
Introduction and literature review
General context of the electricity markets timeline

On one hand, electricity is a special commodity that is used in almost every activity of mod-
ern society, including the manufacture of goods and services. Therefore, electricity prices are 
sensitive to the geopolitical movements and the intensity of the social activities, and they 
influence the prices of other commodities. On the other hand, Artificial Intelligence (AI) is 
widely used in the process of creating systems that possess the mental abilities that distin-
guish humans from other animals, such as the capacity to reason, find meaning, generalize, or 
learn from previous mistakes. In order to facilitate problem-solving, like price prediction, the 
discipline of AI integrates computer science with substantial multiple data sets from various 
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sources, including social media. Additionally, it includes the branches of AI known as Deep 
Learning and Machine Learning, which are commonly addressed together. These fields use AI 
algorithms to build expert systems that make predictions or categorize information based on 
the available data. Today, AI is a crucial component of all significant e-commerce businesses 
that have begun to investigate ways to automate numerous processes using cutting-edge 
Machine Learning (ML) algorithms and Deep Neural Networks (DNN) as a result of the expan-
sion of the information industry and substantial study in the field of AI over the past 20 years. 
With dedicated staff and funds for research and development of cutting-edge AI applications, 
several IT giants and start-ups have already made significant strides in this area. Today’s 
online retail platforms are heavily powered by algorithms and applications that use AI. ML is 
used in a variety of ways, from inventory control and quality assurance in the warehouses to 
product recommendations, forecast and sales analytics on the internet.

Bidding the energy and capacity of a generator or group of generators is a complex task 
that has to rely on forecasting techniques. The transition from consumerism to prosumerism 
is advancing due to the growth of local electricity markets and energy communities. Reaching 
new targets for energy conservation, energy generation and distribution efficiency is made 
achievable by the combination of electric cars and smart grids (Lazaroiu & Roscia, 2022). 
The causality between energy consumption and economic growth in the V4 countries was 
investigated (Krkošková, 2021) analyzing the long-term relationship between energy con-
sumption and Gross Domestic Product (GDP) from 2005 to 2019. The results indicated that 
the long-term the energy consumption positively influences the GDP in Hungary, Slovakia and 
the Czech Republic. Only in Poland, there is no significant relationship between energy con-
sumption and the GDP. Additionally, the topological structural analysis of new energy stock 
market in China was studied (Yin et al., 2020) considering a multi-dimensional data network 
perspective. The authors examined daily prices of 60 stocks of China stock index from 2012 
to 2019. They applied the RV coefficient that can better show the similarity between stocks. 
The result indicates that the energy storage facilities are promoters of RES generation. The 
dependence between the clean energy stock prices and the oil and carbon prices was inves-
tigated (Yilanci et al., 2022) considering a nonlinear perspective. Moreover, Soava et al. (2018) 
suggested that there is a positive impact of RES on economic growth. The effects of positive 
and negative shocks in energy security on economic growth in Turkey was further analyzed 
in Kartal (2022) using an asymmetric causality analysis.

First, on a timeline, the bilateral contracts have to be considered in the market strategy, 
then the Day-Ahead Market (DAM) and Intraday Market (IDM), followed by the Ancillary 
Service Market (ASM) and finally the Balancing Market (BM) (Martini et al., 2001; Oprea 
et al., 2020). In  Martini et al. (2001), DESPOT (decision-support simulator for power trading) 
is introduced. It is a program for simulating the short-term wholesale electricity market that 
provides information on unit commitment, system hourly pricing, profit, and estimated bid. 
The market simulator model considers both the bilateral long- or medium-term agreements 
and short-term offers on day-ahead, auxiliary services, and BM, which provides the whole 
trading solution, related cash-flow and hazards. Its importance consists in supporting the 
producer in resource planning and income projection by running numerous trading scenarios 
and choosing the best one.
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Bilateral contracts are the most stable long and mid-term solution to trade, but the stan-
dard contracts with fixed intervals, week and weekend days do not comply with all types of 
generators (especially Renewable Energy Sources (RES)-based generators), and the prices are 
lower in comparison with other markets (Adefarati & Bansal, 2016). It takes a variety of fore-
casting and decision-making methods to integrate RES in the power markets. To come at the 
best options, the conventional method entails estimating power output and market volumes, 
followed by including the findings into an optimization problem (Stratigakos et al., 2021).

Even for the most predictable generators, deviations from schedule may appear requiring 
a short-term trading solution that can be on DAM and IDM closer to the real time opera-
tion. However, deviations are still possible due to unexpected events that appear between 
the schedule and real time operation. Therefore, the system operator handles these devia-
tions by organizing markets to reserve capacities. Additionally, for generators, the difference 
between the previous allocated capacities and the maximum power has to be offered on the 
BM for ramping up as well as the difference between the allocated capacity and the mini-
mum power (that can be zero) for decreasing. The unbalancing prices are therefore set for 
increasing (+) as well as for decreasing (–) the output. Several pairs of prices and quantities 
(maximum 10) are offered for increasing and decreasing the output considering the technical 
capacity of the generators. In case of imbalance, the cheapest bids will be activated first. The 
market participant that deviates from notification has to pay the imbalance at the specific 
imbalance price depending on his deviation (sign and volume). The decision makers usually 
search for a trade-off between stability and benefits that various electricity markets can pro-
vide (Boomsma et al., 2014; Aasgård et al., 2019; Fleten & Pettersen, 2005). Placing the bids 
on DAM is thoroughly researched by generation companies or producers with controlled 
units (Klæboe et al., 2019). It is crucial to examine the possibility of coordinated bidding for 
energy market participants trading in consecutive markets with different price levels and risk 
exposure (Boomsma et al., 2014). DAM is also an option for electricity suppliers. In Fleten 
and Pettersen (2005), the situation of a price-taker who provides electricity to end users with 
high price sensitivity is investigated. The goal is to reduce the anticipated cost of acquiring 
power from the short-term BM and DAM.

Previous studies related to the electricity price forecast on BM and market strategies

Several studies analyzed the BM prices and focused on predicting them using different meth-
ods. Most of them are performed using data sets from West European countries, Nordic 
countries (Boomsma et al., 2014), Australia, Canada or U.S.A. (Dimoulkas et al., 2016; Dumas 
et al., 2019; Lucas et al., 2020), probably because the ready-to-use data sets were available. It 
is believed that rather than being founded on speculation, electricity markets generally follow 
quasi-deterministic principles, which is why it is desirable to predict the price using factors 
that can characterize the outcome of the market. Numerous studies have attempted to solve 
this issue statistically or through the use of multiple-variable regressions, but they frequently 
only handle the time series analysis (Lucas et al., 2020). Furthermore, a benchmarking of the 
forecasting models for electricity price on the BM was performed in Klæboe et al. (2015). It 
appeared that information accessible before the DAM closes is effectively represented in the 
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DAM rate rather than the BM price because none of the benchmarked models offered useful 
day-ahead point forecasts. Models without balance state information overestimate variance, 
making them inappropriate for scenario development, according to analysis of the interval 
forecasts (Klæboe et al., 2015).

The increased volume of RES in the power system creates volatility in total generation 
leading to the difficulty of maintaining an equilibrium between supply and demand. Better 
prediction models are required to prevent balancing concerns and resulting stability issues, 
as old methodologies are not completely ready to cope with any of these new problems. As 
a result, forecasting systems based on AI are acquiring considerable attention in the field of 
power markets (Hameed et al., 2021). The multi-market bidding issue for electricity producers 
was given as a stochastic program in Aasgård (2022). It was also demonstrated how input 
to the stochastic program may be created by combining a forecast-based scenario generat-
ing approach with time-series models that anticipate future market values and turnovers. 
Nasrolahpour et al. (2018) described a decision-making tool for a merchant price-maker 
energy storage system based on a bilevel complementarity model for determining the most 
profitable trading activities in pool-based markets, including day-ahead (as combined energy 
and reserve markets) and balancing settlements. The unpredictability of net load variation in 
real-time was integrated into the model using a set of scenarios built from the available day-
ahead projection. Wind generators’ day-ahead projections are insufficiently precise, exposing 
them to an imbalance cost owing to wrong offers. Although the market operator regularly 
publicizes comprehensive and precise market data, past market data are rarely used efficiently 
to lower this cost. Dinler (2021) modeled the imbalance cost reduction challenge as a binary 
classification problem and then builds a framework comprised of a long short-term memory 
auto-encoder and a combination of advanced classifiers.

The optimization of the balancing electricity bidding strategies as a mixed-integer nonlin-
ear program was shown in Schäfer et al. (2019), considering both price estimates for the ASM 
and hourly spot market prices. This two-stage strategy was solved by decomposing it into 
two problems: a nonlinear bidding problem and a mixed-integer linear scheduling problem. 
In Bringedal et al. (2023), it was considered that the profit from coordinating transactions is 
based on the accuracy of the BM projections. To evaluate the influence of the forecasting 
model on the gain, they provided a benchmarking framework for two additional prediction 
models: a naïve forecast that predicts zero imbalance in expectation and a perfect informa-
tion forecast. Load flexibility features and BM price projection scenarios were utilized in 
a price-taker technique to determine optimal load-shifting offers under uncertainties. The 
problem was expressed as a stochastic mixed-integer linear program that can be solved in an 
acceptable amount of time (Bobo et al., 2018). Paper written by van der Veen and Hakvoort 
(2016) provided policymakers with a methodology for identifying significant design elements 
and performance criteria that play a role in the creation and development of European BM. 
Policymakers can solve the BM design dilemma by using a systematic approach that consid-
ers design factors, performance criteria, market circumstances, system advancements, and 
resulting market incentives. It is anticipated that the growth and regional development of BM 
would lower the price of frequency regulation services. As the use of variable RES for power 
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generation increases balancing costs, this is becoming more and more crucial Krstevski et al. 
(2021). According to Bunn et al. (2021), system imbalance pricing demonstrated a regime-
switching behavior, driven by inaccurate weather and demand forecasts as well as other 
system influences, according to the results of a non-linear modeling technique. Unexpectedly, 
balancing prices can be predicted outside of samples, and a particularly different specification 
is more reliable than a linear model.

Among commodity markets, electricity markets are thought to be the most volatile. 
Extremely short-lived swings in energy pricing are frequently a result of the non-storability 
of power and the requirement for instantaneous demand and supply balancing. Paper written 
by Stathakis et al. (2021) presented a multiclass Support Vector Machine model to predict 
prices when price spikes may occur in the German IDM. The authors (Brijs et al., 2015) showed 
positive relationships with scheduled RES generation and rigid base load, as well as negative 
relationships with scheduled system load. Additionally, there is a correlation between the 
frequency of negative pricing and the positive and negative prediction errors of RES output 
and demand.

Another approach presented in Olsson and Söder (2008) uses a Seasonally Auto-
Regressive Integrated Moving Average (SARIMA) and discrete Markov process combination 
to estimate real-time BM prices. The goal is to simulate prices in order to build scenario 
trees that depict potential realizations of the stochastic prices. Controllable production units 
normally engage in the BM as “active” players. RES are treated as “passive” participants who 
cause imbalances and thus are susceptible to less competitive prices. In light of this, they 
suggest a novel market structure in which a balanced market member is permitted to serve 
as an active agent during some trading periods and a passive agent during others (Mazzi 
et al., 2019). A model where agents that use naive, rule-based, and reinforcement learning 
tactics that are compared against the impact of a standalone energy market for balancing on 
economic efficiency was described in Poplavskaya et al. (2020). According to their findings, 
even in a competitive market with strategic bidders, the creation of a stand-alone BM lowers 
the cost of balancing.

Research questions, contribution and organization of the current analysis

Considering the importance of the electricity price forecast and the powerful ML algorithms, 
we propose to find answers to the following research questions:

RQ1. How to improve the electricity price forecast on BM?
RQ2. How to make trading strategies using the AI-powered price forecast?

In this paper, we propose an improvement of the economic strategies of the market 
players using an AI-powered electricity price forecast based on several types of standout 
ML algorithms to predict the electricity price and imbalance sign on the BM. This approach, 
consisting of two steps, identifies the imbalance sign by classification and significantly en-
hances the performance of the price forecast using regressors. The results are incorporated to 
identify the optimal trading solution. Thus, we propose a method to combine supervised and 
unsupervised machine learning algorithms and find the fundamentals for creating optimal 
bidding strategies for electricity market players. 
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The contribution of this paper consists of the following aspects:
 ■ We focus on the recent electricity price of one of the East-European countries’ Balanc-
ing Markets (BM) – Romania, aiming to understand the evolution of prices and predict 
them in the current economic and geopolitical context. Previous studies focused on 
West-European countries’ BM, such as: Germany, Austria, France or Nordic countries. 
From this point of view, our current study is innovative as little concern has been given 
to the East-European region.

 ■ A combo-method is proposed that includes prediction of the imbalance sign and then 
using it as a new variable in the input data set to predict the electricity prices on BM. 
Thus, we combine supervised and unsupervised ML algorithms to obtain significant 
improvements.

 ■ A trading strategy is proposed using the predicted prices and the risks of trading failure 
on DAM and BM. By varying the available quantities between DAM and BM and multi-
plying these quantities with the predicted prices, the market participants can estimate 
the income from trading on both markets.

The paper is structured into several sections, including introduction and literature review, 
input data analysis, method, results, discussions and conclusion. In the second section, the 
data set created based on various open data sources, for the two years (2021 and 2022), is 
presented. The third section presents the method of using classifiers and regressors to pre-
dict the imbalance sign and the electricity prices. The results of the simulations, including a 
recommendation for bidding on DAM and BM considering the predicted prices, are provided 
in section four. The paper ends with a discussion and conclusion section. 

1. Input data analysis

In this study, we propose to collect, create and analyze a data set from various open data 
sources, such as: ENTSO-E transparency platform1, Romanian Market Operator – OPCOM2 and 
Transelectrica – the Romanian Transmission System Operator3 (TSO). The imbalances between 
notifications and real generation/consumption that market participants are responsible for 
are paid at the imbalance price for deficit or surplus. Using the created data set, we aim to 
predict the price of imbalance for deficit or surplus. To ensure the balance between genera-
tion and consumption, the TSO organizes a BM where generators bid to reduce their output 
up to zero or to minimum technical power or increase the generation up to the maximum 
power. However, in the last two years, the BM has been influenced by higher inflation after 
COVID-19 pandemic and the geopolitical conflict in the Black Sea region. During the pan-
demic years, the request for commodities decreased, but after the lockdowns were removed, 
the request rapidly increased due to the intensified business and traveling around the world. 
This high request led to higher inflation that increased the electricity price that further influ-
enced inflation and interest rate like a snowball effect. The request for commodities has been 
additionally increased by the conflict in Ukraine.

1 https://transparency.entsoe.eu/balancing/r2/imbalance/show 
2 https://www.opcom.ro/grafice-ip-raportPIP-si-volumTranzactionat/ro 
3 https://www.transelectrica.ro/ro/web/tel/home 

https://transparency.entsoe.eu/balancing/r2/imbalance/show
https://www.opcom.ro/grafice-ip-raportPIP-si-volumTranzactionat/ro
https://www.transelectrica.ro/ro/web/tel/home
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The prices on the DAM and BM have started to increase since October 2021 and they in-
fluenced the electricity prices on the BM as well. This trend has been noticed at the European 
DAM level. The prices went 4–5 times higher. They started to decrease again after a year – in 
October 2022. The price and imbalance fluctuations are presented in Figures 1–4. In Figure 1,  
the imbalance price for deficit in 2021 is shown. It shows a funnel shape indicating the in-
crease of the price at the end of 2021. Figure 2 shows that the same trend is maintained in 
2022 until October–November 2022 when the prices have started to decrease. 

The number of surplus and deficit cases and the total surplus and deficit in 2021 and 2022 
are presented in Table 1. The number of deficit cases and total amount in 2022 were smaller 
than in 2021. Market participants tended to avoid deficit cases as the prices for deficit are 
higher. Therefore, they preferred to be on the surplus side.

Figure 1. Imbalance price for deficit in 2021

Figure 2. Imbalance price for deficit in 2022
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Table 1. Surplus and deficit cases and totals

Year 2021 2022

No. of Surplus cases 16,644 21,469
No. of Deficit cases 15,428 13,571
Total Surplus [MWh] 952,231 1,243,989
Total Deficit [MWh] 859,076 629,431

Figure 3 and Figure 4 show the imbalance volume in 2021 and in 2022 when it was higher 
with 62,113 MWh.

The prediction of the electricity price on BM is a challenge because the results of a 
baseline model are not accurate and reliable to create bids. To improve the electricity price 
forecast, the imbalance sign is predicted first using ten ML classification algorithms and in-
serted into the data set to predict the electricity price for deficit or surplus. This method is 
explained in the following section. Moreover, a method to estimate the income for generators 
and create optimal bids is proposed knowing the predicted prices on the electricity markets.

Figure 3. Imbalance volume for deficit in 2021

Figure 4. Imbalance volume for deficit in 2022
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2. Methodology

In this section, the electricity price for deficit will be predicted and a trading solution will be 
provided considering predicted prices, the remaining quantity after other transactions and 
associated risks of trading failure. 

Considering the two RQ exposed in the first section, the proposed method consists of 3 
steps: Step 1 – Data collection and Step 2 – BM electricity price forecast, that also includes 
the prediction of the imbalance sign. They are designed to answer the first question:

RQ1. How to improve the electricity price forecast on BM?

Whereas, in Step 3, the trading income is estimated taking into account the risks and 
trading probabilities of both markets (DAM and BM) in order to answer the second research 
question:

RQ2. How to make trading strategies using the AI-powered price forecast?

For implementing the proposed methodology, the following variables and abbreviations 
are considered:

Nomenclature
Variables

 { }24 0,1h
BMIS + ∈ Predicted sign of the system

24 24,  h h
BM BM

P P− +
+ + Predicted prices on BM for the next day

hC Hourly consumption
hEx Sold or exchange with other systems 

24h
DAMFW + , 24h

DAMFPV + Day-ahead forecast of PV and W generation for DAM

24h
IDMFW + , 24h

IDMFPV + Day-ahead forecast of PV and W generation for IDM 

h
BMFin Financial neutrality on BM

hG Hourly total generation

h
kG

Generation breakdown by type of generator  
(coal, oil and gas, hydro, wind, photovoltaic, biomass, nuclear)

{ }0,1h
BMIS ∈ Sign of the system (that can be deficit 0 or surplus 1)

/ /
24 48,   ,h h

BM BM
P P− + − +

− −  
/

h
BM

P − +
− BM prices of the last 2 days and their average 

h
BM

P +
, h

BM
P − Hourly prices on BM for current day for surplus and deficit 

24h
DAMP + , 24h

DAMQ + Prices and traded quantities on DAM 

,i h
BCMQ Total capacity traded on BCM

h
BMQ Imbalance volume

,i h
BMQ , ,i h

DAMQ Capacities to be traded on BM and DAM



Technological and Economic Development of Economy, 2024, 30(1), 312–337 321

,i h
TQ Total capacity

,i h
rQ Remaining quantity to be traded

24hXIS + Input data set for sign prediction

24hXP + Input data set for price prediction

Abbreviation

AI Artificial Intelligence

ASM Ancillary Service Market

AUC Area Under the Curve

BCM Bilateral Contract Market

BM Balancing Market

D Number of days 

DAM Day-Ahead Market

FPR False Positive Rate

H Hour

HGBR Histogram Gradient Boosting Regressor

i Day

I Income

IDM Intra-Day Market

LGBR Light Gradient Boosting Regressor

MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error

ML Machine Learning

PV Photovoltaic

R Risk of trading failure

R2 coefficient of determination

RES Renewable Energy Sources

RFR Random Forest Regressor

RMSE Root Mean Squared Error

ROC-AUC Receiver Operating Characteristic – Area Under the Curve

SARIMA Seasonally Auto-Regressive Integrated Moving Average

T Time interval

TPR True Positive Rate

TSO Transmission System Operator

VR Voting Regressor

XGBR eXtreme Gradient Boosting Regressor

W Wind
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Step 1 – Data collection

To analyze and predict the electricity prices for deficit and surplus on the BM, four public 
data sets recorded between 1st of January 2021 and 31st of December 2022 were collected 
and merged:

 ■ Prices 24h
DAMP +

 and traded quantities 24  h
DAMQ +  on DAM from the Romanian market opera-

tor – OPCOM;
 ■ Hourly prices on BM for current day for surplus and deficit ( h

BM
P +, h

BM
P − ), imbalance vol-

ume h
BMQ , financial neutrality h

BMFin  and the sign of the system { }0,1h
BMIS ∈  extracted 

from ENTSO-E transparency platform;
 ■ Day-ahead forecast of Photovoltaic (PV) and Wind (W) generation for IDM, 24h

IDMFW +
 , 24h

IDMFPV +  and for DAM, 24h
DAMFW + , 24h

DAMFPV +  extracted from ENTSO-E transparency platform;
 ■ Power system hourly data regarding total consumption Ch, total generation Gh, its 
breakdown (coal, oil and gas, hydro, wind, solar – PV, biomass, nuclear) and sold or 
exchange with other systems Exh from the Romanian Transmission System Operator – 
Transelectrica (TSO).

The data sets are merged using the Date and Hour features. Additionally, the BM prices of 
the last 2 days ( /

24h
BM

P − +
−  and /

48h
BM

P − +
− ) and their average /

h
BM

P − +
−  are considered as input features 

in the data set to predict the electricity price for deficit/surplus.

Step 2 – BM electricity price forecast

The baseline or the initial forecast consists of training Machine Learning (ML) algorithms 
to obtain the day-ahead electricity price on BM. To improve the results, we propose a two-
stage approach (as shown in Figure 5): 1) determine the imbalance sign for day-ahead  

( { }24 0,1h
BMIS + ∈ ); 2) use 24h

BMIS +  as a new feature to predict the BM price (24 24,  h h
BM BM

P P− +
+ + ) for the 

next day.

Figure 5. Steps of the proposed method
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Step 2.1 – Determine the imbalance sign for day-ahead ( { }24 0,1h
BMIS + ∈ ) 

The imbalance sign is determined using ML classification algorithms, trained on the input 
data set (XIS) composed by the following variables from the initial data set:

                  
24 24[h h

DAMXIS P+ += , 24h
DAMQ + , h

BM
P +, h

BM
P − , 

h
BMFin , 24h

IDMFW + , 24h
IDMFPV + ,  

                  24h
DAMFW + , 24 ,  h h

DAMFPV C+ , hG , ].,h h
kG Ex  (1)

where h
kG  represent the type of generator (coal, oil and gas, hydro, wind, photovoltaic, bio-

mass, nuclear).
Then 24hXIS +  is appended with the previous day prices on BM for deficit and surplus and 

their average values:

 24 24[h hXIS XIS+ += , 24h
BM

P +
− , 24h

BM
P −

− , 48h
BM

P +
− , 48h

BM
P −

− ,   h
BM

P +
− , ]h

BM
P −

− . (2)

Ten ML classifiers are trained and tested to determine the imbalance sign: Logistic 
Regression (LR), Stochastic Gradient Descent (SGD), eXtreme Gradient Boosting (XGB), Decision 
Tree (DT), Random Forest (RF), Multi-Layer Perceptron (MLP), Light Gradient Boosting (LGB), 
Quadratic Determinant Analysis (QDA), K-Neighbour (KN), Ada Booster (AB). To evaluate the 
results of the classification, the confusion matrix, the Area Under the Receiver Operating 
Characteristic Curve (ROC-AUC) and F1-score are used as metrics. As analyzed in section 4, RF 
provides the best results, therefore it is used to provide the imbalance sign for the next day:

 
 ( )24 24. .h hIS RF predict XIS+ +=  (3)

Step 2.2 – Determine the BM electricity price (24 24, h h
BM BM

P P− +
+ + )

The output of the classification (24h
BMIS + ) is inserted into the input data set (XP) to predict the 

day-ahead electricity prices on BM (24 24,  h h
BM BM

P P− +
+ + ). 

 
24 24[h hXP XIS+ += , 24 ].h

BMIS +  (4)

The input 24hXP +  is splitted into a training interval that spans from 1st of January 2021 
until 2nd of March 2022 and a testing and evaluation interval between 3rd of March and 31st 
of December 2022. 

The proposed method consists of using the following five standout ML regressors: 
Random Forest Regressor (RFR), Voting Regressor (VR), Light Gradient Boosting Regressor 
(LGBR), Histogram Gradient Boosting Regressor (HGBR) and eXtreme Gradient Boosting 
Regressor (XGBR).

The final prediction can be obtained by averaging the results provided by the ML regres-
sors (fRm) as in Equation (5):

 


( )24
24 24

.
,   .

5

h
mmh h

BM BM

fR predict XP
P P− +

+

+ + =
∑  (5)

Another method for obtaining the prediction of the BM prices is to weigh each individual 
forecast with a coefficient determined by a simple regressor, such as linear regression or 
decision tree. 
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The following performance metrics are calculated to assess the electricity price prediction: 
Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Root Mean Squared 
Error (RMSE), coefficient of determination (R2). These metrics are calculated for both esti-
mated values (deficit and surplus) for the entire test set (h ∈ T) using Equations (6)–(9):

 


/ /

2

1

1 ;
T

h h
BM BMh

RMSE P P
T + − + −

=

 = − 
 ∑  (6)

 



/ /

1

1 ;
T

h h
BM BM

h

MAE P P
T + − + −

=

= −∑  (7)

 



/ /

/1

1 100%;
h hT
BM BM

h
h BM

P P
MAPE

T P

+ − + −

+ −=

−
= ×∑  (8)

 



( )
/ /

/ /

2

12
2

1

1 .
 

T
h h
BM BMh

T
h h
BM BMh

P P
R

P P

+ − + −

+ − + −

=

=

 − 
 = −

−

∑
∑

, (9)

where /
h
BM

P + −  represents the actual hourly target and /
h
BM

P + −  represents the prediction for the 
hourly prices for surplus/deficit on BM.

Step 3 – Estimate the trading income 

The revenue from trading on DAM and BM can be estimated using the proposed price pre-
diction method and the probabilities of trading or the risks associated with trading failure. 
The risks associated with trading on DAM (rDAM) are usually smaller (20–25%) than the risks 
associated with trading on BM (rBM) (65–70%). The objective target or function (f) for a pro-
ducer is to maximize the income I on both markets (DAM and BM) that can be obtained by 
trading the remaining capacity (after trading on BCM). 

 
 max ,   ,   , ,h h h h h

DAM DAM BMBM BM
I f P Q P P Q− +

 =  
 

. (10)

The income on DAM (IDAM) for an interval (D) is the price ( ,i h
DAMP ) multiplied by the traded 

quantity ( ,i h
DAMQ ) and the probability of trading on DAM (1

100
DAMr

− ), where rDAM is the risk of 
trading failure on DAM.

 

24
, ,

1 1

1 .
100

D
i h i h DAM

DAM DAM DAM
i h

r
I P Q

= =

 
= × × −  

 ∑∑  (11)

Usually, the estimated income on BM (IBM) is calculated as the predicted price for deficit/
surplus multiplied by the traded quantity and the probability of trading on BM (1

100
BMr

− ), 
where rBM is the risk of trading failure on BM.

 

 

24 24
, ,  , ,

1 1 1 1

1 0.5 0.5 .
100

D D
i h i h i h i hBM

BM BM BMBM BM
i h i h

r
I P Q P Q− +

= = = =

    = − × × × + × ×       
∑∑ ∑∑  (12)
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Estimating the sign, the income on BM is calculated either using the forecasted price for 
increasing or decreasing capacity (/

,i h
BM

P − + ) as follows:

 



/

24
, ,

1 1

1 .
100

D
i h i hBM

BM BMBM
i h

r
I P Q− +

= =

    = − × ×       
∑∑  (13)

Therefore, the total income I is the sum between the estimated income on DAM (IDAM) 
and estimated income on BM (IBM):

 



/

24 24
, , , ,

1 1 1 1

1 1 .
100 100

D D
i h i h i h i hDAM BM
DAM DAM BMBM

i h i h

r r
I P Q P Q− +

= = = =

     = × × − + × × −           
∑∑ ∑∑  (14)

The prices are predicted using ML algorithms as described in step 2, whereas the quan-
tities , ,,  i h i h

DAM BMQ Q  are unknown and they should be determined to create optimal bids on 
DAM and BM. The total capacity of the producer or the total quantity that can be traded 
can be divided into three. The total capacity ( ,i h

TQ ) and the capacity already traded on BCM 
( ,i h

BCMQ ) are known in advance. The problem is to adequately split the remaining capacity  
( ,i h

rQ ) after trading on the BCM to DAM or/and BM.

 
, , , , ;i h i h i h i h

T BCM DAM BMQ Q Q Q= + +  (15)

 
, ,, .i h i hi h

r T BCMQ Q Q= −  (16)

To avoid working with two unknown variables, the traded capacity on BM ( ,i h
BMQ ) is the 

difference between the remaining capacity ( ,i h
rQ ) and traded capacity on DAM ,i h

DAMQ .

 
, ,,i h i hi h

BM r DAMQ Q Q= − . (17)

Replacing ,i h
BMQ  in the objective function, we obtain:

 

 , , , , ,max ,   ,   , , .i h i h i h i h i h
DAM DAM rBM BM

I f P Q P P Q− +

  =     
 (18)

Therefore, the problem is to calculate the ,i h
DAMQ  that maximizes the income. The solution 

is further presented in the next section. Furthermore, the results of the proposed prediction 
method that embeds both classification and prediction algorithms are presented in the fol-
lowing section.

3. Results

For prediction the electricity prices on BM, training interval spans from 1st of January 2021 
until 2nd of March 2022 and a testing and evaluation interval between 3rd of March and 31st 
of December 2022. The forecasting horizon can be chosen from 1 to 6 days as the short and 
mid-term forecasts are usually required. The sample of the prediction results of the baseline 
model (without classification) for the four next days (3rd – 6th of March) are shown in Figure 6.  
Obviously, the prediction (orange and blue lines) does not follow the actual price curve (green 
line) and it is quite far from it. 
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P1-P5 are the predictions obtained with the ML regressors algorithms mentioned in step 
2.2. ImbPrice_d is the target or the real imbalance price for deficit ( h

BM
P −), ImbPrice_d_F is the 

average prediction (h
BM

P − ) using P1–P5 (the blue line) and ImbPrice_d_PF is the weighted pre-
diction using the linear regression algorithm (h

BM
Pr − ) with the results of the 5 ML algorithms 

(the orange line). Instead of linear regression, a decision tree algorithm can be also applied.
To improve the prediction results, the imbalance sign is predicted using binary classifica-

tion, considering the deficit or surplus state in which the system can be. The prediction is 
then added as an input to the data set. For classifying the imbalance sign, ten algorithms are 
trained as discussed in step 2.2 and the best results were obtained with RF classifier closely 
followed by LGB and XGB. The ROC-AUC score is 0.822 showing the capacity of the method 
to classify the two values: 0 for deficit, 1 for surplus. The confusion matrices for the three 
most performant classifiers are presented in Figure 7. One can notice that out of the 2,043 
deficit cases, RF succeeds to correctly predict 1,506 deficit cases, LGBM 1,414 and XGB 1,408.

The feature correlation coefficients for the baseline model and proposed method are 
presented in Table 2. The predicted imbalance sign (24h

BMIS + ) inserted in the input data set 
(XP) is highly correlated with the target (–0.87). Furthermore, the other three new features  

(  24h
BM

P −
− , 48h

BM
P −

− , h
BM

P −
− ) improve the correlation with the target and the results are expected to 

improve.
The ROC-AUC curves for the 10 classifiers are shown in Figure 8.

Figure 6. Electricity price forecast for 3rd – 6th of March 2022 (baseline model)
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TPR and FPR are the True Positive Rate (known as sensitivity, recall, hit rate) and False 
Positive Rate (also known as fall-out). They are the axis of the ROC-AUC curves. Figure 8 
shows that Random Forest outperforms the other classifiers, and it is closely followed by 
XGB and LGB.

The sample of the prediction results of the proposed method are depicted in Figure 9.  
The forecast curve follows more accurately the actual electricity price curve in all four 
cases: 3rd – 6th of March. On 4th, 5th and 6th of March – that are the second, third and 
fourth prediction days, the accuracy is lower than on the first prediction day. More sam-
ples of the prediction results for six consecutive, randomly chosen days in April 2022 are 
provided in Appendix (Figures A1 and A2). The correlation coefficients calculated with the  
new features included in the proposed method are also depicted in Figure 10.

The following performance metrics are calculated: MAE, MAPE, RMSE, R2 as in Table 3. The 
first three metrics should be small, whereas R2 varies between 0 and 1 and it should be closer 
to 1. The results show that the accuracy of the prediction with the proposed method almost 
doubled from the MAE point of view. The testing interval spans from March to December 
2022. In the nine-month testing interval, the prediction performance was not significantly 
influenced by the seasonality of the input data. On average, MAE improved by 45.91% and 
RMSE by 48.88%. R2 for the proposed method also indicates that it is reliable for predicting 
electricity prices on BM. Similarly, the traded volume can be predicted.

Figure 7. Confusion matrices for RF, LGB and XGB

Figure 8. ROC-AUC curves for 10 classifiers
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Table 2. Feature correlation

Feature
Correlation 

coefficient base-
line

Correlation 
coefficient 
proposed 
method

Imbalance price for deficit (ImbPrice_d) h
BM

P −  1.000000 1.000000

Electricity price on DAM (Price_DAM) 24h
DAMP +  0.467342 0.467342

Consumption Ch 0.306382 0.306382
Oil and gas generation (Oil&Gas_gen) OGh 0.210341 0.210341
Hydro generation (Hydro_gen) Hyh 0.209528 0.209528

Imbalance price for surplus (ImbPrice_s) h
BM

P +  0.203067 0.203067

Generation Gh 0.178520 0.178520
Exchange (Sold) Exh 0.144710 0.144710

Traded quantity on DAM (Q_DAM) 24h
DAMQ + 0.138148 0.138148

Hour h 0.077618 0.077618

Financial neutrality for deficit (FinNeutrality_d) h
BMFin 0.069480 0.069480

Coal generation (Coal_gen) Coh 0.046672 0.046672
Biomass generation (Biomass_gen) Bih 0.045826 0.045826
Wind generation (Wind_gen) Wih 0.026996 0.026996
Nuclear generation (Nuclear_gen) Nuh –0.002436 –0.002436
PV generation (PV_gen) Pvh –0.022895 –0.022895

Forecast of wind generation for DAM (GenWindDAM) 24h
DAMFW +  –0.031966 –0.031966

Forecast of wind generation for IDM (GenWindIDM) 24h
IDMFW + –0.040526 –0.040526

Forecast of PV generation for DAM (GenSolarDAM) 24h
DAMFPV +  –0.102805 –0.102805

Forecast of PV generation for IDM (GenSolarIDM) 24h
IDMFPV +  –0.108241 –0.108241

Total imbalance (Total_Imb) h
BMQ  –0.256840 –0.256840

Mean previous prices (Prev_price_mean) h
BM

P −
−  – 0.263368

24-h previous price (Prev_price24) 24h
BM

P −
−  – 0.236953

48-h previous price (Prev_price48) 48h
BM

P −
−  – 0.175650

Imbalance Sign prediction (ImbSign)  { }24 0,1h
BMIS + ∈ – –0.870947

Table 3. Metrics

Indicator Baseline model Proposed method

MAE 752.637 345.573
MAPE 4.969 1.212
RMSE 997.066 487.383

R2 0.189 0.88
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Figure 9. Electricity price forecast for 3rd - 6th of March 2022 (proposed method)

Figure 10. Correlation coefficients including the new features
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With the price prediction, an electricity producer is able to create a better strategy for 
bidding. If the total capacity is 100 MW, for example, and 20 MW are already traded on the 
Bilateral Contract Market (BCM), the rest of 80 MW can be traded on DAM or BM depend-
ing on the prices. Most of the times, the prices on DAM ( h

DAMP ) are lower than prices on BM 
( /

h
BM

P − +), but it is not always the case. For instance, on 3rd of March 2022, at h = 3, 3
DAMP  = 

346.27 RON/MWh, 3
BM

P + = 26.805 RON/MWh and 3
BM

P − = 26.805 RON/MWh, whereas at h = 
19, 19

DAMP  = 2028.97 RON/MWh, 19
BM

P + = 2454.82 RON/MWh and 19
BM

P − = 2940.275 RON/MWh. 
The total income and the income at market level at hour h = 3 are depicted in Figure 11a 
and at hour h = 19 in Figure 11b. These two cases indicate that the best solution is to bid 
on DAM the remaining quantity ( h

rQ ).
Depending on the prices, the producer can choose between DAM and BM and estimate 

the income considering the risk associated with the transaction failure. Usually, there are 
significant risks associated with transaction failure on DAM (20–25%) and BM (65–70%) that 
have to be considered when estimating the revenue. For the above simulations, we consid-
ered rDAM = 0.25, whereas rBM = 0.7. Thus, the probability to trade on DAM is 0.75, whereas 
the probability to trade on BM is 0.3.

According to the simulations performed for one month (March 2022), using the pre-
dicted prices and a generating unit of 100 MW (with remaining available capacity of 80 for 
trading on DAM or BM), we obtain that it is more profitable to bid the remaining capacity 

Figure 11. a) Income at h = 3; b) Income at h = 19
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on DAM (as shown in Figure 11), but if the 20 203955.24 690.11DAMBM
RON RONP P
MWh MWh+ = =

and 

20 203955.24 1987.78
BM BM

RON RONP P
MWh MWh+ −= =

, then it is more profitable to bid the remaining 

capacity on BM (as in Figure 12). The predicted prices and optimal bidding quantities are 
provided in Table 4.

As the quantity traded on BM increases (as in the upper axis) from 0 to 80 MW, the 
total hourly income of the generating unit (of 100 MW) slightly increases from 89,113.32 
to 94,925.760 RON. However, even if the producer chooses to bid on DAM, the income is 
considerable.

Figure 12. Income when DAM
h h
BM

P P+  , h h
BM BM
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Table 4. Predicted prices and optimum bidding quantities 

Hour (h) 3 19 20
h
DAMP  [RON/MWh] 346.270 2,028.970 690.110
h
BM

P + [RON/MWh] 26.805 2,454.820 3,955.240

h
BM

P −  [RON/MWh] 26.805 2,940.275 1,987.780

Max I [RON] 21,419.520 192,304.800 94,925.760

/h h
DAM BM

Q Q −  [MW] 80 80 0
h
BM

Q +  [MW] 0 0 80
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Discussions and conclusions

The electricity price forecast is essential for market participants, especially for producers as 
they have to allocate their capacity to various markets and maximize value. The decision 
maker has to choose whether to bid more on DAM and less on BM or vice versa. The more 
predictable generators (such as gas-based generators) also have to choose between bidding 
more on DAM and less on BM for increasing, but more for decreasing or less on DAM and 
more on BM for increasing and less for decreasing.

Usually, the PV output is predicted in three scenarios: pessimistic, optimistic and mod-
erate. Therefore, these predictions can be correlated with the electricity price forecast on 
DAM and BM. Even if the best prediction for a PV owner, for instance, is the moderate one, 
knowing the sign of the power system may determine the decision maker to choose between 
pessimistic and optimistic forecasts. 

Thus, in this paper we proposed a method to forecast the electricity price for deficit as 
it is usually higher than for the surplus, and the market participants prefer to bid so as to 
avoid deficit. The proposed forecast method consists of two steps. First, the imbalance sign 
is predicted using 10 machine learning classifiers. The ROC-AUC score higher than 0.82 is 
obtained with Random Forest. Furthermore, Light Gradient Boosting and eXtreme Gradient 
Boosting perform well. Second, this new feature – imbalance sign is inserted into the input 
data set to predict the electricity price.

Using five ensemble machine learning algorithms – Random Forest Regressor, eXtreme 
Gradient Boosting Regressor, Histogram Gradient Boosting Regressor, Voting Regressor and 
Light Gradient Boosting Regressor, we trained these models using open data collected from 
ENTSO-E transparency platform for BM and forecast of RES (W and PV) for DAM and IDM, 
OPCOM for DAM and the Romanian TSO – Transelectrica for power system data from 2021 
and 2022 to predict the electricity price for deficit. 

To answer the two RQ exposed in the first section:
RQ1. How to improve the electricity price forecast on BM?

The proposed solution consists of combining the unsupervised ML algorithms (namely 
classification using several classifiers) and supervised ML algorithms for prediction. The pre-
diction of the imbalance sign obtained with classifiers is inserted into the input data set for 
predicting the electricity price on BM.

RQ1. How to make trading strategies using the AI-powered price forecast?

To answer the second question, using the prediction of the electricity prices on BM, the 
market participants are assisted in making strategies to trade on DAM and BM. By varying the 
quantities traded on DAM or BM and multiplying these quantities with the predicted prices, 
the market participants estimate the income that can be obtained from trading in various sce-
narios. Also, the risks of trading failure for each market are included to estimate the income.

The difference between the baseline model and the proposed method is considerable 
(MAE improved by 45.91% and RMSE by 48.88%, R2 = 0.88) and we intend to further en-
hance it by involving more AI in the prediction process. The proposed method provided two 
forecasting solutions: the first one is an average of the results of 5 ML algorithms, whereas 



Technological and Economic Development of Economy, 2024, 30(1), 312–337 333

the second one consists of weighting the results of the 5 ML algorithms using the linear re-
gression or decision tree algorithms. The results for the first prediction day are slightly better 
than for the second, third and fourth prediction days, thus, the forecast has to be performed 
daily, but the results for the second, third and fourth days can be considered as indicative. 
Moreover, during the holidays, when the prediction is required for several days in advance, 
the prediction from 1 to 4-day even 6-day time horizon is useful.

Using the predicted prices, we proposed a method to create optimal bids, maximizing the 
income a generating unit can achieve by trading on DAM or/and BM. By implementing the 
proposed method, we found out that in most cases, it is more profitable to bid the remain-
ing capacity on DAM as the risks of trading failure are lower and the income is higher, but if 
the price for increasing the capacity is much higher than the price on DAM and the price for 
decreasing the capacity on BM, then it becomes more profitable to bid on BM for increas-
ing capacity. Even if DAM is chosen and h

BM
P + is double than h

BM
P − , stacking the income from 

DAM and BM for decreasing the output almost equals the income from BM for increasing 
the output.

In this paper, we used numerous ML algorithms for classification (10 algorithms) and for 
prediction (5 algorithms). The hyperparameters were not extensively tuned; therefore, more 
room for improvement does exist. The multiple input data sets were extracted from open 
available sources; thus, the method can be easily replicated. We will continue to investigate 
the hyperparameters using Optuna or GridSearch as future work when we plan to use more 
data sets, including those extracted from social media and news channels and also study the 
market rules in other countries. 
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APPENDIX

Figure A1. Results of the predicted prices – using the baseline model, during 1–6 of April 2022
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Figure A2. Results of the predicted prices – using the proposed model, during 1–6 of April 2022


