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Abstract. With the rapid growth of the solar photovoltaic (PV) market, many distributed PV 
power projects are introduced to the market. Selecting a rational project investment portfolio is 
a complex and challenging task for energy enterprises as both financial and non-financial fac-
tors of projects are needed to be considered under limited information and resources. This study 
presents a two-stage hybrid multi-attribute decision-making and integer programming model for 
distributed PV project portfolio selection. In Stage I, a multiple attribute group decision-making 
method based on mathematical programming is used to evaluate the non-financial value of proj-
ects under incomplete preference information. Compensative weighted averaging operators with 
an adjustable parameter are utilized to capture the subjective attitudinal character of an expert in 
the aggregation process. Then, a rank acceptability index is developed to measure each project’s 
group support degree in non-financial dimension. In Stage II, a bi-objective integer program-
ming model is constructed to optimize project portfolios, which considers both financial and 
non-financial values of projects under resource, carbon emission and other strategic constraints. 
The applicability and effectivity of the proposed approach are demonstrated by a case study of a 
distributed PV project portfolio selection.

Keywords: distributed photovoltaic, project portfolio, multiple attribute group decision making, 
incomplete preference information.
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Introduction

Global warming, energy security and economic issues force the switch from traditional ener-
gy sources (such as coal, gas, and oil) to new energy sources. Solar energy generation is a new 
energy source that takes advantage of solar irradiation to provide electricity via photovoltaic 
(PV) or concentrating solar power systems (Zambrano-Asanza et al., 2021). PV technology 

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3846/tede.2022.17683
https://orcid.org/0000-0003-3652-9435
https://orcid.org/0000-0001-8278-3384


1546 Z. Zhang, H. Liao. A two-stage mathematical programming model for distributed photovoltaic ...

has enormous potential for deployment in electrical distribution networks due to its current 
trends in efficiency improvement, cost reduction, and governmental incentives. The layout 
of PV power plants can be divided into two types: centralized PV and distributed PV. The 
centralized PV power plants are usually installed in remote and desolate areas like deserts, 
and the installation area is large, while distributed solar PV projects are mainly installed in 
relatively small areas such as households, industrial and commercial rooftops (Wu, Wang, 
et al., 2019; Wu et al., 2018). Compared with centralized PV projects, distributed PV projects 
have the advantages of flexible assembly and fast consumption, the development of which 
is conducive to solving the problem of inconsistency between power generation and load in 
China. Meanwhile, the construction of distributed PV can ease grid investment pressure as 
it is close to the demand centre and no additional transmission channels are needed (Zhang 
et al., 2015).

In recent years, distributed PV has become the policy priority of new energy power gen-
eration in China. For example, the “Carbon Peaking Action Plan before 2030”, issued by the 
State Council of China, requires that the roof PV coverage rate of new public institutions 
and new factory buildings should reach 50% by 20251. The introduction of various poli-
cies has greatly stimulated the investment enthusiasm for distributed PV power projects. A 
large number of distributed PV projects have been reported to the decision-making execu-
tives of energy enterprises for approval and implementation. At the same time, due to the 
continuous decline in costs, more and more energy enterprises are entering the market to 
find investment opportunities, leading to increasingly fierce competition among enterprises. 
Project portfolio selection, as one of the most crucial decision-making problems in project 
management, is choosing multiple projects to meet the strategic objectives of an enterprise 
under the constraints of resources and some other conditions (Goli et al., 2019; Wu et al., 
2018). A proper project portfolio is essential for energy enterprises to create competitive 
advantages in the highly competitive distributed energy market (Wu, Xu, et al., 2019). Thus, 
effective tools are needed to help managers in energy enterprises to select the optimal project 
investment portfolio. 

Some scholars used the Mean-Variance Portfolio theory to assist investors to select the 
optimal energy project portfolio. For example, Shakouri et  al. (2015) determined a com-
munity-based photovoltaic investment portfolio by applying the Mean-Variance Portfolio 
theory. Considering the uncertainty of factors, Zhang et al. (2022) evaluated the investment 
portfolio strategies of an energy enterprise under different policy scenarios using a mean-
variance model based on the real options method. These studies sought to create a quantita-
tive decision-support model that mainly relied on economic indicators of projects. In fact, 
the investment in solar PV projects needs to consider issues of resource condition, economy 
and sustainability (including society and environment) (Sward et al., 2021). That is to say, an 
optimal project portfolio should be accepted financially and non-financially (technically). As 
an effective tool to solve the problem of multiple and conflicting attributes, many MADM 
techniques have been adopted by scholars to select PV projects (see literature review in Sec-
tion 1.1). However, the MADM method is mainly used to rank alternatives (Goli & Moham-

1 http://www.gov.cn/zhengce/content/2021-10/26/content_5644984.htm

http://www.gov.cn/zhengce/content/2021-10/26/content_5644984.htm
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madi, 2022). If a project investment portfolio is selected only according to the ranking of 
alternative projects, the complex requirements, such as the resource constraints and internal 
relationship of projects are hard to be satisfied simultaneously. It was observed that Wu 
et al. (2018) combined the MADM method with 0-1 programming for the selection of an 
appropriate distributed PV project portfolio, which considered the financial and technical 
feasibility of the project while meeting the resource constraints of energy enterprises. How-
ever, in the paper of Wu et al. (2018), the evaluation results of the MADM method are only 
used to eliminate inferior projects and are not incorporated in the portfolio optimization 
model, which means that the technical performance of projects is not reflected effectively in 
the portfolio selection. This is a limitation of the existing literature.

In the MADM process, the final ranking of projects is usually derived by integrating at-
tribute performances and attribute weights. With the increasing complexity of PV projects, 
there are challenges for experts to provide precise and complete weight information due to 
time pressure, lack of data and limited knowledge. In other words, the weight information 
is usually incomplete (Li & Wan, 2013; Zuo et al., 2020). Experts might be able to provide 
some pairwise comparison information of projects. There may be inconsistency between the 
ranking orders of projects directly obtained from experts and that indirectly determined by 
aggregating the performances on multiple attributes. In this sense, deriving a satisfactory 
ranking of projects with incomplete information on attribute weights and project pairwise 
comparisons is another challenge. In addition, since attributes can be conflicting, it is often 
hard for experts to find an ideal project combining all the ideal evaluation values of attributes. 
That is to say, the decision-making in practical application is a complex outcome of a rigorous 
analysis considering the compensation effects between attributes (Aggarwal, 2015; Aggarwal 
& Fallah Tehrani, 2019). For experts with optimistic attitudes, they may take more attention 
to the attributes of “maximum utility” in the aggregation process; while for the experts who 
are pessimistic, to avoid investment risks, the negative impact of “minimum utility” attributes 
attracts their attention more. To the best of our knowledge, existing literature on PV project 
selection failed to indicate the attitudinal character of an expert in the aggregation process.

To solve the above issues, this study aims to introduce a two-stage hybrid multi-attribute 
decision-making and integer programming model for distributed PV project portfolio se-
lection with incomplete preference information. In the first stage, a multiple attribute group 
decision-making method is used to evaluate the non-financial value of projects. The evalu-
ation of the technical feasibility of projects usually involves quantitative and qualitative at-
tributes. As for the expressions of evaluation information, a good trend presented in the 
existing literature is that a single type of attribute information (either linguistic scales or 
fuzzy numbers) is evolving into a hybrid form (including crisp data and linguistic variables). 
Followed by this trend, in this paper, the performance of projects on quantitative attributes is 
measured in crisp numbers; for the performance of projects on qualitative attributes which is 
hard to measure in numbers, experts are suggested to score them in linguistic terms as lin-
guistic expressions align well with people’s habit of expression. Uncertainty and ambiguity are 
inevitable in the practical decision-making process, making it a challenge for experts to give 
precise linguistic evaluations. In this regard, the hesitant fuzzy linguistic term set (HFLTS) 
(Liao et al., 2015; Rodríguez et al., 2012) is applied. To capture the attitudinal character of an 
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expert in the aggregation process, we use compensative weighted averaging (CWA) operators 
(Aggarwal, 2015) to aggregate the performances on multiple attributes. Compared with the 
ordered weighting averaging (OWA) operators which provide different degrees of compensa-
tion in aggregation by appropriately choosing the weight vector, the generalization in CWA 
operators is achieved by providing an adjustable parameter. It is worth noting that different 
experts have different attitudinal characters, and they may reach different ranking results of 
projects even under the same investment conditions. Regarding the incomplete preference 
information, the Linear Programming Technique for Multidimensional Analysis of Prefer-
ence (LINMAP) method (Srinivasan & Shocker, 1973), based on some pairwise comparisons 
of alternatives, can generate compromise solutions without a priori specification of attribute 
weights. As the LINMAP method can reduce the cognitive burden of experts, it has achieved 
wide extensions and applications (Li & Wan, 2013; Liu et al., 2021; Wan & Dong, 2015; Wan 
& Li, 2013, 2014, 2015; Wan et al., 2017; Zuo et al., 2020). Inspired by the LINMAP method, 
a mathematical programming model is set up based on the consistency and inconsistency 
indices to elicit attribute weights and compensation parameters for different experts. Then, 
ranks of projects under experts’ different preference information and attitudinal characters 
can be obtained and a rank acceptability index is further developed to measure the group 
support degree of each project in terms of the non-financial dimensions. In the second stage, 
based on the support degree of projects derived in the first stage, a bi-objective 0-1 integer 
programming model is formulated to optimize the financial return and non-financial value 
for the project portfolio by considering the resource limitation, carbon emission reduction 
responsibility of enterprises and relationships of projects. The nondominated sorting genetic 
algorithm II (NSGA-II) (Deb et al., 2002) is adopted to obtain the Pareto-optimal solutions 
to the project portfolio optimization problem.

In summary, the main contributions of this paper can be summarized as follows:
1) We discussed different degrees of compensation in the aggregation process when eval-

uating the solar PV projects;
2) We extend the LINMAP method to elicit the compensation parameter and attribute 

weights, and then, a rank acceptability index is developed to measure the group sup-
port degree of each project;

3) In addition to the financial return of projects, our optimization of the distributed PV 
project portfolio also considers the non-financial value, which makes the obtained 
portfolio feasible technically and economically.

This paper is organized as follows. Section 1 reviews PV project investment with MADM 
methods and provides the related basic knowledge. Section 2 describes the research problem. 
Section 3 presents the methodology for the selection of distributed PV project portfolio in 
detail. Section 4 tests the proposed model with a case study. The final section concludes the 
paper.
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1. Related work

In this section, a short review of the PV project investment with MADM methods and related 
knowledge is introduced.

1.1. A short review of photovoltaic project investment 

Recently, scholars have carried out abundant valuable research about PV project investment 
with MADM methods, mainly focusing on the following aspects: 1) risk assessment, 2) single 
project evaluation, 3) project portfolio selection, 4) site selection. Below, we briefly review 
the literature on PV project investment in recent years in terms of the MADM techniques, 
preference information, information expression and research purposes, as shown in Table 1.

Table 1. A short review of solar PV project investment with MADM methods

References MADM techniques Information expression Purposes Incomplete 
preferences 

Wu et al. (2018) AHP, PROMETHEE 
II

Triangular intuitionistic 
fuzzy number, interval 
number

Project portfolio 
selection

Fang et al. (2018) Prospect theory, 
TOPSIS

Rough number Site selection

Ozdemir and 
Sahin (2018)

AHP 1–9 scale Site selection

Song et al. (2019) SMAA Interval numbers, crisp 
numbers

Project portfolio 
selection √

Wu, Wang, et al. 
(2019)

TODIM, ANP HFLTS Single project 
evaluation

Wu, Xu, et al. 
(2019)

AHP Internal type-2 fuzzy 
numbers

Project portfolio 
selection

Rediske et al. 
(2020)

AHP, TOPSIS 1–9 scale, crisp 
numbers

Single project 
evaluation

Wu et al. (2020) DEMATEL, TODIM Triangular intuitionistic 
fuzzy number

Single project 
evaluation

Zambrano-
Asanza et al. 
(2021)

AHP 1–9 scale Site selection

Gao et al. (2021) Prospect theory, 
ANP

Intuitionistic fuzzy sets, 
interval numbers, crisp 
numbers

Site selection

Liang et al. 
(2021)

Evidential reasoning linguistic scales Risk assessment

Kannan et al. 
(2021)

BWM, GRA, 
VIKOR

1–9 scale, 1–5 scale Site selection

Wei (2021) AHP, TOPSIS Interval type-2 fuzzy 
numbers

Single project 
evaluation

Note: All abbreviations and corresponding explanations can be found in Table A.1 in the Appendix.
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Through the literature review, we found that the existing MADM literature on PV proj-
ect investment mainly focuses on project site selection. The research on project portfolio 
selection is relatively limited and the project portfolio is selected mainly based on financial 
benefits. In addition, existing PV project investment studies rarely discussed the different 
compensation effects between evaluation attributes. More importantly, from the third and 
fifth columns of Table 1, we can find that many studies used the fuzzy sets to describe the 
uncertainty of PV project investment but the preference information was complete. Song 
et al. (2019) used the stochastic multicriteria acceptability analysis (SMAA) method to deal 
with incomplete preference information when selecting a project portfolio. However, as the 
weighted averaging operator is used to aggregate evaluations in their paper, the degree of 
compensation between attributes cannot be changed. Based on the above findings, this study 
presents a framework for PV project portfolio selection. In contrast to existing studies, this 
study investigates the following three characteristics simultaneously: 1) The degree of com-
pensation in the aggregation process is adjustable according to the attitudinal character of 
an expert; 2) The incomplete preference information on attributes is allowed; 3) The support 
degree of each project in terms of the non-financial dimension is considered when optimiz-
ing the project portfolio.

1.2. Basic knowledge

1.2.1. Hesitant fuzzy linguistic term set

A hesitant fuzzy linguistic term set (HFLTS) (Rodríguez et al., 2012), which represents the 
value of a variable by a set of consecutive ordered finite subset of a given linguistic term set 
(LTS), is an effective tool to represent the uncertain and hesitant decision-making information. 
Let { | 0,1, ,2 }S sσ= σ = τ  be an LTS. Liao et al. (2015) redefined the HFLTS in a mathemati-
cal form as: { , ( ) }S i S i iH x h x x X= < > ∈ , where ( ) ( )( ) { ( ) | ( ) ; 1,2, , }k k

S i i ih s sx x x S k K= ∈ =   
with K being the number of all different linguistic terms in ( )S ih x . ( )S ih x , shorten as Sih , 
is called a hesitant fuzzy linguistic element (HFLE). Different HFLEs have different numbers 
of linguistic terms. To operate correctly when comparing or computing with HFLEs, linguis-
tic term s  could be added into the short HFLE until the compared or computed HFLEs have 
same length, as follows:

 

1 ( ),
2 Si Sis h h+ −= ⊕   (1)

where Sih +  and Sih −  are the maximal term and minimal term in Sih . The hesitant fuzzy 
linguistic distance between two HFLEs can be calculated by: 
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are the subscripts of the linguistic terms in hS1 and hS2, respectively. When r = 2, 1 2( , )S Sd h h  
is called the hesitant fuzzy linguistic Euclidean distance.
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1.2.2. Incomplete preference information

In practical decision-making situations, experts may specify some preference information 
such as weights of attributes and pairwise comparisons of alternatives according to their 
knowledge and experience. Due to the time pressure, lack of data, and experts’ limited ex-
pertise in the problem domain, these preferences may be incomplete.

Let { | 1,2, , }jw w j n= ∈   be the weight vector of attributes and IG be the index set of at-
tributes. Li and Wan (2013) summarized five basic relations among attribute weights based 
on a set of all possible attribute weights 0 1

{ | =1, 0, }
n

j j j Gj
w w w j I

=
L = ≥ ∈∑ : 

1) A weak ranking: 
11 0 1 1{ | , , , }j j Gjw w w j j I j jL = ∈L ≥ ∈ ≠ ; 

2) A strict ranking: 
1 1 12 0 1 1{ | , , , }j j Gjj j jjw w w j j I j jL = ∈L α ≤ − ≤β ∈ ≠ , where 

1jjα  and 

1jjβ  are two constants such that 
1 1

0 jj jj< α <β ; 
3) A ranking with multiples: 

1 13 0 1 1{ | , , , }j j jj jw w w j j j j jL = ∈L ≥Κ ∈ ≠ , where 
1jjΚ  is a 

constant such that 
1

0jjΚ > ; 
4) An interval form: 

1 1 14 0 2={ | , }j j j jw w j jL ∈L α ≤ ≤β ∈ , where 
1j

α  and 
1j

β  are two 
constants such that 

1 1
0 j j< α <β ; 

5) A ranking of differences: 
1 2 35 0 1 2 3 1 2 3={ | , , , , , }j j Gj j jw w w w w j j j j I j j j jL ∈L − ≥ − ∈ ≠ ≠ ≠

 
1 2 35 0 1 2 3 1 2 3={ | , , , , , }j j Gj j jw w w w w j j j j I j j j jL ∈L − ≥ − ∈ ≠ ≠ ≠ .

Let { | 1,2, , }iA A i m= =   be a set of m alternatives and IA be the index set of alterna-
tives. An expert may provide preferences in terms of pairwise comparisons over alternatives 
as {<( , ), ( , ) | , , }l z AA A t l z l z I l zW = > ∈ ≠  based on his/her knowledge and experience, where 
( , )l zA A  represents an ordered pair of alternatives Al and Az that the expert prefers Al to 
Az (denoted by l zA A ) and ( , ) [0,1]t l z ∈  expresses the intensity that Al is preferred to Az. 
In some situations, experts might not be able to specify all the relations, that is, only partial 
pairwise comparisons between alternatives are given, i.e., 2| | nCW < , where | |W  represents the 
number of alternative pairs.

2. Problem description and data collection

Suppose that an energy enterprise plans to select a PV portfolio to invest in from a candidate 
project set { | 1,2, , }iA A i m= =  . The presented two-stage evaluation framework produces 
portfolios considering both the financial and non-financial values of projects.

Stage I is to compute projects’ support degrees according to their evaluations in the non-
financial dimension. The MADM method is adopted. First, based on the literature review in 
Section 1.1, a set of eight attributes { | 1,2, ,8}N jG g j= =   are defined. These attributes reflect 
the resource condition and sustainability of projects and can be divided into two subsets: 
quantitative attributes (GC) and qualitative attributes (GH), satisfying N C HG G G= ∪  and 

C HG G∩ =∅. We denote the index sets of GC and GH as IC and IH, respectively, and the 
performance of project Ai on attribute gj as ijv .

The quantitative attributes are scored in crisp numbers ( )ij ijv r= , including attribute g1 
(annually average solar radiation), g2 (average temperature) and g3 (rooftop available area). 
The values of g1 and g2 can be obtained from the National Aeronautics and Space Adminis-
tration (NASA) website by inputting the geodetic coordinates system of a PV project; while 
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the value of g3 (rooftop available area) can be collected from the urban map using Google 
Earth. Attribute g4 (project synergy), g5 (Policy support), g6 (project extensibility), g7 (social 
benefits), and g8 (future electricity demand) are qualitative attributes. As the qualitative at-
tributes are hard to measure in numerical values, a group of experts { | 1,2, , }qE e q Q= =   
are invited to score them using the HFLTS ( ) ( )( ={ | , ( ) 1,2, , })q q q k q k q

ij Lij LijSijv h S q Ks s k= ∈ =  . The 
descriptions of the attributes are shown in Table 2. 

Table 2. Attributes to evaluate the non-financial value of projects

Attributes Type Data form Brief description

Resource condition 

Annually average solar 
radiation (g1)

Benefit Crisp 
numbers

The amount of power generation

Average temperature (g2) Benefit Crisp 
numbers

The working temperature of solar cells and 
batteries

Rooftop available area 
(g3)

Benefit Crisp 
numbers

The area that can be used to install solar panels

Sustainability

Project synergy (g4) – HFLTSs Development experience and resource allocation 
of existing projects in the same investment region

Policy support (g5) – HFLTSs The development and investment environment of 
the region, including government subsidies and 
the implementation of grid connections, etc.

Project extensibility (g6) – HFLTSs Possibility of project expansion and investment in 
other projects

Social benefits (g7) – HFLTSs Economic traction, job creation and talents 
cultivation

Future electricity demand 
(g8)

– HFLTSs Regional demand for PV projects and the 
increased consumer demand for electricity

After obtaining the data, the candidate PV projects are analyzed and ranked using a 
mathematical programming-based MADM method which could represent the attitudinal 
character of experts through an adjustable parameter. Afterwards, regarding the different 
ranking results of projects caused by experts’ divergent preferences and attitudinal characters, 
we use a rank acceptability index to measure the group support degree of each project in 
terms of the non-financial dimension.

In Stage II, a bi-objective 0-1 integer programming model is formulated to optimize the 
financial return and non-financial value for the portfolio by considering the resource limi-
tation, carbon reduction responsibility of enterprises and relationships of projects such as 
interdependencies. The NPV is used to measure the financial returns of the project.
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3. Methodology

In this section, we present the proposed approach for PV project investment portfolio selec-
tion in detail.

3.1. Computing support degrees of projects 

3.1.1. Normalizing the evaluation matrix 

Before the aggregation of performances on multiple attributes, normalization of the evalu-
ation matrix is needed. For the crisp number ij ijv r= , the normalized value ij ijv r=  can be 
computed as:

 

2
1

2
1

is benifit attribute,

is cos( t attrib

, if ( ) 

1
, if ) ute. 

1

ij
j Cm

iji
ij

ij
j Cm

iji

r
G j I

r
v r

G j I
r

=

=


∈


= 
 ∈



∑

∑

  (3)

The HFLE ( ) ( )={ | ; ( ) 1,2, , }
ij ij

q q q k q k q
ij Sij L Lv h S q ks s K= ∈ =   given by each expert could be 

normalized as the same length according to Eq. (1). Then, the synthesized evaluation values 
( )={ | 1,2, , }

ij

k
ij Sij Lv h s k K= =   of the expert group on qualitative attributes can be calculated 

by: 

 
( )( )

1
, , 1,2, , ,

Q q kk
q Hij ijq

L j I k KL
=

= v ∈ =∑    (4)

where vq is the weight of expert eq.

3.1.2. Aggregating evaluation values considering compensation effect among attributes

To rank the projects, it is necessary to aggregate the performance of projects on multiple at-
tributes to a global value. In the aggregation process, it is hard for experts to find an alterna-
tive combining all the ideal values of attributes. For instance, in the decision making of PV 
project investment, a high utility of initial investment cost often correspond to a low utility 
of annually capital income. That is to say, decisions in practical applications are a complex 
outcome of a rigorous analysis considering the compensation effect between attributes. Ex-
isting MADM literature on PV project selection generally adopted the simple additive value 
functions, e.g., the weighted averaging operator, to integrate the attribute performances. In 
such cases, the quality of the optimal solution may be impugned by the inability of the 
simplest additive function to control the degree of compensation between attributes in the 
aggregation process. 

Aggarwal (2015) developed a class of compensative weighted averaging (CWA) aggrega-
tion operators, the generalization of which is achieved by providing an additional adjustable 
parameter, shown as follows:

 
1 2

1

( , , , ) log ( ( ) ), , ,ij
q

n
vq

i i in q A Ej
j

CWA v v v w i I q Il
=

= l ∈ ∈∑   (5)
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where 1 2( , , , )q q qq T
nw w w w= …  is the weight vector of attributes, satisfying 

1

=1
n

q
j

j

w
=
∑ . IA and 

IE are index sets of projects and experts, respectively. (0, ]ql ∈ +∞ , 1l ≠  is the com-
pensation parameter, reflecting the degree of compensation in the aggregation pro-
cess. By changing the value of lq, a broad range of operators can be obtained. When 

0l→ , for any value of wj, 1 2 1 2( , , , ) min( , , , )i i in i i inj
CWA v v v v v v→  ; when 1l→ , 

1 2 1 2( , , , ) ( , , , )i i in i i inCWA v v v WA v v v→  , where WA refers to the weighted averaging op-
erator; when +l→ ∞, 1 2 1 2( , , , ) max( , , , )i i in i i inj

CWA v v v v v v→  . As the value of l moves 

along the range (0, ]l∈ +∞ , 1l ≠ , the aggregated value moves from the non-compensatory 
“minimum” (converges to “and”) to the fully compensatory “maximum” (converges to “or”). 
The parameter l makes the CWA operator achieve the desired level of “andness” or “orness” 
in the aggregation process naturally, and can be used to represent the attitudinal character of 
an expert. 1={ |0< 1}Y l l < , 2 ={ | 1}Y l l > , and 3 ={ | 1}Y l l→  indicate pessimistic, optimistic 
and indifferent attitudes of an expert for the projects, respectively. In the following, we use 
CWA operators to aggregate the performances on multiple attributes. 

If the attribute weight vector 1 2=( , , , )q q qq T
nw w w w  and the compensation parameter lq 

have been given by experts already, then using Eq. (5), the global value of projects can be 
worked out and the ranking of projects can be further derived. However, each expert has 
his/her own preference and attitudinal character. It is difficult to obtain a uniform attribute 
weight vector and compensation parameter. In addition, due to the limitations of experts’ 
knowledge and time, they are only able to provide partial preference information about at-
tribute weights. Moreover, although an expert’s attitudinal character, such as pessimistic and 
optimistic, can be shaped with his/her previous experiences, values, or priorities about differ-
ent alternatives, it is hard for an expert to provide a concrete compensation degree between 
attributes in advance.

The LINMAP method is based on the pairwise comparisons of alternatives. It generates 
the best compromise alternative as the solution that has the shortest distance to the ideal 
solution without prior-defined complete attribute weights. Inspired by the LINMAP method, 
in what follows, a mathematical programming model is constructed to elicit ( , )q

qw l .

3.1.3. Deriving the ranking of projects under incomplete preference information 

(1) Calculating consistency and inconsistency indices 
Suppose that the positive ideal solution (PIS) is 1 2( , , , )q q qq

nv v v v+ + ++ =   which is un-
known a priori and needs to be determined, where q

jv + is the best performance on attribute 
( 1,2, , )jg j n=   for expert eq. If Cj I∈ , q

jjv r+ +=  is a crisp number; if Hj I∈ , q
j Sjv h+ +=  is an 

HFLE. Assume that expert eq provides the incomplete pairwise preference judgments over 
projects by a set of ordered pairs as: 

 
{<( , ), ( , ) | , , },q q

l z AA A t l z l z I l zW = > ∈ ≠   (6)

where ( , ) [0,1]qt l z ∈  denotes the truth degree to which the alternative Al is superior to the 
alternative Az. Using Eqs (2) and (5), the square of the CWA-based Euclidean distance be-
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tween the project pair ( , ) q
l zA A ∈W  and the PIS 1 2( , , , )q q qq

nv v v v+ + ++ =   can be calculated, 
respectively, as:
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=
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For each pair of projects ( , ) q
l zA A ∈W , if q q

z lD D≥ , the project Al is closer to the PIS than 
the project Az, which is to say, l zA A  (“ ” means preferred to). So the ranking order of 
projects Al and Az determined by q

lD  and q
zD  based on ( , , )q q

qw v +l  is consistent with the 
preference given by expert eq. On the contrary, if q q

z lD D< , the ranking order of projects Al 
and Az determined by q

lD  and q
zD  based on ( , , )q q

qw v +l  is inconsistent with the preference 
given by expert eq. ( , , )q q

qw v +l  should be chosen so that the ranking order and preference 
for a given ordered pair of projects is consistent.

An index ( )q q
z lD D −−  is defined to measure inconsistency between the ranking of projects 

Al and Az determined by q
lD  and q

zD  and the preference given by expert eq preferring Al to 
Az as follows:

 

( , )( ), if ,( ) =
0, if .

q q q qqq q z zl l
z l q q

z l

t l z D D D DD D
D D

−
 − <− 

≥
  (8)

Eq. (8) can be rewritten as ( ) ( , )max{0, }q q q qq
z zl lD D t l z D D−− = − . Furthermore, the total 

inconsistency index of expert eq is defined as:

 ( , ) ( , )

( ) ( , )max{0, }.
q q

l z l z

q q q qq q
z zl l

A A A A

IC D D t l z D D−

∈W ∈W

= − = −∑ ∑   (9) 

In analogous, consistency index ( )q q
z lD D +−  is defined as:

 

( , )( ), if ,( ) =
0, if ,

q q q qqq q z zl l
z l q q

z l

t l z D D D DD D
D D

+
 − ≥− 

<
  (10)

which can be rewritten as ( ) ( , )max{0, }q q q qq
z zl lD D t l z D D+− = − . Then, the consistency index 

of expert eq is defined as:

 ( , ) ( , )

( ) ( , )max{0, }.
q q

l z l z

q q q qq q
z zl l

A A A A

CI D D t l z D D+

∈W ∈W

= − = −∑ ∑   (11)

(2) Constructing mathematical programming model based on the LINMAP method 
In real decision-making process, the inconsistency index ICq is supposed to be 0, and the 

inconsistency index ICq should not be greater than the consistency index CIq. In this sense, 
we construct a mathematical programming model (Model 1) to derive the attribute weight 
vector wq and compensation parameter lq:
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Model 1 
min{ }qIC

( )( )

( ) ( 1)

1,
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, ,
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, 1,2, , ,

, ,

, ,
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A H
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q k
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CI IC
r r I j I

s t I j I k
j
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L
L
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I k

L

w
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L K

+

+

+ + +

 − ≥ e


∈
 ∈ =
 ∈ =


≤ ≤ ∈

≤ τ

∈L l ∈Y

≤ ∈



≤





 

where e is a threshold given by experts, showing the degree to which CIq is greater than ICq, 
and the stricter the expert, the larger the value of e. 1q

ij jr r +≤ ≤  and ( )( ) 2q kk
ij jL L +≤ ≤ τ are 

used to ensure 1 2( , , , )q q qq
nv v v v+ + ++ =   is the positive idea solution. ( ) ( 1)q k q k

j jL L+ + +≤  ensures 
that the PIS satisfies the context-free grammar of HFLTS (Rodríguez et al., 2012). Lq and 
Yq are the incomplete attribute weight set and compensation preference set for expert eq, 
respectively. 

Based on Eqs (8)–(11), q qCI IC− can be simplified as q qCI IC− =
( , )

{( ) ( ) }
q

l z

q q q q
z zl l

A A

D D D D+ −

∈W

− − −∑
 

( , )

{( ) ( ) }
q

l z

q q q q
z zl l

A A

D D D D+ −

∈W

− − −∑
 ( , )

= ( , )( )
q

l z

q qq
z l

A A

t l z D D
∈W

−∑ . For ( , ) q
l zA A ∈W , let max{0, }q q q

zlz lD Dϑ = − , and 

then we have 0q
lzϑ ≥  and q q q

zlz lD Dϑ ≥ − . Thus, Model 1 can be converted to Model 2:

Model 2 

( , )

min{ ( , ) }
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l z
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Solving Model 2, the attribute weight vector, compensation parameter and PIS for each 
expert can be deduced. The ranking order of projects under individual expert’s opinions is 
generated according to the increasing order of the distances ( 1,2, , , 1,2, , )q

iD i m q Q= =  .

3.1.4. Computing the group support degrees of projects

Suppose the ranks of projects under the opinion of expert eq is 1 2( , , , )m
q q q qR R R R=  . Inspired 

by the idea of the TOPSIS method, we develop a rank acceptability index to measure the 
group support degree of each project, computed as:
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 1

| |
,

| 1| | |

iQ
q

i q i i
q qq

R m
SD

R R m=

−
= v

− + −∑   (12)

where vq is the weight of expert eq, and m is the number of projects. 

3.2. Establishing multi-objective programming  
model for project portfolio selection

3.2.1. Objectives and constraints

Maximizing profit is the most commonly used objective function in project portfolio opti-
mization. However, focusing only on the current profits may negatively affect the long-term 
development of enterprises. Factors such as the availability of resources in the region where 
the project is located and the sustainability of the investment should be taken into account 
when making decisions. In this regard, we optimize the project portfolio by maximizing the 
values of projects in both financial and non-financial dimensions.

The first objective function is to maximize the financial return of the selected portfolio. 
The NPV is used to measure the financial return of a project, computed as:

1

,[( )(1 ) ]
L

t
i it it

t
iNPV AR AC r IC−

=

= − + −∑
where ARit and ACit are the annual capital income and annual operation and maintenance 
cost of project Ai at the tth year, respectively. ICi denotes the initial investment cost. L repre-
sents the life cycle and r is the discount rate. In addition, the group support degree of each 
project derived from Section 3.1 is used as the coefficient of the second objective function 
that aims to maximize the total non-financial value of the chosen project portfolio.

It is well known that the traditional constraints are the limited resources as projects in 
a portfolio often compete with each other for scarce resources. In this paper, the budget 
limitation (TC) will be taken into account. Besides, to achieve the goals of “carbon peaking” 
and “carbon neutrality”, energy enterprises in China, especially the large power generation 
enterprises, need to undertake a certain amount of carbon emission quota. Therefore, the 
required minimum carbon emission reduction CR should be met when selecting the portfo-
lios. CRi is the carbon emission reduction of project Ai.

Moreover, strategic constraints (SC) that reflect relationships of projects should be con-
sidered. Suppose that Xi = 1, if the project Ai is chosen; otherwise, Xi = 0. These relation-
ships mainly include: 1) Mutually exclusive relationship: 1a b lX X X+ + + ≤ , denoting that 
at most one of the projects in the set { , , , }a b lA A A  can be selected; 2) Interdependence:

a bX X≤  , representing that Ab will be considered on the condition that Ab is chosen; 3) Com-
plementary relationship: a bX X= , which means both Aa and Ab are chosen or neither.

3.2.2. Establishing and solving multi-objective programming model

The bi-objective 0-1 integer programming model for distributed PV project portfolio selec-
tion is constructed as follows:
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Model 3
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where { | 1,2, , }iX X i m= =   is the set of decision variables. r is the discount rate and L rep-
resents the life cycle of the PV project. In this paper, we assume that there is no preference 
on the priorities of objectives. To solve the model, the NSGA-II is adopted as it can obtain 
uniformly distributed Pareto-optimal solutions and has good convergence and excellent ro-
bustness (Tirkolaee et al., 2022).

3.3. Procedure of the proposed method

To facilitate the application, steps of the proposed two-stage mathematical programming 
model for distributed PV project portfolio selection under incomplete preference informa-
tion are summarized as follows. 
Stage I: Group support degree computation

Step 1. Identify the feasible project set { | 1,2, , }iA A i m= =  , attribute set { | 1,2, , }jG g j n= = 

 { | 1,2, , }jG g j n= =   and form the expert group { | 1,2, , }qE e q Q= =  . Then, collect the data of proj-
ects over attributes. The performances of quantitative attributes are measured in crisp 
numbers ij ijv r= ; while the qualitative attributes are scored by experts using the HFLTS, 
expressed as ( ) ( )={ | , ( ) 1,2, , }q q q k q k q

ij Lij LijSijv Ss sh q k K= ∈ =  .
Step 2. Obtain the incomplete preference information of pairwise comparisons between 
projects Wq, attribute weight vector q qw ∈L  and compensation parameter q

ql ∈Y  for 
each expert eq.
Step 3. Normalize the evaluation matrix using Eqs (1) and (3), and then obtain the syn-
thesized evaluation matrix of qualitative attributes using Eq. (4). 
Step 4. Build and solve Model 2 to obtain the attribute weight vector, compensation 
parameter and PIS 1 2( , , , )q q qq

nv v v v+ + ++ =  .
Step 5. Calculate the distances ( 1,2, , , 1,2, , )q

iD i m q Q= =   of projects from the PIS us-
ing Eq. (7a) and generate the ranking order of projects for each expert according to the 
increasing order of the distances.
Step 6. Calculate the group support degree of each project using Eq. (12).
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Stage II: Project portfolio optimization
Step 7. Establish Model 3 to optimize the investment portfolio and solve the model using 
the NSGA-II.
The flowchart of the proposed method is displayed in Figure 1.

4. An illustrative example

This section refers to an empirical case (adapted from Wu et al., 2018) to illustrate the ap-
plicability and computation process of the proposed method.

4.1. Example description and basic data collection

An energy enterprise, which is located in eastern China, plans to invest in distributed PV 
projects. The enterprise identifies ten investment projects as alternatives based on the inves-
tigation, which are located in different cities in Zhejiang province. The investment limit of 
the enterprise this year is 52*106 CNY, and it needs to complete 8.5*103 t of carbon emission 
reduction. Due to a lack of funds, the enterprise must conduct a comprehensive evaluation 
for these ten projects and then selects an optimal portfolio to invest. The evaluation task is 
assigned to four experts, among which two are project managers in the enterprise and two 
are scholars with energy engineering background. The scholars need to have at least 5 years 
of technical expertise and research experience in the field of PV energy. As mentioned in 
Section 2, eight attributes are defined, among which three are quantitative attributes and five 
are qualitative attributes, listed in Table 2. Projects’ performance on quantitative attributes is 
measured in crisp numbers, shown in Table 3, while that on qualitative attributes are scored 
by experts using the HFLTS. The following linguistic term set is used: 

0 1 2 3

4 5 6 7 8

{ extreamlypoor, verypoor, poor, mediumpoor,
fair, medium good, good, verygood,  extreamlygood}.

S s s s s
s s s s s
= = = = =
= = = = =

The evaluations of qualitative attributes are supposed to be given as shown in Table 4.

Figure 1. The flowchart of the two-stage mathematical programming model for PV project  
portfolio selection under incomplete preference information
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Table 3. Performance of projects on quantitative attributes (source: Wu et al., 2018)

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

g1 (MJ/m2) 4416.37 4417.41 4539.61 4769.82 4870.36 4390.77 4761.29 4502.05 4792.43 4791.41

g2 (°C) 17.2 17.2 17 17.3 16.7 16.9 17.4 17.1 17.8 17.8

g3 (m2) 14512.02 11296.25 17010.34 10224.63 13660.65 10191.92 13680.21 16098.07 11723.68 18188.42 

Table 4. Performance of projects on qualitative attributes (source: created by the authors)

Ex
pe

rt
s

At
tr

ib
ut

es

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

e1

g4 6 7{ , }s s 5 6{ , }s s 5{ }s 4 5{ , }s s 5 6{ , }s s 4 5{ , }s s 6{ }s 4{ }s 6{ }s 4 5{ , }s s

g5 4 5{ , }s s 5 6{ , }s s 6 7{ , }s s 6 7{ , }s s 5 6{ , }s s 5 6{ , }s s 6 7{ , }s s 6 7{ , }s s 5{ }s 5 6{ , }s s

g6 6 7{ , }s s 5 6{ , }s s 5 6{ , }s s 5 6{ , }s s 5 6{ , }s s 6 7{ , }s s 7 8{ , }s s 4 5{ , }s s 5 6{ , }s s 4 5{ , }s s

g7 5 6{ , }s s 6 7{ , }s s 6 7{ , }s s 5 6{ , }s s 5 6{ , }s s 7{ }s 5 6{ , }s s 6 7{ , }s s 4 5{ , }s s 6{ }s

g8 4 5{ , }s s 6{ }s 5 6{ , }s s 3 4{ , }s s 4 5{ , }s s 5{ }s 5 6{ , }s s 4{ }s 6 7{ , }s s 4 5{ , }s s

e2

g4 7{ }s 5 6{ , }s s 5{ }s 4 5{ , }s s 5 6{ , }s s 4 5{ , }s s 6{ }s 3 4{ , }s s 5 6{ , }s s 4 5{ , }s s

g5 4 5{ , }s s 4 5{ , }s s 6 7{ , }s s 6 7{ , }s s 6{ }s 6{ }s 5 6{ , }s s 6 7{ , }s s 5{ }s 4{ }s

g6 6 7{ , }s s 5 6{ , }s s 5{ }s 5 6{ , }s s 5 6{ , }s s 6 7{ , }s s 7{ }s 4 5{ , }s s 5 6{ , }s s 5{ }s

g7 5 6{ , }s s 6 7{ , }s s 6 7{ , }s s 6{ }s 5 6{ , }s s 7{ }s 6{ }s 6 7{ , }s s 5{ }s 5 6{ , }s s

g8 4 5{ , }s s 6{ }s 5 6{ , }s s 3 4{ , }s s 4 5{ , }s s 5 6{ , }s s 5 6{ , }s s 4 5{ , }s s 6 7{ , }s s 4 5{ , }s s

e3

g4 5{ }s 5 6{ , }s s 5{ }s 4 5{ , }s s 5 6{ , }s s 4 5{ , }s s 6 7{ , }s s 3 4{ , }s s 6{ }s 4 5{ , }s s

g5 4 5{ , }s s 5 6{ , }s s 6 7{ , }s s 6 7{ , }s s 5 6{ , }s s 5 6{ , }s s 5{ }s 6 7{ , }s s 5{ }s 5 6{ , }s s

g6 6 7{ , }s s 5{ }s 5{ }s 5 6{ , }s s 5 6{ , }s s 5{ }s 7{ }s 4 5{ , }s s 5{ }s 5{ }s

g7 5 6{ , }s s 6{ }s 6 7{ , }s s 5 6{ , }s s 5 6{ , }s s 6 7{ , }s s 5 6{ , }s s 6 7{ , }s s 5{ }s 6 7{ , }s s

g8 4{ }s 6{ }s 5 6{ , }s s 3 4{ , }s s 4 5{ , }s s 4 5{ , }s s 5 6{ , }s s 4 5{ , }s s 6 7{ , }s s 4{ }s

e4

g4 5 6{ , }s s 5{ }s 4 5{ , }s s 4{ }s 5 6{ , }s s 4 5{ , }s s 6 7{ , }s s 4{ }s 6 7{ , }s s 5{ }s

g5 4 5{ , }s s 5 6{ , }s s 7{ }s 6{ }s 5 6{ , }s s 5 6{ , }s s 5 6{ , }s s 6 7{ , }s s 5{ }s 5 6{ , }s s

g6 6 7{ , }s s 5 6{ , }s s 4 5{ , }s s 5 6{ , }s s 6{ }s 6 7{ , }s s 7{ }s 4 5{ , }s s 5 6{ , }s s 4{ }s

g7 5 6{ , }s s 6 7{ , }s s 6{ }s 5 6{ , }s s 5 6{ , }s s 6 7{ , }s s 4 5{ , }s s 6 7{ , }s s 4 5{ , }s s 6 7{ , }s s
g8 4 5{ , }s s 5 6{ , }s s 5 6{ , }s s 3 4{ , }s s 4 5{ , }s s 5{ }s 5 6{ , }s s 4{ }s 6 7{ , }s s 4 5{ , }s s

According to the comprehensions and judgments, each expert provides his/her prefer-
ences for pairwise comparisons of projects as:

1
3 5 5 6{<( , ),0.9 ,<( , ),0.7 }A A A AW = > > ,

2
3 5 5 6{<( , ),0.9 ,<( , ),0.7 }A A A AW = > > ,

3
7 1 1 6{<( , ),0.8 ,<( , ),0.8 }A A A AW = > > ,

4
7 1 1 6{<( , ),0.8 ,<( , ),0.8 }A A A AW = > > .
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The four experts provide the same incomplete information of attribute weights, shown as:
8

4 31
{ =1, , 0.08}j jj

w w w w
=

L = ≥ ≥∑ . 

Expert e1 has an optimistic attitude with 1 1l > ; Expert e2 has a pessimistic attitude with 
2 0.999l ≤ ; Expert e3 is indifferent with 3 0.999l =  and Expert e4 cannot provide his prefer-

ence of compensation towards aggregation so that 3 (0, ]l ∈ +∞  and 3 1l ≠ .

4.2. Solution process

According to the procedure of the proposed method, Step 1 and step 2 have already been 
given above. We perform the computation from the Step 3.

Step 3. According to Eqs (1) and (3), we have the normalized evaluation matrix for each 
expert. Then, using Eq. (4), we can obtain the normalized synthesized evaluation matrix 
of projects in terms of the non-financial dimensions, as shown in Table 5. Here, weights of 
experts are considered as the same with 0.25( 1,2,3,4)q qv = = . 

Table 5. Normalized evaluation matrix of projects in terms of the non-financial dimensions

Projects g1 g2 g3 g4 g5 g6 g7 g8

A1 0.3017 0.3154 0.3297 5.75 6.25{ , }s s 4 5{ , }s s 6 7{ , }s s 5 6{ , }s s
4 4.75{ , }s s

A2 0.3018 0.3154 0.2567 5 5.75{ , }s s 4.75 5.75{ , }s s 5 5.75{ , }s s 6 6.75{ , }s s
5.75 6{ , }s s

A3 0.3101 0.3118 0.3865 4.75 5{ , }s s 6.25 7{ , }s s 4.75 5.25{ , }s s 6 6.75{ , }s s
5 6{ , }s s

A4 0.3259 0.3173 0.2323 4 4.75{ , }s s 6 6.75{ , }s s 5 6{ , }s s 5.25 6{ , }s s
3 4{ , }s s

A5 0.3327 0.3063 0.3104 5 6{ , }s s 5.25 6{ , }s s 5.25 6{ , }s s 5 6{ , }s s 4 5{ , }s s

A6 0.3000 0.3099 0.2316 4 5{ , }s s 5.25 6{ , }s s 5.75 6.5{ , }s s 6.5 7{ , }s s
4.75 5.25{ , }s s

A7 0.3253 0.3191 0.3108 6 6.5{ , }s s 5.25 6{ , }s s 7 7.25{ , }s s 5 5.75{ , }s s
5 6{ , }s s

A8 0.3076 0.3136 0.3658 3.5 4{ , }s s 6 7{ , }s s 4 5{ , }s s 6 7{ , }s s
4 4.5{ , }s s

A9 0.3274 0.3264 0.2664 5.75 6.25{ , }s s 5{ }s 5 5.75{ , }s s 4.5 5{ , }s s
6 7{ , }s s

A10 0.3274 0.3264 0.4133 4.25 5{ , }s s 4.75 5.5{ , }s s 4.5 4.75{ , }s s 5.75 6.5{ , }s s 4 4.75{ , }s s

Step 4. Build and solve Model 2 by LINGO 18.0, we can obtain the attribute weights, com-
pensation parameter and PIS for each expert, as shown in Table 6. Here, we set e = 0.03.
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Table 6. The derived attribute weights, compensation parameter and positive ideal solution for each 
expert

Experts g1 g2 g3 g4 g5 g6 g7 g8 lq

e1

1
jv + 1 0.995 1 6.5 6.5{ , }s s 7 7{ , }s s 7 7.25{ , }s s 6.5 7{ , }s s 7 7{ , }s s

42.953
1
jw 0.08 0.39 0.10 0.10 0.08 0.08 0.08 0.08 

e2

2
jv + 1 1 1 6.5 6.5{ , }s s 7 7{ , }s s 7 7.25{ , }s s 6.56 7{ , }s s 7 7{ , }s s

0.999
2
jw 0.08 0.28 0.15 0.15 0.09 0.08 0.08 0.09 

e3

3
jv + 1 1 1 8 8{ , }s s 7 7{ , }s s 7 7.25{ , }s s 6.96 7{ , }s s 7 7{ , }s s

0.999
3
jw 0.20 0.08 0.20 0.20 0.08 0.08 0.08 0.08 

e4

4
jv + 1 1 1 6.5 6.5{ , }s s 7 7{ , }s s 7 7.25{ , }s s 6.5 7{ , }s s 7 7{ , }s s

34.205
4
jw 0.08 0.08 0.26 0.26 0.08 0.08 0.08 0.08 

Step 5–6. According to Eq. (7), the distances of projects from the PIS and the ranking 
order of projects for each expert can be obtained. Then, using Eq. (12), we have the group 
support degree of each project. The results are listed in Table 7.

Table 7. The ranking of projects for each expert and the group support degrees of projects

Projects
e1 e2 e3 e4

iSD
1
iD  Ranking 2

iD Ranking 3
iD Ranking 4

iD Ranking

A1 0.355 5 0.261 5 0.259 4 0.292 4 0.47 
A2 0.370 8 0.268 7 0.278 7 0.341 8 0.09 
A3 0.345 2 0.244 1 0.249 2 0.259 2 0.89 
A4 0.379 9 0.290 10 0.310 10 0.367 9 0.20 
A5 0.360 7 0.263 6 0.260 5 0.299 6 0.25 
A6 0.383 10 0.282 9 0.303 9 0.367 10 0.16 
A7 0.348 3 0.247 2 0.242 1 0.293 5 0.74 
A8 0.353 4 0.270 8 0.291 8 0.285 3 0.40 
A9 0.355 6 0.261 4 0.263 6 0.327 7 0.28 
A10 0.331 1 0.248 3 0.254 3 0.248 1 0.83 

Step 7. To establish Model 3, values of parameters listed in Table 8 are used:

Table 8. Values of parameters to build Model 3 (source: Wu et al., 2018)

Parameters A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

ARi (106.CNY) 3.01 2.33 3.7 2.11 2.9 2.19 2.78 3.36 2.37 3.68
ICi (106.CNY) 12.56 9.8 14.62 8.78 11.71 8.79 11.92 13.87 10.02 15.63
ACit (105.CNY) 7.48 5.83 6.53 4.79 4.07 2.18 7.1 6.88 3.98 6.21
CRi (103. t) 2.39 1.86 2.8 1.68 2.25 1.66 2.22 2.61 1.89 2.93
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The discount rate r is set to 10% and the life cycle of a solar PV project is 25 years. As 
projects A2, A4 and A6 are geographically far apart, the enterprise plans to choose only one 
of them to invest in if possible. The bi-objective integer programming model (Model 3) to 
optimize the project investment portfolios is constructed as follows:
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The NSGA-II is run by MATLAB R2020a to solve the above model with the following 
parameters: a population of size 20 and a maximum of 500 generations. The non-dominated 
solutions and Pareto front are respectively shown in Table 9 and Figure 2.

Table 9. Non-dominated solutions of Model 3

Solutions A1 A2 A3 A4 A5 A6 A7 A8 A9 A10
Objective  

1
Objective  

2
Portfolio 1 1 0 1 0 0 1 0 0 0 1  42.26 2.36 
Portfolio 2 0 0 1 0 1 0 0 0 1 1 43.97 2.25 
Portfolio 3 0 0 1 0 0 1 1 0 0 1 41.15 2.62 
Portfolio 4 0 0 1 0 1 1 0 0 0 1 45.20 2.13 
Portfolio 5 0 0 1 1 0 0 1 0 0 1 38.07 2.66 

Figure 2. The pareto front of Model 3
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4.3. Results and discussions

4.3.1. Result analysis 

As can been seen from Table 7, when e = 0.03, project A3 has the highest group support 
degree, followed by the projects A10 and A7. Observing the ranking results under individual 
opinions, we can find that although experts e1 and e2 have the same preference information 
on attribute weights and pairwise comparisons of projects, the ranking results of projects are 
different (see from Table 7 or Figure 3). The same situation exists on experts e3 and e4. This 
is because the attitudinal characters of experts towards performance aggregation, reflected 
in the degree of compensation, are different. In the process of deriving the project ranking, 
the attitudinal character of experts should be paid attention to. 

As can be seen from Table 9, there are five non-dominated solutions. Portfolio 4 (A3, 
A5, A6, A10) is superior to the other portfolio under the objective of maximizing the finan-
cial return, whereas portfolio 5 (A3, A4, A7, A10) is the best for the group support degree 
maximization objective. Some information can be excavated according to the frequency of 
the project occurring in the non-dominated solution set. The presence of A3 and A10 in all 
solutions means that the energy enterprise should prioritize investing in these two projects. 
For the geographically distant projects A2, A4 and A6, A2 should be abandoned as it does not 
appear in any non-dominated solutions. If the enterprise decides to invest in one of these 
three areas, A6 should be given priority as it appears in solutions with a high frequency (3 of 
5). For portfolios including project A6 (portfolio 1, 3 and 4), it is difficult to compare them 
since the two objectives are incomparable. For example, portfolio 1 is superior to portfolio 
3 under the objective of financial return maximizing strategy, but the opposite is true un-
der the total non-financial value maximizing strategy. In order to make further decisions, 
it is necessary to consider the preferences of managers on these two objectives. In general, 
through the analysis of the non-dominated solutions, in addition to aiding decision-making 
of portfolio selection, managers of enterprises can obtain useful information about the time 
sequence for project investment.

Figure 3. Rankings of projects under different experts’ opinions
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4.3.2. Comparative analysis

In the following, comparative analysis is conducted to see how the attitudinal character of 
experts affect the group support degrees of projects. We consider three scenarios. In scenario 
1 ( 1ql > ( 1,2,3,4)q = ), all experts have an optimistic attitude towards the aggregation; sce-
nario 2 ( 1ql < ( 1,2,3,4)q = ) supposes that all experts are pessimistic; scenario 3 ( 0.999ql =
( 1,2,3,4)q = ) supposes that all experts have an indifferent attitude, which is equivalent to in-
tegrating the performance of projects using the weighted averaging operator. In all scenarios, 
we set e = 0.03. The results are displayed in Figure 4.

As can be seen from Figure 4, whether the experts are pessimistic, optimistic, or indiffer-
ent, the group support degrees of projects A3 and A7 are high. However, with experts being 
pessimistic, there is a substantial decline in the support degree of project A10. The reason 
can be found by analyzing the data listed in Table 5. Project A10 has an absolute high score 
on attribute g3 and a high score on g2, but underperforms on attributes g4 to g8; while the 
scores of project A3 and A7 are relatively balanced on all attributes. Therefore, when experts 
are pessimistic, the support degree of project A10 declines significantly, as in this situation, 
the poor performances on attributes cannot be adequately compensated by the good per-
formances; whereas that of project A3 and A7 remain stable. Based on the above discussion, 
we suggest that when the cash flow of an enterprise is sufficient, project A10 can be selected 
as the enterprise usually has enough ability to take risks in such situation. However, when 
the enterprise’s cash flow is tight, a prudent investment strategy is important. Thus, priority 
should be given to projects A3 and A7.

4.3.3. Sensitivity analysis

In the above analysis, the value of e was set to 0.03. e is greater than 0 since the consistency 
index CIq is required to be not less than the inconsistency index CIq, and the value of e is 
larger when the expert is stricter. In the following, a sensitivity analysis is conducted to see 
the impact of e on the group support degree of projects. The value of e increases from 0.005 
to 0.05 with a step of 0.005. The results are displayed in Figure 5.

Figure 4. Rankings of projects under experts’ different attitudes
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As can be seen from Figure 5, when 0.02e ≤ , project A7 is the optimal choice. When e 
> 0.02, the group support degree of A3 gradually exceeds that of A7 and finally became the 
best choice. In general, the support degree of projects A3, A10 and A7 are in the high level. 
The robustness and stability of the proposed method are demonstrated.

Conclusions

This study presented a two-stage hybrid approach to evaluate and select the optimal portfolio 
of distributed PV projects under the condition of incomplete preference information and 
limited resources. First, the extended LINMAP was used to rank the projects according to 
their performance in the non-financial dimension. This method allowed incomplete prefer-
ence information of attribute weights and took into account the compensation effect between 
attributes. According to the derived multiple ranking results, a rank acceptability index was 
used to obtain the group support degree of each project. Based on the obtained support 
degrees, a bi-objective integer programming model was formulated in the second stage to 
optimize the project investment portfolio. The NSGA-II was adopted to solve the model such 
that the uniformly distributed Pareto-optimal solutions are found. A case study of distributed 
PV project portfolio selection with comparative and sensitivity analyses was carried out to 
demonstrate applicability and rationality of the proposed approach.

The merits of the proposed approach can be summarized as follows: 1) it can process 
uncertainties and fuzziness in project evaluations. Using hesitant fuzzy linguistic term sets to 
score qualitative attributes aligns well with people’s habits and cognition. 2) It can deal with 
complex problems containing hybrid evaluation information. 3) It is capable of considering 
the attitudinal character of an expert. The degree of compensation between attributes in 
the aggregation process is adjustable according to the pessimistic, optimistic and indifferent 
attitudes of an expert. 4) It allows incomplete preference information and reduces the cogni-
tive burden of experts. Experts just need to provide partial weight preference information 
and roughly give some pairwise comparisons of projects with hesitancy degrees. 5) It takes 

Figure 5. Impact of e on the support degree of projects
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into account the financial value and non-financial value of the project when optimizing the 
project investment portfolio, and such a comprehensive evaluation can help reduce the in-
vestment risk of an energy enterprise.

According to the result analysis, some managerial implications of PV project portfolio 
selection practice can be obtained: 1) Even though experts have the same preference infor-
mation for attribute weights and pairwise judgments, different compensation parameters 
can lead to significant changes in project ranking and group support degree. We suggest 
that, when the cash flow of an energy enterprise is sufficient, managers can consider a large 
degree of compensation such that projects with large fluctuations in attribute values can 
also be considered; while when the enterprise’s cash flow is tight, setting a small degree of 
compensation is recommended as it could help to make a prudent investment decision. 2) In 
order to achieve enterprise strategic objectives and reduce investment risk, decision makers 
and project managers should make a project portfolio considering both the financial and 
non-financial values. 3) Although it is difficult to compare non-dominated solutions obtained 
from the project portfolio optimization model when managers cannot provide their prefer-
ences for objectives, the solutions could provide theoretical guidance for project managers in 
the practice of project portfolio management. For example, the frequency of the project oc-
curring in the non-dominated solution set could guide the formulation of the time sequence 
of project investment.

The paper at hand also has limitations. We have considered the different degrees of com-
pensation in the aggregation process. However, the positive and negative interactions be-
tween attributes are not taken into account. In the future, interactions between attributes 
modelled by the attitudinal Choquet integral (Aggarwal & Fallah Tehrani, 2019) will be an 
interesting topic. In addition, when calculating the portfolio financial returns, we did not 
consider the uncertain factors, such as the electricity price and investment cost. Future works 
could integrate the real options method in building a portfolio optimization model so as to 
further reduce the investment risk.
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APPENDIX

Table A.1. Abbreviations and explanations

Abbreviations Explanations

AHP Analytic Hierarchy Process
ANP Analytic Network Process
DEMATEL Decision Making Trial and Evaluation Laboratory
PROMETHEE Preference Ranking Organization METHod for Enrichment of Evaluations
TODIM TOmada de Decisao Interativa e Multi-critevio in French (An acronym in 

Portuguese of interactive and multi-criteria decision making in English)
TOPSIS Technique for Order Performance by Similarity to Ideal Solution
VIKOR VIse Kriterijumska Optimizacija kompromisno Resenje, in Serbian (Multiple 

criteria optimization compromise solution in English)
SMAA Stochastic Multicriteria Acceptability Analysis
MADM Multiple Attribute Decision Making 
GRA Grey Relational Analysis
BWM Best Worst Method
OWA Ordered Weighted Averaging
CWA Compensative Weighted Averaging
HFLTS Hesitant Fuzzy Linguistic Term Set
HFLE Hesitant Fuzzy Linguistic Element 
LINMAP Linear Programming Technique for Multidimensional Analysis of Preference
PV Photovoltaic
PIS Positive Ideal Solution 
NPV Net Present Value
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Table A.2. Notations and explanations

Notations Explanations

{ | 1,2, , }iA A i m= =  set of m PV projects
{ | 1,2, , }qE e q Q= =  set of Q experts

{ | 1,2, , }N jG g j n= =  set of n attributes, satisfying N C HG G G= ∪  and C HG G∩ =∅

CG quantitative attributes scored in crisp numbers

HG qualitative attributes represented by HFLTSs

, , ,A E C HI I I I index sets of alternatives, experts, quantitative attributes and 
qualitative attributes, respectively

ijv
 evaluation value of the ith project on the jth attribute 

ij ijv r= evaluation value denoted by crisp numbers
( ) ( )={ | ;

( ) 1,2, , }

q q q k q k
ij Lij LijSij

q
v h s

k
s S

q K
= ∈
= 

evaluation value denoted by HFLTS provided by the qth expert, where 
S is the linguistic term set and Kq is the number of linguistic terms in 

q
Sijh  

ij ijv r=
 normalized value of crisp numbers

( )={ | 1,2, , }
ij

k
ij Sij Lv h s k K= =  synthesized evaluation value of the group of experts 

ql compensation parameter

1 2=( , , , )q q qq
nw w w w  weight vector of attributes

qL incomplete information set of attribute weights

{<( , ), ( , )
| , , }

q q
l z

A

A A t l z
l z I l z
W = >

∈ ≠
partial pairwise comparisons between projects, where ( , ) [0,1]t l z ∈  is 
the truth degree to which Al is better than Az

qIC  inconsistency index between the lth and zth project
qCI  consistency index between the lth and zth project

e threshold to ensure that the consistency index is not less than the 
inconsistency index

qv +  positive ideal solution
q
iD  distance between evaluation vector vi and the PIS qv +  

qR
 ranking of projects under the opinions of the qth expert

iSD  support degree of the ith project

1 2=( , , , )Qv v v v  weight vector of experts

itAR annual capital income of the ith project at the tth year

itAC annual operation and maintenance cost of the ith project at the tth year

iIC initial investment cost of the ith project
L  life cycle of the PV project
r  discount rate

iCR carbon emission reduction of the ith project
{ | 1,2, , }iX X i m= =  decision variables for project investment portfolio optimization

Note: The superscript or subscript q that does not descript in explanations denotes the qth expert.


