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Article History: Abstract. Investment in foreign countries has become more common nowadays and this im-
plies that there may be risks inherent to these investments, being the sovereign risk premium 
the measure of such risk. Many studies have examined the behaviour of the sovereign risk 
premium, nevertheless, there are limitations to the current models and the literature calls for 
further investigation of the issue as behavioural factors are necessary to analyse the investor’s 
risk perception. In addition, the methodology widely used in previous research is the regres-
sion model, and the literature shows it as scarce yet. This study provides a model for a new 
of the drivers of the government risk premia in developing countries and developed coun-
tries, comparing Fuzzy methods such as Fuzzy Decision Trees, Fuzzy Rough Nearest Neighbour, 
Neuro-Fuzzy Approach, with Deep Learning procedures such as Deep Recurrent Convolution 
Neural Network, Deep Neural Decision Trees, Deep Learning Linear Support Vector Machines. 
Our models have a large effect on the suitability of macroeconomic policy in the face of foreign 
investment risks by delivering instruments that contribute to bringing about financial stability 
at the global level.

 ■ received 16 March 2023 
 ■ accepted 30 October 2023 
 ■ first published online 17 April 2024

Keywords: sovereign risk premium, fuzzy decision trees, neuro-fuzzy approach, deep neural decision trees, deep recurrent convolutional 
neural networks.

JEL Classification: C63, E43, G1.

 Corresponding author. E-mail: alaminos@ub.edu

1. Introduction

Sovereign risk premia are the yield that buyers require of a country to acquire its public debt 
compared to the yield required of the reference country considered to be a risk-free asset. 
It is a measurement of the “cost premium” that one country has to pay over another for 
financing in the markets (Özmen, 2019). For the calculation of the risk premium, sovereign 
spreads are considered, and these are determined as the spreads between sovereign debt 
returns and the returns regarded as a without-risk state bond of similar duration. It is there-
fore an indemnity to lenders for the risks of maintaining a high-risk investment asset up to 
its expiration. The greater the risk, the greater the funding charge and conversely (Fontana 
& Langedijk, 2019; Corradin & Schwaab, 2023). Thus, sovereign premiums are related to 
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the country’s likelihood of being in default on its liabilities. This, of course, implies that as a 
country’s political and economic circumstances vary, so too does its risk premia (Palić et al., 
2017; Andrade et al., 2023).

The last financial crisis generated significant levels of macroeconomic disequilibrium, in-
cluding weak economic development, high levels of unemployment, fiscal and current ac-
count deficits, and a fast spread of public borrowing (Malliaropulos & Migiakis, 2018; Badarau 
et al., 2014; Baldacci & Manmohan, 2010). This led, in general, to a decline in the access 
conditions to financial markets and, in particular, to a considerable rise in government bond 
risk. As a result, the discussion on the drivers of the government risk premia is now the focus 
of attention (Balima et al., 2017).

In recent literature, some models have been developed that analyse the determinants of 
the sovereign risk premium (Andrade et al., 2023; Cecchetti, 2020; Mpapalida & Malikane, 
2019; Özmen, 2019; Augustin et al., 2018; Palić et al., 2017). These studies show that the credi-
tor threat shock of an economy is not restricted to its impact on government bonds, rather 
it also reflects in the borrowing charges in the economy’s manufacturing section. Di Cesare 
et al. (2012) concluded that the increase in sovereign differentials in the eurozone can not be 
completely clarified by such macroeconomic drivers as debt-to-GDP ratios, public budgetary 
shortfall and GDP enlargement, but also by financial and global determinants. For this reason, 
the literature demands novel approaches to models that assist decision-makers to take into 
account behavioural drivers, as well as to build or pilot test new indicators related to senti-
ment and market expectative, since investors’ awareness of risk is very affected by several 
behavioural aspects (Aristei & Martelli, 2014).

To cover this need shown by the literature, the present study tries to model the sovereign 
risk premium at a global level, to accurately capture its behaviour. This model is built from 
a 34-country sample, covering both developing and advanced countries, comparing Fuzzy 
methods such as Fuzzy Decision Trees, Fuzzy Rough Nearest Neighbour, Neuro-Fuzzy Ap-
proach, with Deep Learning procedures such as Deep Neural Decision Trees, Deep Recurrent 
Convolution Neural Networks, Deep Learning Linear Support Vector Machines, achieving lev-
els of precision of more than 84.05%, that implies excellent precision results. The model that 
has achieved the highest levels of accuracy is the Deep Neural Decisions Trees one. As turbu-
lence and incertitude in financial markets have greatly expanded, machine learning algorithms 
are fairly relevant for the analysis of financial markets and, in specific, of the sovereign risk 
premium. Machine learning is notably helpful in dealing with problems that are not explicitly 
amenable to an analytical solution, like sophisticated categories techniques or trend recog-
nition (Ghoddusi et al., 2019). Machine learning algorithms have been extensively employed 
in a diversity of computational issues (price forecasting, data analysis, and macro/micro-trend 
forecasting, demand prediction, risk administration, bargaining power) that often confront the 
challenge of the condition known as the curse of dimensionality (De Spiegeleer et al., 2018). 
Specifically, financial data analysis is a development challenge that scientists have had to face 
and financial markets have placed an acute call for the necessity to provide new models to 
enhance the comprehension of financial assets. Thus, Rundo et al. (2019) concluded that the 
implementation of machine learning techniques is advantageous in the area of quantitative 
finance, as it can perform analysis of a great amount of information in a limited amount of 
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time and focus on empirical data and develop models grounded in the real market. On the 
one hand, Deep learning (DL) is a branch of machine learning techniques that relies on the 
use of inputs to provide training for a prediction model based on new inputs. In particular, DL 
methodology offers an efficient way to address financial market challenges, which differs from 
traditional applications of deep learning. For this reason, deep learning tools can be beneficial 
in these selection problems, as DL techniques provide the best solution to estimate whatever 
function maps the data into the value of the payoff (Rundo et al., 2019). Several researchers 
have applied DL in various areas of finance, such as financial market forecasting (Patel et al., 
2015; Chen et al., 2015; Hafezi et al., 2015; Fischer & Krauss, 2018). They concluded that the 
advantage of this method over the ones given by classical statisticians and econometricians 
is that DL can manipulate a vast amount of unstructured and organised information and 
deliver fast predictions or conclusions. Furthermore, Sirignano and Cont (2019) demonstrate 
the feasibility and utility of DL methods for analysing intraday financial market behaviour, 
as they provide key knowledge about the essence of price formation in financial markets. 
On the other hand, several examples of the application of the fuzzy approach in building 
engineering and administration were listed in the work of Fayek (2020), such as construction 
labor productivity prediction, skills and performance of the project and the organisation, 
predicting productivity at the project level and conducting hazard assessments. Besides, the 
great achievement of fuzzy logic in remote monitoring has facilitated its use in numerous 
other domains, including the financial field. Sánchez-Roger et al. (2019) concluded that the 
fuzzy approach provides a powerful framework for application in finances owing to the fuzzy 
method’s capability to deal with inaccurate, missing, and incomplete data.

We make at a minimum three additional contributions to the literature. First, we take into 
account a collection of all the explanatory variables applied in the previous literature for the 
analysis of sovereign risk premium behaviour in developed and emerging countries. We in-
clude behavioural factors as an economic sentiment indicator, consumer sentiment indicator, 
business confidence indicator, consumer confidence indicator, and Volatility Indicator (VIX). 
Concerning the common behavioural indexes used in the analysis, VIX is regarded by traders 
as one of the leading indices of market sentiment and investor risk tolerance among foreign 
traders. (Aristei & Martelli, 2014). It has important implications for policymakers, who must 
develop adequate government risk policies, aimed at reforming institutions to guarantee the 
sustainability of financial stability (Mpapalida & Malikane, 2019; Chen & Reitz, 2020; Corradin 
& Schwaab, 2023). Therefore, policymakers need to control the main factors that contribute 
to a country’s risk. Second, we apply six methodologies, Fuzzy Decision Trees, Fuzzy Rough 
Nearest Neighbour, Neuro-Fuzzy Approach, Deep Neural Decision Trees, Deep Recurrent 
Convolution Neural Networks, and Deep Learning Linear Support Vector Machines, and have 
not been employed as a whole in previous research, obtaining very precise results. Most of 
the previous research has applied statistical methods, especially the regression model. Third, 
our study has analysed the sovereign risk premium globally, as an increasing number of 
papers deal specifically with the Eurozone, of interest to policymakers in economies all over 
the world. 

This study is organised as described below: Section 2 offers an extensive overview of the 
literature on current empirical research on the sovereign risk premium. Section 3 presents 
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the methodology employed. Section 4 provides the variables and data involved in the re-
search. Section 5 discusses the findings achieved. The paper ends with the conclusions of the 
research and its recommendations.

2. Literature review

The existing literature on sovereign risk premiums to analyse sovereign risk premium be-
haviour in developed countries is scarce (Ciżkowicz et al., 2022; Gilchrist et al., 2022; Özmen, 
2019; Cathcart et al., 2020; Orlov, 2019; Thornton & Vasilakis, 2017; Bi, 2012), but especially in 
European countries (Della Corte et al., 2023; Boitan & Marchewka-Bartkowiak, 2022; Kadiric, 
2022; Cecchetti, 2020; Fontana & Langedijk, 2019; Augustin et al., 2020; Seoane, 2019; Palić 
et al., 2017; Bianchi, 2016; Aristei & Martelli, 2014; Iara & Wolff, 2014). Kadiric (2022) exam-
ines recent changes in the British and European government bond markets in relation to the 
UK’s choice to exit the European Union. The findings indicate that the Brexit referendum had 
a notable effect on yield spreads, resulting in increased sovereign risk premiums in the UK 
and several other chosen Euro Area nations. On their side, Boitan and Marchewka-Bartkowiak 
(2022) examine the influence of various climate change metrics on the expense of govern-
ment borrowing, indicated through sovereign bond yields and sovereign risk premiums, in a 
group of European Union nations spanning from 2000 to 2020. They conclude that climate 
change will exert a growing influence on the sovereign debt market.

On the other hand, a vast amount of researchers, have analysed the risk premium in 
emerging economies (Gilchrist et al., 2022; Bizuneh & Geremew, 2021; Arellano et al., 2020; 
Hofmann et al., 2020; Malliaropulos & Migiakis, 2018; Balima et al., 2017; Stolbov, 2017; 
Badaoui et al., 2016; Erdem & Varli, 2014; Martínez et al., 2013; Gumus, 2011). Özmen (2019) 
finds that developing economies’ bond yields and Credit Default Swap premiums are more 
vulnerable to government borrowing, current account, and GDP enlargement than developed 
(eurozone) countries, indicating that financial markets are more sensitive to amendments in 
fiscal and current account shifts in developing countries. 

On another side, considering the independent indicators, the ones most commonly report-
ed in the literature to study the behaviour of the sovereign risk premium have been macro-
economic variables, such as Total Public Debt to GDP, Industrial Production, Trade Openness, 
GDP growth, Current account balance to GDP, Inflation rate (Boitan & Marchewka-Bartkowiak, 
2022; Bizuneh & Geremew, 2021; Özmen, 2019; Mpapalida & Malikane, 2019; Fontana & 
Langedijk, 2019; Orlov, 2019; Doshi et al., 2017; Bianchi, 2016). Bizuneh and Geremew (2021) 
discover that the Covid-19 pandemic primarily affects sovereign risk premiums through GDP 
growth and indicators of political stability. Furthermore, their findings reveal that the real 
exchange rate and the net export to GDP ratio have a statistically significant influence on 
sovereign bond risk premiums.

There are also financial variables in the latest literature, including Foreign Exchange re-
serves, Real Effective Exchange Rate Indicator, CBOE Volatility Index, and S&P Indicator (Della 
Corte et al., 2023; Mpapalida & Malikane, 2019; Özmen, 2019; Orlov, 2019; Seoane 2019; 
Tkalec et al., 2014; Aristei & Martelli, 2014). Other financial variables are utilised in a variety 
of research studies, such as Money Supply, Banking crisis, and Currency crisis (Mpapalida & 
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Malikane, 2019; Di Cesare et al., 2012). For their part, Aristei and Martelli (2014) focus their 
research on the effect of behavioural drivers and expectations of the market, with the vari-
ables Consumer Sentiment Index, Economic Sentiment Indicator, Business Confidence Indi-
cator, Consumer Confidence Indicator, and Business Climate Indicator. Finally, Özmen (2019) 
introduces political variables such as Government effectiveness and Rule of law. Among them, 
Mpapalida and Malikane (2019) determine that the variables Public debt to GDP, GDP en-
largement, inflation rate, and foreign exchange reserves have a very relevant role to play in 
influencing the sovereign risk premia. Seoane (2019) showed that an income volatility rise 
may drive a rise in the likelihood of default and, consequently, could drive lower debt prices 
and higher sovereign spreads. Della Corte et al. (2023) reveal a fresh element for forecasting 
exchange rates, derived from the variance in price between sovereign credit default swaps 
expressed in varying currencies. This novel predictive factor, known as the credit-derived risk 
premium, encapsulates the anticipated devaluation of currency, contingent on a significant 
yet infrequent credit incident. They find that the credit-derived risk premium emerges as a 
pivotal influencer of exchange rate returns, and they furnish proof that investors can derive 
advantage from this fresh fount of information.

Analysing the methodology applied, a great number of studies have used statistical mod-
els for the analysis of the risk premium, highlighting Vector Autoregressions (VAR) (Cath-
cart et al., 2020; Palić et al., 2017; Bianchi, 2016), regression models (Kadiric, 2022; Boitan 
& Marchewka-Bartkowiak, 2022; Gilchrist et al., 2022; Bizuneh & Geremew, 2021; Arellano 
et al., 2020; Hofmann et al., 2020; Özmen, 2019; Orlov, 2019; Malliaropulos & Migialis, 2018; 
Konopczak & Konopczak, 2017; Lee et al., 2017a; Di Cesare et al., 2012) and Vector au-
toregression with stochastic volatility (Bi, 2012). By employing panel regressions and local 
projection analysis, Gilchrist et al. (2022) ascertain that an escalation in global financial risk 
results in a significant and enduring expansion of sovereign bond spreads. These impacts are 
most pronounced when gauging global risk using the excess bond premium – a gauge of 
the risk-bearing capability of US financial intermediaries. The transmission of global financial 
risk’s effects is more noticeable for sovereign bonds with speculative-grade ratings. For their 
part, Zenios et al. (2021) apply a multi-period stochastic programming model on the scenario 
tree an efficient and flexible instrument for the assessment of debt stability and produce an 
abundant landscape for additional relevant investigation and policy inquiries. 

On the other hand, the authors Augustin et al. (2020) develop the Bayesian Markov Chain 
Monte Carlos method. Among them, Palić et al. (2017) conclude that the VAR panel serves 
to investigate if short-term varies in the main economic variables can control the variation 
in the country risk prima and to inspect if changes in the variance of government spreads 
can affect real economic results. Cathcartt et al. (2020) also use the VAR model to check the 
effect of media content on sovereign credit risk. They apply panel VAR versus traditional VAR 
models, allowing the assumption of cross-sectional heterogeneity instead of cross-sectional 
homogeneity. These authors confirm that using the VAR panel, news sentiment could as well 
forecast the risk of default and the parts of the risk premium. For its part, Bi (2012) uses the 
dynamic stochastic general equilibrium structure, which is a non-linear and dynamic model, 
and concludes that this model allows analyzing, on the one hand, if the maximum level of 
debt that the Government can service can be based on macroeconomic fundamentals and, on 
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the other hand, the quantitative impact of government default risk on the economy. Özmen 
(2019) proposes to analyze the repercussions of economic complexity on the sovereign risk 
premium with regression models, concluding that it has a significantly negative impact, and, 
therefore, with this model, it is determined that the capacity of an economy to produce goods 
Complexes could serve as an index of the economy’s resilience to shocks and thus help turn 
down a country threat. Lastly, Konopczak and Konopczak (2017) conclude that their find-
ings largely contradict prior literature, claiming that in the long run running demand-driven 
downward coercion on bond yields that derive from inflows of capital to developing countries 
may be saturated by an upward constraint on the government risk premia as a mirroring of 
over-reliance on outer finance. These authors determined that the method used in previous 
research has not completely captured the long-term effects. Table 1 displays a synopsis of 
this literature.

Table 1. Literature summary

Authors Year Countries Methodology

Arellano et al. 2020 Emerging countries Regression model
Aristei & Martelli 2014 European countries Econometric method
Augustin et al. 2020 European countries The Bayesian Markov Chain Monte 

Carlo (MCMC) method
Bi 2012 Developed countries Vector autoregression with 

stochastic volatility
Bianchi 2016 Euro area countries Vector autoregressive model
Bizuneh & Geremew 2021 Emerging countries Regression model
Boitan & Marchewka-
Bartkowiak

2022 European countries Regression model

Cathcart et al. 2020 Developed countries Vector autoregressive model
Cecchetti 2020 European countries Econometric model
Di Cesare et al. 2012 Euro area countries Regression model
Fontana & Langedijk 2019 European countries Regression model
Gilchrist et al. 2022 Emerging and developed 

countries
Regression model

Hofmann et al. 2020 Emerging countries Regression model
Kadiric 2022 Euro area countries Ordinary Least Squares
Malliaropulos & 
Migiakis 

2018 Emerging countries Regression model

Mpapalida & Malikane 2019 African countries Regression model
Orlov 2019 Advanced economies Regression model
Özmen 2019 Advanced economies Regression model
Palić et al. 2017 European countries Vector autoregressive model
Seoane 2019 European countries Regression model
Thornton & Vasilakis 2017 Advanced economies Regression model
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3. Methods

3.1. Fuzzy decision trees

In this method, we use the C4.5 algorithm, which is an expansion of the ID3 algorithm. It 
can be utilised to set up a decision tree in compliance with the elements that are in shorter 
subdivisions, in which the action of constructing a decision tree or rule is dependent on 
the choice to derive a value from the data (Rawal & Agarwal, 2019). In general, C4.5 is built 
in the order: a) sorting out features as the root; b) forming a root for every attribute; and  
c) reiterating the action for each root till all instances of the branches have the identical type. 
The largest profit is utilised for feature selection for root attributes, according to formula (1):
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whereas S is the collection of examples, A are the features, n is the split value of feature A, 
and Si is the total amount of occurrences in the i-th split. In turn, the Entropy value is given 
by formula (2).
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being pi the S proportion. 
Fuzzy decision trees follow the same basic structure as decision trees. These fuzzy deci-

sion trees simultaneously permit data to monitor several different branches of a unit node at 
differing levels of compliance in the interval (0–1) (Lee et al., 2017b; Prashanth et al., 2018; 
Hamrouni & Chaoui, 2022).

The FuzzyDT algorithm is constructed using the following steps. First, it identifies the 
fuzzy database, that is, the fuzzy granulation for the domains of the continuous features. 
2. Substitute the training set continuous attributes with linguistic labels from the fuzzy sets 
having the best matching with the input values. 3. Compute the entropy and information 
gathering of every feature to divide the training set and determine the test tree nodes until 
all the features are utilised or all the training samples are sorted. 4. Perform a post-pruning 
procedure, similar to C4.5, utilising confidence bounds of 25–30%.

3.2. Fuzzy Rough Nearest Neighbour (FRNN)

The fuzzy K-nearest neighbour algorithm (Keller et al., 1985) was implemented to categorise 
testing items according to their closeness to a certain number of K of neighbours, and the 
levels of membership of these neighbours to the class tags (fuzzy or crisp). For the application 
of Fuzzy nearest neighbour, the degree ( )′′C y  that an unsorted item y pertains to a class C 
is calculated as:

 
( ) ( ) ( )

∈

′′ = ∑ , ,
x N

C y R x y C x  (3)

whereas N is the collection of the K nearest neighbours of the object y, derived by computing 
the fuzzy sameness among y and all training items and selecting the K items that exhibit the 



760 D. Alaminos et al. Global patterns and extreme events in sovereign risk premia ...

greatest level of resemblance. R(x, y) is the value [0,1] of the relatedness between x and y. In 
the conventional method, it is fixed in the next form:
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Denoting ||∙|| the Euclidean standard, and m is a controlling parameter for the global 
equalisation weighting. 

Besides, we suggest a fuzzy-rough nearest neighbours (FRNN) algorithm in which the 
closest neighbourhoods are utilised to build the fuzzy bottom and top approaches of the 
decision types, and the probe items are categorised according to their affiliation to such fuzzy 
proximities. The algorithm depends on the selection of a fuzzy tolerant function R. We define 
R as below: The whole range of requirements features A, R is given by
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being Ra(x, y) the level of similarity between the items x and y for attribute a. There are many 
possible solutions, here we select
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The FRNN algorithm’s foundation consists in the fact that the bottom and top approach 
of a class of decision, computed using the closest neighbourhoods of a test object y, gives 
useful hints for forecasting the test object’s membership in that class. Specifically, if (R↓C)(y) 
is large, it indicates that all neighbours of y are in C, and a great figure of (R↑C)(y) signifies 
that one neighbour at minimum is in that class.

To undertake crisp sorting, the algorithm produces the matched class decision with the 
best possible combination of fuzzy bottom and top proximity participants That is just one 
form of using the data from the bottom and top fuzzy approaches to establish class owner-
ship, other forms are available but are not explored in this work. The algorithm complexity 
is O(|C|.(2|X|)).

3.3. Neuro-Fuzzy Approach (NFA)

We can employ simple supervised learning in a functional estimation problem, as the right 
exit for the training data is well-known. When utilising a fuzzy rule structure to approach the 
function, we can utilise the previous knowledge. This implies that if we are already aware of 
the appropriate rules for particular fields, we may start the neuro-fuzzy system with these 
rules. The rest of the rules must be discovered through learning. Without any previous knowl-
edge, we begin with a Neuro-Fuzzy function approximator (NEFPROX) system that has no 
occult units, and we progressively start to learn all the rules.

The NEFPROX learning algorithm is shown in definition 3. We suppose triangular belong-
ing operations are employed, which are expressed using three components
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The membership functions further to the left and further to the right of every variable 
that can lie on shoulders. We employ triangular fuzzy ensembles for brevity, although the 
training algorithm may be extended to cover other types of membership features too. We 
may for instance employ the centre of gravity or the mean of the maximal methodology for 
defuzzification at the exit nodules. 

To begin the training procedure, we need to identify the starting fuzzy sets for each input 
variable. For output variables, this is not required, where fuzzy partitions could be generated 
during the learning process. Nevertheless, when the fuzzy sets are to be used as the start-
ing point of the learning algorithm, the fuzzy set can be settled. In case no fuzzy assemblies 
are provided, it is needed to determine the start width of an ownership function generated 
while learning.

The following definition 1 represents the departure from a NEFPROX unit.

Definition 1: Given a NEFPROX system with n inputs units x1, ..., xn, k rules units R1, ..., Rk and 
m output units y1, ..., ym Considering a learning problem ( ) ( ){ }= …

1  1  , ,  , ,r rs t s t  or r patterns, 
each comprising an entry-level standard ∈    ns , and a target standard ∈    mt . The learning al-
gorithm for generating the k units of rules for the NEFPROX systems includes the next stages:

2. Choose the upcoming pattern (s, t) from .
3. For every entrance unit ∈ 1   ix U  determine the composition operation ( )i

ji  so that,
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    1, ,

  max  
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s s  . (8)

4. In absence of guideline node R with

 ( ) ( ) ( ) ( )= … =
1

1, , , , n
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so build such a node, and link it to all exit nodes.
5. For every link from the new node of the rule to the exit nodes, locate an appropriate 

fuzzy weight using the procedure below:
Based on the belonging functions attached to a unit of output yi, determine a 

belonging function ( )i
jiv  so that

 

( ) ( )
{ }

( ) ( ) ( ) ( )
∈ …

 = ≥ 
  1, ,

max   , and  0.5.
i

i i i
ji i j i ji yj q

v t v t v t  (10)

If no such fuzzy set exists, then make ( )i
newv  so that ( ) ( ) = 1, i

new iv t joins it to the fuzzy 
sets associated with the output variable yi, and set ( ) ( )=,   i

i newW R y v .
6. In case there are patterns still missing in  , proceed to step (i), if not, cease making 

regulations.
7. Lastly, assess the base of rules. Find the mean output for each output variable of every 

rule with a level of compliance higher than 0. In case there is an exit fuzzy set, having 
the mean output a greater level of ownership than the actual fuzzy set utilised by the 
regulation in question, replace the resultant of the guideline correspondingly.
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The fuzzy set supervised learning algorithm for a NEFPROX structure cycles over the learn-
ing set  with the next steps repeated till some stopping criteria are fulfilled:

1. Choose the following pattern (s,t) from  , spread it across the structure x, and define 
the exit vector.

2. For every exit unit yi, identify the gap between the target and current output value 
= ⊥ .yi i yit o

3. For every rule unit R with > 0 :Ro
a) For everyone ∈ 3 iy U  define the changes for the settings a,b, and c of the fuzzy set 

( ),  iW R y  employing the learning rate > 0.  

When ( )( )>,       0i iW R y t

( ) ( )( )( )⊥ ⊥= .  .  .  . 1 ,     ,
ib yi R i ic a o W R y t  
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i ia R bc a o                                                                           (11)
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i ic R bc a o  

In case ( )( ) =,     0i iW R y t

( ) ( )( )( )⊥= ⊥     .  .  .  . 1 ,     ,
ib yi R i ic a o W R y t  

( ) ( )= ⊥ ⊥ + ,   sgn   .  . .
i ia i i R bt b c a o                                                    (12)

( ) ( )= ⊥ ⊥ + .    sgn   .  . .
i ic i i R bt b c a o  

Implement modifications to W(R, yi) unless this does not infringe on a certain 
set of restrictions F.

b) Define the error of the regulation

 

( ) ( )( )
∈

= ⊥ ⊥∑
3

1 . (2 ,     1).  .R R R i i y
y U

E o o W R y t   (13)

c) For every fuzzy set W(x, R) with W(x, R) (ox) > 0 define the changes for its settings 
a,b,c employing the learning rate s > 0:

                             
( ) ( )( )( ) ( )= ⊥ ⊥ ⊥  . .  . 1 ,   . sgn ,b R x xE c a W x R o o b 

 
( ) ( )( )( )=⊥ ⊥ ⊥ +  . .  . 1 ,   ,a R x bE c a W x R o    (14)

                             
( ) ( )( )( )= ⊥ ⊥ +  . .  . 1 ,  c R x bE c a W x R o  

and implement modifications to W(x, R) unless this does not infringe on a certain 
group of restrictions F.

4. In case an era has been reached, and the stop condition is satisfied, then it ceases, 
else it proceeds to setp (i).

As in the case of the NEFCLASS model (Nauck & Kruse, 1997), the rule learning algo-
rithm chooses the fuzzy rules according to a prespecified partition of the input domain. This 
partition is provided by the initial fuzzy ensembles. When the algorithm generates excessive 
rules, it is viable to evaluate the rules by identifying the errors of the individual regulations, 
retaining just the good ones.
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Nevertheless, the performance of the approach may be affected. Every rule stands for 
several exhibitions of the feature in the shape of a fuzzy exhibition. If the regulations are 
removed, this implies that certain sampling is no longer taken into account. If parametric 
learning is unable to offset this, the performance of the approximation must decline. For 
ranking problems, as managed by NEFCLASS (Nauck & Kruse, 1997), rule pricing is not a big 
problem. This is because of the “winner-takes-all” approach, not greatly affected by minor 
adjustments to the output units. In the contrary, the issue of NEFPROX is considered as an 
outcome operation so that shifts in the output units are more influential.

Like in our other neuro-fuzzy models NEFCON and NEFCLASS (Nauck et al., 1997), the 
process of learning fuzzy sets is a mere heuristic. It yields the displacement of the ownership 
functions and the increase or decrease of their supports. Like before, the learning process 
has to fulfil some restrictions F. An error can be chosen as a stopping criterion on a further 
validation set. Training continues till the error is no more falling. This is a technique in neural 
network learning and is employed to prevent overfitting of the training data.

3.4. Deep Recurrent Convolution Neural Network (DRCNN)

Recurrent neural networks (RNN) have been implemented in various forecasting areas owing 
to their enormous forecasting efficiency. The prior computations performed are what form 
the output within the RNN structure (Wang et al., 2017). For an entry sequence vector x, the 
hidden nodes of a coating s, and the output of a shadow coating y, could be computed as 
shown below.

 ( )−= + +1t xs t ss t ss W x W s b ; (15)

                                            ( )= +t so t yy W s b , (16)

whereas Wxs, Wss, and Wso are the input coating weights x to the shadow coating s, by are 
the distortions of the shadow coating and the output coating. Formula (17) points out   
and   are the launch operations.

 
( ){ }( ),STFT z t   = ( ) ( )

+∞
−

−∞
−∫ ) j tz t t e dt  , (17)

whereas z(t) is the oscillation signs, ω(t) is the Gaussian window operation centred about 
0. T(τ, ω) is the operation that expresses the vibration signs. To compute the convolutional 
operation hidden layers, equations Eqs (18) and (19) are applied.

 ( )−= + +1*  * t TS t SS t sS W T W S B ; (18)

                                         ( )= +* t YS t yY W S B  (19)

being W the convolution kernels. 
A recurrent Convolutional Neural Network (RCNN) can be stacked to set up a profound 

structure, named deep recurrent convolutional neural network (DRCNN) (Huang & Naray-
anan, 2017). To employ the DRCNN methodology in the task of prediction, Eq. (20) defines 
the last stage of the network as a monitored machine learning layer.

 ( )= +* ,ˆ h hr W h b  (20)
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Wh is the weight and bh is the bias. The model estimates waste driven by the discrepancy 
between the planned and current findings in the trained phase (Ma & Mao, 2019). We apply 
stochastic gradient drop for the optimisation to apprehend the benchmarks. Taking the data 
at time t to be r, the residual operation is set as given in formula (21).

 
( ) = − 2

2 .1, 
2

ˆ ˆL r r r r  (21)

3.5. Deep Neural Decision Trees (DNDT)

Deep neural decision trees are Decision Tree (DT) modelling conducted by deep learning 
neural networks, in which a DNDT weight allocation matches a decision tree specified and 
is therefore predictable (Yang et al., 2018). The settings are fully optimalised with steep sto-
chastic slope decay as opposed to a complex process of covetous partitioning; this enables 
a wide range computing with mini-batch-based learning and may be coupled to any bigger 
neural network (NN) model for deep end-to-end learning with forward reverse spread. In 
addition, standard DTs learn by greedy, resourceful feature partitioning (Quinlan, 1993). This 
ravening search can transform inefficiently, although this can have benefits for function selec-
tion (Norouzi et al., 2015). To predict the error rate of every node, the algorithm starts with an 
implementation of a smooth binning function that allows for split DNDT decisions (Dougherty 
et al., 1995). In the main, the input to a binning operation is a real scalar x that produces an 
indicator of the bins to which x is in. We suppose that x is a continuous variable, it is binned 
into n+1 intervals. This needs cut-off points that are qualified variables in this scene. The 
cut-off points are given as (β1, β2, ..., βn) and are strictly upwards so that β1 < β2 < … < βn.

The activation operation of the DNDT algorithm is deployed as below in Eq. (22):

 
( ) ( )( )= = +, , softmax /fw b x wx b    (22)

being w a constant with value w = [1, 2, ..., n + 1], τ > 0 is a temperature factor, and b is 
given in Eq. (23).

 = − − − … − − −…−1 1 2 1 2  [0, ,  ,    ,      ].nb        (23)

Besides, if τ leans to 0, the vector sampling is settled by employing the Straight-Through 
(ST) Gumbel–Softmax method (Ho, 1998).

Taking in account the binning operation as detailed above, the target is to construct the 
DT employing the Kronecker product. We suppose we have an input instance ∈  Dx R  with D 
features. Linking every feature xd with its NN ( )d df x , we can establish all the final nodes of 
the DT, as in Eq. (24).

 ( ) ( ) ( )= ⊗ ⊗… ⊗1 1 2 2           D Dz f x f x f x , (24)

whereas z is a vector that designates the indicator of the leaf node gained by instance x. 
We suppose that a linear classifier on every leaf z ranks the attained levels. Per feature, the 
cut-off point number is the model’s complexity measure. The values of the cut-off points are 
unlimited, denoting that certain cut-off points may be missing. For instance, they are shorter 
than the minimal xd or higher than the maximal xd.
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3.6. Deep Learning Linear Support Vector Machines (DSVM)

Linear support vector machines (SVM) are drawn for binary ranking (Alaminos et al., 2022). 
Having training data and stickers ( ) { }= … ∈ ∈ − +, , 1, , , , 1, 1D

n n n nx y n N x t , SVMs learning is 
based on the constrained optimization defined in Eq. (25).

 =

+ ∑
1

1min
2n

N
T

nw
n

W W C


 , (25)

≥ − > ∀ubject to   1 ,T
n n ns W x t n

≥ ∀0 ,n n

where xn are slack variables that punish those that infringe on the margin requisites. We can 
add the bias by incrementing all data vectors xn with a value of 1. The dissipated optimization 
problem is shown in Eq. (26).

 
( )

=

+ −∑
1

1min max 1 ,0 .
2

N
T T

n nw
n

W W C W x t  (26)

If there is any classification problem when using deep learning techniques, it is usual 
to employ the softmax or 1-of-K encoding at the top. For instance, if we have 10 possible 
classes, the softmax cape has 10 nodes marked by pi , where i = 1, . . . , 10; pi defines a dis-

joined likelihood placement, so, =∑
10

1i
i

p . 

If h is the activation of the next-to-last cape nodes, W is the weight linking the second 
last cape to the softmax cape, the total input into a softmax cape, as expressed in Eq. (27). 
Then, we obtained Eq. (28).

                                                 

=∑i k ki
k

a h W ; (27)

 

( )
( )

=

∑
10

i
i

jj

exp a
p

exp a
. (28)

The forecast class î would be as given in Formula (29).

 
= =max maxi ii i

î arg p arg a . (29)

A popular DSVR variation is used as Linear-SVM is not differentiable, and the squared 
hinge loss is minimized as indicated in Formula (30).

 
( )

=

+ −∑
2

1

.1min max 1 ,0
2

N
T T

n nw
n

W W C W x t  (30)

The DSVR aims to train deep neural nets for categorization. Shorter layer weights are 
learned by back-propagating the gradients from the top cape linear SVM (Alaminos et al., 
2022). For it, we have to adapt the SVM aim about the activation of the penultimate layer. Let 
the goal in Eq. (31) be l(w), and the input x is repositioned with the second last activation h.
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( ) { }( )∂
= − >

∂
I 1 T

n t n
n

l w
Ct w w h t

h
, (31)

where I{×} is the indicator operation. Besides, for the DSVR, we exhibit Formula (32). 

 

( ) ( )( )∂
= − −

∂
2 max 1 ,0T

n n n
n

l w
Ct w W h t

h
. (32)

3.7. Sensitivity analysis

If there are many variables, it is convenient to quantify their impact, even though there is a 
high capacity for explaining the variables with these techniques. For this, the sensitivity anal-
ysis is carried out. The objective is to establish the importance of the independent variables 
with the dependent ones (Saltelli, 2002; Alaminos et al., 2020). It is about adding the models 
with the most important variables and eliminating those with the least important ones. One 
variable is more important than another if it rises the variance, contrasted to the group of 
variables of the model. The Sobol technique (Saltelli, 2002) is employed to degrade the var-
iance of the total output V(Y) given by the set of equations shown in (33). 

 V(Y) = ∑iVi + ∑i∑j > IVij +…+ V1,2,…k, (33)

whereas Vi = V(E(Y|Xi) and Vij = MV(E(Y|Xi, Xj)) – Vi –Vj.
For its part, the sensitivity indicators are established by Si = Vi/V and Sij = Vij/V, where Sij 

means the impact of the interaction between two variables. The Sobol degradation permits 
the prediction of a total sensitivity indicator STi, measuring the total of all the sensitivity 
outcomes elaborated in the autonomous variables.

3.8. Research steps

Empirical research aimed at predicting sovereign risk premiums should follow a structured 
process involving five main stages. These stages include creating a sample, preprocessing the 
data, building the model, assessing accuracy, and carrying out classification and forecasting, 
as shown in Figure 1. To begin the process, the stage of creating a sample involves obtaining 
data from relevant sources such as publicly available information from international economic 
institutions. The dataset includes attributes related to macroeconomic variables, global var-
iables, political factors, and financial variables. In the next stage of preprocessing the data, 
activities include categorising continuous attribute values, simplifying the data, analysing 
connections between attributes, and removing data points that are outliers. Moving on to 
the stage of constructing the model, the approach relies on learning from the preprocessed 
data, using algorithms outlined in Section 3. This process involves identifying the most in-

Figure 1. Flowchart of the Research (source: Own elaboration)
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fluential independent variables. The sample is randomly divided into three separate sets: a 
training set (70%), a validation set (10%), and a testing set (20%). The cross-validation meth-
od is employed, using 10-fold and 500 iterations, following the approach of works such as 
Tsamardinos et al. (2018) and Salas et al. (2020), to estimate error rates. The first set is used 
to train the model and determine its parameters, the second set assesses each algorithm to 
prevent overfitting, and the third set evaluates prediction accuracy in the accuracy assessment 
phase. Finally, the stage of classification and forecasting evaluates the model’s strength and 
its effectiveness in predicting sovereign risk premiums on a global scale.

4. Sample, data, and variables

A sample of 34 countries in the period from 1960 to 2021 is selected (11 developing countries 
and 23 advanced economies; see Appendix A–C), building 3 models (emerging, developed, 
and global) of sovereign risk premium. We have got data on the dependent and autonomous 
variables and for the classification of the countries from the IMF’s International Financial Sta-
tistics (IFS), the World Bank, Eurostat, OCDE, and Fred Sant Louis. Regarding the computing 
power used for our estimations, we have used a two four-core Intel Core I7-6500U and the 
code has been made from MATLAB package (R2019b).

The dependent variable employed in the present research is a sovereign risk premium, 
which yields spreads concerning a country’s sovereign bonds assumed as without risk. It has 
been computed as the difference between the interest rate paid on a country’s government 
debt and the interest paid on the debt issued by the United States government (as a risk-free 
reference country), taking the 10-year bond as a reference.

Concerning the independent variables, we apply 26, which are classified into financial, 
macroeconomic, global, and political variables, as indicators that determine the relationship 
of these variables with the sovereign risk premium (Table 2). These variables have been 
employed all over prior literature (Fontana & Langedijk, 2019; Mpapalida & Malikane, 2019; 
Özmen, 2019; Orlov, 2019; Marshall & Elzinga-Marshall, 2017; Bianchi, 2016; Aristei & Martelli, 
2014, Linciano et al., 2013; Comelli, 2012; De Grauwe & Ji, 2012; Siklos, 2011).

5. Results

Our results differentiate between global trend models and extreme events in the determi-
nants of the sovereign risk premia to cover the isolated cases that the global pattern models 
cannot naturally capture. The extreme events process collects those moments of extremity, i.e. 
when the primary risk has undergone a larger and atypical variation concerning the average. 
Tables 3 and 4 show the results of precision estimated for emerging economies, advanced 
economies, and global, in overall patterns and extreme events respectively. Figures 2 and 3 
exhibit the root mean square error (RMSE) in cases of global patterns and extreme events for 
each of them too. In the global pattern case the precision level overcomes at all times 84.05% 
and in extreme events exceeds 80.22%. Besides, RMSE has appropriate standards. The model 
with the greatest precision is that of advanced economies with 94.60%, come after by the 
model of developing markets with 92.57% in the position of global patterns, with the same 
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Table 2. Independent variables for the sovereign risk premium

Code Description Source Expected 
Sign

Financial variables

ER Real Effective Exchange rate index Fontana & Langedijk, 2019 –
FER Foreign exchange reserves Fontana & Langedijk, 2019 –
BC Banking crisis Linciano, Giordano & Soccorso, 2013 +
CCI Currency crisis Linciano, Giordano & Soccorso, 2013 +
M2/
GDP Money Supply/GDP Siklos, 2011 –

VIX CBOE Volatility Index Aristei & Martelli, 2014 +
SPI S&P 500 Index Özmen, 2019 –

Macroeconomic variables

GDEBT Total Public Debt/GDP (%gdp) De Grauwe & Ji, 2012 +
SDC Sovereign debt crisis Linciano, Giordano & Soccorso, 2013 +
GDP GDP growth (%) Maltritz & Molchanov, 2013 –
IP Industrial production (% GDP) Linciano, Giordano & Soccorso, 2013 –
INFLA Inflation rate Comelli, 2012 +
TO Trade Openness Mpapalida & Malikane, 2019 –
T Trade (% of GDP) Mpapalida & Malikane, 2019 –
CA Current Account Balance/GDP (%GDP) Fontana & Langedijk, 2019 –

FS Fiscal Space (sovereign debt/ tax 
revenues) Linciano, Giordano & Soccorso, 2013 +

OP Global Oil Price (West Texas 
Intermediate) Siklos, 2011 –

Global variables

CSI Consumer Sentiment Index Aristei & Martelli, 2014 –
ESI Economic sentiment indicator Aristei & Martelli, 2014 –
BCOI Business Confidence indicator Aristei & Martelli, 2014 –
CCI Consumer Confidence indicator Aristei & Martelli, 2014 –
BCI Business Climate Index Aristei & Martelli, 2014 –

Political variables

PE Political effectiveness(*) Marshall & Elzinga-Marshall, 2017 –
EF Economic effectiveness(*) Marshall & Elzinga-Marshall, 2017 –
GE Government effectiveness Özmen, 2019 –
R Rule of law Özmen, 2019 –

Note: (*) 0 “no fragility”, 1 “low fragility”, 2 “medium fragility” and 3 “high fragility”.
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models coinciding with higher accuracies in the extreme event scenario with precisions of 
91.99% and 90.91% respectively. Considering the global pattern scenario, in developing, ad-
vanced and global level, the biggest precision values for every model are found in the DNDT 
method, come after by the DSVM, with a scope of 94.60%–88.91%. Also for the three country 
models in the case of extreme values, the methodology with the biggest precision values 
is DNDT, but unlike the previous scenario, the second best accuracy is the DRCNN method, 
resulting in an estimated precision range of 91.99%–85.18%. So, if we make a comparison of 
the accuracy between our methodological techniques, we can find that the method with the 
biggest precision in determining the sovereign risk premium is DNDT, followed by DSVM and 
DRCNN. Finally, deep learning methods forecast the behaviour of the sovereign risk premium 
better than fuzzy approaches, although the latter has also obtained very good results, being 
the FDT technique the most precise among them. Anyhow, exactness is upper than 84.05% 
for determining the sovereign risk prima, and the RMSE values are not higher than 0.245, 
obtaining better results compared to previous literature. Thus, Malliaropulos and Migiakis 
(2018) reach RMSE levels of 0.356, and Cecchetti (2020) an RMSE amount of almost 0.364.

Table 3. Results of Precision Training: Global Patterns

Model Dataset FDT FRNN NFA DRCNN DNDT DSVM

Advanced

Training 90.27 89.84 88.96 91.76 95.87 94.10

Validation 89.93 89.50 88.62 91.41 95.51 93.74

Testing 89.08 88.65 87.78 90.55 94.60 92.85

Emerging

Training 88.33 87.91 87.05 89.79 93.81 92.08

Validation 88.00 87.58 86.72 89.45 93.46 91.73

Testing 87.17 86.75 85.90 88.60 92.57 90.86

Global

Training 87.29 86.87 86.02 88.73 92.70 90.99

Validation 86.11 85.70 84.86 87.53 91.45 89.76

Testing 85.30 84.89 84.05 86.70 90.58 88.91

Table 4. Results of Precision Training: Extreme Events

Model Dataset FDT FRNN NFA DRCNN DNDT DSVM

Advanced

Training 86.98 88.21 84.89 90.15 93.22 88.95

Validation 86.65 87.88 84.58 89.81 92.87 88.62

Testing 85.83 87.05 83.77 88.96 91.99 87.78

Emerging

Training 85.11 86.32 83.07 88.21 91.21 87.04

Validation 84.79 85.99 82.76 87.88 90.87 86.71

Testing 83.99 85.18 81.98 87.05 90.01 85.89

Global

Training 84.11 85.30 82.09 87.17 90.14 86.01

Validation 82.97 84.15 80.98 86.00 88.92 84.85

Testing 82.19 83.35 80.22 85.18 88.08 84.05
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Furthermore, we incorporate an additional error metric, Absolute Percentage Error (MAPE), 
to offer a more comprehensive view of the precision of our models. MAPE offers a relative 
error measurement and can be valuable for evaluating the precision of predictions across 
various scales and within differing contexts. Figures 4 and 5 exhibit this new measure of 
error in cases of global patterns and extreme events for each of them. MAPE has adequate 
standards as it is below 5% in all cases, which is considered an indication that the forecast 
is acceptably accurate.

Figure 2. RMSE: Global Patterns

Figure 3. RMSE: Extreme Events
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Tables 5, 6, and 7 display further information on the relevant variables in the case of the 
global pattern scenario in emerging, advanced, and global countries, separately. In addition, 
the most significant variables in the case of extreme events for emerging, advanced and 
global country samples are shown in Tables 8, 9, and 10 respectively. 

Figure 4. MAPE: Global Patterns

Figure 5. MAPE: Extreme Events
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Table 5. Significant variables emerging countries: Global Patterns

EMERGING FDT FRNN NFA DRCNN DNDT DSVM

SDC 0.467 0.862 0.564 0.759 1.174 0.868
CCI 0.347 0.204 0.500 0.093 0.595 0.208
GDEBT 0.222 0.727 0.417 0.405 0.729 0.219
TO 0.474 0.780 0.421 0.736 0.821 0.351
FER 0.516 0.715 1.104 1.023 1.207 0.945
INFLA 0.149 0.206 0.049 0.412 0.492 0.219
M2/GDP 0.103 0.054 0.139 0.134 0.572 0.163
GDP 0.344 0.280 0.271 0.060 0.325 0.245
VIX 0.210 0.429 0.101 0.615 0.711 0.502
PE 0.291 0.390 0.138 0.103
R 0.382 0.558 0.168 0.122
BCOI 0.690 0.782 0.421 0.318 0.258 0.607

Table 6. Significant variables advanced countries: Global Patterns

ADVANCED FDT FRNN NFA DRCNN DNDT DSVM

SDC 0.645 1.149 0.983 1.247 1.317 1.051
GDEBT 0.818 0.792 1.007 0.961 1.082 1.030
TO 0.424 0.532 0.376 0.627 0.695 0.364
FER 0.138 0.513 0.274 0.326 0.519 0.346
M2/GDP 0.693 0.525 0.284 0.514 0.831 0.279
GDP 0.891 0.543 0.487 0.770 0.927 0.775
VIX 0.208 0.138 0.162 0.270 0.429 0.284
SPI 0.216 0.122 0.037 0.261 0.372 0.277
EF 0.142 0.141 0.311 0.200 0.078
CSI 0.117 0.367 0.214
R 0.402 0.258 0.974 0.789 0.148 0.778

Table 7. Significant variables global countries: Global Patterns

GLOBAL FDT FRNN NFA DRCNN DNDT DSVM

SDC 1.175 1.179 1.232 1.024 1.493 1.090
GDEBT 0.604 0.968 0.669 0.621 1.241 0.664
TO 0.630 0.400 0.562 0.422 0.852 0.702
FER 0.351 0.055 0.661 0.510 0.694 0.154
M2/GDP 0.586 0.079 0.194 0.302 0.701 0.005
GDP 0.317 0.693 0.831 0.297 0.937 0.819
VIX 0.025 0.387 0.210 0.024 0.583 0.532
PE 0.151 0.088 0.325 0.252 0.229
R 0.048 0.215 0.275 0.070 0.415
BCOI 0.153 0.110 0.153 0.177 0.351
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Table 8. Significant variables emerging countries: Extreme Events

EMERGING FDT FRNN NFA DRCNN DNDT DSVM

SDC 1.172 1.013 0.935 0.947 1.174 1.140
CCI 0.026 0.491 0.433 0.217 0.595 0.106
GDEBT 0.380 0.237 0.459 0.260 0.729 0.129
TO 0.150 0.597 0.608 0.129 0.821 0.444
FER 1.116 0.959 1.060 0.719 1.207 1.078
INFLA 0.165 0.154 0.152 0.106 0.492 0.072
M2/GDP 0.084 0.516 0.572 0.003
GDP 0.012 0.320 0.318 0.124 0.325 0.041
VIX 0.107 0.686 0.553 0.059 0.711 0.593
PE 0.106 0.106 0.046 0.138
R 0.874 0.801 0.927 0.539 0.122 0.658
BCOI 0.576 0.845 0.467 0.525 0.058 0.855
BC 0.514 0.465 0.651 0.649 0.139 0.336

Table 9. Significant variables advanced countries: Extreme Events

ADVANCED FDT FRNN NFA DRCNN DNDT DSVM

SDC 1.286 1.029 1.171 0.692 1.317 1.271
GDEBT 0.905 0.640 0.980 0.417 1.082 0.809
TO 0.247 0.634 0.604 0.072 0.695 0.560
FER 0.251 0.148 0.504 0.136 0.519 0.468
M2/GDP 0.121 0.812 0.447 0.182 0.831 0.730
GDP 0.606 0.400 0.917 0.914 0.927 0.840
VIX 0.127 0.238 0.283 0.429 0.093
SPI 0.242 0.372 0.278
EF 0.088 0.109 0.022 0.102 0.152 0.076
CSI 0.101 0.112 0.124 0.214
R 1.244 0.916 1.179 1.264 0.148 1.024
BC 0.646 0.973 0.316 0.342 0.311 0.165

Table 10. Significant variables global countries: Extreme Events

GLOBAL FDT FRNN NFA DRCNN DNDT DSVM

SDC 1.455 0.939 0.784 1.084 1.493 1.484
GDEBT 1.190 0.876 1.163 0.878 1.241 0.664
TO 0.377 0.455 0.225 0.446 0.852 0.401
FER 0.565 0.116 0.450 0.560 0.694 0.513
M2/GDP 0.361 0.626 0.644 0.327 0.701 0.697
GDP 0.651 0.354 0.867 0.267 0.937 0.529
VIX 0.014 0.036 0.460 0.429 0.583 0.499
PE 0.425 0.172 0.252
R 0.129 0.127 0.415 0.046
BCOI 0.107 0.399 0.193 0.177 0.136
BC 0.031 0.340 0.130 0.257 0.129
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The strongest results achieved in determining the sovereign risk premium have been 
in the DNDT approach and show that in a global pattern scenario, for emerging countries, 
FER, SDC, TO, GDEBT, VIX, CCI, and M2/GDP are the significant variables. On the other hand, 
the variables that best explain the extreme moments of the sovereign risk prima are the 
same as in the previous scenario. In comparison with prior studies, Mpapalida and Malikane 
(2019) find that GDEBT, GDP, INFLA, and FER are more relevant in fluencing the sovereign 
risk premia, but they have concluded that the majority of changes in the sovereign bond 
differential are described by GDP. This means that an increase in a country’s overall economic 
performance brings the macroeconomic stability of fiscal variables and therefore reduces the 
likelihood of a sovereign default. For its part, Özmen (2019) concludes that the effect of CA 
and real GDP enlargement on risk premiums are explicative for developing countries, and 
gross government debt too. Siklos (2011) concludes that great GDP growth, higher reserves, 
and an arise in money supply reduce the government bond differential. So, our research 
has corroborated new explicative variables (SDC, TO, VIX, CCI, and M2/GDP), pointing out a 
new group of significant variables as opposed to what was displayed in prior research. VIX 
allows to representation of the uncertainty of the market in general and adequately controls 
the effect of investor expectations on short-term volatility in sovereign bond spreads. TO is 
directly correlated with GDP growth, and this suggested that enhancement in a country is 
linked with a small sovereign risk premium.

Concerning the results obtained in the sample of developed countries, for both global 
patterns and outliers, the most relevant variables for explaining the behaviour of the sover-
eign risk premium are SDC, GDEBT, GDP, M2/GDP, TO, and FER. Compared with recent work, 
Özmen (2019) establishes that INFLA and GDEBT stand out as explanatory variables in the 
sovereign risk prima for advanced economies. According to Tkalec et al. (2014), FER is a rel-
evant variable in deciding the level of risk prima. The gathering of FER should decrease the 
country’s risk, a low FER ratio engenders a high probability of sovereign default and cash risks. 
For its part, De Grauwe and Ji (2012) find that a big GDEBT raises the debt service cost, as well 
as the likelihood of a sovereign default. All this supports that our investigation has resulted 
in the identification of new meaningful variables (SDC, GDP, M2/GDP, and TO) identifying 
a novel group of important variables that differ from those reported in prior works. Large 
growth in GDP increases the debt servicing capacity of the country, leading to a decline in 
the risk premium rate. A sovereign debt crisis comes about if a country defaults on its bills, 
so the higher risk premium raises public borrowing costs and further raises sovereign debt, 
which again raises the risk premium.

Regarding the countries at a global level, we can be observed that the variables that best 
explain the extreme values of the sovereign risk premium, as well as in the overall pattern are 
SDC, GDEBT, GDP, TO, M2/GDP, and FER. In other papers, Malliaropulos and Migiakis (2018) 
demonstrate that Global volatility conditions are a relevant factor of sovereign differentials. 
In particular, the surge in world risk sentiment, as indexed by the VIX, is linked to a widening 
of spreads across rating grades. Other authors (Corradin & Schwaab, 2023; Tkalec et al., 2014; 
Maltritz & Molchanov, 2013), also find that the VIX plays an influential part in setting the dif-
ferential of government bond spreads through time and provide evidence that the sovereign 
risk premia widen in reaction to elevated sentiment in the market. All of this concludes that 
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our work has consolidated important new variables (SDC, GDEBT, GDP, TO, M2/GDP, and FER).
This study offers practical implications with strong relevance in the domain of financial 

risk assessment and decision-making, particularly in countering speculative practices. By com-
paring the effectiveness of fuzzy logic-based models with deep learning approaches, this 
research provides valuable insights for assessing sovereign risk premiums, a critical factor in 
the investment and financial sectors.

One significant application of this study pertains to portfolio management. Investment 
firms and asset managers can leverage the findings to fortify their risk management strate-
gies, actively countering speculative activities. The insights gleaned from both fuzzy logic and 
deep learning models enable these professionals to make more enlightened decisions about 
portfolio diversification across various sovereign bonds, all the while considering global pat-
terns and extreme events. This approach cultivates more resilient risk-adjusted returns and 
a heightened comprehension of potential vulnerabilities, particularly crucial during turbulent 
economic conditions when speculation may be rampant.

Additionally, this research empowers central banks and policymakers with a deeper under-
standing of the determinants influencing sovereign risk premiums. Armed with the identified 
models, they can gauge the potential repercussions of policy changes on these premiums, 
facilitating more accurate decisions for sustaining economic stability. This holds particularly 
significant implications for emerging economies aiming to attract foreign investments while 
prudently managing their exposure to sovereign risk, effectively mitigating speculative ten-
dencies.

Furthermore, financial institutions and credit rating agencies can integrate the insights 
derived from this study into their risk assessment frameworks, a proactive measure against 
unwarranted speculation. These organizations can cultivate more precise and adaptive models 
for evaluating the creditworthiness of sovereign entities, yielding enhanced credit risk assess-
ments, well-informed lending decisions, and more effective risk pricing for sovereign bonds. 
In this manner, the study contributes to a financial landscape that operates with greater 
transparency and reduced susceptibility to speculative forces.

6. Conclusions

This research has implemented new models to analyse the behaviour of the sovereign risk 
premium for developing markets, advanced countries, and a global sample of countries. We 
have compared fuzzy approaches with deep learning methods through 6 methodologies, FDT, 
FRNN, NFA, DRCNN, DNDT, and DSVM, not used in previous studies, obtaining very precise 
results. The level of accuracy in the sample in all six methods has been in a range between 
94.60% and 84.05% in the global pattern scenario, and in the case of extreme events in a 
range between 91.99% and 80.22%.

In comparison with earlier investigations, this research study has been successful in con-
sidering a more complete set of variables in both advanced and emerging countries, and also 
at the global level, highlighting the variables SDC, M2/GDP, TO, VIX, and FER. This is an out-
standing achievement in the area of cross-border finance. In the context of emerging nations, 
significant variables encompass FER, SDC, TO, GDEBT, VIX, CCI, and M2/GDP. When consider-
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ing the outcomes gathered from the assortment of developed nations, for both global trends 
and anomalies, the key variables that offer insight into sovereign risk premium patterns are 
SDC, GDEBT, GDP, M2/GDP, TO, and FER. Variables of significance within emerging nations 
but not within developed nations comprise VIX and CCI, both of which are financial indica-
tors. Conversely, variables that hold relevance within developed economies but not within 
developing economies are GDP and M2/GDP. The diversity of economic cycles, economic 
advantages, and production models between these regions leads to distinct predictors. For 
instance, emerging nations are more sensitive to balance of payments, accrued reserves, 
and currency instability. In contrast, developed nations often grapple with higher debt and 
external consumption concerns.

The limitations that could impact the understanding of our outcomes include the size of 
the sample utilised in our investigation, largely due to the absence of more frequent data and 
the unavailability of macroeconomic data. This challenge renders the meaningful analysis of 
sovereign bond premiums for both developing and developed nations challenging.

The findings are significant for policy-makers everywhere, as our research proposes 
meaningful new explicative variables for policy-makers to develop adequate government 
risk policies aimed at bringing about structural changes that would guarantee the stability 
and sustainability of financial markets and macroeconomic policy.

This work provides an excellent contribution to the area of Finance, in that the obtained 
findings may have significant consequences for the decisions of policymakers in the future, 
allowing them to avoid defaulting on their sovereign debt by failing to meet their interest or 
principal payments. The results obtained also allow these agents to alert the financial markets 
and prevent financial crises arising from changes in the sovereign risk premium.

Given all this, our analysis suggests that policymakers ought to focus more carefully on 
the variance movements of sovereign differentials. It follows from this study that failure in 
doing so could lead to permanent and adverse economic implications. Our work has major 
connotations for both risk-takers and policymakers, as it improves our ability to understand 
changes in the term structure of sovereign bond yield spreads. We believe our findings have 
relevance for both scholars and professionals and are of particular significance for policymak-
ers in building a deeper comprehension of the feedback loops between the sovereign risk 
premium and government bond markets. Policies to enhance skills and create workplaces 
that allow for interaction and exchange of different skills will contribute to lower risk premia 
as the complexity of the economy increases. 

Other extensions to this document could be the inclusion of the study of the contagion 
effect and its influence on the risk premium, as well as its correlation with the sustainability 
of government debt, in terms of the fiscal approach. In addition, other future lines of research 
may include the study of the particular factors that impact the forecasting of sovereign 
risk premiums in emerging nations, or exploring alternative models or methodological ap-
proaches to enhance the precision of predictions in the analysis of sovereign risk premium.
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APPENDIX

Appendix A. Sample of developed countries

Australia Greece Norway

Austria Iceland Portugal

Belgium Ireland Spain

Canada Italy Sweden

Denmark Japan Switzerland

Finland Luxembourg United Kingdom

France Netherlands United States

Germany New Zealand  

Appendix B. Sample of emerging countries

Chile Korea, Rep. Slovenia

Czech Republic Poland South Africa

Hungary Russian Federation Turkey

Israel Slovak Republic  

Appendix C. Global sample

Australia Hungary Portugal

Austria Ireland Russian Federation

Belgium Israel Slovak Republic

Canada Italy Slovenia

Chile Korea, Rep. South Africa

Czech Republic Japan Spain

Denmark Mexico Sweden

Finland Luxembourg Switzerland

France Netherlands Turkey
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Iceland Poland  


