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Abstract. The stock investment selection could be deemed as a classic multiple attribute group 
decision making (MAGDM) problem involving multiple conflicts and interleaved qualitative and 
quantitative attributes. Spherical fuzzy sets (SFSs) can excavate the potential vagueness and intri-
cacy in MAGDM more effectively and deeply. This article we propose an integrated decision sup-
port system (IDSS) based on SFSs, prospect theory (PT), distance from average solution (EDAS) 
method and the MEthod based on the Removal Effects of Criteria (MEREC). The proposed IDSS, 
called SF-PT-EDAS-MEREC model, uses SFSs to describe the uncertain and obscure assessment 
information of DMs. The combination of PT and EDAS (PT-EDAS) method adequately captures 
DMs’ psychological behavior characteristics to execute more reasonable alternative evaluation. 
The MEREC is utilized to efficaciously obtain unknown attribute weights. In addition, this paper 
also presents a novel score function to compare spherical fuzzy numbers (SFNs) more directly 
and efficiently. Eventually, in order to illustrate the practicability of the proposed IDSS, two nu-
merical examples of stock investment selection are employed to achieve this. Meanwhile, the 
comparative study with existing approach further demonstrates the effectiveness and superiority 
of SF-PT-EDAS-MEREC model.
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Introduction

The rapid development of economy makes people’s idle capital increase continuously, more 
and more people begin to pursue other investment ways besides savings, stock investment 
has become one of the primary choices for people’s investment and financial management. 
As a complex financial activity, stock investment selection often involves multiple experts and 
needs to consider the constraints of multiple conflicting factors in the investment decision-
making process. Effective stock investment decisions can maximize investment returns un-
der certain investment risk conditions and promote the healthy and stable development of 
stock market. As a classical MAGDM problem, stock investment selection has always been 
a research hotspot in the decision-making territory. However, due to the complexity of the 
decision-making environment, the incompleteness of information and the fuzziness of hu-
man cognition, effective acquisition of evaluation information is the key to stock investment 
decision-making. In most of the existing literatures on stock investment decision making 
(Albadvi et al., 2007; Chen, 2018; Huang et al., 2004; Tiryaki & Ahlatcioglu, 2005; Zhao et al., 
2021), researchers often use some tools such as accurate numerical values, fuzzy sets (FSs) 
(Zadeh, 1965), intuitionistic FSs (IFSs) (Atanassov, 1986), Pythagorean FSs (PYFSs) (Yager, 
2014) to express DMs’ judgments. But these tools may lead to the loss of some evaluation 
information, for example, accurate numerical values cannot detect the potential uncertainty 
of things, and FSs only use membership degree (MD) ( )yΓφ



  to reflect the preference of DMs. 
Although IFSs and PYFSs add non-membership degree (N-MD) ( )yΓσ

 

 on the basis of FSs, 
they cannot directly express DMs’ hesitation degree (HD) ( )yΓρ

  , and the potential HD needs 
to depend on MD and N-MD rather than DMs’ opinions. These bring a certain deviation to 
the full acquisition of evaluation information.

As a new improved form of IFSs and PYFSs, spherical fuzzy sets (SFSs) (Ashraf et al., 
2019; Gundogdu & Kahraman, 2019; Mahmood et  al., 2019) are capable of express-
ing DMs’ opinions more comprehensively from four aspects: MD, N-MD, HD and rejec-
tion degree (RD). In SFSs, the MD, N-MD and HD are independent from each other and 
can be given freely by DMs in the range of 0 to 1. In addition, SFSs satisfy the condition: 

2 2 20 ( ) ( ) ( ) 1y y yΓ Γ Γ≤ φ + σ +ρ ≤  



   

 and provide DMs with wider and freer space. By far, SFSs have 
attracted the attention of many researchers in dealing with uncertain problems. For example, 
Kahraman et al. (2022) designed a new CRITIC method for prioritization of supplier selec-
tion criteria. Buyuk and Temur (2022) used spherical fuzzy AHP to assess food waste treat-
ment option. H. Zhang et al. (2021) combined cumulative prospect theory (CPT) and MA-
BAC approach under SFSs on green supplier selection. Farrokhizadeh, et al. (2021) integrated 
maximizing deviation and TOPSIS approach for advertising strategy selection problem in 
SFSs. H. Zhang et al. (2022a) presented SF-GRA based on CPT for emergency supplies sup-
plier selection. Gundogdu (2020) extended MULTIMOORA approach to SFSs in settling 
multi-attribute decision-making (MADM) issues. H. Zhang et al. (2022c) integrated TOPSIS 
and CPT for residential location under SFSs. H. Zhang et al. (2022b) developed Dombi power 
Heronian mean aggregation operators in SFSs for MAGDM. Wei et al. (2019) established 
similarity measures by cosine function in SFSs. Nguyen et al. (2022) designed spherical fuzzy 
WASPAS approach based on entropy for international payment selection. Seyfi-Shishavan 
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et al. (2021) presented bi-objective linear assignment method based on SFSs about insur-
ance options choice. Zhang and Wei (2023) proposed a spherical fuzzy CPT-CoCoSo and 
D-CRITIC method for location selection of electric vehicles charging stations. In view of the 
advantages of SFSs and their wide application in decision-making field, this article utilizes 
SFSs to adequately express DMs’ evaluation information in stock investment selection.

 Up to now, a large number of MADM methods have been established in dealing with 
uncertain problems such as TOPSIS method (W. Su et al., 2022; Wang & Elhag, 2006; Yang 
et al., 2022), VIKOR method (Opricovic & Tzeng, 2004), PROMETHEE method (Brans et al., 
1986), TODIM method (Gomes & Rangel, 2009) and BWM method (Rezaei, 2015) etc. Nev-
ertheless, none of the aforementioned methods takes into account the distances between 
alternatives and average solutions. EDAS as a new and effective MADM approach was initi-
ated by Keshavarz Ghorabaee et al. (2015). This technique obtains the best alternative by 
measuring the positive and negative distances from the optimal amount which is computed 
with average solutions. On account of its stability, efficiency and simple operation process, 
EDAS method has been extended in abundance in recent years. Keshavarz Ghorabaee et al. 
(2017) established EDAS model based on type-2 FSs for supplier assessment and order al-
location. Kahraman, et al. (2017) utilized EDAS method for location selection of solid waste 
treatment. He et al. (2019) designed probabilistic uncertain linguistic EDAS for green sup-
plier selection. X. Li et al. (2019) presented EDAS method for MAGDM in picture fuzzy sets 
(PFSs). Wei et al. (2021) established EDAS approach to probabilistic linguistic MAGDM. 
Ozcelik and Nalkiran (2021) introduced a new EDAS method based on trapezoidal bipolar 
FSs for healthcare system. Stanujkic et al. (2021) presented single-valued neutrosophic EDAS 
method to MADM. Menekse and Akdag (2022) established AHP and EDAS model based on 
SFSs for distance education tool selection. N. Zhang et al. (2022d) proposed an evaluation 
and selection model of community group purchase platform based on WEPLPA-CPT-EDAS 
approach by combination of the weighted probabilistic linguistic power average operator, 
CPT and EDAS method. 

However, most of the above evaluation processes often assume that DMs make decisions 
under completely rational conditions and fail to take into account their subjective risk appe-
tite. As a descriptive decision model of risk preference, PT (Kahneman & Tversky, 1979) can 
efficaciously reflect the DMs’ mental characteristics for facing gains and losses. Currently, the 
integration of PT and some MADM approaches to solve practical issues has become a new 
study hotspot in decision system. For example, Chen et al. (2020) proposed a multi-stage de-
cision model based on PT and PROMETHEE method for renewable energy options. Liu and 
Zhang (2021) designed an improved MABAC approach based on PT and CCSD in normal 
wiggly hesitant FSs. Tian et al. (2022) utilized PT to establish an extended MULTIMOORA 
model in PFSs for medical institution selection. Jiang et al. (2022) presented MABAC ap-
proach based on PT under PFSs. Jia and Wang (2020) developed rough-number-based MAG-
DM approach via combining the BWM and PT. Fan et al. (2022) presented PT-MARCOS 
method for settling MADM under neutrosophic cubic environment. Huang et  al. (2021) 
presented an enhanced EDAS approach combined with PT in real number environment. Y. 
Su et al. (2022) fully exploited the merits of EDAS and PT to propose PT-EDAS model for 
probabilistic uncertain linguistic MAGDM issue. P. Li et al. (2022) integrated EDAS approach 
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and PT for highway investment project selection in PYFSs. But so far, there are few researches 
on spherical fuzzy MAGDM based on PT at home and abroad. More importantly, PT-EDAS 
approach has not been extended in SFSs to settle MAGDM issues.

Attribute weights are important factors in affecting decision results. For MAGDM, there 
are usually three ways to obtain attribute weights, which are subjective weighting methods 
by DMs’ judgement, objective weighting methods from the initial assessment information 
and the hybrid weight methods through incorporation of subjective and objective weights. 
Subjective weighting methods (such as direct giving, AHP, SWARA, KEMIRA and FUCOM 
etc.) mainly depend on DMs’ personal preference information, but different DMs may have 
different preferences for attribute sets. Therefore, subjective weighting methods tend to pro-
duce strong subjective preference, which lead to certain deviation in the effective acquisition 
of weight information. To surmount the subjectivity and improve the rationality of attribute 
weights, objective weighting methods become very popular in the evaluation process. Be-
cause they do not require any subjective judgment of DMs but based on the initial evalu-
ation information or decision matrix to capture the performance of attributes with some 
specific calculation algorithms for obtaining weight information. The commonly used objec-
tive weight methods include entropy method (Deng et al., 2000), the maximizing deviation 
method (Wu & Chen, 2007), CRITIC method (Diakoulaki et al., 1995), etc. As a novel objec-
tive weight calculation method, MEREC was proposed by Keshavarz-Ghorabaee et al. (2021). 
Compare with the aforementioned objective weighting methods, MEREC can efficaciously 
obtain attribute weight information by measuring the removal effect of each attribute on the 
overall performance of alternatives. In this method, when the removal of an attribute pro-
duces a greater impact on the overall performance of alternatives, it will be assigned a higher 
weight. In view of the variations, MEREC provides a new perspective for obtaining attribute 
weights by removing attributes to measure the performances of alternatives to enhance the 
robustness of the results. In addition, the calculation process of MEREC is simple and the 
operation is flexible because DMs can use different functions to determine the performances. 
At present, MEREC has been successfully applied to some practical problems (Keshavarz-
Ghorabaee et al., 2021; Rani et al., 2022; Trung & Thinh, 2021). In consideration of its virtues, 
this article will extend MEREC to SFSs to effectively obtain unknown attribute weights.

By the above statement, the motivations for this article are as follows: (1) Compared with 
other FSs, SFSs can depict the uncertainty and fuzziness of things deeply and effectively. (2) 
Although EDAS is a useful tool to MAGDM problems, EDAS often assumes that DMs are 
absolute rationality in most decision-making processes without considering their risk prefer-
ence. PT can efficaciously reflect DMs’ mental behavior when facing the risks. Currently, the 
integration of PT and some decision approaches for resolving MAGDM issues has become a 
new study topic of decision system. However, considering the risk appetite of DMs, the com-
bination of EDAS and PT for dealing with MAGDM in SFSs has not been developed yet. (3) 
As a latest and effective attribute weight calculation method, MEREC has not received atten-
tion and application for solving spherical fuzzy MAGDM. (4) As one of the research hotspots 
of MAGDM, scientific and reasonable stock investment selection can help enterprises or in-
dividuals reduce investment risks and obtain higher returns, which have important research 
value. However, most of the existing researches on stock investment selection are carried 
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out under the condition that DMs are perfectly rational. Moreover, the use of other tools to 
express MDs’ assessment information on stock investment is not comprehensive enough. Fol-
low the reasons above, this paper combines SFSs, PT, EDAS method and MEREC to develop 
an IDSS for dealing with uncertain problems. Moreover, a novel score function is presented 
for comparing the sizes of SFNs more efficaciously. At last, the presented IDSS is utilized for 
the problem of stock investment selection to demonstrate its practicality and legality.

The primary contributions for this article are listed as follows: (1) A new score function 
is presented and its some properties are discussed to measure the sizes of SFNs more effi-
caciously. (2) MEREC is extended to acquire unknown attribute weights in spherical fuzzy 
environment. (3) The traditional EDAS method is improved by integrating EDAS method 
and PT to capture the mental sense of MDs. (4) An IDSS is developed for settling MAGDM 
issues. (5) SF-PT-EDAS-MEREC model is used in stock investment selection to elucidate the 
practicability for the presented IDSS and comparison research is rendered to further certify 
the effectiveness and meliority for SF-PT-EDAS-MEREC model. (6) The proposed IDSS of-
fers DMs more choices for resolving MAGDM issues and affords some valuable references in 
promoting the further expansion about PT-EDAS approach in other decision environments.

The rest of this article is arranged as follows: The fundamental knowledge of SFSs as well 
as the basic thoughts of MEREC, EDAS method and PT are elaborated in part 1. A novel 
score function is proposed in part 2. SF-PT-EDAS-MEREC model is developed in part 3. 
The proposed IDSS is utilize for stock investment selection to testify its practicability in 
part 4. Meanwhile, the effectiveness of SF-PT-EDAS-MEREC model is proved by existing 
approaches in SFSs. Ultimately, we briefly summarize this article.

1. Preliminaries 

1.1. SFNs

In this chapter, some primary components of SFSs as well as the basic thoughts of MEREC, 
EDAS method and PT will be depicted. 

Definition 1 (Gundogdu & Kahraman, 2019). Let A


be a nonempty fixed set, then SFS
Γ on A



is defined as: 

 { ,( ( ), ( ), ( ))| }a a a a a AΓ Γ ΓΓ = < φ σ ρ ∈  

 

      ,  (1) 

where : [0,1], : [0,1], : [0,1]A A AΓ Γ Γφ → σ → ρ →  

   

 and 2 2 20 ( ) ( ) ( ) 1,a a aΓ Γ Γ≤ φ + σ +ρ ≤  



    .a A∀ ∈




 
At the same time, for each a ,the numbers ( ), ( )a aΓ Γφ σ 



   and ( )aΓρ
  are MD, N-MD and 

HD of a toΓ


respectively. ( )aΓο =

  2 2 21 ( ) ( ) ( )a a aΓ Γ Γ
− φ −σ −ρ

 



    denotes the RD. The triplet

1 ( , , )Γ = φ σ ρ




  is known as SFN.
In the following, some operational laws of SFNs are introduced as follows:

Definition 2 (Gundogdu & Kahraman, 2019). Let 1 1 1 1( , , )Γ = φ σ ρ




 and 2 2 2 2( , , )Γ = φ σ ρ




 be 
two SFNs respectively, then:

i. 1 1 1 1( ) ( , , )cΓ = σ φ ρ




  (where 1( )cΓ


 denotes the complement of 1Γ


);                           (2)
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ii. 
( )
( )

1 22 2 2 2
1 2 1 2 1 2

1 2 1/22 2 2 2 2 2
2 1 1 2 1 2

, ,

(1 ) (1 )

 φ + φ − φ φ σ σ Γ ⊕Γ =  
 − φ ρ + − φ ρ −ρ ρ 

   

 

 

 

   

;                                                    (3)

iii. 
( )

( )

1/22 2 2 2
1 2 1 2 1 2

1 2 1/22 2 2 2 2 2
2 1 1 2 1 2

, ,

(1 ) (1 )

 φ φ σ + σ −σ σ Γ ⊗Γ =  
 −σ ρ + −σ ρ −ρ ρ 

 

   

 

    

;                                                  (4)

iv. ( ) ( )
1 2

2 2 2 2
1 1 1 1 1 11 1 , , (1 ) (1 ) , 0

θ θ θ θ
   θ ⋅Γ = − − φ σ − φ − − φ −ρ θ >    

  


 ;                      (5)

v. ( ) ( )1/2 1/22 2 2 2
1 1 1 1 1 1, 1 (1 ) , (1 ) (1 ) , 0θ θ θ θ θ Γ = φ − −σ −σ − −σ −ρ θ > 

 




   .                       (6)

Definition 3 (Gundogdu & Kahraman, 2019; Sharaf, 2021). Let 1 1 1 1( , , )Γ = φ σ ρ




  be an SFN, 
then the score function 1S ( )′′ Γ



 and the accuracy function 1A ( )′′ Γ


are given as:

 
2 2

1 1 1 1 1S ( ) ( ) ( )′′ Γ = φ −ρ − σ −ρ




  ;  (7)

                                        
2 2 2

1 1 1 1( )′′Α Γ = φ + σ +ρ




 .                                                      (8) 

In addition, for any two SFNs 1Γ


and 2Γ


, note that: 1 2Γ < Γ
 

 if and only if

i.    1 2S ( ) S ( )′′ ′′Γ < Γ
 

or  
ii.  1 2S ( ) S ( )′′ ′′Γ = Γ

 

and 1 2A ( ) A ( )′′ ′′Γ < Γ
 

.

Furthermore, in (Ashraf et al., 2019), the comparison rules of SFNs are given as follows:

Definition 4 (Ashraf et al., 2019). Let 1 1 1 1( , , )Γ = φ σ ρ




  be an SFN, then the score function
1S ( )′′ Γ


, accuracy function 1A ( )′′ Γ


as well as certainty function 1C ( )′′ Γ


 of 1Γ


are given as:

 
1 1 1 1

1S ( ) (2 )
3

′′ Γ = + φ −σ −ρ




 ;  (9)

                                          1 1 1( )′′Α Γ = φ −σ




 ;                                                          (10) 

                                          1 1C ( )′′ Γ = φ




.                                                                 (11)
Note that: 1 2Γ < Γ

 

 if and only if

i. 1 2S ( ) S ( )′′ ′′Γ < Γ
 

or

ii. 1 2S ( ) S ( )′′ ′′Γ = Γ
 

and 1 2A ( ) A ( )′′ ′′Γ < Γ
 

or

iii. 1 2S ( ) S ( )′′ ′′Γ = Γ
 

, 1 2A ( ) A ( )′′ ′′Γ = Γ
 

and 1 2C ( ) C ( )′′ ′′Γ < Γ
 

.

Definition 5 (Kutlu Gündoğdu & Kahraman, 2021; Zhang & Xu, 2014). Let 1 1 1 1( , , )Γ = φ σ ρ






and 2 2 2 2( , , )Γ = φ σ ρ




 represent two SFNs respectively, the distance between 1Γ


 and 2Γ


is 
given as:

 
( )2 2 2 2 2 2

1 2 1 2 1 2 1 2
1d( , ) | | | | | |
2

Γ Γ = φ − φ + σ −σ + ρ −ρ
 

 

   .  (12)
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Definition 6 (Gundogdu & Kahraman, 2019). Let ( , , )( 1,2, , )h h h h h tΓ = φ σ ρ =






 be a set of 

SFNs and 1 2( , , , )T
tω= ω ω ω is the corresponding weight vector, with [0,1]hω ∈ , 

1

1
t

h
h=

ω =∑ . 
Then spherical weighted arithmetic mean (SWAM) operator is defined as:

 

2 1/2

1 1
1 2

1 2 2 2 1/2

1 1

[1 (1 ) ] , ,

SWAM( , , ) .

[ (1 ) (1 ) ]

hh

h h

t t

h ht
h h

t h h t t
h

h h h
h h

ωω

= =

= ω ω

= =

 
 − − φ σ
 

Γ Γ Γ = ω Γ =  
 − φ − − φ −ρ 
 

∏ ∏
∑

∏ ∏





   



 



  (13) 

Definition 7 (Gundogdu & Kahraman, 2019). Let ( , , )( 1,2, , )h h h h h tΓ = φ σ ρ =






 be a set of 

SFNs and 1 2( , , , )T
tω= ω ω ω is the corresponding weight vector, with [0,1]hω ∈ ,

1

1
t

h
h=

ω =∑
 
. 

Then spherical weighted geometric mean (SWGM) operator is defined as:

 

2 1/2

1 1
1 2

1 2 2 2 1/2

1 1

, [1 (1 ) ] ,

SWGM( , , ) .

[ (1 ) (1 ) ]

h h

h

h h

t t

h ht
h h

t h t t
h

h h h
h h

ω ω

ω = =

= ω ω

= =

 
 φ − −σ
 

Γ Γ Γ = Γ =  
 −σ − −σ −ρ 
 

∏ ∏
∏

∏ ∏





   



 

  (14) 

1.2. The MEREC 

MEREC was introduced by Keshavarz-Ghorabaee et al. (2021) in 2021. As a new method for 
objective weighting, it mainly measures removal influences of each attribute on the overall 
performance of alternatives to determine attribute weights. That is, when the deletion of an 
attribute brings about more impacts on the overall performance of alternatives, it will be 
given greater weight. The general procedures for MEREC are as below:

Step 1. Establish decision matrix.
For a MADM issue, assuming that the original decision matrix by DM is given as:

  
11 12 1
21 22 2

1 2

( ) ,
t
t

gh s t

s s st s t

n n n
n n nN n

n n n
×

×

 
 

= =  
 
  





   



 g = 1, 2, ..., s; h = 1, 2, ..., t.  (15)

Step 2. Standardize the decision matrix by Eq. (16):

 

min
, for benefit attribute

, for cost attribute
max

ghg

gh
gh

gh

ghg

n

n
n n

n



′ = 




.  (16)

Step 3. Compute the overall performance for each alternative with Eq. (17):

 1

1ln 1 ln ,
t

g gh
h

Q n
t =

  
  ′ = +

    
∑  g = 1, 2, ..., s.  (17)
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Step 4. Remove each attribute to get the performance of alternative based on Eq. (18):

 
1,

1ln 1 ln ,
t

gh gj
j j h

Q n
t = ≠

  
  ′= +
  

  
∑



 g = 1, 2, ..., s; h = 1, 2, ..., t,  (18)

where ghQ


indicates the overall performance for gth alternative as regards the removal of 
hth attribute.

Step 5. Determine the summation of absolute deviations for each attribute depending on 
Eq. (19): 

 1

,
s

h gh g
g

SQ Q Q
=

= −∑


 h = 1, 2, ..., t.  (19)

Step 6. Get attribute weights by Eq. (20):

 1

,h
h t

h
h

SQ

SQ
=

∞ =

∑
  h = 1, 2, ..., t,  (20)

where h∞
 represents weight of hth attribute.

1.3. The classical EDAS method

The EDAS is a practical MADM method, which determines the distance of each alternative 
from the average values to get the best alternative. The main idea is displayed as below:

Suppose that the initial decision matrix is given by DM as shown in Eq. (15), and 
1 2( , , , )T

t∞ = ∞ ∞ ∞
   

 is the weight vector of attributes. 

Step 1. Compute the average solution of each attribute with Eq. (21):

 

1 ,

s

gh
g

h

n

n
s

==
∑

 h = 1, 2, ..., t.  (21)

Step 2. Construct positive distance from average (PDA) as well as negative distance from 
average (NDA).

Based on benefit attribute, the PDA and NDA are respectively defined as: 

 

( )max 0,
,

gh h
gh

h

n n
PDA

n

−
=  g = 1, 2, ..., s; h = 1, 2, ..., t;  (22)

 

( )max 0,
,

h gh
gh

h

n n
NDA

n

−
=  g = 1, 2, ..., s; h = 1, 2, ..., t.  (23)

Furthermore, for cost attribute, the PDA and NDA are respectively defined as:

 

( )max 0,
,

h gh
gh

h

n n
PDA

n

−
=  g = 1, 2, ..., s; h = 1, 2, ..., t;  (24)

 

( )max 0,
,

gh h
gh

h

n n
NDA

n

−
=   g = 1, 2, ..., s; h = 1, 2, ..., t.  (25)
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Step 3. Obtain the weighted PDA and weighted NDA for each alternative by Eqs (26)–(27):

                                        1

,
t

g gh h
h

WP PDA
=

= ⋅∞∑ 

 
g = 1, 2, ..., s;  (26)

 1

,
t

g gh h
h

WN NDA= ⋅∞∑ 

 
g = 1, 2, ..., s.  (27)

Step 4. Standard the values about weighted PDA as well as weighted NDA depending on 
Eqs (28)–(29):

                                         

,
max

g
g

gg

WP
SP

WP
=  g = 1, 2, ..., s;  (28)

 

1 ,
max

g
g

gg

WN
SN

WN
= −  g = 1, 2, ..., s.  (29)

Step 5. Get the appraisal score for each alternative based on Eq. (30):

 2
 1 ( ),g g gAS SP SN= +  g = 1, 2, ..., s.  (30)

Step 6. Rank all alternatives by appraisal scores in descending sort to get the preferable one.

1.4. Prospect theory

In 1979, Kahneman and Tversky (1979) presented the PT on the basis of bounded rational-
ity to explain various phenomena that do not conform to the expected utility theory in the 
decision-making process. PT replaces utility and probability in traditional expected utility 
theory with value function and probability weight function, which can model people’s psy-
chological behavior in making decisions and make the decision results more consistent with 
the inherent thinking habits of human beings. In PT, the prospect value V



is composed of 
value function and probability weight function, that is

 1

( ) ( )
n

i i
i

V v x
=

= ⋅ κ ε∑


  ,  (31)

where ( )iv x  is the value function determined with (32), which can fully reflect DMs’ risk 
attitude and subjective preference when facing gain and loss.

 

( ) , 0( )
( ) , 0

i i
i

i i

x xv x
x x

a

b
 ≥= −l − <

 

 

 

,  (32)

where ix  represents the difference with respect to the reference point, and 0ix ≥  indicates 
the gain, whereas 0ix <  means the loss. a, b are the risk attitude coefficients of DMs and 
mean the preference degrees in the region of gain and loss. l denotes the coefficient of loss 
aversion that is more sensitive to loss than gain.

The probability weight function ( )iκ ε
  reflects that people often overestimate low prob-

ability events and underestimate high probability events in reality, which is calculated by 
Tversky and Kahneman (1992) as follow:
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1

1

, 0

( (1 ) )( )
, 0

( (1 ) )

i
i

i ii
i

i

i i

x

x

h

h h h

d

d d d

 ε
≥


 ε + − εκ ε = 

ε <
 ε + − ε



 





 

,  (33)

where iε
  denotes probability. h, d express the curvature for probability weight function of 

gain as well as loss and reflect DMs’ different risk attitudes towards gain and loss, respectively. 

2. A new score function for SFSs

A new score function is introduced for measuring the size of SFNs in this chapter. Further-
more, we discuss some of its properties and illustrate the availability as well as superiority 
for the presented score function via existing score function.

Definition 8. Let 1 1 1 1( , , )Γ = φ σ ρ




  be an SFN, then score function 1S ( )′′ Γ


of 1Γ


is defined as:

  
2 2 2 2 2 2

1 1 1 1 1 1
1

(1 ) ( )
S ( )

2
+ φ −σ −ρ ⋅ φ + σ +ρ

′′ Γ =
 

  



.  (34)

Furthermore, for any two SFNs 1Γ


and 2Γ


, we have: 
(1) If 1 2S ( ) S ( )′′ ′′Γ > Γ

 

, then 1 2Γ > Γ
 

;
(2) If 1 2S ( ) S ( )′′ ′′Γ < Γ

 

, then 1 2Γ < Γ
 

;
(2) If 1 2S ( ) S ( )′′ ′′Γ = Γ

 

, then 1 2Γ = Γ
 

.

Theorem 1. Let 1 1 1 1( , , )Γ = φ σ ρ




 be an SFN, then new score function 1S ( )′′ Γ


satisfies:
(1)  1S ( ) [0,1]′′ Γ ∈



;
(2)  1S ( ) 1′′ Γ =



if and only if 1 1 11, 0, 0φ = σ = ρ =


 ; 1S ( ) 0′′ Γ =


 if and only if 1 10, 1,φ = σ =




1 0ρ =
  or 1 1 10, 0, 1φ = σ = ρ =



 .

Proof.
(1) Let 

2 2 2
1 1 1(1 )

2
+ φ −σ −ρ

Ω =






, then 1 1 1
1 11

, ,∂Ω ∂Ω ∂Ω
= φ = −σ = −ρ

∂σ ∂ρ∂φ

  









. 

Since 1 1 10 , , 1,≤ φ σ ρ ≤




then Ω


 is monotonically increasing with respect to 1φ


 and decreasing with respect 
to 1σ
  and 1ρ

 respectively.
Furthermore, based on 2 2 2

1 1 10 1≤ φ + σ +ρ ≤


 , so when 1 1 11, 0, 0φ = σ = ρ =


 , then 
max 1Ω =


, when 1 1 10, 1, 0φ = σ = ρ =


 or 1 1 10, 0, 1φ = σ = ρ =


 then min 0Ω =


, it follows 
that 0 1≤ Ω ≤



 . Hence, 1( )S′′ Γ =
 2 2 2

1 1 1 1( ) [0,1]Ω ⋅ φ + σ +ρ ∈


 .
(2) According to the proof of (1), (2) is obvious. 

Compared with the score function in Definition 3 and Definition 4, the new score 
function is more direct in comparing the size of two SFNs because it does not need to rely 
on other auxiliary functions. For example, for SFNs 1 2(0.8,0.4,0.2), (0.7,0.3,0.1)Γ = Γ =

 

and 3 (0.6,0.2,0.2)Γ =


, In Definition 3, since 2 2
1S ( ) (0.8 0.2) (0.4 0.2) 0.32′′ Γ = − − − =


, 
2 2

2S ( ) (0.7 0.1) (0.3 0.1) 0.32′′ Γ = − − − = , then 1 2S ( ) S ( )′′ ′′Γ = Γ
 

. Based on the com-
parison rules in Definition 3, there is need to sort two SFNs by means of accu-
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racy function, and accuracy functions of 1Γ


 and 2Γ


 are: 2 2 2
1A ( ) 0.8 0.4 0.2 0.84′′ Γ = + + =


 
2 2 2

1A ( ) 0.8 0.4 0.2 0.84′′ Γ = + + =


 , 
2 2 2

2A ( ) 0.7 0.3 0.1 0.59′′ Γ = + + =


, so 1 2Γ > Γ
 

. However, by Defini-
tion 8, 2 2

1
1S ( ) (1 0.8 0.4
2

′′ Γ = + − −
 2 2 2 20.2 )(0.8 0.4 0.2 ) 0.6048+ + =  ,  

2 2 2 2 2 2

2
(1 0.7 0.3 0.1 )(0.7 0.3 0.1 )S ( ) 0.4101

2
+ − − + +′′ Γ = =



 
2 2 2 2 2 2

2
(1 0.7 0.3 0.1 )(0.7 0.3 0.1 )S ( ) 0.4101

2
+ − − + +′′ Γ = =



, so 1 2Γ > Γ
 

 . Furthermore, in De fi-

nition 4, since 1
1S ( ) (2 0.8 0.4 0.2) 0.73333
3

′′ Γ = + − − =


, 3
1S ( ) (2 0.6 0.2 0.2) 0.73333
3

′′ Γ = + − − =


 
3

1S ( ) (2 0.6 0.2 0.2) 0.73333
3

′′ Γ = + − − =


,  then 1 3S ( ) S ( )′′ ′′Γ = Γ
 

 , and accuracy function of 1Γ


 and  3Γ


 are: 

1A ( ) 0.8 0.4 0.4′′ Γ = − =


, 3A ( ) 0.6 0.2 0.4′′ Γ = − =


 , at this point, the size of 1Γ


 and  3Γ


 
can only be measured by certain functions: 1 3C ( ) 0.8 C ( ) 0.6′′ ′′Γ = > Γ =

 

, so  1 3Γ > Γ
 

 . 

However, by Definition 8, 1S ( )′′ Γ =


2 2 2 2 2 2(1 0.8 0.4 0.2 )(0.8 0.4 0.2 ) 0.6048
2

+ − − + +
=

 
,

2 2 2 2 2 2

3
(1 0.6 0.2 0.2 )(0.6 0.2 0.2 )S ( ) 0.2816

2
+ − − + +′′ Γ = =



, so 1 3Γ > Γ
 

.

3. SF-PT-EDAS-MEREC model for MAGDM problems 

Let 1 2{ , , , }sST ST ST ST=  be a set of s alternatives, 1 2{ , , , }tSS SS SS SS=  be a set of t attri-
butes, and 1 2{ , , , }pEX EX EX EX=  represents the collection of p experts. 1 2( , , , )T

pς = ς ς ς
   



represents experts’ weight vector, satisfying 0rς ≥
 and

1

1
p

r
r=

ς =∑ , and attribute weights are 
unknown.

Furthermore, ( ) ( , , )r r r r r
s t s tgh gh gh ghX x × ×= = φ σ ρ




  denotes the decision information of the 
rth expert by using SFNs, ,r r

gh ghφ σ


 and r
ghρ
 are MD, N-MD and HD about r

ghx  respectively, 
meeting the conditions: , , [0,1]r r r

gh gh ghφ σ ρ ∈


 , and 2 2 20 ( ) ( ) ( ) 1r r r
gh gh gh≤ φ + σ + ρ ≤


 (g = 1, 2, ..., s,  
h = 1, 2, ..., t, r = 1, 2, ..., p).

In the following we give the general process for SF-PT-EDAS-MEREC model (also shown 
in Figure 1).

Step 1. Obtain evaluation information from DMs with the linguistic terms shown in Ta-
ble 1.

Step 2. Aggregate all DMs’ evaluation information ( ) ( 1,2, , )r r
s tghX x r p×= =





  to acquire 
group decision information ( )gh s tZ z ×=



 by employing SWAM operator. 

 
1 2 1 2

1 2( , , ) SWAM ( , , , )p p
gh gh gh gh pgh gh gh gh gh ghz x x x x x xς= ϖ γ ϕ = = ς + ς + + ς =

           

 

    

2 1/2

1 1

2 2 2 1/2

1 1

[1 (1 ( ) ) ] , ( ) ,

.

[ (1 ( ) ) (1 ( ) ( ) ) ]

r r

r r

p p
r r
gh gh

r r
p p

r r r
gh gh gh

r r

ς ς

= =

ς ς

= =

 
 − − φ σ
 
 
 

− φ − − φ − ρ  
 

∏ ∏

∏ ∏

 

 





 



                                     (35)
 

Step 3. Calculate the average solution for each attribute with Eq. (36):

 1

1( ) ( , , )
s

h gh h h hg
z z

s =
= ⊕ = ϖ γ ϕ ,  (36)

where hz denotes the average solution of the hth attribute.
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Step 4. Compute the distance from the average solution for each alternative under different 
attributes by Eq. (37):

 
( )2 2 2 2 2 21d( , ) | | | | | |

2gh h gh h gh h gh hz z = ϖ −ϖ + γ − γ + ϕ −ϕ
   ,  (37)

where d( , )gh hz z  denotes the distance between the gth alternative and the average solution 
under the hth attribute, and g = 1, 2, ..., s; h = 1, 2, ..., t.

Step 5. Construct prospect PDA (PPDA) and prospect NDA (PNDA).
For benefit attribute, PPDA and PNDA are given as:

 

( )

( )

max 0, d( , )
, if S ( ) S ( )

S ( )

max 0, d( , )
, if S ( ) S ( )

S ( )

gh h

gh h
h

gh

gh h

gh h
h

z z
z z

zPPDA
z z

z z
z

a

b

  
 
  ′′ ′′≥

′′=    −l    ′′ ′′< ′′









  (38)

and 

 

( )

( )

max 0, d( , )
, if S ( ) S ( )

S ( ) .
max 0, d( , )

, if S ( ) S ( )
S ( )

gh h

h gh
h

gh

gh h

h gh
h

z z
z z

zPNDA
z z

z z
z

b

a

  l 
  ′′ ′′≥

′′=    −    ′′ ′′< ′′









  (39)

Furthermore, PPDA and PNDA of cost attributes depending on Eqs (40)–(41):

 

( )

( )

max 0, d( , )
, if S ( ) S ( )

S ( )

max 0, d( , )
, if S ( ) S ( )

S ( )

gh h

h gh
h

gh

gh h

h gh
h

z z
z z

zPPDA
z z

z z
z

a

b

  
 
  ′′ ′′≥

′′=    −l    ′′ ′′< ′′









  (40)

and

 

( )

( )

max 0, d( , )
, if S ( ) S ( )

S ( ) ,
max 0, d( , )

, if S ( ) S ( )
S ( )

gh h

gh h
h

gh

gh h

gh h
h

z z
z z

zPNDA
z z

z z
z

b

a

  l 
  ′′ ′′≥

′′=    −    ′′ ′′< ′′









 

 (41)

where a, b and l are parameters defined in Section 2.4. Usually, a = 0.88, b = 0.88, l = 2.25 
based on experimental verification of Kahneman and Tversky (1979).

Step 6. Use the MEREC to obtain attribute weight in SFSs, the calculation processes are 
as follows:

(1) Construct the normalized spherical fuzzy group score values
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minS ( )
, for benefit attribute

S ( )
S ( )

, for cost attribute
maxS ( )

ghg

gh
gh

gh

ghg

z

z
a z

z

′′

 ′′=  ′′

 ′′










,  (42)

where S ( )ghz′′  denotes score of ghz ,which is obtained by Eq. (34).
(2) Calculate the overall performance Ag of each alternative.

 1

1ln 1 ln ,
t

g gh
h

A a
t =

  
  = +

    
∑  g = 1, 2, ..., s.  (43)

(3) Figure out the performance of alternatives by removing each attribute

 
1,

1ˆ ln 1 ln ,
t

gh gj
j j h

A a
t = ≠

  
  = +
  

  
∑  g = 1, 2, ..., s, h = 1, 2, ..., t.  (44)

     where ˆ
ghA is the overall performance of alternative STg after removing attribute SSh.

(4) Compute the summation of absolute deviations by Eq. (45):

 1

ˆ ,
s

h gh g
g

SD A A
=

= −∑  h = 1, 2, ..., t.  (45)

(5) Get the weight of each attribute by Eq. (46):

 1

,h
h t

h
h

SD

SD
=

∞ =

∑
  h = 1, 2, ..., t,  (46)

     where h∞
 indicates the weight for the hth attribute.

Step 7. Determine probability weights.

 

1

1

, if S ( ) S ( )

( (1 ) ) ,
, if S ( ) S ( )

( (1 ) )

h
gh h

hhgh
h

gh h

hh

z z

z z

h

h h h

d

d d d

 ∞
′′ ′′ ≥


 ∞ + −∞τ = 

∞ ′′ ′′<
 ∞ + −∞





 





 

  (47)

where h, d are parameters defined in Section 2.4. In general, h = 0.61, d = 0.69 based on 
experimental verification of Tversky and Kahneman (1992).

Step 8. Get the weighted PPDA as well as the weighted PNDA by Eqs (48)–(49):

 1

,
t

g gh gh
h

SP PPDA
=

= τ ⋅∑  g = 1, 2, ..., s;  (48)
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 1

,
t

g gh gh
h

SN PNDA
=

= τ ⋅∑  g = 1, 2, ..., s,  (49)

where SPg and SNg represent the weighted PPDA and weighted PNDA of the gth alternative 
respectively.

Step 9. Standardize the weighted PPDA as well as the weighted PNDA by Eqs (50)–(51):

 

,
max

g
g

gg

SP
NSP

SP
=  g = 1, 2, ..., s;  (50)

      

1 ,
max

g
g

gg

SN
NSN

SN
= −  g = 1, 2, ..., s.  (51)

Step 10. Calculate the evaluation score ESg for each alternative with Eq. (52) and get the 
desirable alternative. Among them, the higher the evaluation score is, the better the alter-
native will be.

 

1 ( ),
2g g gES NSP NSN= +  g = 1, 2, ..., s.  (52)

Figure 1. The flow chart for SF-PT-EDAS-MEREC model

Step 1. Obtain evaluation information from 
DMs utilizing the linguistic terms 

Step 2. Construct the group decision 
information 

Step 6. Use the MEREC to acquire attribute weights 
under SFSs 
(1) Normalize the scores for group decision 

information; 
(2) Construct the overall performance for each 

alternative; 
(3) Figure out the performance of alternative by 

removing each attribute; 
(4) Compute the summation of absolute deviations; 
(5) Get the weight of each attribute. 

Step 8. Obtain values of the weighted 
PPDA and weighted PNDA 

Step 9. Standardize the weighted PPDA 
and weighted PNDA 

Step 10. Compute the evaluation scores 
for alternatives and get the optimal one 

Step 7. Determine probability weights 

Step 3. Get the average 
solution of each attribute 

Step 5. Construct PPDA 
and PNDA 

Step 4. Figure out the 
distance between each 
alternative and average 
solution 
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Table 1. Linguistic terms and their corresponding SFNs (Gundogdu & Kahraman, 2019)

Linguistic terms ( , , )φ σ ρ




Extremely very significant (EVS) (0.9,0.1,0.1)
Very significant (VS) (0.8,0.2,0.2)
Significant (S) (0.7,0.3,0.3)
Relative significant (RS) (0.6,0.4,0.4)
Averagely significant (AS) (0.5,0.5,0.5)
Slightly significant (SLS) (0.4,0.6,0.4)
Not significant (NS) (0.3,0.7,0.3)
Very unsignificant (VU) (0.2,0.8,0.2)
Extremely very insignificant (EVI) (0.1,0.9,0.1)

4. Numerical examples and comparative analysis

4.1. The numerical example of spherical fuzzy MAGDM

Example 1. The rapid development of economy promotes the continuous increase of people’s 
income. In today’s society, people’s awareness of financial management and investment is 
increasing day by day, more and more investors choose to invest in stocks to seek excess 
returns. However, stock investment is a high risk and high return, blind investment may lead 
to unsatisfactory investment returns and even bring economic losses. So scientific and rea-
sonable stock selection is of great significance for investors to reduce investment risk and get 
better investment return. In order to choose the most suitable stocks to invest, some investors 
invite three experts (EX1, EX2, EX3) to evaluate the five candidate stocks STe (e = 1, ..., 5)  
by considering the following four attributes: SS1 (Earnings per share), SS2 (Net value per 
share), SS3 (Profit growth rate), SS4 (Asset-liability ratio). Among them, the others are benefit 
attributes except SS4. Furthermore, (0.40,0.35,0.25)Tς =



 denotes experts’ weight vector, and 
attribute weight information is unknown. The evaluation information from EX1, EX2, EX3 
with SFNs are displayed in Table 2. Then we employ SF-PT-EDAS-MEREC model to help 
investors select the best stock.

Table 2. Evaluation information from experts

DMs Alternatives SS1 SS2 SS3 SS4

EX1

ST1 S VS SLS AS
ST2 S SLS VS RS
ST3 VS S EVS AS
ST4 S NS RS S
ST5 RS VU S S
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DMs Alternatives SS1 SS2 SS3 SS4

EX2

ST1 VU RS EVS VU
ST2 EVS AS S VS
ST3 EVI S S NS
ST4 S SLS RS S
ST5 S RS NS VU

EX3

ST1 VU VU RS AS
ST2 VS AS VS VS
ST3 NS SLS AS NS
ST4 VS VU NS RS
ST5 RS VS VS AS

Step 1. Assessment information from experts is given in Table 2, then so Step 1 is done.

Step 2. Aggregate individual evaluation information by Eq. (35) to get group decision 
information (See Table 3).

Table 3. The group decision information 

Alternatives SS1 SS2 SS3 SS4

ST1 (0.50,0.54,0.27) (0.66,0.36,0.29) (0.73,0.29,0.27) (0.43,0.59,0.45)
ST2 (0.82,0.18,0.20) (0.46,0.54,0.47) (0.77,0.23,0.23) (0.74,0.26,0.28)
ST3 (0.59,0.46,0.22) (0.65,0.36,0.32) (0.79,0.22,0.26) (0.40,0.61,0.41)
ST4 (0.73,0.27,0.27) (0.32,0.69,0.33) (0.55,0.46,0.39) (0.68,0.32,0.32)
ST5 (0.64,0.36,0.36) (0.59,0.44,0.30) (0.65,0.36,0.28) (0.55,0.48,0.35)

Step 3. Calculate the average solution of each attribute with (36) as shown in Table 4.

Table 4. The average solution of each attribute 

SS1 SS2 SS3 SS4

(0.68,0.34,0.27) (0.56,0.46,0.35) (0.71,0.30,0.28) (0.59,0.43,0.36)

Step 4. Compute the distance from the average solution for each alternative under different 
attributes by Eq. (37) (See Table 5).

Table 5. The distance of each alternative from the average solution under different attributes

Alternatives SS1 SS2 SS3 SS4

ST1 0.19329 0.12052 0.01869 0.19880
ST2 0.16012 0.13864 0.07410 0.18329
ST3 0.11787 0.10354 0.08517 0.20995
ST4 0.05593 0.24146 0.19895 0.10848
ST5 0.06530 0.03904 0.06376 0.04980

End of Table 2
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Step 5. Calculate PPDA and PNDA of each attribute by Eqs (38)–(41), as illustrated in 
Tables 6–7 (where a = 0.88, b = 0.88, l = 2.25 based on the study of Kahneman and Tversky 
(1979), they have been accepted by most researchers).

Table 6. The PPDA for each attribute

Alternatives SS1 SS2 SS3 SS4

ST1 0.00000 0.48645 0.06631 0.70559
ST2 0.47886 0.00000 0.22289 0.00000
ST3 0.00000 0.42560 0.25193 0.74031
ST4 0.18977 0.00000 0.00000 0.00000
ST5 0.00000 0.18039 0.00000 0.20868

Table 7. The PNDA for each attribute

Alternative SS1 SS2 SS3 SS4

ST1 1.27159 0.00000 0.00000 0.00000
ST2 0.00000 1.23809 0.00000 1.47805
ST3 0.82283 0.00000 0.00000 0.00000
ST4 0.00000 2.01743 1.19594 0.93162
ST5 0.48930 0.00000 0.43936 0.00000

Step 6. Obtain the attribute weights with Eqs (42)–(46), the calculation processes are shown 
in Table 8 to Table 12 as follows:

Table 8. Normalized group score values 

 Alternatives SS1 SS2 SS3 SS4

ST1 1.00000 0.44983 0.65421 0.47733
ST2 0.46527 0.69998 0.59785 1.00000
ST3 0.82094 0.45999 0.56146 0.44361
ST4 0.58478 1.00000 1.00000 0.86271
ST5 0.71558 0.53146 0.80255 0.63606

Table 9. Overall performance Ag for each alternative

SS1 SS2 SS3 SS4 SS1

Ag 0.39924 0.34293 0.46434 0.15790 0.34345

Table 10. The values of ˆ
ghA

Alternatives SS1 SS2 SS3 SS4

ST1 0.39924 0.25539 0.32542 0.26682
ST2 0.19703 0.27755 0.24722 0.34293
ST3 0.43285 0.33421 0.36926 0.32770
ST4 0.03625 0.15790 0.15790 0.12586
ST5 0.28227 0.22456 0.30367 0.25981
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Table 11. The sum of absolute deviations SDh for each attribute

SS1 SS2 SS3 SS4

SDh 0.36021 0.45825 0.30440 0.38474

Table 12. Attribute weight h∞
  

SS1 SS2 SS3 SS4

h∞


0.23893 0.30396 0.20191 0.25520

Step 7. Determine probability weights based on Eq. (47) (where h = 0.61, d = 0.69 based 
on the study of Tversky and Kahneman (1992), they have been accepted by most research-
ers.) (See Table 13).

Table 13. Probability weights 

Alternatives SS1 SS2 SS3 SS4

ST1 0.28569 0.32049 0.26197 0.29716
ST2 0.28435 0.33020 0.26197 0.29371
ST3 0.28569 0.32049 0.26197 0.29716
ST4 0.28435 0.33020 0.25848 0.29371
ST5 0.28569 0.32049 0.25848 0.29716

Step 8. Determine the weighted PPDA and weighted PNDA for the alternatives by Eqs 
(48)–(49), as displayed in Table 14.

Table 14. Weighted PPDA and weighted PNDA

Alternatives Weighted PPDA (SPg) Weighted PNDA (SNg)

ST1 0.38294 0.36328
ST2 0.19455 0.84292
ST3 0.42238 0.23507
ST4 0.05396 1.24889
ST5 0.11983 0.25335

Step 9. Standardize the weighted PPDA as well as weighted PNDA with Eqs (50)–(51) (See 
Table 15).

Table 15. Normalized weighted PPDA and weighted PNDA

Alternatives Normalized weighted PPDA (SPg) Normalized weighted PNDA (SNg)

ST1 0.90662 0.70912
ST2 0.46060 0.32506
ST3 1.00000 0.81178
ST4 0.12775 0.00000
ST5 0.28369 0.79714
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Step 10. Determine evaluation score for each alternative by Eq. (52) and rank evaluation 
scores to get the ideal alternative (See Table 16).

Table 16. Evaluation scores of alternatives and ranking order

Alternatives  Evaluation scores of alternatives (ESg)  Ranking order

ST1 0.80787

 ST3 > ST1 > ST5 > ST2 > ST4 
ST2 0.39283
ST3 0.90589
ST4 0.06388
ST5 0.54041

By Table 16, ST3 is the best alternative.

4.2. Comparative analysis 

4.2.1. Compare SF-PT-EDAS-MEREC with some spherical fuzzy operators

In this subsection, we compare the presented SF-PT-EDAS-MEREC model with SWAM 
operator (Gundogdu & Kahraman, 2019), SWGM operator (Gundogdu & Kahraman, 2019), 
spherical weighted averaging aggregation (SFNWAA) operator (Ashraf et al., 2019), spherical 
weighted geometric aggregation (SFNWGA) operator (Ashraf et al., 2019), spherical fuzzy 
weighted averaging interaction (SFWAI) operator (Ju et al., 2021) as well as spherical fuzzy 
weighted geometric interaction (SFWGI) operator (Ju et al., 2021). As can be seen from Table 
17 to Table 22, ST3 is always the best alternative.

Table 17. SWAM operator and ranking order 

Alternatives SWAM Scores Ranking order

ST1 (0.64502, 0.38055, 0.31482) 0.10471

ST3 > ST2 > ST1 > ST5 > ST4 

ST2 (0.64759, 0.37723, 0.31470) 0.10690
ST3 (0.67153, 0.34702, 0.30699) 0.13128
ST4 (0.52075, 0.50451, 0.33057) 0.00591
ST5 (0.62118, 0.39933 0.31939) 0.08469

Table 18. SWGM operator and ranking order

Alternatives SWGM Scores Ranking order

ST1 (0.49128, 0.54572, 0.33054) –0.02046

ST3 > ST2 > ST5 > ST1 > ST4 

ST2 (0.50232, 0.53222, 0.34588) –0.01025
ST3 (0.53216, 0.51215, 0.32230) 0.00800
ST4 (0.41877, 0.59881, 0.32644) –0.06566
ST5 (0.50240, 0.52937, 0.32179) –0.01047
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Table 19. SFNWAA operator and ranking order

Alternatives SFNWAA Scores  Ranking order

ST1 (0.64502, 0.38055, 0.27172) 0.66425

ST3 > ST1 > ST2 > ST5 > ST4 

ST2 (0.64759, 0.37723, 0.27863) 0.66391
ST3 (0.67153, 0.34702, 0.26619) 0.68610
ST4 (0.52075, 0.50451, 0.31146) 0.56826
ST5 (0.62118, 0.39933, 0.29145) 0.64347

Table 20. SFNWGA operator and ranking order

Alternatives SFNWGA Scores Ranking order

ST1 (0.49128, 0.54572, 0.27172) 0.55795

ST3 > ST2 > ST5 > ST1 > ST4

ST2 (0.50232, 0.53222, 0.27863) 0.56382
ST3 (0.53216, 0.51215, 0.26619) 0.58460
ST4 (0.41877, 0.59881, 0.31146) 0.50283
ST5 (0.50240, 0.52937, 0.29145) 0.56053

Table 21. SFWAI operator and ranking order

Alternatives SFWAI Scores Ranking order

ST1 (0.64502, 0.45462, 0.31482) 0.55513

ST3 > ST2 > ST1 > ST5 > ST4 

ST2 (0.64759, 0.45061, 0.31470) 0.55864
ST3 (0.67153, 0.41981, 0.30699) 0.59023
ST4 (0.52075, 0.54773, 0.33057) 0.43095
ST5 (0.62118, 0.45591, 0.31939) 0.53800

Table 22. SFWGI operator and ranking order

Alternatives SFWGI Scores Ranking order

ST1 (0.56106, 0.54572, 0.33054) 0.45386

ST3 > ST5 > ST2 > ST1 > ST4

ST2 (0.56442, 0.53222, 0.34588) 0.45784
ST3 (0.59603, 0.51215, 0.32230) 0.49454
ST4 (0.46402, 0.59881, 0.32644) 0.37509
ST5 (0.55853, 0.52937, 0.32179) 0.46408

4.2.2. Compare SF-PT-EDAS-MEREC model with some  
existing MAGDM approaches in SFSs

This subsection we employ the spherical fuzzy TOPSIS (SF-TOPSIS) approach (Kutlu 
Gündoğdu & Kahraman, 2021), spherical fuzzy EDAS (SF-EDAS) approach (Menekse 
& Akdag, 2022) and spherical fuzzy WASPAS (SF-WASPAS) approach (Boltürk & Kutlu 
Gündoğdu, 2021) to attest the legality for the developed model. In the light of the data in 
Table 2 as well as attribute weights, the computing results are listed in Table 23 to Table 25 
respectively.
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Table 23. The closeness ratios for alternatives and ranking order using SF-TOPSIS 

ST1 ST2 ST3 ST4 ST5

Closeness ratios 0.57414 0.53635 0.64261 0.31971 0.57476
Ranking order ST3 > ST5 > ST1 > ST2 > ST4

Table 24. The appraisal scores and ranking order of alternatives by SF-EDAS

ST1 ST2 ST3 ST4 ST5

Appraisal scores 0.27060 0.16712 0.69594 0.06760 0.32533
Ranking order ST3 > ST5 > ST1 > ST2 > ST4

Table 25. The joint generalized scores and ranking order of alternatives by SF-WASPAS

ST1 ST2 ST3 ST4 ST5

Joint generalized scores 0.09887 0.05590 0.12572 –0.02128 0.08414
Ranking order ST3 > ST1 > ST5 > ST2 > ST4

Clearly, as you can see from Tables 23–25, alternative ST3 is always the best. Moreover, 
Table 26 gives the ranking order for different approaches.

Table 26. The ranging order for different methods

 Methods  Ranking orders

SWAM (Gundogdu & Kahraman, 2019) ST3 > ST2 > ST1 > ST5 > ST4

SWGM (Gundogdu & Kahraman, 2019) ST3 > ST2 > ST5 > ST1 > ST4

SFNWAA (Ashraf et al., 2019) ST3 > ST1 > ST2 > ST5 > ST4

SFNWGA (Ashraf et al., 2019) ST3 > ST2 > ST5 > ST1 > ST4

SFWAI (Ju et al., 2021) ST3 > ST2 > ST1 > ST5 > ST4

SFWGI (Ju et al., 2021) ST3 > ST5 > ST2 > ST1 > ST4

SF-TOPSIS (Kutlu Gündoğdu & Kahraman, 2021) ST3 > ST5 > ST1 > ST2 > ST4

SF-EDAS (Menekse & Akdag, 2022) ST3 > ST5 > ST1 > ST2 > ST4

SF-WASPAS (Boltürk & Kutlu Gündoğdu, 2021)  
(threshold parameter m = 0.5) ST3 > ST1 > ST5 > ST2 > ST4

The proposed SF-PT-EDAS-MEREC ST3 > ST1 > ST5 > ST2 > ST4

4.2.3. Contrastive analysis

By Table 26, with the exception of SF-WASPAS approach, the ordering of the SF-PT-EDAS-
MEREC model is different from that of the other aforementioned existing methods. But the 
choices for best and worst alternatives are consistent among all methods. The above compari-
son strongly explains the legality for SF-PT-EDAS-MEREC model. In the decision-making 
process, SWAM, SWGM, SFNWAA and SFWGA operators emphasize the overall impact, 
whereas SFWAI as well as SFWGI operators focus on individual effect. SF-TOPSIS approach 
evaluate each alternative by measuring its distance from the ideal solutions. SF-EDAS ap-



1374 H. Zhang et al. An integrated decision support system for stock investment based on spherical ...

proach obtains the optimal alternative by measuring the positive and negative distances from 
the average values. SF-WASPAS approach integrates weighted sum model as well as weighted 
product model in evaluating each set of attributes for different alternatives. Each method 
has its own characteristics. However, the developed model not only utilizes the simplic-
ity and stability of EDAS method in the process of alternative ranking, but also uses PT to 
fully consider the DMs’ risk attitude when facing gains and losses. Furthermore, we use the 
developed new score function to extend MEREC to SFSs in objectively obtaining unknown 
attribute weights. Therefore, the proposed model will be more scientific and practical for 
stock investment selection. 

4.3. Another numerical example of spherical fuzzy MAGDM

Example 2. In this subsection, a new example of stock investment selection (adapted from 
Zhao et al., 2021) is presented to further illustrate the effectiveness of the proposed model. 
In the stock market, how to choose valuable stocks efficaciously is the key issue of invest-
ment decision. For investors who invest in stocks for the long term, it is important not only 
to focus on the companies corresponding to the stocks, but also to consider the amount 
of shareholder returns and the future development prospects of the industry. According to 
the above analysis and investigation, the following four indicators SSh (h = 1, 2, ..., 4) are 
chosen as the evaluation factors for stock investment: (1) SS1 is the industrial development 
prospect, (2) SS2 is the influence degree of economic environment, (3) SS3 is the sustainable 
competitiveness of enterprises, (4) SS4 is the degree of stock market price below its intrinsic 
value. Among them, SS2 is the cost attribute. Three senior experts evaluated the five candidate 
stocks STe (e = 1, ..., 5) according to the above four attributes. (0.28,0.42,0.30)Tς =

 denotes 
experts’ weight vector, and attribute weight information is unknown. The evaluation informa-
tion from three senior experts with SFNs are displayed in Tables 27–29.

Table 27. Evaluation information from expert 1 in Example 2

Alternatives SS1 SS2

ST1 (0.3856,0.5529,0.0615) (0.2231,0.3628,0.4141)
ST2 (0.2576,0.3281,0.4143) (0.3587,0.2945,0.3468)
ST3 (0.6394,0.2419,0.1187) (0.5412,0.2198,0.2390)
ST4 (0.2688,0.6523,0.0789) (0.6451,0.2548,0.1001)
ST5 (0.6231,0.3514,0.0255) (0.3561,0.5482,0.0957)

SS3 SS4

ST1 (0.4512,0.3264,0.2224) (0.2287,0.4256,0.3457)
ST2 (0.2366,0.6809,0.0825) (0.6201,0.3692,0.0107)
ST3 (0.7012,0.2654,0.0334) (0.5480,0.3648,0.0872)
ST4 (0.3642,0.3974,0.2384) (0.6946,0.3021,0.0033)
ST5 (0.3422,0.4593,0.1985) (0.1024,0.7452,0.1524)
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Table 28. Evaluation information from expert 2 in Example 2

Alternatives SS1 SS2

ST1 (0.4125,0.3298,0.2577) (0.2654,0.6542,0.0804)
ST2 (0.4548,0.2212,0.3240) (0.5213,0.3505,0.1282)
ST3 (0.8121,0.0023,0.1856) (0.7111,0.2568,0.0321)
ST4 (0.3254,0.3649,0.3097) (0.7032,0.2513,0.0455)
ST5 (0.7412,0.1011,0.1577) (0.3458,0.2649,0.3893)

 SS3 SS4

ST1 (0.1165,0.3648,0.5187) (0.3454,0.6512,0.0034)
ST2 (0.6245,0.3614,0.0141) (0.3344,0.6215,0.0441)
ST3 (0.5807,0.3196,0.0997) (0.3681,0.4982,0.1337)
ST4 (0.2569,0.6154,0.1277) (0.6412,0.3216,0.0372)
ST5 (0.4485,0.3151,0.2364) (0.6635,0.0257,0.3108)

Table 29. Evaluation information from expert 3 in Example 2

Alternatives SS1 SS2

ST1 (0.4261,0.2357,0.3382) (0.6244,0.3011,0.0745)
ST2 (0.5214,0.3548,0.1238) (0.3257,0.3389,0.3354)
ST3 (0.7331,0.2199,0.0470) (0.3518,0.6411,0.0071)
ST4 (0.6542,0.1798,0.1660) (0.3694,0.2584,0.3722)
ST5 (0.1241,0.6157,0.2602) (0.7122,0.1113,0.1765)

 SS3 SS4

ST1 (0.3254,0.1277,0.5469) (0.3658,0.6222,0.0120)
ST2 (0.1213,0.7418,0.1369) (0.4533,0.2134,0.3333)
ST3 (0.5432,0.3588,0.0980) (0.5423,0.3125,0.1452)
ST4 (0.6425,0.3201,0.0374) (0.6152,0.3648,0.0200)
ST5 (0.2548,0.4567,0.2885) (0.6245,0.3657,0.0098)

Next, we use the proposed model and the aforementioned existing methods to solve 
Example 2 respectively, and the evaluation results are shown in Table 30. 

As can be seen from Table 30, the ranking of SF-PT-EDAS-MEREC method is different 
from the existing methods, but the optimal scheme selection of all methods is ST3. The above 
analysis further proves the effectiveness of our proposed model. In addition, as mentioned in 
the comparative analysis of subsection 4.2.3, different methods have their own characteristics 
in the evaluation of schemes. However, compared with the existing methods, the proposed 
model not only considers the psychological behavior factors of DMs in the evaluation pro-
cess, but also provides a new research perspective for the reasonable acquisition of attribute 
weights in fuzzy environment via using the newly proposed score function to extend MEREC 
to SFSs. In addition, compared with the proposed model in reference (Zhao et al., 2021), 
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although the optimal scheme and the worst scheme selection for the two models are consis-
tent, SF-PT-EDAS-MEREC model not only utilizes SFSs as tools to express DMs’ information 
preferences more deeply and comprehensively and make up for the deficiency of IFSs, but 
also adopts a new viewpoint which is to obtain attribute weight information effectively and 
flexibly by measuring the impact of each attribute’s removal effect on the overall performance 
of the alternative. Therefore, the proposed model in this paper is more practical and scientific 
for dealing with the problem of stock investment selection.

Conclusions

In this article, we develop a new IDSS called SF-PT-EDAS-MEREC model for settling MAG-
DM issues. Firstly, we review some basic knowledge of SFSs, and describe the basic ideas 
of MEREC, EDAS method and PT. Then we present a novel score function for comparing 
SFNs more directly and efficiently. What’s more, we develop a SF-PT-EDAS-MEREC model 
by integrating SFSs, PT, EDAS method and MEREC for settling uncertain issues. Finally, 
we use SF-PT-EDAS-MEREC model for the problem of stock investment selection to prove 
practicability of the established model. In the meantime, we compare the developed model 
by existing approaches under SFSs to further demonstrate its legitimacy and superiority. 
Hence, the primary achievements for this article are: (1) to propose a novel score function 
to compare the sizes of SFNs more effectively; (2) to integrate PT into the decision-making 
process to ameliorate the conventional EDAS approach to fully capture the psychological 
feelings of DMs; (3) to extend MEREC to acquire unknown attribute weights reasonably in 
SFSs; (4) to develop a SF-PT-EDAS-MEREC model for MAGDM problems; (5) to elucidate 
the practicability of the established model by two examples of stock investment selection 
and to attest the effectiveness and meliority for the proposed model by further comparison. 
The developed model of the thesis not only provides DMs with a wider space of information 
expression but also fully considers the mental characteristics of DMs when they are faced 
with gains and losses. Meantime, the MEREC is employed to acquire unknown attribute 

Table 30. The ranking order for different methods in Example 2

 Methods  Ranking orders

SWAM (Gundogdu & Kahraman, 2019) ST3 > ST5 > ST4 > ST2 > ST1

SWGM (Gundogdu & Kahraman, 2019) ST3 > ST1 > ST5 > ST2 > ST4

SFNWAA (Ashraf et al., 2019) ST3 > ST5 > ST4 > ST1 > ST2

SFNWGA (Ashraf et al., 2019) ST3 > ST4 > ST2 > ST1 > ST5

SFWAI (Ju et al., 2021) ST3 > ST5 > ST4 > ST2 > ST1

SFWGI (Ju et al., 2021) ST3 > ST5 > ST4 > ST2 > ST1

SF-TOPSIS (Kutlu Gündoğdu & Kahraman, 2021) ST3 > ST5 > ST1 > ST4 > ST2

SF-EDAS (Menekse & Akdag, 2022) ST3 > ST5 > ST1 > ST4 > ST2

SF-WASPAS (Boltürk & Kutlu Gündoğdu, 2021) 
(threshold parameter m = 0.5) ST3 > ST5 > ST4 > ST2 > ST1

The proposed SF-PT-EDAS-MEREC ST3 > ST5 > ST2 > ST4 > ST1
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weights and enhance the rationality of weight information. Therefore, the presented model 
will be more scientific and practical in dealing with MAGDM problems. In view of these, 
future study will apply the established model to assist companies or individuals deal with 
some other uncertain problems such as project safety evaluation, supplier selection, tourism 
management evaluation, residential location choice.

Nonetheless, the proposed model also faces some disadvantages. For one thing, the 
calculation process is relatively complex. For another, the developed model in this paper 
only considers the case where the evaluation information is SFN, but actual evaluation may 
confront various different decision-making environments, so subsequent research will focus 
on the further expansion of the established model in other decision-making environments 
(e.g., probabilistic hesitant FSs, linguistic neutrosophic sets, Z-numbers, T-spherical fuzzy 
soft sets). In addition, the established model only uses MEREC to acquire attribute weights 
by measuring alternatives performances in the decision matrix without thinking about the 
judgment from experts. Although it reduces the bias of DMs’ subjectivity, it also ignores the 
valuable judgment of some experienced experts. Therefore, future study will also further 
pay attention to the combination of MEREC and some subjective weight methods (such as 
SWARA, KEMIRA, FUCOM and DEMATEL), so as to obtain more sound weight informa-
tion and enhance the accuracy of decision making. 
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