rate), kj (coefficient), qj (recalculated weight), and wj 
(weights):
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Stable values are defined while limiting and transposing the matrix with the power of 2t + 
1. Finally, weights and relations degrees are computed.

4. Analysis

This paper aims to evaluate the synergy of coalition for hybrid RWB system alternatives. A 
new model is constructed by using coalition game theory, q-ROFSs and SWARA with golden 
cut. Figure 1 explains the steps of this model.
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In this context, four RWB alternatives are selected to find optimum synergy of coalition 
in the investments as in Table 1.

Three decision makers, who have important experience in RWB investments, make evalu-
ations. One of these decision makers is the academician. He has 25 years of working experi-
ence, and he has lots of publishments regarding energy efficiency, renewable energy projects 
and energy finance. Other two decision makers work as top managers in international renew-
able energy companies. They have worked in many different renewable energy generation 
projects. The scales and degrees in Table 2 are used for the conversion of these evaluations.

Evaluations are detailed in Table A1 in the Appendix part. Average values are shown in 
Table A2. Score functions are represented in Table A3. On the other side, Table A4 includes 
the critical values in the analysis process. Relation matrix is constructed in Table A5. More-
over, Table A6 indicates the stable matrix. Relationship between the alternatives is indicated 
in Figure 2.

Figure 1. Steps of model



Technological and Economic Development of Economy, 2024, 30(5), 1533–1552 1541

Biomass (alternative 1) and wind (alternative 2) have an impact on solar (alternative 4). 
Moreover, hydro (alternative 3) is influenced by solar (alternative 4). Furthermore, wind (al-
ternative 2) is affected by hydro (alternative 3). Results are summarized in Table 3.

Solar (alternative 4) has the highest weight for all calculations. Additionally, hydro (alter-
native 3) is another crucial RWB type. Also, biomass (alternative 1) and wind (alternative 2) 
have lower weights.

In the second stage, the synergy of coalition is assessed for hybrid RWB system alterna-
tives. For this purpose, coalition rules are constructed by using the impact-relation directions 
of the alternatives. Following four coalition rules are defined while considering the details 
in Figure 2.

                                    Table 3. Weights

IFSs PFSs q-ROFSs

BSS 3 3 4
WND 4 4 3
HDR 2 2 2
SOR 1 1 1

                                 Table 1. Alternatives

Alternatives References

Biomass (BSS) Bhuiyan et al. (2022)
Wind (WND) Dong et al. (2022a, 2022b)
Hydro (HDR) Bulut and Özcan (2021)
Solar (SOR) Li et al. (2021)

                                 Table 2. Degrees and scales

Scales MPP NPP

No (n) 0.40 0.25
some (s) 0.45 0.28
normal (m) 0.50 0.31
high (h) 0.55 0.34
very high (vh) 0.60 0.37

Figure 2. Impact-relation map
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Rule 1: Alternative 1 is ordered before Alternative 4;
Rule 2: Alternative 2 is ordered before Alternative 4;
Rule 3: Alternative 3 is ordered before Alternative 2;
Rule 4: Alternative 4 is ordered before Alternative 3.

Table A7 explains the order the hybrid RWB system alternatives with the coalition rules. 
Table A8 includes the normalized values. Shapley values in Table A8 state that solar energy 
is the most beneficial alternative for synergy to increase efficiency in investments. Hydro en-
ergy is also appropriate for this situation. Nevertheless, biomass does not have a significant 
influence on providing synergy in energy investments. Table 4 includes comparative ranking 
results.
                 Table 4. Ranking results

q-ROF Multi SWARA PF Multi SWARA IF Multi SWARA

BSS 4 4 4
WND 3 3 3
HDR 2 2 2
SOR 1 1 1

Table 4 indicates that results are same for all different calculations. The findings of the 
suggested model are coherent. Based on the analysis results, it is seen that solar energy 
should be prioritized for hybrid energy investments. Solar energy provides the most efficiency 
in such projects. Hydropower and wind are other critical renewable energy types to gener-
ate hybrid energy projects more effectively. According to these issues, a combination can 
be generated by integrating solar energy with wind or hydropower energy. With the help of 
this issues, energy efficiency can be provided and interruptions in the energy productions 
because of climate conditions can be minimized. Finally, a sensitivity analysis is also applied 
by considering four different cases with the aim of measuring the coherency of the findings. 
Table 5 gives information about the sensitivity analysis results.

                         Table 5. Sensitivity analysis results

Alternatives Case 1 Case 2 Case 3 Case 4

BSS 4 4 4 4
WND 3 3 3 3
HDR 2 2 2 2
SOR 1 1 1 1

Table 5 states that sensitivity analysis results are the same for each different case. There-
fore, it is understood that the proposed model provides coherent and reliable findings.
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5. Discussion

Solar energy should be prioritized for hybrid energy investments. Solar energy provides the 
most efficiency in such projects. It is possible to produce high amount of electricity from solar 
energy projects. In addition, Kumar et al. (2023) determined that technological innovations 
have also significantly reduced the costs of solar energy projects. Owing to these develop-
ments, the efficiency of solar energy investments increases significantly. Thus, Li et al. (2024) 
and Chen and Zhang (2024) stated that solar energy investments have become quite suitable 
for increasing the synergy in hybrid energy projects. In addition, biomass energy type cannot 
contribute significantly to these projects. In this context, it is very important to conduct the 
necessary research to make biomass energy more efficient. Pascasio et al. (2021), Qi et al. 
(2021), Castro et al. (2022) and Song et al. (2022) also claimed that for the effectiveness of 
the hybrid energy systems, solar energy should be preferred.

Furthermore, to increase the effectiveness of hybrid energy projects, solar energy should 
be integrated with other renewable energy projects. In this context, solar and wind energy 
projects are investments that complement each other. Soyturk et al. (2024), Doile et al.  (2022) 
and Garcia et al. (2022) identified that the important point here is that while solar panels pro-
duce more electricity during the day, wind turbines operate more efficiently at night. There-
fore, by integrating these two types of renewable energy, interruptions in energy production 
can be minimized. On the other hand, Prakasam et al. (2023) and Kirim et al. (2022) men-
tioned that solar energy can also be integrated with hydroelectric power plants. In this way, 
electricity can be obtained with solar energy in cases where water flow is not sufficient. Niaz 
et al. (2024) underlined that this significantly contributes to increasing efficiency in electricity 
production. Moreover, Al-Khayyat et al. (2023) concluded that this also allows energy storage 
systems to operate more effectively. It is also possible to increase the efficiency of storage 
processes by combining different types of alternatives (Mathesh & Saravanakumar, 2023).

6. Conclusions

This paper aims to figure out the synergy of coalition for hybrid RWB system alternatives. 
For this purpose, the alternative sources of hybrid RWB system are evaluated to illustrate 
the impact-relation directions among them with q-ROF multi SWARA. Then, the performanc-
es of renewable alternatives are measured in terms of the synergy of coalition by using 
the game theory and Shapley value respectively. The results are given to understand which 
RWB alternative is the most prominent and how the alternatives can be used efficiently in 
the limitations of the synergy of coalition. The results are same for all different calculations 
which shows that the findings of the proposed model are coherent. Biomass and wind have 
an impact on solar. Moreover, hydro is influenced by solar. Furthermore, wind is affected by 
hydro. Additionally, solar has the highest weight for all calculations. Additionally, hydro is 
another crucial RWB type. Also, biomass and wind have lower weights. Solar energy is the 
most suitable RWB alternative for synergy to increase efficiency in investments. Hydro energy 
is also appropriate for this situation whereas biomass does not have a significant influence 
on providing synergy in energy investments.
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The novelties of this study can be listed as to extend the SWARA method for employing 
the impact directions of the alternatives dynamically and integrate the methodologies of 
game theory and golden ratio to MCDM models. It is assumed that all four different RWB 
types will be invested simultaneously that is the most important limitation. More specific ex-
amples can be focused on in new analyzes. In this framework, hybrid energy projects created 
with two different types of RWB can also be considered. On the other hand, different analysis 
methods can also be used in new examinations. DEMATEL method, like SWARA, can detect 
both criterion weights and causality relationship. The proposed decision-making model has 
also some limitations. In this model, the evaluations of all experts are considered as equal. 
However, experts may have different qualifications because of some demographic issues, 
such as educational level. Due to this condition, in the following studies, new decision-making 
models should be generated in which the weights of the experts are calculated.
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APPENDIX

Table A1. Evaluations

Decision Maker 1

BSS WND HDR SOR

BSS H H M
WND M S VH
HDR H VH M
SOR H M VH

Decision Maker 2

BSS WND HDR SOR

BSS M H VH
WND M M VH
HDR H VH H
SOR H VH VH

Decision Maker 3

BSS WND HDR SOR

BSS S H VH
WND VH M H
HDR H VH M
SOR H H VH

Table A2. Average values

BSS WND HDR SOR

μ v μ v μ v μ v

BSS 0.50 0.31 0.55 0.34 0.57 0.35
WND 0.53 0.33 0.48 0.30 0.58 0.36
HDR 0.55 0.34 0.60 0.37 0.52 0.32
SOR 0.55 0.34 0.55 0.34 0.60 0.37

Table A3. Score functions

BSS WND HDR SOR

BSS 0.000 0.095 0.127 0.139
WND 0.116 0.000 0.086 0.152
HDR 0.127 0.165 0.000 0.105
SOR 0.127 0.127 0.165 0.000
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Table A4. Critical values

BSS Sj kj qj Wj WND Sj kj qj wj

SOR 0.139 1.000 1.000 0.371 SOR 0.152 1.000 1.000 0.367
HDR 0.127 1.127 0.887 0.329 BSS 0.116 1.116 0.896 0.329
WND 0.095 1.095 0.810 0.300 HDR 0.086 1.086 0.825 0.303

HDR Sj kj qj Wj SOR Sj kj qj wj

WND 0.165 1.000 1.000 0.372 HDR 0.165 1.000 1.000 0.360
BSS 0.127 1.127 0.887 0.330 WND 0.127 1.127 0.887 0.320
SOR 0.105 1.105 0.803 0.298 BSS 0.127 1.127 0.887 0.320

Table A5. Relation matrix

BSS WND HDR SOR

BSS 0.300 0.329 0.371
WND 0.329 0.303 0.367
HDR 0.330 0.372 0.298
SOR 0.320 0.320 0.360

Table A6. Stable matrix

BSS WND HDR SOR

BSS 0.246 0.246 0.246 0.246
WND 0.248 0.248 0.249 0.248
HDR 0.249 0.249 0.249 0.249
SOR 0.257 0.257 0.257 0.257

Table A7. Order of alternatives

Order of Alternatives BSS WND HDR SOR

1, 2,3,4 0.246 0.248 0.000 0.000
1,3,2,4 0.246 0.248 0.249 0.000
1,4,2,3 0.246 0.000 0.000 0.257
1,2,4,3 0.246 0.248 0.000 0.257
1,3,4,2 0.246 0.000 0.249 0.000
1,4,3,2 0.246 0.000 0.249 0.257
2,1,3,4 0.246 0.248 0.000 0.000
2,3,1,4 0.246 0.248 0.000 0.000
2,4,1,3 0.000 0.248 0.000 0.257
2, 1, 4, 3 0.246 0.248 0.000 0.257
2, 3, 4, 1 0.000 0.248 0.000 0.000
2, 4, 3, 1 0.000 0.248 0.000 0.257
3, 2, 1, 4 0.246 0.248 0.249 0.000
3, 1, 2, 4 0.246 0.248 0.249 0.000
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Order of Alternatives BSS WND HDR SOR

3, 4, 2, 1 0.000 0.000 0.249 0.000
3, 2, 4, 1 0.000 0.248 0.249 0.000
3, 1, 4, 2 0.246 0.000 0.249 0.000
3, 4, 1, 2 0.000 0.000 0.249 0.000
4, 2, 3, 1 0.000 0.000 0.000 0.257
4, 3, 2, 1 0.000 0.000 0.249 0.257
4, 1, 2, 3 0.000 0.000 0.000 0.257
4, 2, 1, 3 0.000 0.000 0.000 0.257
4, 3, 1, 2 0.000 0.000 0.249 0.257
4, 1, 3, 2 0.000 0.000 0.249 0.257

Table A8. Normalized values

Order of alternatives BSS WND HDR SOR
1, 2, 3, 4 0.498 0.502 0.000 0.000
1, 3, 2, 4 0.331 0.334 0.335 0.000
1, 4, 2, 3 0.489 0.000 0.000 0.511
1, 2, 4, 3 0.327 0.331 0.000 0.342
1, 3, 4, 2 0.497 0.000 0.503 0.000
1, 4, 3, 2 0.327 0.000 0.331 0.342
2, 1, 3, 4 0.498 0.502 0.000 0.000
2, 3, 1, 4 0.498 0.502 0.000 0.000
2, 4, 1, 3 0.000 0.492 0.000 0.508
2, 1, 4, 3 0.327 0.331 0.000 0.342
2, 3, 4, 1 0.000 1.000 0.000 0.000
2, 4, 3, 1 0.000 0.492 0.000 0.508
3, 2, 1, 4 0.331 0.334 0.335 0.000
3, 1, 2, 4 0.331 0.334 0.335 0.000
3, 4, 2, 1 0.000 0.000 1.000 0.000
3, 2, 4, 1 0.000 0.500 0.500 0.000
3, 1, 4, 2 0.497 0.000 0.503 0.000
3, 4, 1, 2 0.000 0.000 1.000 0.000
4, 2, 3, 1 0.000 0.000 0.000 1.000
4, 3, 2, 1 0.000 0.000 0.492 .508
4, 1, 2, 3 0.000 0.000 0.000 1.000
4, 2, 1, 3 0.000 0.000 0.000 1.000
4, 3, 1, 2 0.000 0.000 0.492 0.508
4, 1, 3, 2 0.000 0.000 0.492 0.508

Shapley Values 0.206 0.236 0.263 0.295

End of Table A7


