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Abstract. Probabilistic dual hesitant fuzzy set (PDHFS) is a more powerful and important tool to 
describe uncertain information regarded as generalization of hesitant fuzzy set (HFS) and dual 
HFS (DHFS), not only reflects the hesitant attitude of decision-makers (DMs), but also reflects 
the probability information of DMs. Score function of fuzzy number and weighting method 
are very important in multi-attribute group decision-making (MAGDM) issues. In many fuzzy 
environments, the score function and entropy measure have been proposed one after another. 
Firstly, based on the detailed analysis of the existed score function of PDHF element (PDHFE) 
and with the help of previous references, we build a novel score function for PDHFE. Secondly, a 
combined weighting method is built based on the minimum identification information principle 
by fusing PDHF entropy and Criteria Importance Through Intercriteria Correlation (CRITIC) 
method. Thirdly, a novel PDHF MAGDM approach (PDHF-EDAS) is built by extending evalu-
ation based on distance from average solution (EDAS) approach to the PDHF environment to 
solve the issue that the decision attribute information is PDHFE. Finally, the practicability and 
effectiveness of the PDHF MAGDM technique is verified by suppliers selection (SS) and compar-
ing analysis with existing methods.
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Introduction

In the past few decades, some MAGDM issues generally use exact numbers to express deci-
sion information. However, with the increasing complexity of real MAGDM issues, the use 
of accurate numbers to express decision information has been far from real MAGDM, so it 
is more and more common to use fuzzy numbers to express decision information (Herrera 
& Martinez, 2000; Lu et al., 2021; M. Zhao et al., 2021b). Zadeh (1965) proposed the famous 
fuzzy set (FS) in 1965. Since it was proposed, FS and its extensions were applied to many un-
certain MADM fields (William-West & Ciucci, 2021; H. Y. Zhang et al., 2022c; M. Zhao et al., 
2022). Due to the needs of some special MAGDM issues, extended forms of FS have been 
put forward. Because FS can only express approval, and can only use one value to express the 
DM’s approval attitude, it cannot express the DM’s approval in multiple dimensions, so it has 
defects in dealing with some MAGDM problems. Some multi-dimensional FSs were built and 
extensively utilized in many fields (Liang et al., 2013; Lima et al., 2021; Pramanik et al., 2021). 
Although the FSs that have been built can well describe the situation that DMs approve, it is 
powerless to describe disapproval. Therefore, the intuitionistic FS (IFS) (Atanassov, 1986) and 
interval IFS (IVIFS) (Atanassov & Gargov, 1989) were built. M. Zhao et al. (2021) merged 
MABAC approach with IFS as well as CPT and a new MAGDM approach was built, finally, 
it was utilized to practical issues in IF environment. S. Zhang et  al. (2021b) developed a 
MAGDM approach under IF environment though merging GRA approach and CPT and 
it was a MAGDM issue in IF environment. In the process of DMs dealing with some real 
MAGDM issues, DMs often hesitate between several exact values when expressing decision 
information. In order to better describe this situation, the famous hesitant FS (HFS) (Torra, 
2010) was built, obviously, HFS is more practical in describing the decision information of 
DMs, some successful cases also prove this understanding (Narayanamoorthy et al., 2021). 
Although HFS has great advantages in dealing with MAGDM issues, we often think about 
a very practical problem, that is, the possibility of these values, Z. S. Xu and Zhou (2017) 
built the probabilistic HFS (PHFS). Liu et al. (2021) developed two models for determining 
probability of PHFE and the probability of risk status respectively. Krishankumar et al. (2021) 
extended the COPRAS technique to PHF setting. Liao et al. (2021) developed a MAGDM 
approach by merging MABAC and CPT to PHF setting and applied it to practical issue. 
HFS can describe the DM’s hesitation between multiple values, but it cannot describe the 
DM’s disapproval attitude, hence, the dual HFS (DHFS) was developed by Zhu, Xu, and Xia 
(2012). DHFS can better describe DM’s hesitant attitude in several exact values, DHFS can 
clearly describe the DM’s support and nonsupport attitude towards the decision-making 
issue, but after the DM gives the assessment information, the value of these assessment ele-
ments is still a problem worth discussing. Hao et al. (2017) built the PDHFS and PDHFE 
which has more unique advantages than existing FSs. Garg and Kaur (2021) extended the 
CODAS to the PDHF setting. Q. Zhao et al. (2020) developed the PROMETHEE-II approach 
with PDHF information. Garg and Kaur (2020b) defined the PDHF correlation coefficient 
for MAGDM issue. Ren et al. (2017) merged the TODIM approach with PDHFS. C. Zhang 
et al. (2021a) merged the MULTIMOORA approach with PDHFS. Garg and Kaur (2020a) 
merged the MSM operator with PDHFS. Ning et al. (2022) defined the PDHFEPGMSM and 
PDHFWEPGMSM operators under PDHFS.
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Similar to other decision making method (Jiang et  al., 2022b; D. Zhang et  al., 2022;  
H. Zhang et al., 2022b), EDAS method is a novel decision-making method proposed by Ke-
shavarz Ghorabaee et al. (2015). It changes the evaluation criterion from the extreme ideal 
solution (TOPSIS method (Hwang & Yoon, 1981; H. Y. Zhang et al., 2022d) and VIKOR 
method (Opricovic & Tzeng, 2004)) of advantages and disadvantages to the average solution 
with more practical significance. In the case of differences in multi sectoral objectives, the 
compromise idea is obviously more consistent with actual interests of the decision-making 
collective. Because of its remarkable practical value and a large number of applications have 
been implemented, and integrated into many fuzzy settings and played a very important 
role. Y. Huang et al. (2021) defined the improved EDAS method with PT. Yahya et al. (2021) 
proposed the frank aggregation operator-based EDAS approach for IF rough set, and applied 
it to evaluation of the small hydropower plant. H. M. Zhang (2020) proposed an extended 
EDAS Method for multivalued neutrosophic sets, the MADM method was applied to choose 
appropriate investment project for an investment company. Jiang et  al. (2022a) built the 
EDAS approach with CPT for settling picture fuzzy MAGDM issue. Fan et al. (2020) gave a 
novel EDAS MCGDM model for SVTNS, and it was applied to the investment projects selec-
tion. Darko and Liang (2020) developed a modified EDAS approach and Hamacher operators 
for the q-rung orthopair FS, and the method was utilized to elect a MPPS. Li et al. (2019) 
proposed the EDAS MAGDM approach for picture fuzzy environment, and the method was 
applied to select an optimal emergency alternative for an emergency management center 
(EMC). Lei et al. (2022) merged the EDAS with PDHLS for MAGDM in PDHL environment. 
Su et al. (2022) merged the EDAS approach with PULS and a MAGDM approach was built. 
There are many applications of the EDAS method, which will not be listed here.

Although EDAS approach was successfully utilized in various fields and extended to 
many fuzzy environments, it fails to weight decision attributes, but the weighting method 
for attributes is crucial issue in MAGDM issue. Therefore, this study selects the widely used 
critical method and entropy weight method to weight decision attributes. CRITIC weight-
ing method is proposed by Diakoulaki et al. (1995). It can better describe the relationship 
among all attributes and weight for attributes objectively. After years of development, it was 
widely used in the weighting of decision attributes. For example, Peng and Garg (2022) uti-
lized the CRITIC to give the weight to intuitionistic fuzzy soft element, and applied it to the 
CCN cache placement strategy election. Haktanir and Kahraman (2021) utilized the CRITIC 
to give the weight to evaluation attributes, and applied it to blood testing for COVID-19. 
Wang et al. (2022) built the GRP and CRITIC method for PUL-MAGDM. Saraji et al. (2021) 
combined the CRITIC method and COPRAS Method and CRITIC-COPRAS method was 
applied to MADM. Shi et al. (2021) applied the CRITIC weighting method to comprehensive 
power quality evaluation method of microgrid. Zafar et al. (2021) applied entropy-CRITIC 
weight method to an effective blockchain evaluation system. There are many applications of 
the CRITIC method, which will not be listed here. Entropy plays a key role in describing 
the information of a fuzzy element. It utilizes the volatility of data to reflect the importance 
of data, the greater the volatility, the higher the information content, so as to give greater 
objective weight to the data, it is a very useful objective weighting method. Various kinds of 
fuzzy entropy have been put forward one after another, intuitionistic fuzzy entropy measures 
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(Rahimi et  al., 2021), Pythagorean fuzzy entropy measures (Thao & Smarandache, 2019;  
T. T. Xu et al., 2020), hesitant fuzzy entropy measure (Anees et al., 2020), dual hesitant fuzzy 
entropy measure (H. M. Zhang, 2020) in the corresponding fuzzy environment, DHF entropy 
measure (Hao et al., 2017).

On the premise of literatures review, we found that only Hao et al. (2017) defined a en-
tropy measure in PDHF environment and which was given with the help of auxiliary func-
tion, but the complex calculation process will be hindered in practical application. In order 
to compare two PDHFEs, the score function of two PDHFEs is also studied in literature (Hao 
et al., 2017), but we find that the proposed score function does not take into account the hesi-
tant degree of PDHFE and completely ignores the role of hesitant degree, but in fact, hesitant 
degree will play a very key role in the score function, The research on these two issues will be 
discussed and studied in detail in Section 3. Meanwhile, considering the advantages of EDAS 
approach and a large number of successful applications, we think it is necessary to popularize 
and use it in the PDHF environment, and enrich the decision-making approach for PDHFS.

Finally, the important task of the study is to construct a novel MAGDM technique for 
by merging EDAS approach to PDHF setting. Firstly, aiming at the disadvantages of score 
function of PDHFE, we develop a novel score function on the premise of considering the 
importance of hesitant degree. Then we present a PDHF EDAS (PDHF-EDAS) approach 
for settling MAGDM issues. Meanwhile, we merge CRITIC approach and entropy weight 
approach to PDHF-EDAS method to get the weight of decision attributes reasonably. In ad-
dition, we apply the proposed PDHF MAGDM technique to SS to testify the practicability 
of PDHF-EDAS technique. Finally, the parameter and comparison analyses testify the adapt-
ability and availability of PDHF-EDAS approach.

Some main motivations are shown as: (1) In more and more complex decision-making 
issues, how to effectively obtain the decision-making information in decision-making issues 
is a crucial issue. PDHFS can even more fully describe the assessment information of DMs. 
(2) Compared with other evaluation methods, EDAS approach has its unique superiorities, 
but the application of EDAS approach in PFHF environment is not available at present. (3) 
CRITIC method and entropy weight method are popular objective weighting methods for 
decision attribute weighting, which can fully reflect the correlation and volatility of decision 
attributes. (4) As an important MAGDM problem, scientific and reasonable SS is a very 
important topic, which is very important for the high-quality development of the company. 
In order to solve this problem, this study develops PDHF-EDAS method for MAGDM, and 
integrates critical method and entropy weight method into PDHF-EDAS approach to obtain 
the objective weight of decision attributes. (5) Finally, the parameter and comparison analy-
ses testify the adaptability and availability of PDHF-EDAS approach.

The main contributions are shown as: (1) The CRITIC and entropy weight approaches 
are employed to capture the weights of attributes in PDHF MAGDM issue. (2) The PDHF-
EDAS approach is built to solve MAGDM problem. (3) The newly constructed PDHF-EDAS 
approach in the PDHF environment is used to a practice case of SS to illustrate the appli-
cability of PDHF-EDAS approach. (4) The parameter and comparison analyses testify the 
adaptability and availability of PDHF-EDAS approach. (5) The PDHF-EDAS approach built 
in this paper not only provides more decision-making methods for solving MAGDM issues 
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in PFHF environment, but also provides more references for solving MAGDM issues in other 
fuzzy environments.

This article consists of the below sections: the Section 1 mainly reviews the PDHFS; 
Section 2 puts forward new score function and a method for comparing PDHFE, and an 
entropy measure for PDHFS; In Section 3, the PDHF entropy and CRITIC is used to obtain 
the weight; In Section 4, EDAS method and PDHFS are fused, and a MAGDM technique 
is proposed; In Section 5, the proposed MAGDM technique is used to suppliers selection, 
finally, the built technique is used to compare with the existing MAGDM approaches, and 
the superiorities of the built method are put forward though the sensitivity analysis of pa-
rameters; the last section summarizes this paper.

1. Preliminaries

Some basic conceptions and aggregation operator of PDHFS are shown in such section.

Definition 1 (Hao et al., 2017). A PDHFS on a fixed set X is record as following form:

 
( ) ( ) ( ) ( ){ }, , , Xℑ= τ υ ∈ h   D    , (1)

where ( )h   is MD and ( )D   is NMD, the components ( ) ( )τh    and ( ) ( )υD    represent 
those elements in ( )h  and ( )D  , ( )τ   is probability set of ( )h  and ( )υ  , 

 0 , 1≤ γ h≤ , 0 1+ +≤ γ + h ≤  (2)

and

 0,1iτ ∈   , 0,1jυ ∈   , 
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, 

( )iτ ∈τ   and ( )iυ ∈υ  . #h  and #D  are the number of elements in ( ) ( )τh    and ( ) ( )υD  

 
, 

respectively. ( ) ( ) ( ) ( ),ℑ= τ υh   D    is named as PDHFE, record as ,ℑ= τ υh D  (Hao 
et al., 2017).

Under conditions 
#

1

1i
i=

τ <∑
h

 and 
#

1

1j
j=

υ <∑
D

, we normalize the PDHFS by Eq. (4):

 
( ) ( ) ( ) ( ){ }, , , Xℑ= τ υ ∈ h   D    , (4)

where ( ) #

1i ii=
τ = τ τ∑ h

 , ( ) #

1j jj=
υ = υ υ∑ D

 .

Next, some operations of PDHFEs should be reviewed (Hao et al., 2017).
Let ℑ, ℑ1 and ℑ2 be three PDHFEs, ,ℑ= τ υh D , 

1 11 1 1,ℑ = τ υ
h D

h D  and 

2 22 2 2,ℑ = τ υ
h D

h D , then some operations of PDHFEs are shown as (Hao et al., 2017):

(1) { } { }{ }1 1 1 1 2 2 2 2 1 2 1 21 2 , , , 1 2 1 2 1 2,p p q qγ ∈ h ∈ γ ∈ h ∈ γ γ h hℑ ⊕ℑ = γ + γ − γ γ h h
h D h D

 ;

(2) { } { }{ }1 1 1 1 2 2 2 2 1 2 1 21 2 , , , 1 2 1 2 1 2,p p q qγ ∈ h ∈ γ ∈ h ∈ γ γ h hℑ ⊗ℑ = γ γ h + h −h h
h D h D

 ;
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(3) ( )( ) { }, 1 1 ,p qλ λ
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In order to compare two PDHFEs, Hao et al. (2017) and Z. S. Xu and Zhou (2017) de-
veloped the score calculation formula and accuracy function of PDHFEs.

Definition 2 (Hao et al., 2017). ,ℑ= τ υh D  is a PDHFE, then the score function is:

 
( ) # #

1 1i i j ji j
s

= γ∈ = γ∈
ℑ = ⋅ τ − ⋅υ∑ ∑h D

h D

h D . (5)

Definition 3 (Z. S. Xu & Zhou, 2017). ,ℑ= τ υh D  is a PDHFE, the accuracy function is:

 
( ) # #

1 1i i j ji j
h

= γ∈ = γ∈
ℑ = ⋅ τ + ⋅υ∑ ∑h D

h D

h D . (6)

Some comparison approaches of PDHFEs are given as follows (Z. S. Xu & Zhou, 2017):
If ( ) ( )1 2s sℑ > ℑ , then ℑ1 > ℑ2; On the contrary, there is ℑ1 < ℑ2. If ( ) ( )1 2s sℑ = ℑ , then 

(1) If ( ) ( )1 2h hℑ < ℑ , then ℑ1 < ℑ2; (2) If ( ) ( )1 2h hℑ = ℑ , then ℑ1 = ℑ2.
The score function calculation formula in Definition 2 is expressed by the deviation be-

tween the mean values of MD and NMD, without considering the influence of hesitant de-
gree. If the two PDHFEs ℑ1 and ℑ2 have different deviation of mean of MD and NMD, but 
the hesitant degree is very different, which may lead to great problems, because the hesitant 
degree largely shows the high uncertainty and risk level of DMs. In the next section, we 
will propose a novel score function based on Da operator (Atanassov, 1989) and parameter 
determination method (M. J. Huang & Li, 2013), it fully considers the hesitation of DMs, 
and compared with the existing methods for comparing two PDHFEs, it can better compare 
two PDHFEs.

Hao et al. (2017) defined the PDHF weighted averaging (PDHFWA) operator.

Definition 4 (Hao et al., 2017). Let ( ), 1,2, ,
i ii i h i g i nℑ = τ υ =h D   be n PDHFEs and 
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2. The novel score function and entropy measure for PDHFE

In the section, we propose a fresh score function depend on Da operator (Atanassov, 1989) 
and parameter determination method (M. J. Huang & Li, 2013), it totally thinks over the 
hesitant degree of DMs, and compared with the existing methods for comparing two PDH-
FEs, it can better compare two PDHFEs.

In Section 2, we fully analyze the influence of hesitant degree on the score function. In 
order to better reflect the importance of hesitation, we built a novel score function of PDHFE, 
which fully reflects the influence of hesitant degree on the novel score function. Next, we 
will analyze the new score function proposed in this study in combination with Da operator 
(Atanassov, 1989) and parameter determination method (M. J. Huang & Li, 2013).

On the one hand, we should pay more attention to negative information in some deci-
sion-making issues. Such as, when we buy a product, when we find some negative informa-
tion about the product, even if there is a lot of good information about the product, we will 
treat the product carefully. Therefore, we should pay more attention to negative information 
in decision-making. In such study, we take the NMD of PDHFS as negative information and 
give it a more crucial position in PDHFEs.

On the other hand, in Section 2, we have analyzed the important role of hesitant degree 
in the calculation of score function for PDHFE. In the above example, the score function 
of PDHFE ℑ2 is the largest. Among the three PDHFEs ℑ1, ℑ2 and ℑ3, ℑ2 is better than the 
other two. Obviously, the importance of hesitant degree is not considered in the comparison 
process of the three PDHFEs. For the sake of reflecting the importance of hesitant degree, 
because the PDHFE is composed of MD and NMD, we consider assigning one part of hesi-
tant degree to MD and the other part to NMD.

Atanassov (1989) gave an improved method of hesitant degree in intuitionistic fuzzy set 
and proposed Da operator.

Definition 5 (Atanassov, 1989). Let 0,1  a∈  be a fixed number, and X be a 
fixed set. For an IFS ( ) ( ){ }, ,v XΗ ΗΗ = µ ∈    , the Da operator is shown as: 

( ) ( ) ( ) ( ) ( ) ( ){ }, , 1D v Xa Η Η Η ΗΗ = µ +a ⋅p + −a ⋅p ∈      , where ( )Ηp   is the hesi-
tant degree of X∈  to the set H.

Da operator divides the hesitant degree into two parts. One part of the degree hesitant is 
allocated to the MD and the other part is allocated to the NMD. In Da operator, a is a very 
important parameter, which can determine how many hesitant degrees are allocated to the 
MD and how many to the NMD.

M. J. Huang and Li (2013) developed a formula for determining a on the basis of refer-
ence (Atanassov, 1989) as following:

 

( ) ( ) ( ) ( ) ( )1
2 2 2

v vΗ Η Η
Η

Ηµ − µ −
a = + + p

   

 . (8)

From the form of the above formula, we can see that when the number of votes sup-
ported is more than the number of votes against, that is, the greater the ( ) ( ) 0vΗ Ηµ − >   , 
the greater the hesitation part assigned to the mean of MD, and the greater the a; When 
the number of support votes is less than the number of opposition votes, that is, the smaller 
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the ( ) ( ) 0vΗ Ηµ − <  , the smaller the hesitation part assigned to the mean of MD, and the 
smaller the a.

Let ,ℑ= τ υh D  be a PDHFE, h and D take values in interval [0,1]. We call 
#

1 j jj=
τ∑ h

h  

the mean of the MD of the PDHFE ℑ, 
#

1 j jj=
υ∑ D

D  the mean of the NMD of the PDHFE 

ℑ, and 
# #

1 1
1 j j j jj j= =
− τ − υ∑ ∑h D

h D  the mean of the hesitant degree of the PDHFE ℑ, then 

the mean of the MD and the mean of the NMD constitute a PDHFE. Therefore, we use the 
idea of Da operator (Atanassov, 1989) and the method of determining parameter a in  M. 
J. Huang and Li (2013) to improve the hesitant degree in PDHFS, and put the NMD in a 
more important position. After the above analysis, we built a novel score function for PDHFE.

Definition 6. Let ,ℑ= τ υh D  be a PDHFE, then the novel score function is defined:
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From the ( )Ds
a
ℑ , the value range of ( )Ds

a
ℑ  is 0,1  . For two PDHFEs ℑ1 and ℑ2, if 

( ) ( )1 2D Ds s
a a
ℑ > ℑ , then ℑ1 is superior to ℑ2 and is recorded as 1 2ℑ ℑ .

From the above Definition 6, the mean pf the hesitant pℑ of PDHFE ℑ is divided into 
two parts through parameter a, one part is assigned to the mean of the MD of the PDHFE 
ℑ, and the other part is assigned to the mean of the NMD of the PDHFE ℑ. According to 

Definition 2, ( ) # #
1 1i i j ji j

s
= γ∈ = γ∈

ℑ = ⋅τ − ⋅υ∑ ∑h D

h D

h D  is a score function of PDHFE ℑ. So 

( ) ( )1
2 2 2

s s
ℑ

ℑ ℑ
a = + + p  The value of a varies not only with the means of MD and NMD, 

but also with the hesitant degree pℑ. If ( ) 0s ℑ > , it increases, and if ( ) 0s ℑ < , it decreases.
Therefore, the novel score function of PDHFE fully reflects the hesitant degree of PDHFE. 

In addition, we find that with the increasing of the NMD of PDHFE, the value of novel score 
function of the PDHFE will become smaller. Thus, the novel score function for PDHFE can 
better reflect the value of NMD. Next, let’s make a detailed analysis.

Example 1. Let { } { }1 0.3 0.5,0.4 0.5 , 0.1 0.5,0.2 0.5ℑ = , { } { }2 0.6 1 , 0.3 0.5,0.4 0.5ℑ =  and 

{ } { }3 0.5 0.5,0.6 0.5 , 0.3 0.5,0.4 0.5ℑ =  be three PDHFEs, then score function values of ℑ1, 
ℑ2 and ℑ3 by the novel score function can be calculated as:

From the Definition 6, we can calculate the mean of hesitant degree of ℑ1 is 
1

0.5ℑ =p
 
, 

then 
1

0.65ℑa = . Thus, ( )1 0.675s ℑ =
h

 and ( )1 0.325s ℑ =
D

, therefore, ( )1 0.675Ds
a
ℑ = .

In like manner, we can get 
2

0.05ℑp = , then 
2

0.6313ℑa = . Thus, ( )2 0.6316s ℑ =
h

 and 
( )2 0.3684s ℑ =

D

, therefore, ( )2 0.6316Ds
a
ℑ = ;

3
0.1ℑp = , then 

3
0.61ℑa = . Thus, ( )3 0.611s ℑ =

h

 and ( )3 0.389s ℑ =
D

, therefore, 
( )3 0.611Ds

a
ℑ = . Obviously, ( ) ( ) ( )1 2 3D D Ds s s

a a a
ℑ > ℑ > ℑ , we get the rank of three PD-

HFEs is 1 2 3ℑ ℑ ℑ  .



334 B. Ning et al. EDAS method for multiple attribute group decision making with probabilistic ...

The rank is different from Example 1, let’s make a detailed analysis.
(1) Since ( ) ( )2 3= 0.35h ℑ h ℑ = , we can find the mean values of NMD of ℑ2 and ℑ3 are 

same. But ( )2 =0.6γ ℑ  and ( )3 =0.55γ ℑ , so ( ) ( )2 3γ ℑ > γ ℑ , therefore ℑ2 > ℑ3 in Ex-
amples 1 and 2. The result is in line with people’s cognition.

(2) We can get the 1 3ℑ ℑ  by the novel score function, while the result is 3 1ℑ ℑ  by 
the compare method in the Definition 2. We can see that in Definition 2, if we only 
use compare ℑ1 and ℑ3 by the score function, then ℑ1 = ℑ3, so we need to consider 
the values of accuracy function of ℑ1 and ℑ3 to compare the size of ℑ1 and ℑ3. This 
is because the role of hesitant degree in the comparison process is not taken into ac-
count when comparing ℑ1 and ℑ3 according to Definition 2. We compared with the 
comparing method proposed for two PDHFEs in Definition 2, the method built in 
this study fully considers the role of hesitant degree in the comparison of two PD-
HFEs, and assigns the mean of hesitant degree to the mean value of MD and NMD 
through a. The biggest superiority of the comparison method built in this study is 
that it can directly compare two PDHFEs by using the novel score function, which is 
simpler and more direct than the comparison method defined 2.

In the two comparison methods of Definitions 2 and 6, we can see from the results of 
Examples 1 and 2 that the sequencing of ℑ1 and ℑ3 is different. Although the mean devia-
tion of MD and NMD of ℑ1 and ℑ3 is the same, according to the calculation process, we 
can see that the mean of MD of ℑ1 is assigned a larger mean value of hesitation, while ℑ3 is 
assigned a smaller mean value of hesitation, so the score function of a is larger, sort higher.

The changes of the new score function with the change of the means of MD and NMD 
of PDHFE ℑ will be analyzed in more depth.

In the light of the ( )Ds
a
ℑ  in Definition 6, we can simplify the novel score function as 

follows:

( ) ( ) ( ) ( ) ( ) ( )1 1 2 2 2 2 1
2 2D

s s
s

a

+ ℑ − ℑ + − a γ ℑ − ah ℑ + a −
ℑ = =h D .

Since 
( ) ( )1

2 2 2
s s

ℑ
ℑ ℑ

a = + + p , so 0 1≤ a ≤ .

From the simplified form of the new scoring function, we can get the following results: (1) 
( )Ds

a
ℑ  decreases with the increase of ( )γ ℑ , therefore, ( )Ds

a
ℑ  is a monotonically decreas-

ing function of ( )γ ℑ . (2) ( )Ds
a
ℑ  increases with the increase of ( )h ℑ , therefore, ( )Ds

a
ℑ  is 

a monotonically increasing function of ( )h ℑ .
From the above analysis, the novel score function is more in line with people’s cognition:
When the MD of a PDHFE is larger than the NMD, it is obvious that its score function 

should be larger; Conversely, it shows that MD is smaller than NMD, its score function is 
also smaller.

For ( )Ds
a
ℑ , we observe that when 1

2
a = , the novel score function of PDHFE is the same 

as that in Definition 2. Therefore, the ( )Ds
a
ℑ  is a expansion form of the already existing that 

in Definition 2, which is more available and direct in comparing two PDHFEs.
Entropy measure plays an important role in decision attribute weighting in uncertain 

MADM. We have introduced the fuzzy entropy in each fuzzy environment in detail in the 
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introduction. In this section, we defined a fresh PDHF entropy with the aid of the score 
function built in Section 3.1.

In a MADM problem, it is assumed that there are m alternatives { }1 2, , , mX X X X=   with 
n decision attributes { }1 2, , , nC C C C=  , which construct a decision matrix ( )ij m n×

Μ = ℑ
 
, 

where ,ij ij ij ij ijℑ = τ υh D . Then the PDHF entropy measure is built:

 
( ) ( )1

1 ln
ln

m
j ij iji

E s s
m =

= − ℑ ℑ∑ , (10)

where ( )

( ) ( )( )
( )( ) ( )( ) ( )

( )( ) ( )
( )( ) ( )( ) ( )

1

11

1

11

min

max min

max

max min

D ij D iji m
D ij

D ij D iji mi m
ij

D ij D iji m
D ij

D ij D iji mi m

s s
s B

s s
s

s s
s C

s s

a a

a

a a

a a

a

a a

≤ ≤

≤ ≤≤ ≤

≤ ≤

≤ ≤≤ ≤

 ℑ − ℑ ℑ ∈
ℑ − ℑℑ = 

ℑ − ℑ
 ℑ ∈
 ℑ − ℑ


and ( ) 0ijs ℑ = , then ( ) ( )ln 0ij ijs sℑ ℑ = .

3. A approach to obtain combined weight

3.1. Determine objective weight based on CRITIC and entropy weight methods

Diakoulaki et  al. (1995) proposed CRITIC method for computing objective weight. It is 
mainly determined by two factors, one is standard deviation, which reflects the variation 
degree of the stated attribute; the other is correlation coefficient, if there is strong positive 
correlation between two stated attributes, it indicates two indexes have low conflict, if there 
is a strong negative correlation, it means that the two indicators have high conflict. In the 
below section, we merge the CRITIC method to PDHF environment and proposed the en-
tropy weight method for PDHFE.

Let ijℑ ( )1,2, , ; 1,2, ,i m j n= =   be PDHF assessment value of ith alternative under jth 
attribute, hj represents the entropy weight of jth attribute and wj represents the objective 
weight of jth attribute obtained by CRITIC method, C represents the set of all cost attributes 
and B represents the set of all benefit attributes. Next, the calculation process of PDHF objec-
tive weight wj and hj of each attribute.

3.1.1. Calculating steps of the CRITIC method

Step 1. Calculate ( )( )D ij m n
S s

a ×
= ℑ  of each PDHFE by Eq. (11):

 
( ) ( ) ( )1

2
ij ij

D ij

s s
s

a

+ ℑ − ℑ
ℑ =

h D

. (11)

Step 2. Convert the score function decision matrix S into the normalized score function 
decision matrix ( )ij m n

Q s
×

=  by Eq. (12):
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( ) ( )( )
( )( ) ( )( ) ( )

( )( ) ( )
( )( ) ( )( ) ( )

1

11

1

11

min

max min

max

max min

D ij D iji m
D ij

D ij D iji mi m
ij

D ij D iji m
D ij

D ij D iji mi m

s s
s B

s s
s

s s
s C

s s

a a

a

a a

a a

a

a a

≤ ≤

≤ ≤≤ ≤

≤ ≤

≤ ≤≤ ≤

 ℑ − ℑ ℑ ∈
ℑ − ℑ= 

ℑ − ℑ
 ℑ ∈
 ℑ − ℑ


, (12)

where B and C indicates the set of beneficial and cost attributes, respectively.

Step 3. Compute the standard deviation of jth attribute by Eq. (13):

 
( ) ( )

2

1
1 , 1,2, ,

m
j ij ji

s s j n
m =

σ = − =∑  , (13)

where ( )1
1 1,2, ,

m
j iji

s s j n
m =

= =∑  .

Step 4. Obtain the correlation coefficient between jth attribute and kth attribute by Eq. (14):

 

( )( )
( ) ( )

1
2 2

1 1

m
ij j ik ki

jk
m m

ij j ik ki i

s s s s

s s s s

=

= =

− −
ρ =

− −

∑
∑ ∑

. (14)

Step 5. Calculate the value of influence degree for each attribute as follows:

 
( )

1

1 , 1,2, ,
n

j j jk
k

c j n
=

= σ −ρ =∑  . (15)

Step 6. Determine wj by the following equation:

 1

j
j n

jj

c

c
=

w =
∑

. (16)

3.1.2. Calculating steps of the entropy weight method

Step 1. Compute the score function values ( )D ijs
a
ℑ  of every element ℑij by Eq. (11).

Step 2. Compute the total entropy for each attribute by Eq. (17):

 1
1 ln

ln
m

j ij iji
E s s

m =
= − ∑  (17)

and if sij = 0, then ln 0ij ijs s = .

Step 3. Compute hj by Eq. (18):

 
( )1

1
=

1

j
j n

jj

E

E
=

−
h

−∑
. (18)
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3.2. Determine combined weights

Assume ( )1 2, , , nw w w w=  , where 
1

1
n

jj
w

=
=∑ , 0 1jw≤ ≤ . The objective weights 

{ }1 2, , , nw= w w w  and { }1 2, , , nh = h h h  are calculated by Eqs (16)–(18), where 
1

1
n

jj=
w =∑

 
, 

0 1j≤ w ≤  and 
1

1
n

jj=
h =∑ , 0 1j≤ h ≤ . To let the combined weight reflects each weighting 

method, ( )1 2, , , nv = v v v , { }1 2, , , nw= w w w , { }1 2, , , nh = h h h  and ( )1 2, , , nw w w w=   
should be as close as possible, we can get:

 

1 1 1

1

min ln ln ln

. . 1, 0

n n n
j j j

j j j
j j jj j j

n

j j
j

F
w

s t

= = =

=

 v v v
 = v + v + v

w h

 v = v ≥


∑ ∑ ∑

∑
. (19)

According to the Lagrange multiplier method, vj is computed by Eq. (20):

 1

j j j
j n

j j jj

w

w
=

w h
v =

w h∑
, (20)

which can reflect both subjective and objective information.

4. EDAS technique for PDHF-MAGDM issues

The following is a basic description of a PDHF-MAGDM problem. Let { }1 2, , , mX X X X=   
be a group of alternatives, and { }1 2, , , nC C C C=   be decision attributes with the weight 

{ }1 2, , , nv = v v v , where 0,1 , 1,2, ,j j nv ∈ =    , 
1

1
n

jj=
v =∑ , and { }1 2, , , pe e e e=   

be a group of experts, whose weight is { }1 2, , , pθ = θ θ θ , where 0,1 , 1,2, ,k k pθ ∈ =    , 

1
1

p
kk=
θ =∑ . Suppose a MAGDM problem has n attributes { }1 2, , , nC C C C=  , furthermore, 

each expert gives the evaluation value as PDHFs k
ijℑ , and Figure 1 shows the flowchart of 

the proposed PDHF-MAGDM technique. Next, we will apply the built MAGDM technique 
named as PDHF-EDAS to MAGDM problem with PDHF information, the MAGDM tech-
nique includes the below steps:

Step 1. Obtain decision matrix ( ) ( )1,2, ,k
ij m n

k p
×

ℑ = ℑ =   depend on p experts.

Step 2. Obtain the final collective matrix ( )ij m n
D d

×
=  by the Eq. (21):

 
( ) ( )

1 1 1 11 ,
1 1 ,k k

k k
k k k k ij ij
ij ij ij ij

p p p p p
k k k

ij k ij ij ijk k k kk
d p q

θ θ

γ h= = = == γ ∈ h ∈

          = ⊕ θ ℑ = − Π − γ Π Π h Π                   h D

 . (21)

Step 3. Convert the PDHF matrix into the normalized PDHF decision-making matrix 
( ) ( )C

ij ijm n m n
N n d

× ×
= =  by the complement operation.

Step 4. Compute the score matrix ( )( )D ij m n
S s n

a ×
=  by Eq. (11).
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Step 5. Transform the matrix S into the normalized score matrix ( )ij m n
Q s

×
=  by Eq. (22): 

 

( ) ( )( )
( )( ) ( )( ) ( )

( )( ) ( )
( )( ) ( )( ) ( )

1

11

1

11

min

max min

max

max min

D ij D iji m
D ij

D ij D iji mi m
ij

D ij D iji m
D ij

D ij D iji mi m

s n s n
s n B

s n s n
s

s n s n
s n C

s n s n

a a

a

a a

a a

a

a a

≤ ≤

≤ ≤≤ ≤

≤ ≤

≤ ≤≤ ≤

 − ∈
−= 

−
 ∈
 −


. (22)

Step 6. Compute the combined weight v by Eq. (20).

Step 7. Determine the average solution PDHFAV in the light of all attributes by Eq. (23):

 1j n
PDHFAV PDHFAV

×
 =   , (23)

where 1=

m
iji

j

s
PDHFAV

m
=∑

.

Step 8. Obtain the positive and negative distances from average (PDHFPDA) and  
(PDHFNDA) matrixes in the light of the type of attribute and shown as:

 

ij m n

ij m n

PDHFPDA PDHFPDA

PDHFNDA PDHFNDA
×

×

  =  


 =  

 (24)

if jth attribute is benefit,

 

( )( )

( )( )

max 0,
=

max 0,
=

ij j
ij

j

j ij
ij

j

s PDHFAV
PDHFPDA

PDHFAV

PDHFAV s
PDHFNDA

PDHFAV

 −



−



 (25)

and if jth attribute is cost,

 

( )( )

( )( )

max 0,
=

max 0,
=

j ij
ij

j

ij j
ij

j

PDHFAV s
PDHFPDA

PDHFAV

s PDHFAV
PDHFNDA

PDHFAV

 −



−



. (26)

Step 9. Determine the weighted sum of PDHFSPi and PDHFSNi by Eq. (27):

 

1

1

=

=

n
i j ijj

n
i j ijj

PDHFSP PDHFPDA

PDHFSN PDHFNDA

=

=

 v

 v


∑
∑

, (27)

where jv  is jth attribute’ weight.
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Step 10. Compute the normalize values of PDHFNSPi and PDHFNSNi as follows:

 

( )

( )

=
max

=1
max

i
i

i

i
i

i

PDHFSP
PDHFNSP

PDHFSP
PDHFSN

PDHFNSN
PDHFSN





 −


. (28)

Step 11. Compute the score (PDHFASi) by the Eq. (29):

 
( )1=

2i i iPDHFAS PDHFNSP PDHFNSN+ , (29)

where 0,1iPDHFAS ∈  .

Step 12. Sort all alternatives, the alternative with biggest score value is optimal one.

Figure 1. Flowchart of the developed PDHF MAGDM approach
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5. A numerical instance and comparison analysis

5.1. A numerical instance

With the deepening of economic globalization, supply chain management (SCM) has become 
an important factor to improve the international competitiveness of enterprises in the highly 
competitive global economy. One of the crucial problems in SCM information system is SS. 
Finding the optimal supplier from alternatives depend on the criteria of cost, service and risk 
is a complex MADM problem. In the illustrative example (adapted from Hao et al., 2017), 
assume that the core enterprise company of a supply chain intends to select the best supplier 
from six alternative suppliers { }1 2 3 4 5 6, , , , ,X X X X X X X= , and according to the following 
four attributes { }1 2 3 4, , ,C C C C C= . The four attributes are C1: supplier basic information, 
which refers to the minimum index requirements set to meet the products and services 
required by the enterprise’s production, including quality, order fulfillment rate, on-time 
delivery rate, flexibility and cost; C2: supplier’s knowledge and technology capability, mainly 
including supplier’s technical level and supplier’s innovation capability; C3: the integration 
of the supplier’s corporate culture and strategy, and the compatibility in corporate culture 
and strategy can promote both parties to establish a stronger strategic alliance and reduce 
risks; C4: the ability of information communication can be measured by the information 
technology level of both parties, the time for suppliers to respond effectively to the require-
ments of the SC and the information transparency of suppliers. In the evaluation process, 
there three experts ( )1,2,3ie i =  to choose the most excellent supplier, whose weight vector 
is { }0.2,0.3,0.5θ = , the three experts give the original preference values of X1, X2, X3, X4, X5 
and X6 under C1, C2, C3 and C4. All assessments values are given in Tables 1, 2 and 3.

Table 1. The PDHF decision information matrix obtained by e1

A
lte

rn
at

iv
es

C1 C2 C3 C4

X1
{ }
{ }
0.7 0.2,0.6 0.2,0.5 0.6 ,

0.2 1
{ } { }0.7 1 , 0.25 1 { } { }0.2 1 , 0.2 1 { } { }0.7 0.5,0.6 0.5 , 0.3 1

X2 { } { }0.11 , 0.4 1 { } { }0.3 1 , 0.7 1 { } { }0.7 1 , 0.3 0.5,0.2 0.5 { } { }0.3 1 , 0.3 1

X3 { } { }0.6 1 , 0.35 1 { } { }0.56 1 , 0.2 1 { } { }0.11 , 0.7 1 { } { }0.2 0.6,0.4 0.4 , 0.4 1

X4
{ } { }0.05 0.7,0.2 0.3 , 0.5 1 { }

{ }
0.3 0.5,0.2 0.5 ,

0.6 0.5,0.5 0.5
{ } { }0.8 1 , 0.15 1 { } { }0.2 1 , 0.6 1

X5 { } { }0.15 1 , 0.8 1 { } { }0.5 1 , 0.5 1 { } { }0.8 0.6,0.6 0.4 , 0.15 1 { } { }0.12 1 , 0.7 0.9,0.6 0.1

X6 { } { }0.08 1 , 0.6 1 { } { }0.1 0.6,0.3 0.4 , 0.7 1 { } { }0.3 1 , 0.65 1 { } { }0.5 1 , 0.2 0.3,0.4 0.7
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In the below sections, the calculation process of PDHF-EDAS for SS is shown as follows.

Step 1. Since all attributes belong to B, hence, normalized process is omitted.

Step 2. The collective decision matrix for six alternative suppliers under four attributes is 
obtained by polymerizing the three experts’ opinion by Eq. (21) and recorded in Table 4.

Table 2. The PDHF decision information matrix obtained by e2
A

lte
rn

at
iv

es

C1 C2 C3 C4

X1 { } { }0.5 1 , 0.5 1 { } { }0.2 1 , 0.4 0.8,0.6 0.2
{ }
{ }
0.7 0.4,0.4 0.6 ,

0.3 0.7,0.2 0.3
{ } { }0.6 0.7,0.7 0.3 , 0.25 1

X2 { } { }0.3 0.5,0.5 0.5 , 0.4 1 { } { }0.11 , 0.6 0.6,0.8 0.4
{ }
{ }
0.4 0.8,0.3 0.2 ,

0.5 0.3,0.4 0.7
{ } { }0.2 0.3,0.3 0.7 , 0.6 1

X3 { } { }0.1 0.1,0.2 0.9 , 0.5 1
{ }
{ }
0.2 0.5,0.3 0.5 ,

0.3 0.5,0.2 0.5
{ } { }0.2 1 , 0.7 0.6,0.5 0.4 { } { }0.5 1 , 0.4 1

X4 { } { }0.2 1 , 0.6 0.9,0.7 0.1 { } { }0.11 , 0.7 1 { } { }0.2 1 , 0.6 1
{ }
{ }
0.1 0.2,0.2 0.8 ,

0.2 0.6,0.3 0.4

X5 { } { }0.2 1 , 0.7 1 { } { }0.45 1 , 0.5 1 { } { }0.8 0.9,0.6 0.1 , 0.111 { } { }0.3 1 , 0.2 1

X6 { } { }0.4 0.4,0.5 0.6 , 0.5 1 { } { }0.3 0.4,0.4 0.6 , 0.5 1 { } { }0.3 1 , 0.6 1 { } { }0.2 1 , 0.6 1

Table 3. The PDHF decision information matrix obtained by e3

A
lte

rn
at

iv
es

C1 C2 C3 C4

X1 { } { }0.4 1 , 0.5 1 { } { }0.9 1 , 0.1 1 { } { }0.3 1 , 0.5 0.4,0.6 0.6 { } { }0.6 1 , 0.3 1

X2 { } { }0.75 1 , 0.2 1 { } { }0.4 1 , 0.6 1 { } { }0.2 0.7,0.4 0.3 , 0.2 1 { } { }0.3 1 , 0.6 1

X3 { } { }0.6 0.6,0.8 0.4 , 0.1 1 { } { }0.5 1 , 0.2 1 { } { }0.11 , 0.8 1 { } { }0.2 0.7,0.4 0.3 , 0.6 1

X4 { } { }0.2 1 , 0.7 1 { } { }0.5 0.6,0.7 0.4 , 0.1 1
{ }
{ }
0.3 0.3,0.5 0.7 ,

0.2 0.5,0.5 0.5
{ } { }0.1 0.6,0.3 0.4 , 0.6 1

X5
{ }
{ }
0.3 0.7,0.4 0.3 ,

0.4 0.6,0.5 0.4
{ } { }0.6 1 , 0.1 0.5,0.2 0.5 { } { }0.7 1 , 0.2 1

{ }
{ }
0.1 0.45,0.3 0.55 ,

0.5 0.5,0.65 0.5

X6 { } { }0.2 0.2,0.1 0.8 , 0.7 1 { } { }0.2 1 , 0.8 1 { } { }0.2 0.8,0.3 0.2 , 0.6 1 { } { }0.35 1 , 0.5 0.5,0.6 0.5
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Table 4. The final collective decision-making information matrix
A

lte
rn

at
iv

es

C1 C2

X1
{ }
{ }
0.45 0.6,0.48 0.2,0.51 0.2 ,

0.42 1
{ } { }0.77 1 , 0.18 0.8,0.21 0.2

X2 { } { }0.56 0.5,0.6 0.5 , 0.28 1 { } { }0.3 1 , 0.62 0.6,0.67 0.4

X3
{ }
{ }
0.49 0.06,0.64 0.04,0.51 0.54,0.65 0.36 ,

0.211
{ } { }0.44 0.5,0.46 0.5 , 0.2 0.5,0.23 0.5

X4 { } { }0.17 0.7,0.2 0.3 , 0.62 0.9,0.65 0.1
{ }
{ }
0.34 0.3,0.49 0.2,0.36 0.3,0.51 0.2 ,

0.25 0.5,0.26 0.5

X5 { } { }0.24 0.7,0.3 0.3 , 0.54 0.6,0.61 0.4 { } { }0.54 1 , 0.22 0.5,0.32 0.5

X6
{ }
{ }
0.2 0.32,0.25 0.08,0.24 0.48,0.29 0.12 ,

0.611

{ }
{ }
0.21 0.24,0.25 0.36,0.25 0.16,0.29 0.24 ,

0.68 1

A
lte

rn
at

iv
es

C3 C4

X1
{ }
{ }
0.31 0.6,0.44 0.4 ,

0.32 0.12,0.35 0.18,0.36 0.28,0.39 0.42

{ }
{ }
0.6 0.35,0.63 0.15,0.62 0.35,0.65 0.15 ,

0.28 1

X2
{ }
{ }
0.37 0.14,0.45 0.06,0.4 0.56,0.48 0.24 ,

0.25 0.35,0.25 0.15,0.27 0.35,0.29 0.15
{ } { }0.27 0.3,0.3 0.7 , 0.52 1

X3 { } { }0.13 1 , 0.68 0.4,0.75 0.6
{ }
{ }
0.31 0.42,0.4 0.18,0.34 0.28,0.43 0.12 ,

0.49 1

X4 { } { }0.43 0.3,0.52 0.7 , 0.26 0.5,0.42 0.5
{ }
{ }
0.12 0.12,0.22 0.08,0.15 0.48,0.25 0.32 ,

0.43 0.6,0.49 0.4

X5
{ }
{ }
0.65 0.04,0.72 0.36,0.7 0.06,0.76 0.54 ,

0.16 1

{ }
{ }
0.17 0.45,0.27 0.55 ,

0.39 0.05,0.45 0.05,0.41 0.45,0.46 0.45

X6 { } { }0.25 0.8,0.3 0.2 , 0.611
{ }
{ }
0.34 1 ,

0.44 0.15,0.48 0.15,0.51 0.35,0.55 0.35
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Step 3. Compute the score function decision information matrix ( )( )D ij m n
S s n

a ×
=  though 

using Eq. (11), all computing results are recorded in Table 5.

Table 5. The score function decision-making matrix S

Alternatives C1 C2 C3 C4

X1 0.529 0.8043 0.5003 0.6859
X2 0.6722 0.3197 0.6117 0.359
X3 0.7275 0.6719 0.1554 0.4157
X4 0.2252 0.6158 0.5929 0.3002
X5 0.314 0.6655 0.8227 0.3463
X6 0.2769 0.2695 0.3005 0.4035

Step 4. Convert the score function decision matrix S into the normalized score function 
decision-making matrix ( )ij m n

Q s
×

=  by Eq.  (22), all computing results are recorded in 
Table 6.

Table 6. The normalized score function decision-making matrix Q

Alternatives C1 C2 C3 C4

X1 0.6049 1 0.5169 1
X2 0.8899 0.0938 0.6838 0.1525
X3 1 0.7524 0 0.2995
X4 0 0.6476 0.6556 0
X5 0.1769 0.7405 1 0.1194
X6 0.1029 0 0.2174 0.2678

Step 5. Obtain the attribute weight by Eq. (20) which are recorded in Table 7.

Table 7. The combined weight

Attributes C1 C2 C3 C4

wj 0.23 0.2149 0.347 0.208
hj 0.2843 0.2871 0.1962 0.1811
wj 0.1 0.3 0.5 0.1
vj 0.1747 0.294 0.3987 0.1326

Step 6. Calculate the average solution by Eq. (23), the computing results are given in Table 8.

Table 8. The PDHFAV

Attributes C1 C2 C3 C4

PDHFAV 0.4624 0.5391 0.5123 0.3065

Step 7. Because the all attributes in the study are benefit, we calculate the PDHFPDA and 
PDHFNDA matrixes by Eq. (25), PDHFPDA and PDHFNDA in Tables 9–10.
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Table 9. The PDHFPDA matrix

Alternatives C1 C2 C3 C4

X1 0.0869 0.7087 0 1.5556 
X2 0.5991 0 0.0521 0
X3 0.7969 0.2857 0 0
X4 0 0.1065 0.0086 0
X5 0 0.2654 0.5385 0
X6 0 0 0 0

Table 10. The PDHFNDA matrix

Alternatives C1 C2 C3 C4

X1 0 0 0.2048 0
X2 0 0.8397 0 0.6103
X3 0 0 1 0.2347
X4 1 0 0 1
X5 0.6822 0 0 0.6948
X6 0.8151 1.0000 0.6656 0.3157 

Step 8. Calculate the weighted sum PDHFSPi and PDHFSNi by using Eq. (27), all comput-
ing results are recorded in Table 11.

Table 11. The weighted sum PDHFSPi and PDHFSNi

Alternatives X1 X2 X3 X4 X5 X6

PDHFSPi 0.4298 0.1254 0.2232 0.0348 0.2927 0.0000

PDHFSNi 0.0816 0.3278 0.4298 0.3073 0.2113 0.7436

Step 9. Calculate the PDHFNSPi and PDHFNSNi by Eq. (28) (See Table 12).

Table 12. The PDHFNSPi and PDHFNSNi

Alternatives X1 X2 X3 X4 X5 X6

PDHFNSPi 0.8902 0.5592 0.4220 0.5867 0.7158 0
PDHFNSNi 0.8902 0.5592 0.4220 0.5867 0.7158 0

Step 10. Calculate the ( )1,2, ,6iPDHFAS i =   by Eq. (29) (See Table 13).

Table 13. The PDHFASi value

Alternatives X1 X2 X3 X4 X5 X6

PDHFASi 0.9451 0.4255 0.4706 0.3338 0.6984 0

From the values of ( )1,2, ,6iPDHFAS i =   in Table 13, the sequencing for six alternatives 
is 1 5 2 4 3 6X X X X X X     , the optimal alternative is X1.
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5.2. Compare analysis

5.2.1. Compare with BASD based PROMETHEE-II method in Q. Zhao et al. (2020)

Here, we compare the method proposed with BASD based PROMETHEE-II method pro-
posed by Q. Zhao et al. (2020), let’s bring the data into the BASD based PROMETHEE-II 
model. Calculate the overall BASD degrees ( )( )1,2, ,6iX i+Λ =  , ( )( )1,2, ,6X i−Λ =   and 
( )( )1,2, ,6iX iΛ =   for ( )1,2, ,6iX i =  , the overall BASD degrees are given in Table 14.

Table 14. The overall BASD degrees ( )iH X+  and ( )iH X−

( )1X+Λ ( )2X+Λ ( )3X+Λ ( )4X+Λ ( )5X+Λ ( )6X+Λ

2.0368 0.9834 1.1349 0.3328 1.4581 0.0748

( )1X−Λ ( )2X−Λ ( )3X−Λ ( )4X−Λ ( )5X−Λ ( )6X−Λ

0.2984 0.7957 1.1184 1.2642 0.8262 1.7179

( )1XΛ ( )2XΛ ( )3XΛ ( )4XΛ ( )5XΛ ( )6XΛ

1.7384 0.1877 0.0165 –0.9314 0.6319 –1.6432

Thus, the order is 1 5 2 3 4 6X X X X X X      and the best supplier is X1.

5.2.2. Comparison with decision-making model in Hao et al. (2017)

Here, we compare the method proposed in this study with the visualization model depend 
on the PDHF entropy proposed by Hao et al. (2017), let’s bring the data into the model. The 
sequencing is 1 4 5 2 3 6X X X X X X      for all suppliers and the best supplier is X1.

From the comparison with the two methods, although the sequencing has a little differ-
ent, the best supplier is X1, which testifies that the MAGDM technique is effective, but the 
following analysis can also see the advantages of our proposed method.

5.2.3. Compare with the two operators in Garg and Kaur (2018)

The data in Table 2 and ( )0.1747,0.294,0.3987,0.1326 Tw=  are substituted into Eqs (30) and 
(31) and all calculation results are shown in Tables 15 and 16, the order is 1 5 2 4 6 3X X X X X X     

1 5 2 4 6 3X X X X X X     , and the best supplier is X1.
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Table 15. The outcome with the PDHFWEA operator

Alternatives Aggregation results Scores

X1
0.5401 0.126, 0.2804 0.096,

,
,0.5976 0.012 ,3592 0.084

      
   
      

 

 

0.2268

X2
0.3741 0.021, 0.3748 0.21,

,
,0.4314 0.084 ,0.4704 0.06

      
   
      

 

 

–0.0175

X3
0.3159 0.0126, 0.3849 0.2,

,
,0.3755 0.0216 ,0.4192 0.3

      
   
      

 

 

–0.0625

X4
0.2832 0.0076, 0.3245 0.135,

,
,0.3777 0.0134 ,0.4008 0.01

      
   
      

 

 

–0.026

X5
0.2973 0.0126, 0.2805 0.015,

,
,0.3543 0.0891 ,0.3338 0.09

      
   
      

 

 

0.0281

X6
0.1628 0.0614, 0.6001 0.15,

,
,0.2025 0.0058 ,0.6167 0.35

      
   
      

 

 

–0.4328

Table 16. The outcome with the PDHFWEG operator

Alternatives Aggregation results Scores

X1
0.5519 0.126, 0.2932 0.096,

,
,06226 0.012 ,0.3303 0.084

      
   
      

 

 

0.2648

X2
0.4094 0.021, 0.415 0.21,

,
,0.4535 0.084 ,0.4495 0.06

      
   
      

 

 

0.0027

X3
0.3423 0.0126, 0.4609 0.2,

,
,0.3836 0.0216 ,0.5117 0.3

      
   
      

 

 

–0.1314

X4
0.3285 0.0076, 0.353 0.135,

,
,0.4404 0.0134 ,0.4305 0.01

      
   
      

 

 

–0.0069

X5
0.4735 0.0126, 0.2824 0.015,

,
,0.5435 0.0891 ,0.3378 0.09

      
   
      

 

 

0.2041

X6
0.2846 0.0614, 0.6125 0.15,

,
,0.3496 0.0058 ,0.6244 0.35

      
   
      

 

 

–0.3102
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5.3. Sensitivity analysis of parameters

(1) From the comparison and analysis of the two methods, the research result given 
by the MAGDM technique built in the study is basically consistent with the that 
obtained by Q. Zhao et al. (2020) and Hao et al. (2017). However, this study consid-
ers the advantages of subjective weighting and objective weighting, which not only 
overcomes the disadvantages of giving decision attribute weight artificially and ignor-
ing the importance of objective data, but also overcomes the disadvantages of paying 
attention to objective data and ignoring people’s subjective initiative, which is more 
in line with the reality and gives DMs more choices;

(2) Based on the detailed analysis of the disadvantages of the existing score function, 
combined with the research contents of literatures (Atanassov, 1989; M. J. Huang & 
Li, 2013), a novel score function for PDHFE is built, the novel score function of PD-
HFE is more tally with people’s cognition, and a comparison method of two PDHFEs 
is given. This method can better and more directly compare with two PDHFEs.

(3) The concept of PDHF entropy is proposed. It does not need to use other auxiliary 
functions, retains its most original information, and enriches the concept of PDHF 
entropy;

(4) We can observe the change of the order of the evaluated alternatives with the change 
of subjective weight w. It can give DMs more choices, which shows the superiority 
and effectiveness.

Next, we analyze the change of the sequencing of the evaluated alternatives with the 
change of subjective weight w, all computing results are recorded in Table 17.

Table 17. The sequencing for different values of subjective weight w

w1 w2 w3 w4 Sequencing

0.1 0.3 0.5 0.1 1 5 2 4 3 6X X X X X X    

0.2 0.1 0.6 0.1 1 5 2 3 4 6X X X X X X    

0.15 0.1 0.7 0.05 1 5 2 3 4 6X X X X X X    

0.3 0.2 0.4 0.1 1 5 3 2 4 6X X X X X X    

0.25 0.25 0.25 0.25 1 5 3 2 4 6X X X X X X    

0.05 0.35 0.5 0.1 1 5 3 2 4 6X X X X X X    

Conclusions

In the study, by combing and studying the relevant decision-making methods of PDHFS in 
the early stage, we found that there is no research on the use of EDAS in PDHF environment. 
At the same time, through systematic analysis, we found that the existing score function of 
PDHFE is not very reasonable, there is also a lack of research on PDHF entropy. In view 
of the above problems, the following are the main superiorities of PDHF-EDAS approach.  
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(1) Aiming at the disadvantage that the existing score function of PDHFE does not consider 
the hesitant degree, we define a new score function. Through case analysis, it is more con-
sistent with the actual situation and enriches the relevant research of PDHFS. (2) With the 
help of the new score function, we define the PDHF entropy and CRITIC weighting method 
for decision attribute weighting. At the same time, combined with the subjective weighting 
method, we use the minimum identification information principle to weight the decision 
attribute, such a weighting method not only overcomes the disadvantages of artificially de-
termining the weight, but also overcomes the disadvantages of only relying on objective 
data to obtain the weight of decision attributes and ignoring people’s subjective initiative. 
This research enriches the weighting method of decision attributes whose decision attribute 
information is probability dual hesitation fuzzy element. (3) We integrate the widely used 
EDAS method with PDHF environment, and propose a new MAGDM method in PDHF 
environment, which enriches the MAGDM method in PDHF environment. (4) We apply 
the new MAGDM technique to supplier optimization. From the comparative analysis with 
other methods, the new method is effective, which also enriches the supplier optimization 
method in the supply chain. 

In the next research, we will pay more attention to the fusion of other decision-making 
approaches and PDHFS, as well as the development of some new aggregation operators. For 
example, we will study the fusion of BWM method, ARAS method, WASPAS method and 
PDHFS, so as to propose some new decision-making approaches in PDHF environment, as 
well as development and research of Bonferroni mean (BM) operator, Hamy mean (HM) 
and power average (PA) operators in PDHF environment. Finally, we will apply the built 
new decision-making methods to supplier selection, locations selection and other decision-
making issues.
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