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Abstract. Under intense industry competition, decision makers must ensure that products 
demanded by consumers can be quickly produced with minimum production cost. However, 
because uncertainties are unavoidable and inevitably affect decision makers, numerous studies 
have discussed how to control uncertainties or minimize their effects. Multiple uncertainties 
that interact simultaneously may cause a combined effect in actual systems. Therefore, this study 
presents a robust optimization model with two uncertainties, extending the method of robust 
optimization with one uncertainty. To demonstrate the applicability of the proposed model with 
two uncertainties, this study uses the supplier selection problem with component purchase quan-
tity allocation in supply chain management as an analysis case. This considers the reliability of 
production and transportation and develops a multi-objective robust optimization model with 
two uncertainties. In addition, a nondominated sorting genetic algorithm is proposed for solv-
ing the proposed multi-objective robust optimization model. The relationship between price of 
robustness and budget parameters is explored by considering the robust optimization model with 
production and transportation uncertainties proposed in this study. Finally, there is a comparative 
analysis between the results for price of robustness in the proposed two-uncertainty model and 
in the one-uncertainty model.

Keywords: robust optimization, multiple uncertainties, supplier selection, quantity allocation, 
supply chain, nondominated sorting genetic algorithm.

JEL Classification: C44, C61, D81, L11, M11.

Introduction

Many unpredictable uncertainties occur in real life, and these risks can make appropriate 
decisions more difficult. Uncertainties arise when the result of a certain event or a certain 
decision cannot be known in advance or when a decision may have more than one result. For 
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enterprises, uncertainties may affect only one operation or they can even lead to bankruptcy. 
Therefore, uncertainties can render decision makers unable to implement long-term planning 
and investment, resulting in missed opportunities. Uncertainties often lead to suboptimal 
solutions for optimization problems. However, decision makers usually ignore data uncer-
tainties and base their decisions on a determined scenario. 

A system based on deterministic data may not effectively address uncertain scenarios, so 
uncertainties are an unavoidable but complex problem. Numerous scholars have proposed 
methods to control the effects of uncertainties. To address this issue, Soyster (1973) first pro-
posed the concept of robust optimization (RO), based on scenario analysis and goal planning 
to optimize systems, variables, and penalty costs. With refinements by several scholars and 
application in various fields, RO can now effectively control uncertainty effects. However, 
these RO methods have deficiencies. 

Most RO studies have discussed only the optimization of a single uncertainty. However, 
in real conditions, more than one uncertainty can affect real-life decision-making, and these 
factors affect one another, making the consequences extremely complex for decision mak-
ers. For instance, the coronavirus has caused major interference to global production and 
transportation systems, necessitating the consideration of multiple uncertainties. However, 
the current RO model cannot provide sufficient decision-making assistance. Therefore, this 
study extends the original RO model with a single uncertainty to a RO model with two 
uncertainties as the basis for model development. This more closely represents reality, and 
enables further consideration of the model’s applications to determine optimal supplier com-
binations and component purchase quantity. In addition, the heuristic algorithm concept is 
introduced to identify an approximate solution, reducing the time required for a solution, 
thereby improving timeliness of decision-making.

The main contributions in this paper are as follows: (1) Presenting a robust optimization 
model with two uncertain parameters. (2) Developing a new multi-objective optimization 
mathematical model for supplier selection, based on the proposed two-uncertainty robust 
optimization model. The considered objectives include minimum ordering cost and mini-
mum completion time, while the uncertainties are production and transportation reliabili-
ties. (3) Proposing a nondominated sorting genetic algorithm for solving the multi-objective 
robust optimization mathematical model. (4) Presenting a real case to demonstrate the ef-
fectiveness of the proposed robust optimization mathematical model and solving approach. 
(5) Discussing the results of the robust planning to allow a decision maker to handle greater 
risks in a scenario with two uncertainties.

The remainder of this paper is as follows: Section 1 reviews the literature on uncertainty, 
robust planning, and multi-objective genetic algorithm. Section 2 presents basic concepts on 
RO used in this study. Section 3 introduces the proposed robust optimization model with 
two uncertain parameters. Section 4 describes a multi-objective robust optimization math-
ematical model for supplier selection and outlines the procedure of the proposed NSGA-II 
algorithm for solving the mathematical model. Section 5 demonstrates the effectiveness of 
the proposed methodology through a real case application and discusses the robust planning. 
Finally, conclusions and suggestions for future studies are given in the last Section.
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1. Literature review

1.1. Uncertainty and robust planning

The two approaches were proposed by Bertsimas and Sim (2003) to resolve the effects of 
uncertainties in optimization problems were stochastic programming and RO. Stochastic 
programming focuses on minimizing uncertainty effects and incorporating them into a de-
terministic model. This is done because uncertain parameters render solutions uncertain, 
thereby increasing the difficulty of obtaining solutions. However, Bertsimas and Sim (2003) 
stated that stochastic programming has two disadvantages. First, the probability distribution 
of data is assumed to conform to actual scenarios, but the so-called probability distribution 
is usually difficult to obtain. Another disadvantage is that the data are assumed to increase 
in quantity along with the number of scenarios.

The RO method includes several approaches to protect decision makers from vague and 
random uncertainties. Its main model is constructed using analysis of the worst-case sce-
nario, so its solutions are based on the most unfavorable uncertainties for decision makers. 
RO is based on scenario analysis and goal planning, which identify optimization subject to 
system, variable, and penalty costs, while also considering cost and flexibility. Although the 
analysis model may not provide the optimal solution, it is definitely more robust. Mulvey 
et al. (1995) explained the purpose of RO and explored possible problems through scenario 
assumptions in pursuit of a robust solution for a scenario, signifying that the solution identi-
fied is the optimal decision for various situations. Pan and Nagi (2010) used RO to analyze 
the uncertainties of new markets, Leung et al. (2007) also used RO to solve multiple produc-
tion-planning problems, and Li and Liu (2013) applied RO to solve problems associated with 
the bullwhip effect. Beyond applying RO to optimize supply chains and scheduling, Zeferino 
et al. (2012) also applied it to the planning of sewage treatment systems; Gülpinar and Pa-
chamanova (2013) used it to solve the problems of asset and liability management subject 
to random time changes; Bohle et al. (2010) applied it to plan wine grape harvest schedul-
ing. Zhao et al. (2020) proposed a tri-level RO model to plan the resources of distributed 
energy storage. Baringo et al. (2020) established an adaptive RO approach is for the energy 
planning problem of a distribution system for electric vehicles. A RO approach is developed 
by Izadpanahi et al. (2022) to handle demand uncertainty for energy transition planning in 
manufacturing firms. In addition, Majewski et al. (2017a, 2017b), and Moret et al. (2020) also 
handled the energy planning with uncertain inputs using RO. Thevenin et al. (2022) provided 
a RO formulation for the dynamic demand purchasing and supplier selection problem under 
lead time uncertainty. Chu et al. (2019) applied the RO approach to a multi-period, single-
station inventory problem with supply and demand uncertainties. Thorsen and Yao (2017) 
and Hnaien and Afsar (2017) considerd lot-sizing problems with lead-time uncertainties in 
their RO models. In addition, a RO approach was provided by Liu et al. (2021) to hendle 
uncertain sailing times and uncertain waiting times at ports in a maritime inventory routing 
problem. These studies show that RO is commonly used to resolve the effects of uncertainties 
in a wide range of fields.

As can be seen, these studies demonstrate that most RO studies focused on the optimiza-
tion problems with a single uncertainty and a few studies discussed the multiple uncertain 
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parameters problems. However, as far as I know, no other study explors the multi-objective 
problem which has two uncertain parameters with multiplication relationship. Our present 
model extends from the original RO (Bertsimas & Sim, 2004), where the multiplication 
relationship between two uncertain parameters in the constraints are defined before opti-
mization is executed.

1.2. Multi-objective genetic algorithm

Optimization has long been an essential management tool. Early multi-objective problems 
usually entailed simplifying objective functions into a single-objective function and then 
applying it to a genetic algorithm (GA). However, for increasingly complex problems, single-
objective functions no longer satisfy current needs, so multi-objective optimization has be-
come a major field in recent research. Mirzapour Al-e-hashem et al. (2011) also used an RO 
method to solve multi-objective problems.

Multi-objective optimization is a regional multiple criteria decision-making problem 
that can optimize multiple mathematical functions simultaneously and has the following 
two requirements: 1) The optimization model has multiple objective functions that must be 
maximized or minimized, and their constraints must be met. 2) A solution set and a non-
dominated solution set exist in the problem search space, where no solution in the nondomi-
nated solution set is dominated by any other solution in the solution set, and the mechanism 
achieves a balance between two or more conflicting objectives. No single solution exists for 
a multi-objective optimization problem, because each objective is optimized simultaneously, 
leading to a Pareto optimal solution. In certain cases, the Pareto optimal solution may be 
infinite, and one of the solutions is nondominated. Without the influence of subjective prefer-
ences, all Pareto solutions are optimal solutions. 

Various scholars have proposed multi-objective evolutionary algorithms for multi-ob-
jective problems, and Schaffer (1985) was the first to propose a vector-evaluated genetic 
algorithm. Although the respective method is relatively simple, the model is flawed, and the 
weight depends on the current generation. The vector-evaluated genetic algorithm cannot 
guarantee that desirable individual traits can be successfully passed on to the next generation. 
Holland (1992) proposed GAs, based on the phenomenon of natural selection and survival 
from the theory of evolution. The optimal selection rule of genetic crossover and mutation 
permits the retention of desirable genes and their transferal to the next generation through 
evolution. This enables the approximate optimal solution to be sought. As mentioned, GA 
cannot effectively solve problems, but a multiple-objective genetic algorithm (MOGA) has 
been developed, according to which GA groups are used to classify nondominated solutions 
that are ranked to enhance the effectiveness of the search for nondominated solutions. Hajela 
and Lin (1992) used a weighted GA to obtain the sum of all objective values, integrated 
multiple objectives into a single objective, and performed calculations. However, weights are 
easily affected by the decision maker, rendering them nonobjective and reducing the solution 
quality. Fonseca and Fleming (1993) also used a MOGA that ranked all individuals. Higher 
ranked individuals were transferred to the next generation, resolving the multi-objective 
optimization problem, but the quality of the solution was limited by an imperfect sorting 
mechanism.
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Since early MOGAs lacked a complete multi-objective algorithm, Srinivas and Deb (1994) 
proposed the nondominated sorting genetic algorithm (NSGA) to provide more satisfactory 
solutions and higher adaptive values on the basis of the dominance relationship between 
solutions to identify the Pareto front. However, the adaptation values of many solutions 
may be equal, which affects convergence speed. To overcome this shortcoming, Deb et al. 
(2002) proposed an improved nondominated sorting genetic algorithm II (NSGA-II), which 
exhibits elitism and a clear mechanism to maintain differences, and effectively improves the 
comparison mechanism for nondominated solutions to enhance algorithm effectiveness. A 
crowded comparison operator was also added to ensure even distribution of the solution on 
the Pareto front, and the elitism can effectively maintain the stability of more satisfactory 
solutions of subsequent generations.

NSGA-II has been applied in many fields. Yusoff et al. (2011) applied NSGA-II to solve 
the parameter settings of the machine production process and showed that it identified suit-
able parameter settings better than conventional methods. Lin and Yeh (2012) combined 
NSGA-II with the technique for order of preference by similarity to ideal solution to solve the 
problem of computer networks, and it outperformed the original algorithm. Wang and Hsu 
(2010) used NSGA-II to minimize the cost of supply chain partners, and Rezaei and Davoodi 
(2011) used NSGA-II to solve the supplier selection problem. Majumder et al. (2019) used 
NSGA-II to solve a multi-objective Chinese postman problem under maximizing the total 
profit earned and minimizing the total travel time for the tour of a postman. Majumder et al. 
(2020) employed NSGA-II to solve an uncertain multi-objective shortest path problem for 
a weighted connected directed graph. Dutta et al. (2020) proposed a multi-objective open 
set orienteering model in which the goals are the maximization of the profit score and the 
maximization of customer satisfaction and the model is solved by NSGA-II. Barma et al. 
(2021) adopted NSGA-II to deal with a multi-objective model of the capacitated vehicle rout-
ing problem to minimize both the quality degradation of the perishable items to be delivered 
and delivery costs. Che et al. (2021) proposed a multi-objective genetic algorithm based on 
NSGA-II for dealing with the multi-objective optimization mathematical model of supplier 
selection and assembly planning and Che et al. (2022) constructed a multi-objective opti-
mization model with maximum facility coverage, minimum facility overlap, and minimum 
total idle capacity for planning the service areas of smart parcel lockers utilized, which is 
solved by NSGA-II. These studies show that NSGA-II provides excellent solutions to multi-
objective problems.

The MOGA can coordinate the relationship between the objective functions and ob-
tain the optimal solution set whith a relatively quality value of each objective function. The 
calculation process of the proposed model becomes complicated in the context of multiple 
objectives, this study uses the MOGA of a nondominated solution to assist the solution. The 
NSGA-II enhances the satisfactory optimal performance of NSGA with the fast non-domi-
nated sorting, density value estimation strategy and elitist selection strategy for individuals. 
It has been widely and successfully utilized in many studies in various fields and has become 
one of the famous algorithms in multi-objective optimization fields. Therefore, to solve the 
supplier selection problem through consideration of the RO model with two uncertainties, 
this study uses NSGA-II as the solution for the entire decision-making system to seek the 
optimal combination of supply chain partners.
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2. Preliminaries

This section presents some basic concepts for RO used in this study. RO can be achieved by 
using one of two models: RO and robust counterpart optimization. The RO model was first 
proposed by Soyster (1973), and its model is shown in Eqs (1)–(3):

                                        maximize ;c x′   (1)
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where Mi – a set of uncertain coefficients aij under the ith constraint; aij – a random param-
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 + , where ija  is the mean of the random variable, and 
ˆija  is the maximum standard deviation.

This method is used mainly to achieve performance when the worst-case scenario occurs, 
that is, to maximize the gap between the performance achieved and the worst-case scenario. 
However, this method is overly conservative. Although it achieves complete robustness, it 
often involves the greatest price to pay for the most complete budget level from the actual 
scenario, and the probability of the worst-case scenario occurring is usually extremely low. 
Therefore, the optimal solution is sacrificed in assuming the worst-case scenario, reducing 
the effectiveness of the overall model. 

Ben-Tal and Nemirovski (1999) improved the model of Soyster (1973) and proposed 
an effective algorithm for solving the problem of excessive conservatism. The uncertain pa-
rameter sets were introduced into an RO in box and ellipsoidal forms to solve the portfolio 
problem. This method used a safety parameter (θ) mechanism to control the risk through 
adjustment of the degree of conservatism, and the model changed from Eq. (2) to Eq. (4):
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where θi – The budget parameter under ith constraint. 
The robust counterpart optimization model proposed by Ben-Tal and Nemirovski (2000) 

guarantees that the probability of the ith constraint being violated is at most ( )2exp / 2i−θ , as 
expressed by Eq. (5):
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This model uses the safety coefficient θi and the probability that the constraint violation 
of ( )2exp / 2i−θ  occurs to adjust the overall degree of conservatism of the optimization model. 
This model is more flexible than RO, but the entire model becomes nonlinear, increasing 
the complexity of the solution as well as involving quadratic programming. Therefore, this 
method is not applicable to the problem of integer programming (Bertsimas & Sim, 2003). 

Bertsimas and Sim (2004) proposed another RO model, which first represents uncertain 
data as shown in Eq. (6):
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where Gi – budget parameter is used to control the degree of conservatism of uncertainty, and 
the range of change is 0, i iM G ∈  ;  –ija  – the mean of the number of data; ˆija  – the maximum 
standard deviation of data.

Because the likelihood is low that the worst-case scenarios occur for all uncertain data, 
this method employs the concept of budget parameters used by Ben-Tal and Nemirovski 
(2000), allowing decision makers themselves to determine the degree of conservatism. By 
contrast, Bertsimas and Sim (2004) proposed a budget function, and its formula is as seen 
in Eq. (7):
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where ( ), i ixb G  – the budget function is composed of the decision variable x and the budget 
parameter Gi, and its detailed structure is expressed as Eq. (8):
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When the value of Gi in the budget function is set to 0, this mathematical model does 
not consider robustness and qualifies as a general optimized mathematical model. When Gi 
equals iM , this mathematical model has the highest degree of conservatism, which is sim-
ilar to the optimized mathematical model proposed by Soyster (1973). The decision-maker 
can decide the value of Gi, so the decision-making process is more flexible. This model re-
mains a linear optimization mathematical model, and adding an RO model can effectively 
increase the feasibility of a solution. 

Li and Ierapetritou (2008) used three RO models proposed by Soyster (1973), Ben-Tal 
and Nemirovski (2000), and Bertsimas and Sim (2004) to solve processing and scheduling 
problems when processing time, product demand, and market prices were uncertain. The 
results verified that the RO model proposed by Bertsimas and Sim (2004) effectively controls 
the degree of conservatism and is the most suitable method for the development of uncer-
tainty models. Moreover, Omrani (2013) also employed this method with data envelopment 
analysis to solve the problem of how its weight is formulated subject to uncertainty. Ang et al. 
(2012) also improved this method for use on the problem of multiperiod inventory subject 
to uncertain demand. Therefore, this study extends the RO model proposed by Bertsimas 
and Sim (2004) to further discuss the development of the RO model with two uncertainties.

3. Development of robust optimization model with two uncertain parameters

Most scholars have studied RO from the perspective of single-uncertainty analysis, and this 
model cannot effectively solve problems involving two uncertain scenarios. Therefore, this 
study establishes an RO model for two uncertainties. In this section, an RO model with 
two uncertain parameters is constructed. In the RO model proposed by Bertsimas and Sim 
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(2004), the sampling range of the uncertain parameter set was determined using the mean 
and standard deviation of uncertain parameter data, per Eq. (6). This characteristic resembles 
the concept of a 67% confidence interval obtained through addition or subtraction of a nor-
mal distribution mean and one-time standard deviation, so a single source of uncertainty 
is subject to normal distribution. According to the characteristics of data subject to normal 
distribution, an RO model with two uncertainties is constructed, as in Eqs (9)–(14):
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where Ua – original set of uncertain parameter a; Ub – original set of uncertain parameter 
b; Uab – new data distribution set generated through multiplication of two uncertain param-
eters; ijab  – the mean obtained through multiplication of two uncertain parameters;  ijab  – the 
expected standard deviation obtained through multiplication of two uncertain parameters.

For the interaction of two uncertainties, the existing parameters can be used to calculate 
the new data parameters because the uncertainties alone are a random parameter. Assuming 
that the two original parameters are X and Y, the expected value of the new data XY can be 
decomposed using the covariance, as shown in Eq. (15):

 ( ) ( ) ( ) ( ), .Cov X Y E XY E X E Y= −  (15)

After rearrangement of the equation, Eq. (16) is obtained:

 ( ) ( ) ( ) ( ), .E XY Cov X Y E X E Y= +  (16)

This is the expected mean obtained after multiplication of the two uncertain parame-
ters. E(XY) can be substituted into the ijab  of Eq. (14). The definition of covariance is as in 
Eq. (17):

                        
( ) ( ) ( ) 22 2Var XY E X Y E XY = = −  

 ( ) ( ) ( ) ( ) ( ) ( ) 22 2 2 2 ,,  ,E X E Y Cov X Y E X E Y Cov X Y + − +   
(17)

where the expected value and the variance can be converted into Eqs. (18)–(20):
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 

( ) ( )
2

2 2 2
2, 1 2 ,X y x x YCov r E Cov r Z

 
µ − σ + µ σ µ + 
 

( ) ( )2
22 ,2 2 ,2 1x x y y x x y yCov r Z r Z Cov r Z r Eµ σ µ σ + µ σ µ − σ +

( ) ( )2 2
22 , 2 ,2 1x x y x x y yCov r Z r Z Cov r Z r Z r E µ σ σ + µ σ σ − σ + 

 

( ) ( )2
2 2 2

2 12 , 1 2 1 ,x x y x x YCov r Z r E Cov r E
 
µ σ − σ + µ − σ µ + 

 

( )2
12 1 ,2x x y yCov r E r Zµ − σ µ σ +

( )2 2
1 22 1 ,2 1x x y yCov r E r Eµ − σ µ − σ +

( )22
12 1 ,x x yCov r E r Z µ − σ σ + 

 

( )2 2
1 22 1 ,2 1x x y yCov r E r Z r Eµ − σ σ − σ +

( ) ( )( )2 22 2 2
1 22 1 , 1 ,x x y x YCov r E r E Cov r Z

 
µ − σ − σ + σ µ + 

 

( )( ) ( )( )2 2 2
2,2 ,2 1x y y x y yCov r Z r Z Cov r Z r Eσ µ σ + σ µ − σ +

( ) ( ) ( )( )22 2 2
2, ,2 1x y x y yCov r Z r Z Cov r Z r Z r E σ σ + σ σ − σ + 

 

( ) ( ) ( )22 2 2 2
2 1, 1 2 1 ,x y x x YCov r Z r E Cov r Z r E

 
σ − σ + σ − σ µ + 

 

( )2
12 1 ,2x x y yCov r Z r E r Zσ − σ µ σ +

( )2 2
1 22 1 ,2 1x x y yCov r Z r E r Eσ − σ µ − σ +

( )22
12 1 ,x x yCov r Z r E r Z σ − σ σ + 

 
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( )2 2
1 22 1 ,2 1x x y yCov r Z r E r Z r Eσ − σ σ − σ +

( ) ( )2 2
2 2 2 2

1 2 12 1 , 1 1 ,x x y x YCov r Z r E r E Cov r E
   

σ − σ − σ + − σ µ +   
   

( )22
11 ,2x y yCov r E r Z

 
− σ µ σ + 

 

( )22 2
1 21 ,2 1x y yCov r E r E

 
− σ µ − σ + 

 

( ) ( )
2 22

11 ,x yCov r E r Z
 

− σ σ + 
 

( )22 2
1 21 ,2 1x y yCov r E r Z r E

 
− σ σ − σ + 

 

( ) ( )2 2
2 2

1 21 , 1 .x yCov r E r E
 

− σ − σ 
 

                                                      (35)
  
After decomposition, Eq. (36) can be obtained as follows:

           
( ) ( ) ( ) ( )222 2, 2 ,2 ,x x y y x yCov X Y Cov r Z r Z Cov r Z r Z = µ σ µ σ + σ σ = 

 

           ( ) ( )22 4 2 24 2 4  ., 2 ,x y x y x y x yr r Cov X Y Cov X Yµ µ σ σ + σ σ = µ µ +   (36)

Therefore, by substituting the derived covariance, the variance structure of the new data 
distribution can be obtained, as follows:

( ) ( ) ( )( ) ( ) ( )( )2 2Var XY Var X E X Var Y E Y= + + +

( ) ( ) ( ) ( ) ( ) ( ) ( )( )224 , 2 , ,Cov X Y E X E Y Cov X Y E X E Y Cov X Y+ − + =

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2Var X Var Y Var X E Y E X Var Y E X E Y+ + + +

( ) ( ) ( ) ( ) ( ) ( )2 2 24 , 2 ,Cov X Y E X E Y Cov X Y E X E Y+ − −

( ) ( ) ( ) ( )22 , ,Cov X Y E X E Y Cov X Y− =

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2Var X Var Y Var X E Y E X Var Y E X E Y+ + + +

( ) ( ) ( ) ( ) ( ) ( )2 2 24 , 2 ,Cov X Y E X E Y Cov X Y E X E Y+ − −

( ) ( ) ( ) ( )22 ,  ,Cov X Y E X E Y Cov X Y− =

( ) ( ) ( ) ( )2Var X Var Y Var X E Y+ +

( ) ( ) ( ) ( ) ( ) ( )2 2 ,2 , ,E X Var Y Cov X Y E X E Y Cov X Y+ +                                             (37)

        then

             
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1/22 2

2
X

2
,

, ,

Var Var Y Var X E Y E X Var Y
Var XY

Cov X Y E X E Y Cov X Y

 + + + =
 + 

            (38)
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where ( )Var XY  is the standard deviation after the multiplication of two uncertain param-
eters and can be substituted into  ijab  in Eq. (14). In this model, the parameters of the new 
data distribution can be obtained only with the mean and variance of original data and the 
correlation coefficient of two uncertainties.

4. Mathematical foundation and solving model

4.1. Scenario description

In a supply chain, the competitive advantages of the manufacturer to complete the product 
is determined by the conditions of suppliers to supply components. Many companies now 
focus on selecting quality suppliers for cooperation, so as to produce and deliver high-quality 
products to customers in a short period of time. In addition, due to increasingly fierce com-
petition, companies seek to build long-term relationships with high-quality supply chain 
partners. Therefore, selecting suppliers is challenging for companies (Chatterjee & Kar, 2018; 
Li et al., 2009). Che (2017) and Che et al. (2021) also pointed out that firms must integrate 
suppliers into the production process to increase their production efficiency and competi-
tiveness in the overall supply chain. Therefore, the supplier selection problem as an analysis 
case is used to illustrate the applicability of the proposed two-uncertainty robust optimiza-
tion model.

This study uses a single product supplier selection problem to explain and discuss the 
applicability of the proposed RO model with two uncertainties. When a factory receives a 
demand order and must separately purchase the components required, factors relating to 
both cost and time must be considered. For each component, multiple suppliers are avail-
able. Moreover, the two uncertainties of component production, reliability and transportation 
reliability, must also be considered. In terms of cost, the suppliers’ purchase costs and the 
transportation costs are taken into consideration, as well as component production time and 
transportation time. The basic assumptions of this study are as follows:

1) A single product and a single-period supplier selection model are the scope.
2) The main criteria for supplier selection are cost and time, with equal weight.
3) Each component can be purchased from multiple suppliers and must not exceed the 

supplier’s capacity limitations, and the component purchasing process must not en-
counter the out-of-stock phenomenon.

4) Components are delivered in single-item deliveries, not batch deliveries.

4.2. Multi-objective optimization mathematical model for supplier selection

Due to time and cost considerations, this study constructs a multi-objective optimization 
mathematical model for the selection of suppliers. Definitions of mathematical symbols are 
shown in Table 1.
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Table 1. Mathematical symbols 

Symbol Description

I Total number of components required for the product

,i j Component index number, 1,2,3, ,i I= … ; 1,2,3, ,j I= …

iV Total number of suppliers for component i

V Supplier index number for component i, 1,2,3, , iv V= …

OD Order quantity
 

ivPA Number of components i purchased from supplier v
 

,i vTC Transportation cost for supplier v and component i
 

,i vPC Procurement cost for supplier v and component i
 

,i vTT Transportation time for supplier v and component i
 

,i vMT Production completing time for supplier v and component i
 

,i vMR Production reliability for supplier v and component i
 

,i vTR Transportation reliability for supplier v and component i
 

,i vUCP Maximum capacity for supplier v and component i
 

,i vLCP Minimum capacity for supplier v and component i

,i vP 1 Select supplier  for the purchase of component 
0 otherwise

v i



 
TPC Total purchase cost
 
TTC Total transportation cost

FC Total cost of order completion
 
TTT Total transportation time
 
TMT Total production time of components

FT Total order completing time
 

,i vMR Production reliability of supplier v for component i
 

,i vTR Transportation reliability of supplier v for component i

U Total reliability set of all suppliers

m Variable coefficient set of the worst-case scenario

t Variable coefficient set of the Non-worst-case scenario

G Budget parameter
 ( ), ,i vPAb G Budget function 
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The objectives used are divided into cost and time when suppliers are evaluated; the con-
straints account for supply, demand, and capacity limitations. A multi-objective mathematical 
model is constructed as follows:

Objective functions:
1) Minimize total ordering cost: Minimize the supplier’s cost of component purchase and 

cost of transportation.

    ;Minimize FC TPC TTC= +  (39)

 
, ,

1 1

 ( ); 
iVI

i v iv i v
i v

TPC P PA PC
= =

=∑∑  (40)

 
, ,

1 1

 ( ). 
iVI

i v iv i v
i v

TTC P PA TC
= =

=∑∑  (41)

2) Minimize order completion time: Minimize the supplier’s component production time 
and transportation time.

    . Minimize FT TMT TTT= +  (42)

Production time is the time for components to be manufactured by the supplier, and the 
transportation time is the maximum transportation time for all selected component suppli-
ers.

 
( ), ,

1 1

;
iVI

i v i v iv
i v

TMT MT P PA
= =

=∑∑  (43)

                                            
max{ | , }.iv ivTTT TT P i v= ∀  (44)

Constraints:
Supply–demand balance: The remaining favorable products after each supplier’s purchase 

is multiplied by reliability and must satisfy the total demand of component orders.

 
, ,

1

,   .
iV

iv i v i v i
v

PA MR TR OD i
=

= ∀∑  (45)

Supplier capacity limitation: Must comply with the supplier’s capacity limitation for the 
ordering of components from suppliers.

 , , , ,   , .i v i v i vLCP PA UCP i v≤ ≤ ∀  (46)

Limited purchase quantity: The purchase quantity of components is a nonnegative integer.

 , ,0  and  Integer,  , i v i vPA PA i v≥ ∈ ∀ . (47)

4.3. Multi-objective optimization mathematical model for supplier selection

Using the RO model derived in Section 3, this study constructs an RO model with two un-
certainties, as follows:

Objective functions:
(39)–(44)
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Constraints:
(46)–(47)

              
( ), , ,

1

, ,   ;
iV

iv i v i v i v i
v

PA MR TR PA OD i
=

−b G = ∀∑  (48)

 ( ), i ixb G =
{ }



( )
, , ,

| , , , , ,

 
max ‚   .

 
i v i v i V

v mm t m U m t U m i v i v i V

MR TR PA
i

MR TR PA∈∪ ⊆ =G ∈

 +  ∀ G −G  
∑

 

(49)

Eq. (48) is a RO model with two uncertainties formed by adding a budget function b to 
Eq. (45). In addition, by controlling the magnitude of the budget parameter G to determine 
the magnitude of risk to be taken can reduce the effect of uncertainties, the budget function 
is as shown in Eq.  (49), where 

, , ,  i v i v i Vv m
MR TR PA

∈∑  
is the coefficient for the worst-case 

scenario, and , , ,i v i v i VMR TR PAG −G  is the coefficient for the non-worst-case scenario. The 
addition of these two values yields the maximum value, which is the RO budget function.

4.4. Nondominated sorting genetic algorithm for solving  
the optimization mathematical model

NSGA-II is here used to obtain a solution for the supplier’s model of two uncertainties. The 
steps are as follows:

Step 1: Encoding solutions. The solution structure is expressed in the form of chromo-
somes, and real numbers are used for encoding. The genetic value represents the quantity 
purchased by each supplier and must satisfy the aforementioned constraints. The chromo-
some structure is shown in Figure 1.

Step 2: Generation of initial population. According to the order demand and subject 
to the mathematical constraints of this study, the population of the initial supplier order 
quantity is generated. The order purchase quantity must take into account the production 
reliability and transportation reliability of suppliers. If the purchase quantity exceeds the 
capacity of its supplier, then any supplier should be randomly selected to compensate for 
the insufficient components.

Step 3: Calculation of objective function value. Substitute chromosomes in the original 
population into the mathematical objective equation of this study to calculate the objective 
function values of all chromosomes. The objective function of this study is the total cost 
and time.

Figure 1. Chromosome structure

Component P1

Component P2

Component Pn

……

Supplier

... i21
Purchasing quantity 
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Step 4: Nondominated sorting. According to the objective function value of each chromo-
some, the nondominated solutions for various levels are sorted to judge the quality of chro-
mosomes in the subsequent reproduction stage. The sorting step is to initially identity the 
chromosomes that are not dominated by other chromosomes, defined as Level 1 and called 
nondominated solutions; the remaining solutions are called dominated solutions. Again, 
the process is repeated for the remaining chromosomes and defined as Levels 2, 3, …  
until all chromosomes are sorted.

Step 5: Calculation of crowding distance. Crowding distance is used to calculate the chro-
mosome scores of the sorted chromosomes according to their levels, thus indicating the 
density between a particular chromosome and other surrounding chromosomes. Smaller 
crowding distance implies that the chromosome distribution is denser, and the chance 
of reproduction is lower. By contrast, greater crowding distance signifies looser chromo-
some distribution and higher probability of selection for reproduction. The calculation is 
as Eq. (50):

 

1 1

1

1 ,    1,2,3, , 1,
r

i i
i k k

k

CD f f i j
r

+ −

=

= − = … −∑  (50)

where CDi is the crowding distance of the ith chromosome, r is the number of objective func-
tions, k is one of the objective function values, i is the number of chromosomes, j is the last 
chromosome in the set, and 1i

kf
+  and 1i

kf
−  are the objective function values of chromosome 

(i + 1) and chromosome (i − 1) for the kth objective, respectively. In each level, the chro-
mosomes distributed at the end points on both sides set the crowding distance to infinity.

Step 6: Reproduction. After all chromosomes are sorted and the two data for the attributes 
of crowding distance are obtained, both data are used to determine whether reproduction 
occurs. The criterion used in this study is the total crowding distance ratio for all chromo-
somes (i.e., probability of the chromosome being reproduced).

Step 7: Crossover. Genetic codes for chromosome reproduced in the previous step are 
exchanged so the offspring inherit some of the characteristics of each parent. This step 
is referred to as crossover, and the algorithm in this study uses a single-point crossover 
mechanism. First, a group of component suppliers is randomly selected from the parent 
chromosome as a crossover segment. Subsequently, the supplier combination and purchase 
quantity corresponding to the segment of the two chromosomes are exchanged with each 
other, thereby generating two new offspring chromosomes.

Step 8: Mutation. The mutation mechanism expects offspring to evolve characteristics ab-
sent in the parents to prevent the chromosomes from converging to a regional optimal solu-
tion. The method used in this study is a single-point mutation mechanism, which groups 
chromosomes by components (i.e., mutations are performed in units of one component). 
However, tangent points are randomly generated on the grouped chromosomes, and the 
genes after the tangent points are used as mutant genes. The mutation results must comply 
with the constraints listed in the previous section, otherwise this step should be repeated.

Step 9: Elitist selection. The purpose of the elitist selection is to combine the original 
parent chromosomes and the offspring chromosomes produced after the processes of re-
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production, crossover, and mutation. All chromosomes in a nondominated solution are 
sorted, and the crowding distance is calculated. They are sorted according to the levels, 
and the first 50% of the desirable chromosomes are transferred to the next generation. To 
prevent the process from falling into a regional optimal solution, chromosomes with the 
same gene encodings are removed and replaced by the top-ranked chromosomes of the 
next 50% of chromosomes.

Step 10: Satisfy termination conditions. A maximum number of generations is the ter-
mination condition, at which point the iterations stop. If the termination condition is not 
achieved, the process returns to Step 3 to calculate the objective function value until the 
termination condition is fulfilled.

Step 11: Optimal supplier partner combination. When the termination condition is satis-
fied, the optimal supplier combination and relative purchase quantity can be obtained. The 
optimal objective function value is calculated from these two, and the objective function 
is the cost and time.

5. Case application and analysis

5.1. Supply selection and component purchase planning

To verify fitness of the proposed methodology, this study uses a real case where factory A, a 
hemadynamometer manufacturer, has eight major suppliers. For this case, the proposed sup-
plier selection model both evaluates the most efficient and feasible suppliers and allocates the 
optimal component purchase quantities. After a customer order is received, factory A must 
produce 260 units’ worth of products. A product requires 22 different components, and each 
component has four suppliers to choose from. Each supplier supplies only one component, 
and partial component supply information is shown in Table 2.

Because this study uses NSGA-II, the control parameters include population (N), gen-
eration (G), crossover rate (Cr), and mutation rate (Mr). For the decision-making support 
system to quickly achieve the optimal solution, each parameter must be experimentally de-
signed to identify a set of optimal parameter combinations that optimize the efficiency of 
the algorithm. Wu and Cao (1997) set the P for a stochastically optimized genetic algorithm 
to 30 groups, with Cr between 0.6 and 0.98 and Mr between 0.01 and 0.2. Rojas et al. (2002) 
noted that G and P have different sizes, according to the scale and type of the problem, 
setting the Cr values to 0.4, 0.5, 0.6, 0.7, and 0.8 and Mr values to 0.05, 0.1, 0.15, 0.2, and 
0.25. Veldhuizen and Lamont (1999) proposed that error ratio (ER) can be used to identify 
the algorithm convergence degree to the Pareto front. The ER exhibits the smaller the better 
characteristic, and its formula is shown in Eq. (51):

 
1 ,

n
ii

e
ER

n
==

∑
 (51)

where n is the number of dominant solutions found in the algorithm; and ei is a binary vari-
able. When the dominant solution i is a Pareto solution, then ei = 0, but it is 1 otherwise. 
When the ER value is closer to 1, fewer nondominated solutions converge on the Pareto front.



182 Z. H. Che et al. A robust optimization model with two uncertainties applied to supplier selection

Table 2. Partial data for components
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P1

1 7 142 12.3 1.3 41.2 0.99 0.90
2 7 115 13.6 2.7 26.5 0.97 0.98
3 12 136 11.7 2.2 31 0.94 0.90
4 15 131 12 1.6 35.3 0.96 0.86

P2

5 5 113 11.3 1.5 27.1 0.99 0.98
6 9 101 13.5 2.4 39.4 0.94 0.97
7 14 141 12.2 1.2 31.6 0.97 0.99
8 9 96 11.9 2 34 0.95 0.85

P3

9 5 124 13.2 2.6 27.1 0.99 0.93
10 15 105 11.2 2.4 30 0.94 0.95
11 5 107 13.5 1.8 42.7 0.95 0.88
12 13 142 12.1 2.1 36 0.99 0.94

P4

13 15 146 13.5 1 32.3 0.98 0.97
14 7 139 11.7 2.3 40.2 0.96 0.89
15 5 104 12.4 1.3 28 0.99 0.94
16 8 138 13.1 2.8 38.4 0.98 0.99

Table 3. Taguchi orthogonal array for the L9 experimental design

Experimental orthogonal array Population Generation Crossover Mutation

1 150 100 0.4 0.1
2 150 200 0.6 0.2
3 150 300 0.8 0.4
4 200 100 0.6 0.4
5 200 200 0.8 0.1
6 200 300 0.4 0.2
7 250 100 0.8 0.2
8 250 200 0.4 0.4
9 250 300 0.6 0.1

Table 3 sets N at 150, 200, and 250; G at 100, 200, and 300; Cr at 0.4, 0.6, and 0.8; and 
Mr at 0.1, 0.2, and 0.4 and incorporates the Taguchi experimental design to form an L9 
orthogonal array, as shown in Table 3. The nine combinations in the orthogonal array are 
tested 10 times each, and the number of Level 1 solutions among various parameter com-
binations is established; that is, the number of nondominated solutions and the ER value of 
each parameter combination is calculated. Subsequently, the signal-to-noise ratio of the two 
indicators is as shown in Figure 2. According to the signal-to-noise ratio in Figure 2, when N 
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is 250 groups, G is 300 generations, Cr is 0.4, and Mr is 0.4, the best performance is achieved. 
Therefore, this parameter level combination is used for the experimental parameters of this 
study.

On the basis of the Pareto-optimal solution sets obtained from the NSGA-II, case data cal-
culations are performed on the basis of the parameters obtained from the previous experimen-
tal design. Figure 3 lists the remaining 250 solution set distribution after iteration. According 
to Figure 3, the solutions obtained from iteration of the algorithm are all distributed on the 
Pareto front, and the solutions of Level 1 are not dominated by any other solutions. To save 
space, 20 reference solutions are obtained. Table 4 provides the objective function values from 
the intercepting results for supplier selection in 20 Pareto solution sets. From this table, the 
third Pareto solution set shows that the total ordering cost of production planning is 81953.1, 
total order completion time is 1044.36. The value of cost and time are smaller the better.  

Figure 2. Signal-to-noise (SN) ratios
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Table 5 presents the third group of Pareto supplier selection combinations and purchase 
quantities from Table 4. For component P1, for example, to satisfying the total demand of 
260 units suppliers I, III, and IV are selected, who supply 110, 105, and 45 components, re-
spectively. Supplier II is not selected to supply component P1. For component P2, suppliers 
I, II, and III are selected, who supply 89, 63, and 108 components, respectively. Supplier IV 
is not selected to supply component P2.

Table 4. Pareto solution sets

Nondominated 
solution Total cost Total time Nondominated 

solution Total cost Total time

1 81981.7 1044.36 11 81036.6 1089.18
2 82026.6 1042.65 12 80710.8 1112.42
3 81953.1 1045.38 13 81370.4 1069.85
4 80678.3 1119.44 14 80911.6 1097.06
5 81932.1 1045.80 15 81254.3 1075.73
6 80683.4 1116.36 16 81098.7 1073.97
7 81882.7 1046.94 17 80450.7 1123.71
8 81089.8 1086.39 18 81507.6 1054.14
9 81430.5 1065.91 19 80943.5 1082.00

10 81230.3 1077.65 20 81543.0 1052.37

Table 5. Purchase planning of supplier selection

Supplier

Component I II III IV

P1 110 0 105 45
P2 89 63 108 0
P3 69 82 0 109
P4 0 111 80 69
P5 102 0 63 95
P6 0 105 49 106
P7 94 46 0 120
P8 58 108 94 0
P9 0 115 97 48
P10 113 37 110 0
P11 99 0 62 99
P12 80 91 0 89
P13 0 113 81 66
P14 85 81 0 94
P15 119 0 103 38
P16 80 0 108 72
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Supplier

Component I II III IV

P17 94 0 91 75
P18 101 81 0 78
P19 109 105 0 46
P20 0 70 83 107
P21 102 0 80 78
P22 41 103 0 116

5.2. Discussion of the robust planning

RO is used in this study to control the effect of uncertainties. To better represent real life 
scenarios, this study also considers two uncertainties, the reliability of suppliers’ compo-
nent production and transportation to the factory by suppliers. This study improves the 
RO model proposed by Bertsimas and Sim (2004) by simultaneously considering the two 
aforementioned variables and uses scenario analysis to find if a difference exists between 
two-uncertainty and one-uncertainty situations. According to Bertsimas and Sim (2004), the 
range of the budget parameter G is between 0 and the number of uncertainties, so G is set as 
a continuous function between 0 and 4. The value of G is increased by 0.5 for Level 1 and the 
NSGA-II is used to calculate each budget parameter 10 times and also to calculate the mean, 
standard deviation, and coefficient of variation (CV). Results are shown in Table 6. The small 
CV value indicates little difference between the solutions in each budget parameter. In this 
case, the range of CV values is between [0.05, 0.20], that is, the model constructed by this 
study and the solution method used have stable planning capabilities. Table 6 shows, when 
the budget parameter increases, the cost and time also increase. When budget parameter G 
increases from 0 to 4, the mean of total cost increases from 81312.93 to 102732.72 and the 
mean of total time increase from 1072.90 to 1385.84.

Table 6. Effect of budget parameter on objective value

G 0 0.5 1 1.5 2 2.5 3 3.5 4

C
os

t

max 81452.61 84179.02 87289.94 89835.42 92741.67 95398.63 97975.13 100409.83 102807.49

min 81078.53 83700.57 86891.88 89240.26 92394.21 94986.74 97573.72 100035.53 102650.29

mean 81312.93 83951.16 87016.03 89613.63 92540.41 95129.80 97793.07 100314.97 102732.72

std. 110.91 161.87 116.28 182.32 126.01 143.90 138.28 103.51 53.29

CV 0.14 0.19 0.13 0.20 0.14 0.15 0.14 0.10 0.05

Ti
m

e

max 1081.08 1111.46 1154.32 1196.21 1231.79 1269.02 1319.53 1351.29 1389.87

min 1067.36 1102.11 1141.70 1162.06 1218.57 1255.20 1301.14 1338.73 1382.12

mean 1072.90 1107.33 1148.12 1183.51 1227.52 1263.84 1308.76 1343.19 1385.84

std. 4.03 3.05 3.91 9.31 4.17 4.62 5.51 3.43 2.63

CV 0.38 0.28 0.34 0.79 0.34 0.37 0.42 0.26 0.19

End of Table 5
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This study evaluates the robust solution x*(G) by changing the budget parameter. First, 
( )( )*C x G  is defined as the objective function value corresponding to the changing state of 

x*(G). For the performance evaluation of robust planning, the price of robustness h(G) is 
applied to represent the objective value set of the decision-maker under budget parameters 
and is compared with the objective value generated when robustness is not considered. The 
definition is shown in Eq. (52):

 
( ) ( )( ) ( )( )* * 0C x C xh G = G − G = , (52)

where ( )( )*C x G  is the objective function value corresponding to x*(G), and ( )( )* 0C x G =  
is the expected objective function value produced without robustness considered. Accord-
ing to the aforementioned definition, h(G) is the price that the decision maker must pay to 
avoid excessive risks. Table 7 shows the effect of budget parameter on the price of robustness. 
For example, if budget parameter G is 0.5, the decision maker will face higher risks and will 
pay 2638.24 additional cost and 34.43 additional time. To avoid excessive risk, the budget 
parameter G should have a higher value. The extra cost paid and time spent on G = 4 relative 
to G = 0 are 21419.79 and 312.95. Therefore, higher cost and more time are needed for an 
enterprise to reduce risks of production activities.

The h(G) value increases with increased budget parameter, as shown in Figure 4. The 
figure illustrates that, when the budget parameter increases by one level, the total cost and 
total time both increase significantly. When G increases by 1, the total cost and total time 
increases by approximately 7.5%. The rate of increase in the total cost is higher than the rate 
of increase in the total time as budget parameter increasing continues.

This study further discusses production uncertainty and transportation uncertainty in a 
robust model with one uncertainty and compares the price of robustness results with those 
for the model with two uncertainties proposed in this study. The study first discusses produc-
tion uncertainty. Transportation uncertainty is fixed and allows changes only in production 
uncertainty. Prices of robustness are shown in Table 8 and Figure 5 is a line chart for the 
price of robustness. In production uncertainty, when budget parameter G is 0.5, there is less 
protection and additional cost and additional time are 2173.81 and 36.29. The decision maker 
can set higher budget parameter values to reduce production risk, and the extra cost paid 
and time spent on G = 4 over G = 0 are 17870.91 and 256.04. The rate of increase in the total 
cost without transportation uncertainty is also higher than the rate of increase in the total 
time as budget parameter increasing continues.

Similarly, Table 9 depicts the variation range for the price of robustness when only the 
uncertainty of transportation changes. Figure 6 is a line chart for the price of robustness. For 
transportation uncertainty, when budget parameter G is lower and set at 0.5, the additional 
cost and additional time are 2296.37 and 40.00. A higher budget parameter value is set to 
reduce the risk, the extra cost paid and time spent on G = 4 over G = 0 are 15104.33 and 
215.21. The rate of increase in the total cost without production uncertainty is also higher 
than the rate of increase in the total time as budget parameters continue increasing. As Fig-
ure 6 shows, both slopes of increase in the total cost and time decrease, that is, the budget 
parameter continue to increase from 0 to 4, there is some moderation of the rates of increase 
in the total time and cost.
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According to Figures 5 and 6, regardless of production uncertainty or transportation un-
certainty in a single-uncertainty model, the total cost and time increase with an increase in 
budget parameter. When G increases by 1, h(G) increases by approximately 4–5%. Compared 
with the model with two uncertainties, whose increase rate is approximately 7.5%, the model 
with one uncertainty increases more slowly. Therefore, when two uncertain parameters exist 
in a scenario, using a model with only one uncertainty to evaluate the relationship between 
risk and cost may underestimate the cost of risks, causing decision makers to suffer larger 
losses.

Table 7. Effect of budget parameter on price of robustness

G 0 0.5 1 1.5 2 2.5 3 3.5 4

h(G)
cost 0 2638.24 5703.10 8300.71 11227.48 13816.87 16480.14 19002.04 21419.79

time 0 34.43 75.22 110.61 154.62 190.95 235.86 270.29 312.95

Table 8. Price of robustness for changes in production uncertainty

G 0 0.5 1 1.5 2 2.5 3 3.5 4

h(G)
cost 0 2173.81 4693.44 6958.28 9234.08 11480.17 13754.68 15869.97 17870.91
time 0 36.29 67.18 100.28 132.32 157.24 185.97 216.52 256.04

Table 9. Price of robustness for changes in transportation uncertainty

G 0 0.5 1 1.5 2 2.5 3 3.5 4

h(G)
cost 0 2296.37 4905.33 6891.45 9063.59 10609.70 12458.73 13661.62 15104.33
time 0 40.00 71.16 103.83 130.43 149.94 172.85 194.63 215.21

Figure 4. Trend for price paid by  
the robust model

Figure 5. Trend for price of robustness  
in production uncertainty
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Conclusions and suggestions

Referring to the robust model proposed by Bertsimas and Sim (2004), this study uses statisti-
cal to construct a RO model that can simultaneously consider two uncertainties and test the 
supplier selection problem. The analysis results indicate that when there are two uncertain-
ties, decision makers encounter both greater risks and greater variation effect. The rate of 
increase is higher than when only one uncertainty is considered, indicating that more care is 
required when two uncertainties are involved to identify the correct decision. Several areas 
deserving of further research are proposed: 1) Expand the scale of the applied problems and 
consider more scenarios (e.g., the delayed cost of supplier purchasing, production efficiency, 
and details of factory processing) to improve representation of real life scenarios. 2) Consider 
a greater number and variety of criteria (e.g., quality level and supplier delivery times) for a 
more thorough evaluation.
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