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Abstract. Probability weighting function (PWF) is the psychological probability of a decision-maker for ob-
jective probability, which reflects and predicts the risk preferences of decision-maker in behavioral decision-
making. The existing approaches to PWF estimation generally include parametric methodologies to PWF con-
struction and nonparametric elicitation of PWF. However, few of them explores the combination of parametric 
and nonparametric elicitation approaches to approximate PWF. To describe quantitatively risk preferences, the 
Newton interpolation, as a well-established mathematical approximation approach, is introduced to task-specifi-
cally match PWF under the frameworks of prospect theory and cumulative prospect theory with descriptive psy-
chological analyses. The Newton interpolation serves as a nonparametric numerical approach to the estimation 
of PWF by fitting experimental preference points without imposing any specific parametric form assumptions. 
The elaborated nonparametric PWF model varies in accordance with the number of the experimental preference 
points elicitation in terms of its functional form. The introduction of Newton interpolation to PWF estimation 
into decision-making under risk will benefit to reflect and predict the risk preferences of decision-makers both 
at the aggregate and individual levels. The Newton interpolation-based nonparametric PWF model exhibits 
an inverse S-shaped PWF and obeys the fourfold pattern of decision-makers’ risk preferences as suggested by 
previous empirical analyses.
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Introduction

Since the publication of the seminal paper on prospect theory (PT) by Kahneman and Tver-
sky (2013), PT has become one of the most prominent decision-making theories under risk 
and uncertainty (Blanco-Mesa et al., 2017; Chen et al., 2022; Jiang et al., 2022; Wang et al., 
2023; Yu et al., 2022, 2018; Yang et al., 2022). Probability weighting function (PWF), as a 
main component of PT, has been widely studied and applied in a number of areas, including 
medical decision-making, assets portfolio, welfare lottery, organizational behavior, insur-
ance purchase and strategic decisions, due to its capability to measure the risk attitudes of 
decision-makers as well as to reflect and predict their risk preferences (Huang et al., 2021; 
Walther & Munster, 2021). Existing studies, such as Bleichrodt and Pinto (2000), also con-
cluded that ignoring probability weighting in modeling decision-making under risk and in 
utility measurement potentially produces descriptively invalid theories and distorted elicita-
tion process. For these reasons, many researchers investigated the shaping and properties 
of PWF and proposed a considerable amount of creative methodologies to elicit probability 
weighting to promisingly reflect and predict the risk preferences of decision-makers.

The existing approaches to PWF estimation can be divided into two main categories, 
namely, parametric methodologies to the PWF construction (i.e., assuming specific para-
metric forms to accommodate the features of PWF) (Barberis, 2018; Bernheim & Sprenger, 
2020; Baillon et al., 2022) and nonparametric elicitation of PWF (i.e., eliciting the preference 
functional of a decision-maker without imposing any prior assumptions) (Wu et al., 2021). 
However, to quantitatively estimate the PWF, some functional forms (e.g., one-parameter, 
two-parameter and multi-parameter forms) must be assumed. As a result, the shape and 
properties of PWF will be solely determined as per the choice of functional forms. If the 
true functional form is different from the assumed functional form, then it cannot flexibly 
reflect and predict the risk preferences of decision-maker. To circumvent this problem and 
attempt a new estimation with as few assumptions as possible, several researchers proposed 
and implemented a nonparametric approach to elicit utility function and PWF under differ-
ent theoretical frameworks (i.e., rank-dependent expected utility theory (RDEU), prospect 
theory (PT) and cumulative prospect theory (CPT) (Chen et al., 2021; Ruggeri et al., 2020; 
Wang et al., 2020) without specifying their functional forms.

In this paper, a rational nonparametric PWF model-based numerical approach is present-
ed to approximate PWF under the frameworks of PT and CPT with descriptive psychological 
analysis. Although this approach is nonparametric, it absorbs the advantages of parameter 
approach by means of utilizing parameter models to infer several computation preference 
points. In actual decision-making, a nonparametric PWF model is proposed to reflect the 
risk preferences of decision-maker, as long as some preference information of decision-maker 
are proved or collected. Based on the constructed PWF model, we can predict the risk pref-
erence of decision-maker so that it provides the basis for behavior decision-making. More 
specifically, this nonparametric numerical approach is conducted as described in the subse-
quent paragraph.

Firstly, a numerical approximation approach, namely, Newton interpolation, is introduced 
to approximate the PWF. Secondly, an elicitation method, namely, certainty equivalent meth-
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od, is used to elicit the PWF under the frameworks of PT and CPT in order to collect several 
experimental preference points. Thirdly, in order to obtain more preference information of 
decision-maker from the collected experimental preference points, an appropriate parameter 
PWF model (prelec’s PWF) is chosen to infer several computation preference points, and 
the parameters of prelec’s PWF are determined by parameter estimate and measurement of 
fit. Finally, to build a nonparametric numerical model, Newton interpolation is used to ap-
proximate the obtained preference points.

This paper proposes and uses Newton interpolation approach to approximate PWF to 
reflect and predict the risk preferences of decision-maker both at the aggregate and indi-
vidual data levels. Empirical studies apply the aggregate data from Tversky and Kahneman 
(1992) and the individual data from Gonzalez and Wu (1999) because of the limitations of 
conditions. A comparative analysis is conducted to compare the performances of prelec’s 
two-parameter model and the proposed nonparametric numerical model. The results are 
consistent with the previous studies that PWF is non-linear with inverse S-shape, and has 
a fourfold pattern of risk preferences (i.e., overweighting for small probabilities and under-
weighting for big probabilities. Moreover, decision-maker is more sensitive to loss than gain 
and more sensitive to high than low monetary outcomes).

This paper is organized as follows: The next section presents the extant literature and 
its development status. Section 2 describes some preliminaries to propose a nonparametric 
numerical approach. Section 3 firstly introduces the Newton interpolation approach, and 
then a nonparametric numerical approach is proposed to build a nonparametric numerical 
PWF model. Section 4 elaborates on some empirical evidences based on the experimental 
data coming from Tversky and Kahneman (1992) and Gonzalez and Wu (1999). The last 
section concludes and discusses the contribution, as well as proposes the potential research 
directions.

1. Literature review

This paper proposed a nonparametric numerical approach to approach PWF to reflect and 
predict the risk preferences of decision-maker. However, different risk preferences generate 
different shapes of PWF. There are a lot of factors to affect the risk preferences of people, such 
as gender, method of obtaining information, environment and differences among countries 
and regions. Researchers made substantial contributions to measure the risk preferences of 
decision-maker in each aspect. For instance, Croson and Gneezy (2009) indicated gender 
differences in risk, social and competitive preferences with women being more risk-aversion 
than men. Von Gaudecker et al. (2011) used a large amount of experimental data to analyze 
the heterogeneity of risk preferences. Tanaka et al. (2010) conducted experiments in Viet-
namese villages to directly measure risk and time preferences of individuals. Rieger et al. 
(2015) conducted a survey on risk attitudes in 53 countries to measure these cross-country 
differences, the main finding is that there are substantial cross-country differences in risk 
attitudes that depend not only on economic conditions but also on cultural factors. Rous-
sanov and Savor (2014) explored that marital status could both reflect and affect individual 
preferences of chief executive officers.
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To estimate risk preferences of different decision-makers, Van Ryzin and Vulcano (2015) 
proposed an approach for estimating preferences with defining a choice model based on a 
discrete probability mass function. Petrova et al. (2014) investigated the interactive influence 
of affective and cognitive skills on probability weighting, and studied the numerical effect 
on probability weighting. In this paper, we proposed a nonparametric PWF model-based 
numerical approach for reflecting and predicting the risk preferences of different decision-
makers. The model was built by integrating parameter model and nonparametric approaches. 

Tversky and Kahneman (1992) utilized a one-parameter power function to fit PWF, the 
obtained function encompasses weighting functions with both concave and convex parts. 
Based on diagonal concavity, sub-proportionality and compound invariance of PWF, Prelec 
(1998) found an exponential functional form. Tversky and Fox (1995) and Prelec (1998) 
presented a different two-parameter PWF model. They both deeded that two parameters 
forming the shape of PWF could well reflect its psychological preference properties, i.e., a 
parameter control curvature of PWF, the other parameter control its elevation. Gonzalez 
and Wu (1999) considered that the weighting function was not a subjective probability but 
rather a distortion of the given probability, they added a different psychological concept for 
two-parameter PWF models, i.e., discriminability and attractiveness relative to curvature 
and elevation. More specifically, discriminability is related to the slope of PWF, attractive-
ness exhibits the risk preferences of decision-maker. Brandstätter et al. (2002) presented an 
empirical approach to reconstruct two-parameter PWF by using the notions of elation and 
disappointment, that is, expected elation (anticipated elation weighted its probability of oc-
currence) and expected disappointment (anticipated disappointment weighted its likelihood 
probability of occurrence). Abdellaoui et al. (2010) offered a preference foundation for a two-
parameter family of PWF and utilized two aspects of probabilistic risk attitudes’ two aspects, 
namely, optimism and pessimism, to interpret the psychological arguments for the separate 
components of the curvature and elevation of PWF. Based on the dual properties of PWF, 
Diecidue et al. (2009) proposed a switch-power weighting function with three parameters. 
These three parameters control the size of concave interval relative to convex interval and 
the inverse S-shaped property of PWF.

The reviewed literature provided some contributions and led to several observations. 
Firstly, they introduced several parameter models to quantitatively analyze PWF. Secondly, 
the studies used psychological knowledge to interpret the parameters of PWF. Finally, empiri-
cal studies were conducted to verify the obtained PWF model’s properties. Overall, the PWF 
of reflecting and predicting decision-makers’ risk preference has an inverse S-shape, and is 
not linear. In particular, the evidence suggested that decision-maker always overweights low 
probabilities and underweights high probabilities. For further evidence, refer to Abdellaoui 
et al. (2010), Brandstätter et al. (2002), Gonzalez and Wu (1999), Kilka and Weber (2001), 
Prelec (1998), Starmer (2000), Stewart et al. (2015), Kahneman and Tversky (1984), Wu and 
Gonzalez (1996, 1999).

An elicitation method was early proposed by Wakker and Deneffe (1996), who designed a 
tradeoff method to elicit utilities in decision under risk and uncertainty. Based on the tradeoff 
method, Abdellaoui (2000) offered a nonparametric two-step method (equally spaced out-
comes in terms of utility and equally spaced probabilities in terms of the weighting function) 
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to elicit utility function and PWF under RDEU and CPT. At the same time, Bleichrodt and 
Pinto (2000) also applied nonparametric elicitation method to elicit PWF in a new domain, 
namely, medical decision analysis domain. In addition, Abdellaoui et al. (2007), Booij and 
Van de Kuilen (2009), and Van Houtven et al. (2011) constructed a robust elicitation method 
to elicit PWFs under a different theoretical framework.

To summarize, several researchers have investigated the shape and properties of PWF. 
For instance, Prelec (1998) was devoted to deriving the observed properties of probability 
weighting from preference axioms, relying on the common-ratio effect as the basic building 
block. Diecidue et al. (2009) and Al-Nowaihi and Dhami (2010) outlined the nonlinear of 
PWF. Moreover, Cavagnaro et al. (2013) adopted an adaptive design optimization method 
to discriminate different parametric forms of the PWF. The empirical experiment shows 
that the PWF model of Prelec (1998) was the most common best-fitting models. Based on 
this reason, a nonparametric numerical approach is used to approximate PWF in this paper. 
Prelec’s two-parameter model is used to infer computation preference pints. At the same 
time, elicitation methods in decision-making under risk allow researchers to infer the PWF 
of decision-maker from the observed preference information without assuming a specific 
parametric functional form. Therefore, this paper proposes a nonparametric numerical ap-
proach to approximate PWF, combining parameter approach and nonparametric elicitation 
approach. The collected preference points come from two parts. In the first part, experimen-
tal preference points (which are defined in Definition 4) are obtained by eliciting experiment 
or questionnaire survey. In the second part, computation preference points (which are also 
defined in Definition 4) are obtained by utilizing prelec’s two-parameter model to infer sev-
eral preference points related to the elicitation experimental preference points.

2. Preliminaries

2.1. Preference relation

Let E and V be the sets whose elements are interpreted as event consequences (such as 
monetary outcomes of a lottery or gamble) of the world and the utility of corresponding 
to event consequences, respectively; P and W be the sets whose elements are the objective 
probabilities of events and the psychological probabilities of events for the decision-maker, 

0,1P =     and 0,1W =    . R is the set of real numbers. j is denoted as the impossible event, 
e as the possible event and G as a certain event, such that , Ej e∈ , and the probabilities 
are ( ) 1p G = , ( ) 0p j =  and ( )0 1p< e < . A PWF w is a mapping that assigns a number 
between 0 and 1 to the probability of each event in E. The psychological probabilities are 

( )( ) 1w p G = , ( )( ) 0w p j =  and ( )( )0 1w p< e < . For simplicity of exposition, we assume a 
finite set of monetary outcomes, such as { }1 2, , , nE = e e ⋅⋅ ⋅ e . The monetary outcomes are or-
dered from small to big, i.e., 1 2 1n n−e < e < ⋅⋅⋅ < e < e . A prospect that comprises some mon-
etary outcomes is assumed as a finite probability distribution over the set E and represented 
by ( )1 1 2 2, ; , ; ; ,n nQ p p p= e e ⋅⋅ ⋅ e , which implies that probability ( )1,2, ,ip i n=   is assigned 
to monetary outcomes i Ee ∈ , for 1,2, ,i n= ⋅⋅⋅ . The utility of the prospect Q is denoted by 
U(Q), the utility of the monetary outcomes ( )1,2, ,i i ne =   is denoted by ( ) ( )1,2, ,iv i ne =  .
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Only three types of prospects are considered in this paper, namely, certain prospects 
( ), 1e , two-outcome prospects with one zero outcome ( ), ; 0, 1p pe −  simplified as ( ), pe  
and three-outcome prospects with one zero outcome ( ), ; , ; 0, 1p q p qe e − − , also can be 
abbreviated as ( ), ; ,p qe e , and known as binary prospect. For convenience, a definition on 
preference relation is first defined in the following context.

Definition 1: The symbol 


 represents weak preference relation or “at most as good as”,  
represents strict preference relation and   denotes equivalence or indifference to prefer-
ence relation.

Note that, when some prospects ,i jq q Q∈ , if i jq q


, then that decision-maker weakly 
prefers to qj over qi; if i jq q , then that decision-maker strictly prefers to qj over qi; and if 

i jq q , which shows that decision-maker exhibits equivalence or indifference to qi and qj. 
For instance, three two-consequence prospects are exhibited as follows:

 ( )1 1 1 1 1, ; ,1q p p= e e − ,

   ( )2 2 2 2 2, ; ,1q p p= e e − , 

     ( )3 3 3 3 3, ; , 1q p p= e e − ,  (1) 
 
where 1 2 3, ,q q q Q∈ , 1 1 2 2 3 3, , , , , Ee e e e e e ∈   , and 1 2 3, ,p p p P∈ . In decision-making theory, the 
utility of the decision-maker for the three prospects are solved by the following equation:

 ( ) ( ) ( ) ( ) ( )1 , 1,2,3.i i i i iU q v w p v w p i= e + e − =

 (2)

In Eq. (2), v is a mapping from the set of monetary outcomes E into the set of real num-
bers R. Its properties will be displayed in Property 1, such that for all monetary outcomes 
1 2 3, , Ee e e ∈ , and the preference relation 



 must satisfy transitivity:

 1 2 2 3 1 3,e e e e ⇒ e e  

  

 (3)

and the symbol 


 satisfies monotonicity

 ( ) ( )1 2 1 2v ve e ⇔ e e 

 

. (4)

Eqs (3) and (4) obtain the transitive monotonicity as follows:

 ( ) ( )1 2 2 3 1 3, v ve e e e ⇒ e e  

  

. (5)

Obviously, the preference relations such as   and   also satisfy the above properties.
At the same time, w is mapped from the set of event probabilities P into the set of prob-

ability weights W. Its properties will be described again in Property 2. For preference rela-
tions, it must satisfy transitivity:

 ( ) ( ) ( ) ( ) ( ) ( )1 2 2 3 1 3,w p w p w p w p w p w p⇒  

  

. (6)

Of course, the preference relations such as   and  are also the same as 


.
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2.2. Decision-making theories

Several researchers pay attention to PT (Kahneman & Tversky, 1979) and its extension form 
CPT (Tversky & Kahneman, 1992). PT as a new behavior under risk decision model was 
proposed, which not only affected the psychology field, but also synthesized psychology and 
other subjects, such as economics, philosophy and risk management. PT distinguishes two 
phases in the choice process: (I) the framing phase, in which the decision-maker constructs 
a representation of the acts, reflecting on the value function, and (II) the valuation phase, 
in which the decision-maker assesses the probability of each prospect and chooses accord-
ingly. CPT is the extension of PT, and is a widely used descriptive model of decision-making 
under risk. They are both made up of two parts to express the utility of the decision-maker. 
This classification is attractive because people generally accepted a normative theory and its 
framework. Expect utility theory (EUT, Von Neumann & Morgenstern, 1944) is one of the 
earliest decision-making theories under risk. 

EUT offered a descriptive model of economic behavior for decision-making under risk in 
which events probabilities are given, and the utility function is a single measure to capture 
all aspects of risk attitude. Its utility of prospect Q is expressed as follows:

 ( ) 1 1 2 2EU n nU Q EP p p p= = e + e + + e . (7)

Kahneman and Tversky (1979) proposed PT as an alternative model. The utility of pros-
pect Q can be represented symbolically as:

 1

( ) ( ) ( ) ( ) ( )
n

PT i i
i

U Q V E W P v w p
=

= = e∑ , (8)

where ( ) ( )1,2, ,iw p i n=   is the probability weight of the decision-maker, which is non-
linear, has an inverse S-shape, and is regressive. Through treating probability non-linearly, 
Tversky and Kahneman (1992) attempted to capture such deviations from objective prob-
abilities formally by absorbing rank- and sign-dependent utility theories (Luce & Fishburn, 
1991) and cumulative function and improving prospect theories, as well as proposed CPT 
with a psychological interpretation for overweighting and underweighting. Using CPT, the 
utility of prospect Q can be represented as

 
( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1

h n

CPT i i i i
i i h

U Q V E W P v w p v w p− −

= = +

= = e + e∑ ∑

  , (9)

where, the reference point is r, and 1 2 1h h nr +e e e e e     . ( )w p−
  and +( )w p  

are the cumulative probability distribution function of the decision-making result. More 
specifically, ( )w p−

  represents the probability weighting of the positive prospect.

 ( )
1

1,2, ,
h h

i k k
k i k i

w p w p w p k h−

= = +

   
   = − = ⋅⋅⋅
   
   
∑ ∑

 
(10)

and ( )w p+
  represents the probability weighting of the negative prospect.

 ( )
1

1, ,
n n

j k k
k j k j

w p w p w p k h n+

= = +

   
   = − = + ⋅⋅⋅
   
   
∑ ∑ . (11)
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In the two decision-making theories, PT introduced a nonlinear weighting function (such 
as exponential function ( ) pw p e=  and power function ( )w p pb= ) to investigate the deci-
sion-making behavior of a normal person that integrates the value v(e) of personal feeling 
factors into the decision-making behavior analysis (v(e)w(p)). CPT considers the distinguish 
between the PWF and the decision weight w(p) based on reference points as useful. ( )w p−

  
and ( )w p+

  are the cumulative probability distribution functions of the decision-making 
result, and v(e) distinguishes the gains and losses based on reference point r.

In this paper, we propose a nonparametric numerical approach to approximate PWF 
under the PT and CPT frameworks, and the approximated nonparametric numerical model 
is based on the elicitation experimental preference points, which are the response to the 
risk preferences of the decision-maker. Moreover, it is easy to know that different decision-
making theories have different forms of PWF, different PWF models also reflect different risk 
attitudes of the decision-maker, and different risk attitudes are the response to the different 
risk preferences. Thus, investigating preference relations under different decision-making 
theories is an important part of proposing a nonparametric numerical approach.

U is a combination of utility function v and PWF w. For several prospects 1 2 3, ,q q q Q∈ , 
the preference relations satisfy the following some properties:

                                ( ) ( )1 2 1 2q q U q U q⇔ 

 

; (12)

                              ( ) ( )1 2 1 2q q U q U q⇔  ; (13)

 ( ) ( ) ( ) ( ) ( ) ( )1 2 2 3 1 3,U q U q U q U q U q U q⇒   . (14)

For instance, under different decision-making theories, two simple two-outcome pros-
pects, that is ( )1 $100, 0.5 ; $200, 0.5q = , ( )2 $200, 0.6 ; $75, 0.4q =  and a certainty prospect 

( )3 $140, 1.0q =  are considered. q1 accounted for a prospect that a game offers a 50% chance 
to win $100 and a 50% chance to win $200. The interpretations of two-consequence prospects 
q2 and q3 are similar to q1. A comparison of the preference relation of the decision-maker for 
the three prospects indicates the following:

(1) EU theory is used to solve the utility of three prospects,

          ( )1 150EUU q = , ( )2 150EUU q =  and ( )3 140EUU q = .

     Based on EU theory, we obtain the preference relation.

 ( ) ( ) ( )3 1 2EU EU EUU q U q U q  . (15)

(2) PT is used to solve the utility of three prospects, 

( ) ( )1 100+100 0.5EUU q w= ⋅ ,

( ) ( )2 75 125 0.6EUU q w= + ⋅ ,

( )3 140EUU q = .

Risk attitude is divided into two parts because the decision-maker has different risk at-
titudes in case of uncertainty.

file:///D:/DARBAI/TTED/%2bTEDE_AIP_2023-1/javascript:void(0);
file:///D:/DARBAI/TTED/%2bTEDE_AIP_2023-1/javascript:void(0);
file:///D:/DARBAI/TTED/%2bTEDE_AIP_2023-1/javascript:void(0);
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I. Assume that the decision makers are risk-seeking, w(0.5) = 0.52 and w(0.6) = 0.64, 

        ( )1 152PTU q = , ( )2 155PTU q =  and ( )3 140PTU q = .

   According to PT, the preference relation is exhibited as follows:

 ( ) ( ) ( )3 1 2PT PT PTU q U q U q  . (16)

II. Assume that the decision maker is risk-averse, w(0.5) = 0.40 and w(0.6) = 0.5, 

         ( )1 140PTU q = , ( )2 137.5PTU q =  and ( )3 140PTU q = .

     According to PT, the preference relation is exhibited as follows:

 ( ) ( ) ( )2 3 1PT PT PTU q U q U q  . (17)

(3) The cumulative probability of CPT is the same as PT for two-consequence prospects. 
Thus, the results of using CPT to solve the utility of three prospects are also (15) and (16). 
If a multiple-consequence prospect exists, Eqs (3), (4) and (5) could be utilized to solve the 
preference relation of this prospect. However, the cumulative PWF also depends on the risk 
attitudes of the decision-maker.

EU theory can be treated as a risk-neutral risk attitude for decision makers. PT and CPT 
consider risk attitudes not only as risk-neutral, but also as risk-seeking and risk-aversion. 
Eqs (15)–(17) showed that finding the PWF based on risk attitude plays an important role 
in decision making under risk and uncertainty. To understand the two main components of 
CPT, the value function v(e) and the PWF w(p) are redefined in Sections 2.3 and 2.4.

2.3. Utility function

Property 1: Value function v(e) satisfies the following properties:
(1) Risk aversion for gains.
(2) Risk seeking for losses.
(3) People are more sensitive to losses than to gains of the same magnitude.
Toubia et al. (2013) used the following value function to apply their approach to a ver-

sion of CPT: 

 
( ) ( )

for 0,
,

for 0,
v

s

s
 e e >e s = 
−l −e e <  

(18)

where e is a variable that represents the event consequence. s captures the curvature of value 
function, and l is loss aversion.

Toubia et al. (2013) used a different curvature of the value function for the sign-
dependent CPT.

 
( )

( )
for 0,

, ,
for 0,

v
+

−

s−+
s

 e e >e s s = 
−l −e e <  

(19)

where s+ and s– are free parameters that vary between 0 and 1 and modulate the curvature 
of the subjective value functions (i.e., 0 1+ −< s ≤ s < ). When the parameter s+ = s–, Eq. (18) 
is equal to Eq. (19). Moreover, parameter l specifies loss aversion (see Schmidt and Zank 
(2005), Abdellaoui et al. (2008), and so on), with larger values expressing larger loss aversion 
(i.e., l > 1).
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In summary, decision-maker is risk-seeking for small probability gains and large prob-
ability losses, risk-aversion for small probability losses and large probability gains. The slope 
is steeper for losses than for gains. A value function that satisfies these properties is displayed 
in Figure 1.

2.4. Probability weight function

Property 2: PWF w(p) satisfies the following properties:
(1)  w(p) is a strict increasing function from 0,1    to 0,1    with ( )0 0w =  and ( )1 1w =  . 

The strict increasing indicates that for all ( )1 2, 0,1p p ∈ , there is p1 < p2, such that 
( ) ( )1 2w p w p< .

(2) Overweighting for small values of p implies that a lower interval 0,q    has a greater 
effect on decision makers than an intermediate interval ,p q p+  , provided that q + p  
is bounded away from 1.

(3) Underweighting for large values of p, implies that a higher interval 1 , 1q −  has a 
greater effect on decision makers than an intermediate interval ,p q p+  , provided 
that p is bounded away from 0.

(4) w(p) for losses is more pronounced than that for gains, and w(p) for large magnitude 
monetary outcomes is more pronounced than that for small magnitude monetary 
outcomes.

(5) Subadditivity exists at the boundaries of interval 0,1   . There is lower subadditivity 
for small probabilities, this is that if ( )w p p> , then ( ) ( )w rp rw p>  for 0 < r < 1; 
and upper subadditicity for large probability, i.e., if ( )w p p< , then ( ) ( )w rp rw p<  
for 0 < r < 1.

(6) Subproportionality for all 0 , , 1p q r< ≤ . If ( ) ( ) ( ) ( )1 2w p v w pq ve = e  implies  

w 1 2w( ) ( ) ( ) ( )pr v w pqr ve ≤ e ; hence, 
( )
( )

( )
( )

w pq w pqr
w p w pr

≤ .

Figure 1. Value function v(x)
 
for different values of a, b and g. The value function is concave over 

gains and convex over losses; as the parameter g is larger, the losses are steeper

g = 2.25 a = 0.55, b = 0.65
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PWF is an important component and models the distortion of probability, as well as 
characterizes the psychophysics of chance. PWF was initially developed in the last century 
(Hong & Waller, 1986; Lattimore et al., 1992; Wu & Gonzalez, 1996, and so on). This PWF is 
the psychological reaction of the decision-maker, and could reflect and predict the risk pref-
erences of the decision-maker. Considering the important role of PWF in decision-making 
analysis, some assumptions for the functional forms have been presented by testing these 
functional forms for the PWF in what can be described as a “goodness of fit contest” based 
on different choices. For instance, Tversky and Kahneman (1992) and Prelec (1998) estimated 
PWF by proposing different one-parameter models (Figure 2). At the same time, Tversky and 
Fox (1995) and Prelec (1998) offered two-parameter models to approximate PWF (Figure 3).  
Moreover, Diecidue et  al. (2009) proposed switch-power PWF with the three-parameter 
model (Figure 4).

Figure 2. One-Parameter PWF models were 
established by Tversky and Kahneman (1992), 
Camerer and Ho (1994) and Wu and Gonzalez 

(1996) using ( ) ( )( )11w p p p p
b

b b b 
= + − 
 

 
with taking different parameter values  

b = 0.61, 0.56, 0.71, and Prelec (1998) using 

( ) ( )( )exp lnw p p a
= − −  with a = 0.65

Figure 3. Two-Parameter PWF models were es-
tablished by Tversky and Fox (1995) by using 
( ) ( )( )1w p p p p ηη η= µ µ + −  with different pa-

rameters 1 1 2 2 3 30.69, 0.77; 0.69, 0.76; 0.72 , 0.76η = µ = η = µ = η = µ =

1 1 2 2 3 30.69, 0.77; 0.69, 0.76; 0.72 , 0.76η = µ = η = µ = η = µ = , and Prelec (1998) using 

( ) ( )( )exp lnw p p a
= −b −  with a = 0.71, b = 1.05

Figure 4. Three-Parameter PWF models were established by Diecidue et al. (2009) by using 
( ) aw p cp=  for ˆp p≤  and ( ) ( )1 1 bw p d p= − −  for ˆp p> , in where, ( )( )1ˆ ˆ ˆ1ac p b bp a p−= + −  and 

( ) ( )( )1ˆ ˆ ˆ1 1
b

d a p bp a p
−

= − + − . The parameters a, b and p̂  are 0.42, 0.35 and 0.40; 0.62, 0.62 and 
0.50; 0.50, 0.60 and 0.60, respectively
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Overall, the PWF with the parameter form is proposed by the separation of probabil-
ity weighted and value function, and probability weighted is the psychological reaction of 
decision-maker under risk and uncertainty. This paper confirms that PWF could reflect and 
predict the risk preferences of decision-maker, and their curves were also considered as the 
risk preference curves of decision-maker. When the curve is above the diagonal, decision-
maker is risk-seeking; when the curve is under the diagonal, decision-maker is risk-aversion. 
According to these characteristics, researchers could judge the risk preferences of decision-
maker. To estimate the risk preferences of decision-maker by using parameter models, the 
parameters of the models could be determined by least squares or maximum likelihood 
method with curve fitting of several preference points, which could be collected by eliciting 
experiment or questionnaire survey. PWFs with parameter forms are flexible for the number 
of requirements of preference points in estimating the risk preferences of decision-maker ac-
cording to the number of parameters. However, the disadvantages of parametric estimation 
are its functional form which makes more assumptions, when the parameters are fixed, the 
assumed functional form has also been determined, if the true functional form is different 
from the assumed functional form, then it cannot determine whether the measurement are 
driven by the data. Thus, the fixed model could not flexibly reflect and predict the prefer-
ences of decision makers. To circumvent this problem, some researchers, Such as Wakker and 
Deneffe (1996), Gonzalez and Wu (1999), Abdellaoui (2000), Bleichrodt and Pinto (2000), 
Abdellaoui et al. (2005), Blavatskyy (2006), Abdellaoui et al. (2007), Booij et al. (2009) and 
Van Houtven et al. (2011) proposed parameter-free elicitation method to elicit PWF under 
different theoretic frameworks and obtained good results.

More specifically, PWF with parameter-free form is approximated by using several elici-
tation methods such as certainty equivalent method (Krzysztofowicz (1983) and Farquhar 
(1984)), probability equivalence method (Hershey & Schoemaker, 1985) or the trade-off 
method (Wakker & Deneffe, 1996) to elicit utility function and PWF with making no prior 
assumptions about the functional forms. This method is used in the experimental survey to 
elicit individual and aggregate PWF both in the gain and loss domain. The main advantages 
of this method are that it allows researchers to infer the psychological weights from the 
observed experimental data, and ensures parameter-free estimation with fewer assumptions, 
ensuring that the results remain close to the experiment data (Gonzalez & Wu, 1999). Abdel-
laoui (2000) used two successive steps (i.e., constructing a standard sequence of outcomes, 
and determining a corresponding standard sequence of probabilities) to experimentally elicit 
the PWF. The elicited weighting functions satisfy subadditivity near the boundary of interval 
[0, 1]. Furthermore, the result showed that the obtained shape and properties are consistent 
with the above parameter PWF estimations. Bleichrodt and Pinto (2000) also presented a 
trade-off method to elicit PWF and applied this method in medical decision analysis. The 
conclusion that probability weighting is robust both at the aggregate and individual subject 
level is obtained. Moreover, PWF is inverse S-shaped, which is consistent with Gonzalez and 
Wu (1999).

Based on the previous properties of PWF defined in Property 2, several new properties 
of PWF are redefined in this paper as follows:
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Definition 2: Based on preference relation and the existing properties of PWF, a piecewise 
PWF is redefined as follows:

 

( ) ( ) ( )
0 for 0,

for 0, 1 ,
1 for 1,

p
w p N p p

p

=
= ∈
 =  

(20)

where N(p) is a function and satisfies the following properties:
(1)  N(p) is a weakly increasing function from (0, 1) to (0, 1). The weak increase indicates 

that for almost all ( )1 2, 0,1p p ∈ , there is p1 < p2, such that ( ) ( )1 2N p N p< .
(2) Overweighting for small values of p, implies that a lower interval (0, q  has a greater 

effect on the decision-maker than an intermediate interval ,p q p+   , provided that 
q + p is bounded away from 1.

(3) Underweighting for large values of p, implies that a higher interval )1 , 1q −  has a 
greater effect on decision-maker than an intermediate interval ,p q p+   , provided 
that p is bounded away from 0.

(4)  N(p) for losses is more pronounced than that for gains; and N(p) for large magnitude 
monetary outcomes is more pronounced than that for small magnitude monetary 
outcomes.

(5) Subadditivity at the boundaries of interval (0, 1). There is lower subadditivity for 
small probabilities, this is that if ( )N p p> , then ( ) ( )N rp rN p>  for 0 < r < 1; and 
upper subadditicity for big probability, i.e., if ( )N p p< , then ( ) ( )N rp rN p<  for  
0 < r < 1.

(6) Subproportionality. for all 0 , , 1p q r< < . if ( ) ( ) ( ) ( )1 2N p v N pq ve = e  implies 

1 2( ) ( ) ( ) ( )N pr v N pqr ve ≤ e ; hence, 
( )
( )

( )
( )

N pq N pqr
N p N pr

≤ .

In Definition 2, N(p) is a nonlinear function without giving a specific parametric func-
tional form, w(p) is a piecewise nonlinear function1 and discontinuous at points p = 0 and 
p = 1 ( ( )

0
lim 0
p

w p
→

≠ , ( )
1

lim 1
p

w p
→

≠ ). This condition is due to the fact that people do not con-

sider very small probability event ( 0p → ) as impossible event (i.e., ( )
0

lim 0
p

w p
→

≠ ), such as 

the lottery; people also do not consider very big probability event ( 1p → ) as sure event (i.e., 
( )

1
lim 1
p

w p
→

≠ ), such as insurance.

Definition 2 defined a weakly increasing function in the interval (0, 1) because the risk 
preferences of the decision-maker change according to the environment. PWF does not al-
ways exhibit strict increase in the actual decision-making. The empirical studies by Gonzalez 
and Wu (1999) indicated the result. More specifically, Gonzalez and Wu (1999) shows the 

1 Chateauneuf et al. (2007) used a piecewise probability weighting function model which is linear and (possibly) 
discontinuous at 0 and at 1. Its form is given as follows:

 

( )
0 for 0

for 0 1
1 for 1

p
w p p p

p

 =
= a +b < <
 =

 with 0 1≤b <  and 0 1< a ≤ −b . At the same time, the properties of small probabilities overweighting and large 
probabilities underweighting lead to the discontinuity at the endpoints.
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best fitting linear in log odds PWF for aggregate data, in which, the empirical data, that is, 
probability 0.5 > 0.4, but w(0.5) < w(0.4), demonstrated the change of risk preferences. More-
over, Gonzalez and Wu (1999) also shows that the empirical data for subjects 1, 2, 3, 4, 5, 7 
and 8 do not always satisfy the property of a strict increase. The redefined PWF still satisfies 
the properties such as an inverse s-shape; fourfold pattern of risk preferences (overweighting 
for small probabilities, underweighting for moderate and big probabilities); subadditivity at 
the boundaries of the unit interval; Sub-proportionality; and so on.

3. Nonparametric numerical approach

This section proposes a nonparametric numerical approach to approximate PWF. The non-
parametric numerical approach consists of four subsections. In the first subsection, a nu-
merical approximation approach, namely, Newton interpolation, is introduced to build a 
PWF model to fully approximate several experimental data, and its function and properties 
are given. In the second subsection, an elicitation certainty equivalent method is redefined 
to elicit PWF for collecting the experimental data. Subsection 3.3 takes into account using 
the Newton interpolation approach to interpolate the elicitation PWF data (experimental 
preference points, EPPs are defined in Subsection 3.2). Subsection 3.4 offers an improved 
approach to increase several new PWF data (computational preference points, CPPs defined 
in Subsection 3.2) by combining the parameter PWF model (i.e., Prelec’s two-parameter PWF 
model) with the elicitation PWF data.

3.1. Newton interpolation approach

Interpolation method is a numerical computation method, which are widely used in every 
field. This method is developed for the interpolation of a given set of data points in a plane 
and to fit a smooth curve to these points. This method is devised in such a way that the 
resultant curve will pass through the given points and will appear smooth and natural. This 
approach is based on a piecewise function composed of a set of polynomials, and the slope 
of the curve is determined at each given points locally. Newton interpolation is one of inter-
polation approaches. Its advantage is that it – *CVV0increases or updates a new knowledge 
for each new increasing or updating data point to improve the response to the interpolated 
function. In this paper, the interpolated function is PWF, which uses the values of PWF at 
the finite points to estimate the values of PWF at the other points. Accurate approximate 
results are obtained only by increasing the number of data points, i.e., increasing the density 
of nodes. Subsection 3.4 proposes a nonparametric numerical approach to increase several 
computation preference points by using Prelec’s parameter model in order to build a bet-
ter performance’s approximation model than the numerical model Subsection 3.3, which is 
developed only by using Newton interpolation to interpolate several elicitation experimental 
preference points. To introduce the detail of Newton interpolation approach, the following 
lemma is introduced as follows:

Suppose the data sets can be expressed as ( )( ),i ix f x  ( )0, 1, ,i k= ⋅⋅⋅ , where ( )if x  is the 
value of ( )f x  corresponding to ( )0, 1, ,ix i k= ⋅⋅⋅ .



Technological and Economic Development of Economy, 2023, 29(4): 1127–1167 1141

Lemma 1: (The definition of difference quotient) It assumes that there are k + 1 nodes 
( )( ),i ix f x  ( )0, 1, ,i k= ⋅⋅⋅  in the interval ,a b   . The first-order difference quotient of nodes 
( )( ),i ix f x  and ( )( ),j jx f x  are defined by

 

( ) ( )
,

i j
i j

i j

f x f x
f x x

x x

−
  =  −

, (21)

where xi and xj ( ), 0, 1, ,i j k∈   are different.
The difference quotient of the k – 1-order difference quotient is known as k-order dif-

ference quotient: 

 

( )
( )0 1 1

0 0

, , , ,
kk

i
k k

i j i j
j i

f x
f x x x x

x x
−

= =
≠

 
 
 ⋅⋅ ⋅ =    −
 
 

∑ ∏ , (22)

where x0, x1, ... xk–1 and xk are both different. In particular, zero-order difference quotient is 
denoted as follows:

 ( )k kf x f x=   . (23)

Lemma 2: The k-order Newton interpolation polynomial can be expressed as

 
( ) ( )

1

0 1

ik

k i j
i j

N x a x x
−

= =

 
 = −
 
 

∑ ∏ , (24)

where ( )0, 1, , 1ka i k= −  are the coefficient of Newton interpolation polynomial, which is 
obtained by the interpolation conditions:

 ( ) ( ) ( )0,1, , 1k i iN x f x i k= = − . (25)

Using difference quotients to express the coefficient ak of Newton interpolation polyno-
mial Nk(x), applying LEMMA 1, these coefficients could be solved as follows:

                           ( )0 0 0a f x f x= =    ,  (26)

 
( )

( ) 0 1
0 0

, , , , 1,2, , 1.
ll

i
l l

i j i j
j i

f x
a f x x x l k

x x= =
≠

= = ⋅⋅⋅ = −  
−

∑∏ 

 
The k-order Newton interpolation polynomial can also be expressed as

 
( )

1

0 1

( )
ik

k i j
i j

N x a x x
−

= =

 
 = −
 
 

∑ ∏ . (27)

This polynomial has degree ≤k and has the property ( ) ( )k i iN x f x=  as required. To 
display the properties of Newton interpolation coefficients ( )0,1, , 1ia i k= −  and Newton 
interpolation polynomial N(x), Properties 3 and 4 are presented as follows:

Property 3: The coefficients of Newton interpolation polynomial, ( )0,1, , 1ia i k= − , sat-
isfy the following property.
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where 0,1, , 2r k= − .

Proof: From Eq. (34), we know that 
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Therefore, expanding 1ra + , the following expression can be obtained
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When 0,1 , 2r k= − , Eq. (28) stands, and thus, Eq. (28) is proven.

Property 4: The Newton interpolation polynomial, N(x), is a unique existence.

Proof: (Existence) Through the structural process of Newton interpolation polynomial 
N(x), we know that the polynomial N(x) exists.

(Unique) If two such polynomials N(x) and P(x) exist, which are obtained by the k + 1 
nodes, then

 ( )( ) ( )( )degree degreeN x P x k= = ,                                      

                                        ( )degree ( ) ( )N x P x k− ≤ ,                                               (29) 

                                         ( ) ( ) ( )0 0,1, ,i iN x P x i k− = = ⋅⋅⋅ . 

Thus the result would have to be identically zero, and thus, a corollary is ( ) ( )N x P x≡ .
Although the coefficients of the computed Newton interpolation polynomial are relatively 

complex, this problem is easy to solve with the development of computer technology. More-
over, Property 3 provides a recurrence formula to facilitate convenient calculation. Property 
4 explains Newton interpolation polynomial for the existing and unique interpolation nodes. 
These properties establish a solid foundation for the proposal of a nonparametric numerical 
approach.

3.2. Eliciting PWF

Using Newton interpolation approach to approximate PWF, several interpolation nodes in-
dicate that the objective probability that corresponds to psychological probability should 
be obtained. To collect several experimental data that could reflect the risk preferences of 
decision-maker, a certainty equivalent method is defined as follows:
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Definition 3: Assume a two-consequence prospect ( ), ; ,1q p p= e e −

2 and a certain pros-
pect ( ), 1q c′ = , where, , 0e e > , e > e  and decision makers think q q′ . The probability 
weight that corresponds to the probability p is solved by using the following transforma-
tion:

 
( ) cw p − e

=
e − e






. (30)

This method is known as the certainty equivalent (C-E) method.
C-E method (Farquhar, 1984) allows the elicitation of a two-outcome prospect by some 

sure prospects. The researcher provides a two-outcome prospect and some sure prospects to 
elicit the choice of the decision-maker under certain circumstances in order to obtain a sure 
prospect which is equivalent to the two-outcome prospect for the decision-maker. In other 
words, the obtained sure prospect and the two-outcome prospect are indifference to the risk 
preferences of the decision-maker.

The use of the C-E method to elicit probability weighting could obtain the preferences 
information of the decision-maker by means of probability ( )w p , which the decision-maker 
considers the psychological probability of objective probability p. To express the relation 
between the objective probability and psychological probability, Definition 4 is proposed as 
follows:

Definition 4: The objective probabilities ( )1,2, ,ip i n=   and they corresponding to the 
elicitation probability weights ( ) ( )1,2, ,iw p i n=

  constitute the two-dimensional array 
( )( ) ( ), 1,2, ,i ip w p i n=

 , known as preference points (PPs). The curve of ( )w p  obtained 
by fitting or others methods such as parameter-free elicitation method to approximate these 
preference points ( )( ) ( ), 1,2, ,i ip w p i n=

  is known as preference curve. They reflect and 
predict the risk attitudes of decision makers under risk and uncertainty.

(1) The objective probabilities ( )1,2, ,ip i n=   are the probabilities of monetary out-
comes ( )1,2, ,i i ne =  .

(2) The probability weights ( ) ( )1,2, ,iw p i n=

  are the psychological reactions of deci-
sion makers for monetary outcomes ( )1,2, ,i i ne =  , they are obtained by using C-E 
to elicit PWF, and they are significantly influenced by the uncertainty of events and 
the risk attitudes of decision makers.

(3) PPs ( )( ) ( ), 1,2, ,i ip w p i n=

  collected through experiment or questionnaire survey 
are known as the experimental preference points (EPPs).

(4) PPs ( )( ) ( ), 1,2, ,j jp w p j l=

  collected through computation are known as the com-
putational preference points (CPPs).

Definition 4 defines three terms that, reflect the risk preferences of decision-maker, that 
are, preference points (PPs), experimental preference points (EPPs) and computational pref-
erence points (CPPs), in order to facilitate the expression of Subsections 3.3 and 3.4. Because 
Subsection 3.3 utilizes the elicitation EPPs to approximate PWF, yet Subsection 3.4 but uti-
lizes only the elicitation EPPs, as well as increases several CPPs that are related to the EPPs, 
to approximate PWF.

2 The prospect ( ), ; ,1q p p= e e −  represents a gamble offering a p chance to obtain the monetary outcomes e and a 
1 – p chance to obtain the monetary outcomes e.
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3.3. Newton Interpolation to Approximate PWF

To build a numerical PWF model by using Newton interpolation3, several elicited PPs (i.e., 
EPPs), which are collected by using C-E method4 to process several observed experimental 
data from experiment or questionnaire survey, are considered as interpolation nodes. The 
form of the approximation PWF model is similar to Eq. (27). 

It assumes that an elicitation experiment or questionnaire survey5 is conducted to collect 
several experimental data, such as those shown in Tables 2 and 6 in Section 4. The collected 
experimental data are processed by Eq. (30) defined in Definition 3 to transform monetary 
outcomes ei into probability weights ( )iw p  with probabilities pi, where 1,2, ,i n= ⋅⋅⋅ . For con-
venience our expression, it defines the set of EPPs by S1.

 ( )( ) 1, , 1,2, ,i ip w p S i n∈ = ⋅⋅⋅ . (31)

Set S1 is considered as the elicitation PWF data set, which is the response to the risk 
preferences of the decision-maker. When these experimental data represent the risk prefer-
ences of most people (aggregate level), using Newton interpolation could build a model to 
reflect the risk preferences of most people. At the same time, if they represent individual 
data (individual level), then using Newton interpolation could also build such a model that 
reflects the individual risk preferences. It is necessary to state that the built model could well 
reflect and predict the risk preferences of decision-maker as long as the experimental data 
are high-quality6 both in aggregate and individual level. If several elicitation experimental 
data are poor-quality, then they will be abandoned by using some judgment methods. The 
detailed context is presented in the individual data of Section 4.

Based on the above assumption, a PWF model is built as follows:
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where the parameters ( )1, 2, ,ia i n=   are determined by Eq.  (28) based on the obtained 
high-quality EPPs (i.e., Eq. (31)). The following expressions are presented:
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 . 

3 Newton interpolation is a numerical interpolation method that appears to use a rope across all fixed points (EPPs) 
to shape a curve. Therefore, the shaped curve is unstable because of the number of interpolation node. A detailed 
description is provided in Section 2.3.

4 C-E method, which is defined in Definition 3 of Section 3, is based on the indifference of preference relation, 
which defines the utility of decision-maker, refer to the Section 3.1 for more details. We only provide the ex-
ample such as prospect (0, 0.95; $100, 0.05) ($14,1)

, and probability p = 0.05 corresponds to probability weight 
( ) 14 100 0.14w p = = .

5 The experiment or field questionnaire survey was carried out to obtain detailed information on the value and 
weighting functions of Tversky and Kahneman (1992), Gonzalez and Wu (1999), Abdellaoui et al. (2008), and so 
on.

6 High-quality experimental data indicate that these data are obtained carrying out a good design experiment, and 
these data could respond to the preferences of the decision-maker in most occasions.
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Integrating Eq. (33) to Eq. (32), a numerical PWF model is presented as follows:
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In Eq. (33), 1 2, , , np p p⋅ ⋅ ⋅  are the probabilities of event outcomes 1 2, , , ne e e . Eq.  (33) 
is a known function without making any parametric assumptions as given in n EPPs. The 
advantage of this method is that the PWF is determined by EPPs, and its shape varies with 
EPPs. Moreover, it provides a direct link between preferences and utilities.

In reality, the different situations lead to different choices of the decision makers, which 
imply that the form of PWF varies with the choices of decision maker. The expressions of 
parameter PWF are fixed when its parameters are determined. As a result, the built model is 
better to reflect and predict the risk preferences of decision-maker. To circumvent this prob-
lem, the proposed Newton interpolation is used to approximate PWF when the elicitation 
experimental data are increasing or changing. For instance, it assumes that m new EPPs are 
collected under the condition of known Eq. (31):

( )( ) ( )( ) ( )( )1 1 2 2, , , , , ,n n n n n m n mp w p p w p p w p+ + + + + +⋅⋅ ⋅   . 

For convenience, the new increasing m EPPs are assumed to be different from the previ-
ous n EPPs. In other words, if i j≠ , then probabilities ( ), 1,2, ,i jp p i j n m≠ ∈ + . m new 
coefficients could be solved by using Eq. (36). The new model based on Newton interpolation 
is expressed as follows:
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where N(p) is expressed in Eq.  (33), E(p) is an increasing term, and its form is shown as 
follows:
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. 

Through Eq. (34), it is easy to find that the numerical model ( )N p  is composed of two 
parts N(p) and E(p). Increase new EPPs could be considered as the modification of the 
previous numerical PWF model N(p). Therefore, to compute for the increasing term, E(p) 
is required. This method is not only convenient for our computation, but is also a response 
to the change in the risk preferences of decision maker with the change in EPPs ( )( ),i ip w p

 
( )1,2, ,i n=   and their number. Compared with parameter PWF models, the numerical PWF 
model does not have a specific parametric form. Its form varies with the elicitation EPPs to 
response to the risk preferences of decision-maker.

It is worth noting that using Newton interpolation to approximate PWF, the obtained 
expressions such as Eqs (32) and (33) are nonparametric and numerical models. However, we 
do not call this method nonparametric numerical approach because we only use Newton in-
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terpolation method to interpolate the elicitation EPPs. The obtained model could have some 
problems at sometimes because of the Runge phenomenon7 of high-order Newton interpola-
tion polynomial. For instance, the built model could be unstable, the obtained risk preference 
curve may not be an inverse S-shape, or the properties of the built model could not satisfy 
the properties such as overweighting for small probabilities, underweighting for moderate 
and large probabilities defined in Definition 2. Moreover, with the use of Newton interpola-
tion to interpolate a small number of elicitation EPPs, the approximated PWF model could 
not be accurately response to the risk preferences of decision-maker (it has been described 
in Subsection 3.1). Therefore, Subsection 3.4 proposes a new algorithm to increase several 
new PPs (i.e., CPPs) to solve the above problems and develop a good performance model to 
reflect and predict the risk preferences of the decision-maker. To distinguish the new model 
from the previous model N(p), it denotes IN(p) as the new nonparametric numerical model, 
the used approach is called as nonparametric numerical approach.

3.4. Nonparametric numerical approach

In actual decisions, the number of the elicitation EPPs directly affects the performance of the 
built model, which is approximated by curve fitting the elicitation EPPs or other methods 
such as nonparametric elicitation. In general, as more high-quality EPPs are collected, an 
improved PWF model will be developed to respond accurately to the risk preferences of the 
decision-maker. However, under the condition of facing same decision-making environment, 
the decision-maker may not provide extensive preference information under most of the 
time in real life. If the number of the elicitation EPPs collected by elicitation method (C-E 
method) is small, then Newton interpolation approach is used to interpolate these elicitation 
EPPs directly, the developed numerical PWF model cannot approximate PWF with good 
performances at the shape and properties.

In this section, a nonparametric numerical approach is proposed to approximate PWF. 
The essence of this approach is the use of Newton interpolation to approximate PWF based 
on two kinds of different PPs. According to the difference of the number of collected elicita-
tion EPPs, this approach consists of two parts. In the first part, a small number of elicitation 
EPPs are considered to approximate PWF model. A new algorithm is utilized to add several 
CPPs, and then Newton interpolation is used to interpolate these EPPs and CPPs. Part 2 takes 
account of a large number of elicitation EPPs, it proposes a piecewise Newton interpolation 
approach to interpolation the obtained elicitation EPPs, such that a piecewise nonparametric 
numerical PWF model is built.

In the process of increasing CPPs, the proposed new algorithm combines the existing 
parameter PWF models (for convenience, several parameter models are shown in Table 1 
under the theoretic framework of cumulative prospect theory) and the elicitation EPPs to 

7 In the early twentieth century, Runge discovered the Runge phenomenon (Carnahan et  al., 1969): along with 
the increase in the interpolation node number. The interpolation function and fitted curve are not close, and 
the interpolation function is unstable based on the oscillation behavior of the high-order Newton interpolation 
polynomial.
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infer CPPs. Thus, the collected CPPs have the characteristics of the parameter model, and 
are related to the elicitation EPPs. Based on these reasons, using Newton interpolation to fit 
the elicitation EPPs and the inferred CPPs, the developed model not only accurately reflects 
the elicitation EPPs, but only has the advantages of parameter model. Intuitively, Figure 5 
shows the flowchart of the use of nonparametric numerical approach to approximate PWF.

Figure 5. Building model flow chart
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Table 1. Several parametric specifications of PWF
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Prelec (1998): Given an exponential function with 
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Diecidue et al. (2009): For 
( )( )1c −d= η gη gη+ d −η , and 
( )(1 ) (1 ) (1 )d −g= −η d −η gη+ d −η , six parameters 

exist , , , 0+ − + −d d g g > , and 0 , 1+ −< η η < . To fix 
them, at last six PPs should be selected.

Part 1: A small number of EPPs

Parameter models were described in Figures 2–4. For convenience, these models are de-
scribed again in Table 1 with gains and losses. Furthermore, Table 1 shows that the param-
eters of the proposed parameter PWF models would be determined by a small number of 
EPPs. We propose the use of existing parameter models in Table 1 and the obtained EPPs in 
Eq. (36) to add several new CPPs into the EPPs.

The following process is used to determine the risk preferences of decision maker on the 
basis of limited EPPs, the processes are shown as follows: At first, few limited elicitation EPPs 
are used to determine the parameters of w(p) defined in Table 1 with the aid of mathemati-
cal software, such as MATLAB. At second, several CPPs are collected by using an algorithm 
after the parameters of model w(p) are fixed. At third, several CPPs are added into the set of 
EPPs. At fourth, the added CPPs are updated on the basis of the collected elicitation EPPs in 
order to obtain several high-quality CPPs. At last, the collected PPs include elicitation EPPs 
and CPPs. Thus, a new nonparametric numerical PWF model could be developed by using 
Newton interpolation approach to interpolate these PPs.

The three main building blocks of this method are obtaining elicitation EPPs, generating 
and updating CPPs and using Newton interpolation method to approximate PWF. The first 
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Parameter models were described in Figures 2–4. For convenience, these models are de-
scribed again in Table 1 with gains and losses. Furthermore, Table 1 shows that the param-
eters of the proposed parameter PWF models would be determined by a small number of 
EPPs. We propose the use of existing parameter models in Table 1 and the obtained EPPs in 
Eq. (36) to add several new CPPs into the EPPs.

The following process is used to determine the risk preferences of decision maker on the 
basis of limited EPPs, the processes are shown as follows: At first, few limited elicitation EPPs 
are used to determine the parameters of w(p) defined in Table 1 with the aid of mathemati-
cal software, such as MATLAB. At second, several CPPs are collected by using an algorithm 
after the parameters of model w(p) are fixed. At third, several CPPs are added into the set of 
EPPs. At fourth, the added CPPs are updated on the basis of the collected elicitation EPPs in 
order to obtain several high-quality CPPs. At last, the collected PPs include elicitation EPPs 
and CPPs. Thus, a new nonparametric numerical PWF model could be developed by using 
Newton interpolation approach to interpolate these PPs.

The three main building blocks of this method are obtaining elicitation EPPs, generating 
and updating CPPs and using Newton interpolation method to approximate PWF. The first 

main building block is important in eliciting the function to collect high-quality experimen-
tal data, which determine the performance of the developed model. Researchers can gather 
several experimental data through eliciting experiment or field questionnaire survey. The 
number of the collected elicitation EPPs is assumed to be small8. For convenience, the num-
ber of EPPs n ≤ 11 is small in terms of preference information (of course, n could have a 
larger positive integer when the researcher asks a good performance to reflect and predict the 
risk preferences of decision-maker). A nonparametric numerical approach is used to develop 
the model. The procedure for explaining the nonparametric numerical model consists of nine 
steps and is summarized in the following section.

The nonparametric numerical approach is processed as follows:

Step 1. An experiment or a questionnaire survey is elicited. A set of experimental data 
could be collected from an experiment or a questionnaire survey (see Table 3 in Tversky 
and Kahneman (1992) for reference). For convenience, it assumes that M pairs experimen-
tal data have been collected.

Step 2. PWF is elicited to obtain EPPs defined in Definition 4. The C-E method introduced 
in Definition 3 of Section 3 is used to transform monetary outcomes into psychology prob-
ability ( )( ) 1,2, ,iw p i M=

  with probability ( )1,2, ,ip i M=  . The obtained elicitation EPPs 
are represented by dyadic arrays ( )( ),i ip w p

 ( )1,2, ,i M= ⋅⋅⋅ , the set of elicitation EPPs is 
denoted by S1, that is, ( )( ) ( )1, 1,2, ,i ip w p S i M∈ = ⋅⋅⋅

.

Step 3. A parameter model is selected. Three parameter PWF models are presented in 
Table 1. We only select one of them according to the different number of parameters9. 
For convenience, it assumes that the selected parameter model is a two-parameter10 PWF 
model ( ), ,w p d g .

Step 4. The parameters d and g are solved. The least square method or curve fitting method 
may be used to solve the parameters d and g by means of the collected elicitation EPPs. For 
convenience, the determined parameter model is denoted by w(p).

Step 5. Random numbers are generated. To predict the preference information, a col-
lection of random numbers ( )11,2, , ; 0, 1j Lp j L p p= ⋅⋅⋅ = =  is generated on interval 0 , 1   
with the aid of MATLAB. For convenience, the generated random numbers can be in 
either a uniform or piecewise uniform distribution according to the density degree of 

8 The large or small number of collected EPPs depends on the distribution density of probability p on interval [0, 1]  
and the need of decision-maker for the accuracy.

9 When decision-maker faces positive and negative prospects, the positive prospect is deems as gains, the negative 
prospect is deemed as losses. Decision-maker exhibits different psychological reflections for different prospects. 
Thus, we need to solve the parameters of different probability weighting function models ( )w p+  for positive 
prospect and ( )w p−  for negative prospect. The existing parameter probability weighting function models such as 
Eqs (20)–(24), which correspond to the expressions of positive and negative prospects, are shown in Table 1. 

10When the selected parameter probability weighting function model is the one-parameter model, it is denoted 
by ( ),w p d ; when the selected parameter model is three-parameter model, it is denoted by ( ), , ,w p d g η . The two-
parameter model is selected in this paper because of a good performance, that is, two parameters controlling risk 
attitude’s two aspects. The model was introduced in detailed in literature review.
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( )1,2, ,jp j L= ⋅⋅⋅ 11, but the generated random numbers must satisfy the following prop-
erty: for all 1,2, ,i M=  , ( )1,2, ,j ip p j L= =  .

Step 6. Several objective probabilities are added. If probability ( )1,2, , ; 1,2, ,j ip p j L i M≠ = ⋅⋅⋅ = 

 ( )1,2, , ; 1,2, ,j ip p j L i M≠ = ⋅⋅⋅ =  , then it adds the probability jp  into the set of pi, it assumes that the number 
of j ip p≠  is ( )1 1L L L≤ , so the number of obtained probabilities is ( )1 1M L L L+ ≤ . For 
convenience, it denotes that the sequence of probability is ( )1ˆ 1,2, ,kp k M L= + .

Step 7. Several CPPs are solved. The probabilities ( )1ˆ 1,2, ,kp k M L= +  obtained 
in Step 6 and the parameter model w(p) determined in step 4 are used to compute 
( )( )1ˆ 1,2, ,kw p k M L= + , thus a series of PPs ( )( )( )1ˆ ˆ, 1,2, ,k kp w p k M L= +  can be 

collected. Specially, the collection of PPs is denoted by the set S2, that is, ( )( ) 2ˆ ˆ,k kp w p S∈  
( )11,2, ,k M L= + . For convenience, we call the collection of PPs as CPPs.

Step 8. Update CPPs. To measure the risk preferences of decision-maker, the obtained 
CPPs should be updated according to the elicitation EPPs. Detailed preference information 
updating process is organized as follows.

At first, some CCPs are replaced with EPPs by using the following equation:

 

( ) ( )
( )
( )
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ˆ ˆ,

i j i
k

j j i

w p p p
w p

w p p p

 == 
≠



, (35)

where 1, 2 , , ; 1, 2, ,i M j M L= = + 

. The obtained PPs are denoted by ( ) ( )( )1ˆ ˆ,k kp w p  

( )11,2, ,k M L= + , and the set is denoted by S3, which means that the PPs ( ) ( )( )1
3ˆ ˆ,k kp w p S∈  

( )11,2, ,k M L= + .
At second, the values of some CPPs are updated. Given ( )1H H L≤  PPs that have been 

interpolated between the two adjacent EPPs ( ) ( )( )1ˆ ˆ,k kp w p  and ( ) ( )( )1
1 1ˆ ˆ,k H k Hp w p+ + + +  , 

that is, ( ) ( )( )1ˆ ˆ,k kp w p , ( ) ( )( )1
1 1 1 3ˆ ˆ, ,k H k Hp w p S S+ + + + ∈  are EPPs; ( ) ( )( )1

+1 +1ˆ ˆ,k kp w p ,  , 
( ) ( )( )1

+ + 2 3ˆ ˆ, ,k H k Hp w p S S∈  are CPPs). To well reflect and predict the risk preferences of 
decision-maker, the CPPs ( ) ( )( )1ˆ ˆ,k h k hp w p+ +  ( )11,2, , ; 1,2, ,k M L h h H= + − =   should 

be modified according to the collected EPPs ( ) ( )( )1ˆ ˆ,k kp w p  and ( ) ( )( )1
1 1ˆ ˆ,k H k Hp w p+ + + + . 

For convenience, the updated PPs are denoted by ( ) ( )( ) ( )2
1ˆ ˆ, 1,2, ,k kp w p k M L= + , where,

 ( ) ( ) ( ) ( )2 1
1ˆ ˆ , 1,2, , 1;k kw p w p k M L H= = ⋅⋅⋅ + − − ,

 
(36)

                              ( ) ( ) ( )( )(2) (1)
1ˆ ˆ ˆ ;k k kw p w p f w p+ = + ,

 
 

                          ⋅ ⋅ ⋅ ⋅ ⋅ ⋅  
                          ( ) ( ) ( )( )(2) (1)

1 1ˆ ˆ ˆ , 1,2 ,k h k h k hw p w p f w p h H+ + − + −= + = 

,          
                               ⋅ ⋅ ⋅ ⋅ ⋅ ⋅                                                                                                                                                    
                               ( ) ( ) ( )( ) ( ) ( )1(2) (1)

1 1 1ˆ ˆ ˆk H k H k H k Hw p w p f w p w p+ + + + + + += + = . 

11 Probability weighting function reflects decision makers’ preference under risk, the change of preference is rela-
tively fast at the endpoint 0 and 1. To adapt this change, piecewise uniform distribution’s probabilities are selected. 
If the selected probability p  is more intensive, uniform distribution’s probabilities should be selected.
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According to the inverse-S property of the PWF (Wu & Gonzalez, 1996, 1999), the func-
tion f can be built as follows:

                          

( ) ( )( ) ( ) ( )
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k h

k H k

x
f w p T

w p w p+
+ +

∆
= ⋅

−
,                                          (37)
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( ) ( ) ( ) ( )1 1

1ˆ ˆk H kT w p w p+ += − ,
where 1, 2, ,h H= ⋅⋅⋅ .

The updated sequence PPs ( ) ( )( ) ( )2
1ˆ ˆ, 1,2, ,k kp w p k M L= + , and their set is denoted 

by S4.

 
( ) ( )( )2

4 1ˆ ˆ, , 1,2, ,k kp w p S k M L∈ = + . (38)

Step 9. Build nonparametric numerical PWF model. On the basis of the obtained PPs and 
Eq. (27), the coefficients for difference quotients can be solved.
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 Taking the above coefficients into Eq. (28), the approximated nonparametric numerical 
PWF model is exhibited as follows:
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On the basis of solved Eq. (40), if researcher obtains m groups new elicitation EPPs which 
are not in Set S1, to update the nonparametric numerical model, the method which is same 
to Eq. (34) is used, a new nonparametric numerical PWF model is built as follows: 

 
( ) ( ) ( ) ( )1IN p IN p IE p= + . (41)

In where, IN(p) is the expression of Eq. (40), IE(p) is the adding term and is shown as 
follows:
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In general, the models of Eqs (41) and (42) improved the models of Eqs (33) and (34), 
respectively. The difference between the nonparametric numerical approach in Section 3.4 
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and the numerical method in Section 3.3 is that the built model increases several CPPs 
and relates these CPPs to the elicitation EPPs. This approach makes a contribution that the 
approximation PWF could better reflect decision-maker’s risk preferences and thus better 
predict decision-maker’s behaviors. 

Part 2: A large numbers of EPPs

In the case of known large numbers of the elicitation EPPs, the proposed nonparametric 
numerical approach to approximate the PWF shows good performance in response to the 
risk preferences of decision-maker. The proposed approach could accommodate a change in 
decision-maker’s risk preferences both for aggregate data and for individual data (the empiri-
cal analysis of Section 4 demonstrates this conclusion). However, extensive information on 
preferences is generally difficult to gather, Gonzalez (1993) uses a large amount of preferences 
information to fit the parameter PWF.

Assume that large numbers of EPPs have obtained. The steps in using nonparametric 
numerical approach to approximate PWF are present as follows:

Step I. Elicit PWF. The step is similar to Step 1 in that it assumes that the obtained elicita-
tion EPPs are ( )( )i ip w p , their number is M( )10M M >  and their set is denoted by S1.

 ( )( ) 1, , 1,2, ,i ip w p S j M∈ = ⋅⋅⋅ . (43)

Step II. Divide the preference information into ( )2R R ≥  parts. According to the size of 
probability ( )( )1,2, , ; 0,1i ip i M p= ∈ , the EPPs are divided into ( )2R R ≥  parts. The de-
tailed context is given as follows:

( )( ) 11 1, , 1,2, ,i ip w p S i X∈ = ⋅⋅⋅ ,

( )( ) 12 1 1 2, , , 1, ,j jp w p S j X X X∈ = + ⋅⋅⋅ ,                                         (44)



( )( ) 1 1 1, , , 1, ,k k R R Rp w p S k X X M− −∈ = + ⋅⋅⋅ .

Assuming R = 3, the preference information is divided into three parts because of the 
different reaction of PWF for small probability, intermediate probability and big probability. 
The divided intervals for probability p are (0,0.1]ip ∈ , [0.1,0.9]jp ∈  and [0.9,1)kp ∈  respec-
tively. The corresponding preference information ( )( ),p w p  is also divided into three parts, 
namely, S11, S12 and S13. To ensure the continuity of PWF, we take the boundary points on 
every intervals such that the total number of preference information is increased to M + 2 
because the EPPs ( )( )0.1, 0.1w  and ( )( )0.9, 0.9w  are used twice.

( )( ) 11 1, , 1,2, ,i ip w p S i X∈ = ⋅⋅⋅ ,

( )( ) 12 1 1 2, , , 1, ,j jp w p S j X X X∈ = + ⋅⋅⋅ ,

( )( ) 13 2 2, , , 1, ,k kp w p S k X X M∈ = + ⋅⋅⋅ .
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Step III. Build the piecewise PWF model. We build our nonparametric numerical model 
in each interval according to the preference information of three intervals.
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where the middle EPPs ( )( ) ( )( ) ( )( )1 1 2 2 1 1
, , , , , ,

R RX X X X X Xp w p p w p p w p
− −

  

  are used twice. 

This method ensures that the piecewise PWF curve ( )rIN p  intersects the curve ( )1rIN p+  
at ( )( ) ( ), 1,2 , 1

r rX Xp w p r R= −

 . Thus, the model with R parts ensures the continuity of 
elicitation PWF in interval (0, 1). Moreover, the piecewise nonparametric numerical PWF 
model is built as follows.
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. (46)

In this part, the purpose of using piecewise Newton interpolation method is to avoid the 
oscillation behavior of high-order Newton polynomial. We can also increase several CPPs by 
using Steps 1–6, then use Step II–III to obtain the piecewise model. The framework to ap-
proximate PWF with the aid of the nonparametric numerical approach under the condition 
of known large numbers of the elicitation EPPs is shown in Figure 5.

In summary, the nonparametric numerical approach could better approximate PWF to 
ensure good performance of the model to reflect and predict the risk preferences of deci-
sion-maker. This approach approximates PWF by interpolating the elicitation EPPs and the 
inferred CPPs without assuming a specific parametric form. Therefore, the developed PWF 
model varies with the risk preferences of decision-maker. In the process, obtaining the elicita-
tion EPPs by using C-E method is important. Thus, decision making requires an experiment 
or questionnaire survey before decision-making theories are used with the proposed non-
parametric numerical approach. Although this approach could increase the cost of decision-
making, it is good at reflecting and predicting the risk preferences of decision-maker so that 
researcher predicts decision-maker’s behaviors and provides a good decision-making scheme. 
This is also the goal of our study.
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4. Empirical analysis

Empirical analysis indicates that the proposed nonparametric numerical approach has a good 
performance at approximating PWF, and that the built model can better reflect and predict 
decision-maker’s risk preferences by satisfying the EPPs and basic properties of PWF both 
for aggregate data and for individual data. As a result of the limited condition, empirical 
analysis used the experiment data from Tversky and Kahneman 1992 for the aggregate sub-
ject data and Wu and Gonzalez (1999) for the individual subject data. A comparative analysis 
of Prelec’s two-parameter model, numerical model (using Newton interpolation method to 
interpolate the elicitation EPPs) and nonparametric numerical model indicates that the pro-
posed nonparametric numerical PWF model performs well both in aggregate and individual 
subject level.

Data processing and updating were conducted to adapt to the change in experimental 
data (For more details, one may refer to Parts 1 and 2). This method of data processing 
and data updating is not only convenient our solving, but also dynamic response to the 
preferences of decision-maker. As long as the decision-maker offers several choices under 
the condition of eliciting experiment or questionnaire survey, the elicitation EPPs could be 
collected, and a nonparametric numerical approach could be used to approximate PWF and 
build a nonparametric numerical model. Based on the built nonparametric numerical model, 
researchers could know the risk preferences of decision-maker during the actual decision 
making analysis, such that a decision-making scheme could be made to sever economic 
decision-making. This condition is also an important advantage for the proposed nonpara-
metric numerical approach because examining the observed choices provides insight into the 
psychological reasoning that underlies the survey data both at the aggregate and individual 
level (the analysis will be shown in the following Subsections).

4.1. Aggregate data

Considering most people’s decision-making, it requires large experiment data that reflect 
their risk preferences to verify the proposed nonparametric numerical approach. In this 
subsection, we quote the high-quality data from Tversky and Kahneman (1992)12, which 
benefited from interviews with 25 graduate students from Berkeley and Stanford who have 
no special training in decision theory. The respondents were asked to imagine that they are 
actually faced with the choice described in the problem, and to indicate the decision they 
would have made in such a case. These experimental data are displayed in Table 1. Although 
these experimental data were collected a long time ago (in 1992), they can still well reflect 
most people’s decision-making and can be used to verify the validity of the proposed non-
parametric numerical approach.

A C-E method was introduced in Definition 3 for translating monetary outcomes e into 
the corresponding psychological probability ( )w p  with objective probability p for experi-
mental data in Table 3. Implementing the transformation of Eq.  (30), the relationship of 

12 In this experiment, each subject participated in three separate one-hour sessions that were several days apart, and 
each subject was paid $25 for participation.
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probability pi and the corresponding psychological probability ( )iw p  about event outcome 
ei are shown in Table 3. To distinguish the different reactions of decision-maker for gains-
losses and low-high monetary outcome, the prospects are divided into four sets: positive low 
monetary outcome prospect (0 < ei < 200), positive high monetary outcome prospect (200 ≤ 
ei ≤ 400), negative positive low monetary outcome prospect (–200 < ei < 0) and negative high 
monetary outcome prospect (–400 ≤ ei ≤ –200). Once the sets of prospects are established, 
a quantitative description of these prospects is prepared to analyze the shape and properties 
of the approximation PWF shown in Definition 2.

EPPs defined in Definition 4 ( , ( )), 1,2, ,i ip w p i M=

  can be collected by the C-E meth-
od defined in Definition 3 to process the experimental data in Table 2. Table 3 shows the 
elicitation EPPs of most people decision-making for the prospects of different levels.

Table 2. Median cash equivalents for all nonmixed prospects (Tversky & Kahneman, 1992)

Probability

outcomes 0.01 0.05 0.10 0.25 0.50 0.75 0.90 0.95 0.99

(0,50)
(0,–50)

4
–3

9
–8

21
–21

37
–39

45
–47

(0,100)
(0,–100)

14
–8

28
–23.5

36
–42

56
–63

78
–84

(0,200)
(0,–200)

10
–3

20
–23

76
–89

131
–155

188
–190

(0,400)
(0,–400)

12
–14

377
–380

(50,100)
(–50,–100)

59
–59

71
–71

83
–85

(50,150)
(–50,–150)

64
–60

72.5
–71

86
–92

102
–113

128
–132

(100,200)
(–100,–200)

118
–112

130
–121

141
–142

162
–158

178
–179

Note: The two outcomes of each prospect are given in the left-hand side of each row; the corresponding 
value of median cash equivalents are given in the right columns (i.e., ($9, 1.0) is equivalent to (0, 0.90; 
$50, 0.10), the value of $9 in the upper left corner.).

Table 3. Relationship of probability p and psychological probability probability w(p)

Probability p and probability weight w(p)

Outcomes 0.01 0.05 0.10 0.25 0.50 0.75 0.90 0.95 0.99

0 < e < 200 0.08 0.14 0.18 0.28 0.42 0.56 0.74 0.78 0.90
200 ≤ e ≤ 400 0.05 0.10 0.38 0.66 0.94
–200 < e < 0 0.06 0.08 0.16 0.24 0.42 0.63 0.78 0.84 0.94
–400 ≤ e ≤ –200 0.02 0.12 0.45 0.78 0.95
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Applying Newton interpolation

Using these elicitation EPPs in Table 3 and Newton interpolation approach, a nonparametric 
PWF can be expressed as follows:

 
1 1 2 1

2

( ) [ ] [ , , , ] ( )
M

i i
i

N p w p w p p p p p −
=

= + −∏ , (47)

where 1 1 2 1 2 9[ ], [ , ], , [ , , , ]w p w p p w p p p⋅ ⋅ ⋅ ⋅ ⋅ ⋅  are difference quotients and are defined such as 
Eqs (28)–(30). From the above expressions (56), the developed PWF model is a nonlinear 
equation determined by the elicitation EPPs and varies with the number and value of the 
elicitation EPPs. For instance, the expressions of 1 ( )N p+  and 1 ( )N p−  are both eight-order 
nonlinear equations and are determined by nine elicitation EPPs, 2 ( )N p+  and 2 ( )N p−  are both 
four-order nonlinear equations and are determined by five elicitation EPPs. To intuitively 
show the shape and properties of the approximated PWF models, Figure 6 is given with the 
trend of 1 ( )N p+ , 2 ( )N p+ , 1 ( )N p−  and 2 ( )N p−  to reflect and predict the risk preferences of 
decision-maker.

In Figure 6, compared with 2 ( )N p− , 1 ( )N p−  exhibits more risk aversion; 1 ( )N p+  is more 
risk-seeking than 2 ( )N p+ . At the same time, the four curves of Figure 6 exhibit overweighting 
for small probabilities and underweighting for moderate and big probabilities. The curves 
of 1 ( )N p−  and 2 ( )N p−  have a good performance at approximating the shape of PWF. How-
ever, the performances of 1 ( )N p+  and 2 ( )N p+  are poor. The result reveals the instability of 
Newton interpolation method based on the elicitation EEPs. Thus, a nonparametric numeri-
cal approach is proposed to approximate PWF to reflect and predict the risk preferences of 
decision-maker.

Applying nonparametric numerical approach

According to the obtained elicitation EPPs in Table 3, the proposed nonparametric numerical 
approach was used to approximate PWF. It is obviously that the number of the elicitation 
EPPs is a small number, so the nonparametric numerical model could be approximated by 
using Step 1–8. A two-parameter PWF model is selected as follows

 
( )( , , ) exp lnw p p g d g = −d −  

, (48)

Figure 6. The approximation PWF model based on Newton interpolation method
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where, ( ), ,w p d g  is a two-parameter Prelec’s model (Prelec, 1998). Figure 7 exhibits the char-
acteristic pattern of the three kinds of reflecting and predicting the risk preferences’ PWF 
models.

First, the PWF curves indicate risk seeking for small probabilities (the PWF curves 
above diagonal) and risk aversion for intermediate and big probabilities (the curves below 
the diagonal)13. Thus, the PWF curves are referred to as inverse-S shape. Second, they show 
that, facing negative prospect (–200 < e < 0), decision-maker give more weight to small prob-
abilities and less weight to intermediate and large probabilities. Last, the curves also indicate 
that preference relations satisfy continuity and monotonicity, and that slight departures from 
monotonicity about N(p) and IN(p) in the interval 0.15, 0.25   could reflect the preference 
fluctuations of decision-maker from risk-seeking to risk-aversion.

However, compared with the existing parameter model w(p), the numerical models N(p) 
and the nonparametric numerical model IN(p) could better reflect and predict risk prefer-
ences of decision-maker with the curves of N(p) and IN(p) going through the elicitation 
EPPs, which are obtained by eliciting an experiment or questionnaire survey and using C-E 
method. Moreover, compared with N(p), IN(p) performs well at the monotonicity of prefer-
ence relation, and it also avoids oscillation of high-order Newton polynomial. Thus, Figure 7  
exhibits intuitively the advantages and disadvantages of the three PWF models.

To verify that the model IN(p) exhibits a good performance for different prospects’ mon-
etary outcomes14, different curve graphs based on different PWF models are presented in 
Figure 8.

13 It reflects the common features of people’s attitude toward risk. People show different risk attitudes for different 
reference points. As we all know, EU theory’s probability weighting function is w(p) = p, which exhibits a straight 
line (i.e., the diagonal). The risk attitude is defined by the spatial location relationships of preference curve IN(p) 
and the diagonal w(p) = p: if the preference curve lies on the diagonal, decision-maker is risk-neutral; if the 
preference curve lies above the diagonal, decision-maker is risk-seeking; and if the preference curve lies below 
the diagonal, decision-maker is risk-aversion. For more details, one may refer to literature Tversky and Wakker 
(1995). 

14 The different prospects are mainly the comparison of gains the higher level monetary outcome (0 < e < 200), 
gains the lower level monetary outcome 200 ≤ e ≤ 400, losses the higher level monetary outcome –200 < e < 0 
and losses the lower level monetary outcome –400 ≤ e ≤ –200.

Figure 7. Curves of PWF based on w(p), N(p) and nonparametric numerical model IN(p)
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Figure 8 outlines that the nonparametric numerical model IN(p) that integrates the ad-
vantages of existing parameter PWF model w(p) and the numerical PWF model N(p) better 
reflect and predict decision-maker’s risk preferences for every case.

Scholten and Read (2014) presented the “forgotten” fourfold pattern of risk preferences. 
Figure 9 demonstrates that the approximated PWF model IN(p) satisfies the property of the 
Four-fold pattern of risk preference for decision-maker. 

Figure 9. Curves of nonparametric numerical models based on aggregate experimental data. IN1(p) 
and IN2(p), respectively, correspond to event outcomes 0 < e < 200 and e ≥ 200, both represent  
decision-maker’s PWF for positive prospects. N3(p) and N4(p), respectively, correspond to event  
outcomes –200 < e < 0 and e < –200, both show decision-maker’s PWF for negative prospects

Figure 8. Curves of different models based on aggregate experimental data. 1 ( )N p+  and 2 ( )N p+ , cor-
respond to event outcomes of e  that lie below or above 200, respectively; both represent decision-
maker’s PWF for positive prospects, 1 ( )N p−  and 2 ( )N p− , correspond to event outcomes of e that lie 

below or above –200, respectively; both show decision-maker’s PWF for negative prospects
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4.2. Individual data

The experiment data of Gonzalez and Wu (1999) are used to demonstrate that the proposed 
nonparametric numerical approach could be applied to approximate PWF in the individual 
subject level. The median certainty equivalent for each of the 165 two-outcome gambles ap-
pears in Table 4. The first column of Table 4 expresses two-outcome prospects; the first line 
expresses the probabilities of two-outcome prospects; others express the corresponding sure 
prospects under different probabilities. 

To obtain the risk preference information of decision-maker, the C-E method defined in 
Definition 3 is applied to process these experimental data in Table 4. Figures 10–11 presents 
the parameter model w(p) fitted by Eq. (48), numerical model N(p) built by Eq. (33) and 
nonparametric numerical model IN(p) approximated by using Eq. (48) for the median data 
shown in Table 4. The difference between Figures 10 and 11 is that Figure 11 abandons the 
non-high-quality elicitation EPP (0.6, 0.389) because it is far from the preference curve w(p) 
in the first sub-graph of Figure 10. In this process, a two-parameter PWF w(p) (it is same to 
the aggregate data) is selected as follows:

 
( )( ) exp lnw p p g = d −  

. (49)

Parameters d and g are determined by using a least squares approach. The results include 
d = 1.29 and g = 0.32 in Figure 10 and d = 1.30 and g = 0.32 in Figure 11. It is obvious that 
w(p) varies minimally with the number of EPPs, which means that the EPP (0.6, 0.389) is 
not high-quality experimental data. What is important is that it reveals the disadvantages of 
parameter PWF model, that is, assuming a specific parametric function form. N(p) and IN(p) 

Table 4. Median certainty equivalent for each monetary outcome from Gonzalez and Wu (1999)

Outcomes
Probability attached to higher outcome

0.01 0.05 0.10 0.25 0.40 0.50 0.60 0.75 0.90 0.95 0.99
25–0 4.0 4.0 8.0 9.0 10.0 9.5 12.0 11.5 14.5 13.0 19.0
50–0 6.0 7.0 8.0 12.5 10.0 14.0 12.5 19.5 22.5 27.5 40.0
75–0 5.0 10.0 8.5 14.0 17.0 16.0 18.0 23.0 36.0 31.5 48.5
100–0 10.0 10.0 15.0 21.0 19.0 23.0 35.0 31.0 63.0 58.0 84.5
150–0 10.0 10.0 18.0 25.0 34.0 25.0 49.0 70.0 41.5 106.0 118.0
200–0 6.0 9.0 21.0 26.5 34.5 34.0 56.0 48.0 80.0 102.0 158.0
400–0 18.0 24.0 24.0 54.0 64.0 58.0 58.0 115.0 208.0 249.0 277.0
800–0 9.5 42.0 36.0 90.0 91.0 89.5 207.0 197.5 404.0 448.5 519.0
50–25 28.0 29.5 30.5 32.0 34.5 34.5 37.5 36.5 38.0 41.5 41.0
75–50 56.5 58.0 56.0 59.5 62.0 63.0 64.0 64.5 64.5 65.0 68.5
100–50 58.0 59.0 59.0 62.5 66.5 70.0 78.0 82.5 80.0 78.5 89.0
150–50 57.0 58.5 71.0 79.0 89.0 84.0 92.0 99.0 121.0 106.0 117.0
150–100 114.0 110.0 116.5 116.0 121.0 125.0 125.5 131.0 133.5 130.0 142.5
200–100 111.5 115.0 117.0 123.0 131.0 135.0 144.0 146.0 149.0 171.0 158.0
200–150 156.0 165.0 160.0 166.0 171.0 170.5 176.0 177.0 187.5 179.5 190.0

( )w p

0.115 0.145 0.175 0.242 0.295 0.307 0.389 0.434 0.544 0.584 0.735
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are both nonparametric numerical PWF model, their advantages and disadvantages have 
been expounded in aggregate data. Exhibiting the effect of high-quality experimental data 
is important in building a PWF model. A phenomenon that the curve of N(p), but not w(p) 
and IN(p), changes significantly when abandoning non-high-quality experimental data could 
be discovered by comparing Figure 10 and 11. Moreover, IN(p) shows good performance 
at the shape under the case of gaining high-quality elicitation EPPs than under the case of 
gaining non-high-quality elicitation EPPs. Therefore, several non-high-quality experimental 
data are abandoned based on whether they are far away from the fitting curve w(p), or upon 
satisfaction of monotonicity of preference relation in the individual data.

Gonzalez and Wu (1999) collected a group of experimental data composed of 10 sub-
jects with 165 two-outcome prospects per subject by using C-E method. Table 5 exhibits 
the processed experimental data of 10 subjects. However, several experimental data are not 
high-quality. For instance, according to subject 1, w(0.05)  = 0.30 and w(0.10)  = 0.28. In 
other words, subject 1 deemed that the probability weight of 0.05 is bigger than the prob-
ability weight of 0.10 under prospect theory or cumulative prospect theory. According to the 
monotonicity of preference relation, the preference of subject 1 at p = 0.10 is not reasonable. 
Therefore, for subject 1, the preference points (0.10, 0.28), (0.50, 0.30) and (0.60, 0.45) and 
(0.90, 0.60) are abandoned to obtain high-quality EPPs. The abandoned EPPs are shown in 
bold in Table 5.

Figure 10. PWF curves based on aggregate data

Figure 11. PWF curves based on aggregate data except for preference points (0.6, 0.389)
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As shown in Figure 12, each individual participant exhibited a pattern according to the 
elicitation EPPs from Table 5 by using both two-parameter model and nonparametric nu-
merical model. That is, the inverse S-shape of PWF, overweighting for small probability and 
underweighting for big probability appear to be a regularity that holds for most of individual 
subjects (except subjects 6 and 8). However, substantial heterogeneity is found in different 
individual subjects because of the differences of risk preferences.

First, using Prelec’s two-parameter model w(p) to approximate high-quality experimental 
data, the parameters correspond to the mathematic properties of curvature and elevation. 
Given that curvature and elevation appear to vary somewhat independently across partici-
pants, the model could fit several individual subjects such as subjects 1, 3, 4, 5, 6, 7, 9, and 
10. At the same time, subjects 1, 5, 7 and 8 appear to cross the identity line at roughly the 
same level, yet they exhibit different degrees of curvature. Subjects 3 shows predominantly 
overweighting probability (relative to the identity line), whereas Subject 9 predominantly 
underweights probability; both participants exhibit roughly the same degree of curvature, 
but not elevation. Subject 6 always overweights probability, it does not satisfy the properties 
of inverse S-shape of PWF and underweighting for large probability, thus, subject 6 is always 
risk-seeking in situation.

Second, the nonparametric numerical approach is used to approximate PWF IN(p) 
(Eq. (45)). For instance, subject 1 is linear in the range [0.05, 0.95], but subject 7 approaches 
linearity in the entire range, while others are nonlinear. Note that subjects 4 and 9 show 
predominantly underweighting probability (relative to the identity line); whereas, Subject 3 
shows predominantly overweighting probability, and subject 6 shows absolutely overweight-
ing probability; that finding proves that different participant exhibits different risk preference 
even if they are in the same environment. In the additive, subjects 2, 5 and 10 exhibit an 
inverse S-shaped PWF. Subject 8 is failure to be described both using parameter approach 
and using nonparametric numerical approach. Thus, the experimental data of subject 8 have 
low reliability.

Finally, the parameter and nonparametric numerical approach is compared at individual 
level, and the conclusions are similar to those at aggregate level are also obtained. For all 

Table 5. Experimental data from Gonzalez and Wu (1999)

Subject
Probability p and probability weight w(p)

0.01 0.05 0.10 0.25 0.40 0.50 0.60 0.75 0.90 0.95 0.99
1 0.22 0.30 0.28 0.38 0.44 0.30 0.45 0.58 0.60 0.70 0.82
2 0.18 0.30 0.42 0.54 0.52 0.50 0.53 0.62 0.84 0.92 0.96
3 0.34 0.36 0.52 0.54 0.56 0.62 0.56 0.68 0.76 0.80 0.85
4 0.11 0.39 0.20 0.31 0.24 0.31 0.25 0.29 0.32 0.45 0.50
5 0.17 0.31 0.32 0.42 0.39 0.46 0.47 0.52 0.62 0.71 0.82
6 0.11 0.14 0.23 0.35 0.50 0.59 0.69 0.79 0.92 0.96 0.99
7 0.31 0.33 0.39 0.36 0.42 0.35 0.47 0.46 0.63 0.64 0.65
8 0.38 0.23 0.22 0.39 0.22 0.23 0.42 0.43 0.48 0.58 0.82
9 0.04 0.10 0.12 0.25 0.33 0.39 0.46 0.66 0.82 0.87 0.93

10 0.25 0.28 0.36 0.42 0.52 0.53 0.56 0.60 0.74 0.80 0.87
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Subject 1

Subject 3

Subject 5

Subject 7

Subject 9

Subject 2

Subject 4

Subject 6

Subject 8

Subject 10

Figure 12. Fits of PWF for each individual participant using the parameter approach  
and nonparametric numerical approach
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of individual subjects, Subjects 1, 2, 4, 5 and 10 could yield a good PWF pattern both for 
parameter approach and for nonparametric numerical approach under the condition of high-
quality EPPs. However, while the two-parameter PWF model fails to capture the pattern 
of subjects 2 and 8, yet the nonparametric numerical PWF model could do so success-
fully. Therefore, the proposed non- parameter numerical approach is a good approximation 
method to estimate the risk preferences of decision-maker in individual data.

On the whole, Empirical analysis provides that the proposed nonparametric numerical 
approach is a good method of building a nonparametric numerical PWF model that reflect 
and predict the preferences of decision-maker both in aggregate data and in individual data. 
The proposed model is required to go through all elicitation EPPs, which means that it could 
better reflect and predict the risk preferences of decision-maker than parameter models. 
However, the collected elicitation EPPs of the proposed approach has a higher quality re-
quirement than parameter model.

More specifically, aggregate data are obtained by merging with the preferences of most 
decision-makers, these data are high-quality data in general. However, individual data are 
obtained by every decision-maker, they are not high-quality data because each individual 
decision-maker is faced with facing with the decision-making environment, economic condi-
tions and cultural factors. Thus, individual data need to be processed by abandoning several 
non-high-quality EPPs such as the EPPs shown in bold in Table 5.

Conclusions

Different people have different risk attitudes, the same people who face different environ-
ments also have different risk attitudes, and different risk attitudes reflect different prefer-
ences. To estimate and measure these preferences, a nonparametric numerical approach is 
proposed in this paper. This nonparametric numerical approach is presented by combin-
ing parameter model and nonparametric eliciting approach. Empirical research at aggregate 
individual level has demonstrated that using the proposed approach to approximate PWF 
model could better reflect and predict the preferences of decision-maker without assuming 
a specific parametric form.

This paper not only offers a nonparametric numerical approach, but also provides some 
empirical researches both at aggregate level and at individual level. A nonparametric numeri-
cal approach allows researchers to infer the economic characteristics of an individual subject 
from the obtained preference information not only at aggregate subject level but also at indi-
vidual subjects level. The non-linear PWF are shown based on empirical analysis. Moreover, 
the PWF approximated by the nonparametric numerical approach exhibits several charac-
teristics such as an inverse S-shape and the “forgotten” fourfold pattern of risk preferences. 
In the actual enterprise management, the nonparametric PWF model proposed in this paper 
can effectively depict the risk preference of decision makers, and provide reliable theoretical 
and model basis for decision makers.

Of course, the use of the proposed nonparametric approach to approximate PWF has 
some disadvantages. For instance, when the collected experimental data are not high-quality, 
in reflecting and predicting the preferences of decision-maker is difficult for the built model, 
which has a significant effect given the collected experimental data. Moreover, compared with 
the parameter approach, the nonparametric numerical approach is more complex, and the 
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obtained curves are less observable and smooth. To solve these problem, non-high-quality 
experimental data were abandoned by determining whether these experimental data are away 
from the fitted two-parameter model (i.e., Prelec’s PWF model) in this paper.

Future research

This paper focuses on proposing a nonparametric numerical approach to approximate PWFs 
for reflecting and predicting the risk preferences of decision-maker. To obtain the experi-
mental data, aggregate and individual PWFs were elicited through the C-E method defined 
in Definition 4. However, some other elicitation methods, such as the tradeoff method, can 
be applied to elicit PWF to obtain several high-quality preferences information. 

Although this paper focuses mainly on economic decision-making, the nonparametric 
numerical approach can be applied in other decision-making areas, such as, medical deci-
sion-making and behavior decision-making with applications to engineering management. 
Decision-making reflects the behavior of people, and people who have different genders, 
economic situations and come from different regions and countries have different risk pref-
erences. The proposed model could be suitable for varied preferences with different high-
quality preferences information.
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