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Abstract. Conventional credit scoring models evaluated by predictive accuracy or profitability 
typically serve the financial institutions and can hardly reflect their contribution on financial sta-
bility. To remedy this, we develop a novel regulatory scoring framework to quantify and compare 
the corresponding regulatory capital charge errors of credit scoring models. As an application of 
RegTech, the proposed framework considers the characteristic of example-dependence and cost-
sensitivity in credit scoring, which is expected to enhance the ability of risk absorption of financial 
institutions and thus benefit the regulators. Validated on two real-world credit datasets, empirical 
results reveal that credit scoring models with good predictive accuracy or profitability do not 
necessarily provide low capital charge requirement error, which further highlights the importance 
of regulatory scoring framework. The family of gradient boosting decision tree (GBDT) provides 
significantly better average performance than industry benchmarks and deep multilayer percep-
tron network, especially when financial stability is the primary focus. To further examine the 
robustness of the proposed regulatory scoring, sampling techniques, cut-off value modification, 
and probability calibration are employed within the framework and the main conclusions hold in 
most cases. Furthermore, the analysis on the interpretability via TreeSHAP algorithm alleviates 
the concerns on transparency of GBDT-based models, and confirms the important roles of loan 
characteristics, borrowers’ solvency and creditworthiness as powerful predictors in credit scoring. 
Finally, the managerial implications for both financial institutions and regulators are discussed.

Keywords: credit scoring, RegTech, regulatory scoring, probability of default, financial regulation, 
gradient boosting decision tree.

JEL Classification: G32, C53, C61.

Introduction

Credit scoring, defined as utilizing quantitative models to guide decision-making in retail 
credit products, is one of the most successful applications of operational research (Crook 
et al., 2007). Recent decades witness a rapid development of retail credit business: the con-
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sumer credit outstanding in U.S. reached 4,009.7 billion dollars in Q4 20181. In China, con-
sumer credit outstanding exceeded 37.8 billion RMB by the end of 2018 (People’s Bank of 
China [PBC], 2019). These figures imply that effective tools are urgently required to make 
proper loan decision-makings. To discriminate between risky and non-risky applications, 
financial institutions have built a variety of internal credit scoring models that transform the 
problem into a binary classification task and predict the probability of default (PD) of every 
loan application. The regulation authority in each country also instructs financial institu-
tions to develop credit risk models for measuring risk of their loan portfolio (Florez-Lopez 
& Ramon-Jeronimo, 2015). 

In a thorough review of Lessmann et al. (2015), recent developments in credit scoring 
comprise three dimensions, namely (1) novel classification algorithms, (2) novel performance 
measures, and (3) statistical tests to compare performance on different algorithms. Among 
these research directions, designing novel classification algorithms becomes a dominating 
one partially due to the boom of computational power and emerging machine learning algo-
rithms. On the one hand, data source of credit scoring has also been enlarged. Mobile phone 
data (L. Ma et al., 2018), social network (Óskarsdóttir et al., 2019), macroeconomic variables 
(Xia et al., 2021b), and narrative data (Xia et al., 2020a) provide supplementary source for 
modelling. On the other hand, advanced machine learning algorithm has been employed to 
develop scorecards (e.g., deep neural network and gradient boosting decision tree (GBDT) 
approaches). Furthermore, hybrid model which integrates different types of algorithms is 
found to provide promising results in several academic papers (Ala’raj & Abbod, 2016b; 
Pławiak et al., 2019; Xia et al., 2018a, 2020b). 

Despite the important role of performance measure, it receives comparatively limited 
attention in existing literature. Performance measure evaluates the effectiveness of credit 
scoring models and supports the adoption of new models. Conventional performance mea-
sures (e.g., accuracy, type I and II error rates, area under the receiver operating characteristic 
curve (AUC), H measure, brier score) are, however, originated from statistics and are possibly 
inadequate to make proper evaluations. The potential reasons are as follows:

(1) Credit scoring is cost-sensitive (Bahnsen et al., 2014). Cost-sensitivity herein implies 
that the different costs of misclassifying risky and non-risky applications. Specifically, 
if credit scoring models make mistakes on non-risky borrowers and therefore reject 
their loan applications, financial institutions only bear minor opportunity costs. On 
the opposite, financial institutions are likely to suffer from considerable loss if lending 
to risky borrowers. Consequently, credit scoring models with similar accuracy may 
incur different performance in real-world application. To remedy this, cost-sensitive 
learning (CSL) has been recently employed in credit scoring domain (Shen et  al., 
2019; Xia et al., 2017a; Xiao et al., 2020); 

(2) Credit scoring is example-dependent. Example-dependence means that the loss of 
extended credit, which affected by funded amount and interest rate, may vary among 
different applications. For example, ceteris paribus, for a loan application with specific 
PD, the higher exposure at default (EAD) is, the larger expected loss incurs. However, 
the conventional performance measures seldom consider example-dependence.

1 https://www.federalreserve.gov/releases/g19/current/

https://www.federalreserve.gov/releases/g19/current/
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(3) Conflicts of interest between financial institutions and regulatory authorities. Credit 
scoring are inherently designed for financial institutions, which mainly aims to en-
hance the profitability of loan portfolio (Finlay, 2010). As a result, profit scoring that 
evaluates credit scoring model from a profitable perspective is proposed (Crook et al., 
2007). One major difference between profit scoring and conventional credit scoring 
lies on that profitability-related measures such as misclassification cost and expected 
return are employed, whereas these profitable measures can hardly meet the require-
ments of regulatory authorities since the regulators target at maintaining financial 
stability by implementing microprudential and macroprudential policies (Hanson 
et al., 2011). Moreover, strong evidences have shown that information asymmetry 
and conflicts exist between financial institutions and regulatory authorities (Duarte 
et al., 2008; Kadan et al., 2009). Thus, a considerable credit scoring model for financial 
institutions may be unsuitable for regulatory usage. 

Since the 2008 Global Financial Crisis, the regulators have been long criticized as being 
over-optimistic on internal credit risk management tools and outsourcing most parts of fi-
nancial regulation on the largest market participators (Moosa, 2010). The recent development 
of RegTech, a contraction of terms “regulatory” and “technology”, spurs the trends of “know 
your data” by which more effective risk assessment tools are available for market participators 
(Baxter, 2016). RegTech, initially proposed by Financial Conduct Authority in 2016, refers to 
the use of information technology in the context of regulatory process such as compliance, 
reporting and monitoring (Arner et al., 2016). In RegTech era, regulators have the oppor-
tunity to build and evaluate credit scoring models from a regulatory perspective: automatic 
reporting systems decrease the cost of data collection. Furthermore, the applications of big 
data, cloud computing and distributed learning lower the computational cost. 

This paper extends research filed of RegTech by developing a novel regulatory scoring 
framework. Concretely, the proposed framework is designed for financial institutions and 
regulators by quantifying and evaluating model performance by capital charge error, rath-
er than the simple predictive accuracy nor profitability of portfolio. To calculate the error 
on capital requirement, asymptotic single risk factor (ASRF) model is employed. Industry 
benchmarks and advanced models are compared over a variety of performance measures 
using two real-world credit datasets. The comparison results demonstrate that model per-
formance may vary over different performance measures. In other words, best credit scoring 
model in terms of predictive accuracy or profitability may lead to poor estimation on capital 
charge error. This conclusion remains robust under a variety of sensitivity analysis. The issue 
of interpretability is also analyzed via an explainable AI algorithm. 

The main contribution of this paper is summarized as follows: first, a novel regulatory 
scoring framework is proposed. In this framework, the mean absolute error (MAE) and 
mean squared error (MSE) of capital requirement are calculated and compared. Moreover, 
asymmetric cost of regulatory charge error is further considered. By these means, the cor-
responding performance on financial stability of each credit scoring model can be evaluated 
from a regulatory perspective. To the best of our knowledge, no prior studies have built a 
nexus between credit scoring models and regulatory capital requirement. Second, a variety of 
performance measures is considered in comparison phase. Popular predictive accuracy mea-
sures, profitability-related measures, as well as the proposed capital requirement measures 
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are employed to evaluate classifiers. Few studies have made a comprehensive comparison on 
all the aforementioned measures. Finally, the proposed regulatory scoring is inherently an 
empirical model for RegTech. Although RegTech has attracted researchers’ attention, current 
studies are mostly carried out from theoretical perspective, including discussing the concer-
tation, potential applications, and effects on regulators and financial institutions (Anagnos-
topoulos, 2018; Baxter, 2016; Kavassalis et al., 2018). As far as we are concerned, no prior 
studies have built empirical RegTech models regarding credit risk assessment. 

The remaining of this paper is organized as follows: in Section 1, we provide a literature 
review on modelling approaches and performance measures in credit scoring. Section 2 ex-
plains the conventional comparison methods and regulatory scoring framework. In Section 3,  
we introduce the setup of comparison and the results are analyzed in Section 4. Section 5 
discusses managerial implications and finally we conclude the main results and summarize 
potential future research in the last section.

1. Literature review

1.1. Modelling approaches of credit scoring 

Exploring new modelling approaches of credit scoring has recently become a research 
hotspot. The aim of this research stream is to apply various empirical models to predict PD 
as accurately as possible. The empirical models can be roughly divided into two subsets, 
namely statistical and machine learning methods. The former mainly consists of linear dis-
criminant analysis (Altman, 1968), logistic regression (LR) (Wiginton, 1980), and survival 
analysis (Bellotti & Crook, 2009). Although statistical models usually have a strong assump-
tion on data distribution, which may hinder their application in practice, they still become 
the mainstream of modelling approaches. Machine learning approaches of credit scoring 
mainly include decision tree (DT) (Bensic et al., 2005), support vector machine (SVM) (Yu 
et al., 2010), artificial neural network (ANN) (Yu et al., 2008), fuzzy set (Maldonado et al., 
2020). Partially due to the ability to recognize non-linear dependence, machine learning 
methods typically provide more accurate predictions than statistical ones as suggested by 
comprehensive compressions in Lessmann et al. (2015) and Chen et al. (2016). 

To further enhance model performances, hybrid approaches have recently received much 
attention (Yu et al., 2015). Common hybrid approaches integrate feature selection and clas-
sification (Ala’raj & Abbod, 2016b; Chi & Hsu, 2012), or combine multiple classifiers together 
(i.e., ensemble models). The famous no free lunch theorem (Wolpert & Macready, 1997) 
spurs the development of ensemble learning. Ensemble credit scoring models are mainly 
established by bagging, boosting or stacking algorithms (He et al., 2018; Xia et al., 2018a). 
Bagging artificial neural network (Tsai & Wu, 2008), random forests (RF) (Tang et al., 2019), 
GBDT (Xia et al., 2021a; Xia et al., 2017b), and heterogeneous ensemble models (Schotten 
& Morais, 2019) are typical applications of ensemble credit scoring models. The empirical 
results also demonstrate the advantages of ensemble models (Lessmann et al., 2015). The 
goal of profit-seeking motivates the research on profit scoring (Thomas, 2000), which aims 
to maximize the profit of financial institutions using scorecards. Since conventional credit 
scoring is puzzled by cost-sensitivity, data imbalance and example-dependence when reach-
ing profit-seeking goal, profit scoring attempts to handle part of all these issues. 
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To deal with cost-sensitivity, CSL is mainly used in existing studies. CSL assigns different 
costs to different types of error and aims to train a classifier that minimizes total misclas-
sification cost. Specifically, the misclassification cost of a default application is much larger 
than that of non-risky application for credit scoring. Ling and Sheng (2011) categorized CSL 
as direct and indirect ones. Regarding direct CSL, the loss function of classifier is modified to 
make cost-sensitive predictions. Prior studies have modified LR (Shen et al., 2019) and GBDT 
(Xia et al., 2017a) as solutions to direct CSL. In terms of indirect CSL, cut-off strategy is one 
of the most popular techniques applied in credit scoring. Researchers believe that selecting an 
optimal cut-off point (or acceptance threshold) can lead to minimization of misclassification 
costs or maximization of expected profit (Herasymovych et al., 2019; Papouskova & Hajek, 
2019; Verbraken et al., 2014).

Data imbalance is quite severe in real-world credit datasets: it is common to find that 
default applications account for lower than 10% of samples in datasets (Marqués et al., 2013). 
As a result, conventional credit scoring models, which aim to minimize misclassification 
rate, tend to predict most applications as non-risky ones and thus, hinders the discrimina-
tive ability of models (Brown & Mues, 2012). To handle data imbalance, sampling techniques 
and reject inference methods have been commonly adopted. The rationale behind sampling 
techniques is to adjust the ratio of risky and non-risky applications to a balanced level. Con-
cretely, over-sampling, under-sampling and Synthetic Minority Oversampling Technique 
(SMOTE) algorithms are commonly-used sampling methods (Marqués et al., 2013; Sun et al., 
2018). When further exploring the reasons that data imbalance occur, one will find that some 
high-risky applications have been rejected before extending credit. The rejected loans have no 
outcomes (i.e., no labels) and therefore been discarded in most credit scoring studies. How-
ever, these unlabeled samples may contain valuable information for classification. Crook et al. 
(2007) even pointed out that the missing of rejected samples resulted in biased parameter 
estimation and ambiguous distribution of credit datasets. As a remedy, the potential status 
of rejected loans (i.e., reject inference) must be inferred and considered in modelling. Con-
sequently, semi-supervised learning, an emerging machine learning field, provides insight 
to solve these problems. semi-supervised learning can enhance model performance using 
both labeled and unlabeled samples. In credit scoring domain, scholars have applied semi-
supervised SVM (Li et al., 2017), semi-supervised GBDT (Xia, 2019) and semi-supervised 
heterogeneous ensemble model (Xiao et al., 2020).

Since loan applications usually vary in amount and interest rate, example-dependence 
is also an important property of credit scoring. Bahnsen and his colleagues are pioneers of 
building example-dependent credit scoring models (Bahnsen et al., 2014, 2015). The modi-
fied example-dependent LR and decision tree models assume a varying misclassification cost 
and achieve the best performances over benchmarks for all datasets. 

1.2. Performance measures of credit scoring

Once credit scoring models are developed, the sequential issue lies on the evaluation on the 
models. Conventional credit scoring models are usually evaluated by their predictive accu-
racy. In general, predictive accuracy measures are split into three subtypes: discriminative 
ability measures (e.g., AUC and GINI coefficient), probability measures (brier score) and 
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label prediction measures (misclassification rate and accuracy). H measure (Hand, 2009), an 
advanced measure that fixes the inherent misclassification costs in AUC, is adopted by sev-
eral recent research (Feng et al., 2019; Xia et al., 2018b; Xu et al., 2019). The aforementioned 
measures evaluate credit scoring models from a statistical perspective and focus primarily on 
the minimization of default rates, which only accomplish one of the goals of credit scoring 
(Eisenbeis, 1977). 

The cost-sensitive and example-dependent characteristics of credit scoring trigger novel 
performance measures from profitability perspective. Misclassification cost (Lohmann & 
Ohliger, 2019) and expected return (Serrano-Cinca & Gutiérrez-Nieto, 2016) are two rep-
resentative profitability measures. Relative to statistical performance measures, these profit-
based measures enhance economic interpretability and cater to profit-seeking goal. Misclas-
sification cost assigns varying costs for different types of error. Specifically, misclassifying 
risky borrowers is assigned to higher weights than non-risky borrowers. The expected mis-
classification cost of each borrower is therefore summed to acquire the total misclassification 
costs. The critical drawback of misclassification cost, however, lies on the fact that it is highly 
dependent on number of samples. Consequently, the misclassification costs of different da-
tasets are incomparable. On the contrary, expected return is usually evaluated by a certain 
return rate, such as internal rate of return (IRR) (Serrano-Cinca & Gutiérrez-Nieto, 2016) 
or annualized rate of return (ARR) (Xia et al., 2017a). These return rates make comparison 
feasible among different datasets, but still reflect only the interest of financial institutions and 
consider little on the regulatory requirement. 

2. Regulatory scoring: comparing credit scoring  
models from a regulatory perspective 

In this section, we briefly introduce the conventional comparison methods of credit scoring 
models applied in academic research and financial institutions. Subsequently, we present the 
regulatory scoring comparison framework.

2.1. Conventional comparison methods of credit scoring 

Given a credit dataset, credit scoring aims to train empirical models using the training set, 
which is composed of nt samples, to make predications on the PDs of ne samples in test set. In 
the first step, for a set of m credit scoring models indexed by i = 1, 2, ..., m, model i predicts 
on the j-th samples in test set, where j = 1, 2, ..., ne. The predicted PD is denoted as  ,i jPD  
and the true value is represented as PDj. 

In the second step, the estimated PDs are transformed into label prediction in order to 
function as decision-making of financial institutions. Formally, for  ,i jPD , it is assigned to 
different classes of loan decision, namely 

 


,, 0
ˆ 1, if  ,

, otherwise
i ji j

PDc
 ≥ p= 
  

(1)

where ,ˆ 1i jc =  denotes rejecting the loan and ,ˆ 0i jc =  implies accepting the application. p 
herein is the cut-off value (or threshold). In some prior studies (Ala’raj & Abbod, 2016a, 
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2016b), the threshold is manually determined as 0.5 since it is the default setting of classifiers 
when making label prediction. Some other researchers advocated an optimized cut-off value. 
Concretely, Bequé and Lessmann (2017) set the classification threshold as the fraction of 
non-default and default applications in training set. Herasymovych et al. (2019) transformed 
the optimization of cut-off value into a reinforcement learning issue. 

Furthermore, it is worth mentioning that two additional practices, namely sampling and 
probability calibration, are probably considered in credit scoring modelling. As illustrated 
previously, sampling techniques are typically used to tackle data imbalance issues. Due to the 
comparatively high ratio of non-default samples, sampling techniques can adjust the ratio 
between risky and non-risky applications to a balanced level. As a result, sampling is often 
performed before training the models. On the opposite, probability calibration is performed 
after the predictions are made. Probability calibration aims to build a well-calibrated credit 
scoring model in which it provides PD forecasts that in line with empirical probabilities. 
For example, if a 10% empirical default rate is observed, a well-calibrated model is likely to 
predicted 10% of all loan applications as default.

In third step, the evaluation of credit scoring models is inherently performed by a certain 
loss function defined as 

 ( ) ( )( ), ,, , orp
i j i ji j jPD PD L PD PD= =L L 

 
(2)

                                   ( ) ( )( ), ,, , ,ˆ ˆc
i j i j j i jc c L c c= =L L 

 
(3)

where L implies the expected loss, and L (⋅,⋅) is an integrable loss function. The performance 
measures that generally considered in prior studies are accuracy, type I error rate, type II er-
ror rate, brier score, AUC, and H measure. Accuracy measures the ratio of correctly classified 
samples in the whole samples. For the i-th model, the accuracy is defined as 
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where [⋅] is the Iverson bracket. Type I error and type II error rates evaluate the capability 
of models on predicting risky and non-risky loans, respectively. The two types of error rates 
are calculated as 
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(6)

The aforementioned measures are dependent on label prediction whereas brier score and 
AUC are computed based on probability prediction. Concretely, brier score evaluates the 
correctness of probability prediction and is defined as 

 ( )2,
1

1Brier score .
en

i j j
e j

PD c
n

=

= −∑
 

(7)
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AUC measures the entire two-dimensional area under the receiver operating characteris-
tic curve. Following Huang and Ling (2005) is calculated as follows for a binary classification:

 
( )0 0 0

0 1

1 / 2
,e e e

e e

S n n
AUC

n n
− +

=
 

(8)

where ne0 and ne1 denote the number of non-risky and risky loans in test set, respectively. 
0e jS rank= ∑  is the rank of probability predications of j-th default loans. Moreover, we have 

considered an extra evaluation measure, namely H measure (Hand, 2009), that overcomes the 
inherent drawback of inconsistent misclassification cost in AUC to assess the performance 
of models on discriminative capability. Since performance measures may reflect different 
aspects of predictive capability and vary among different datasets, multiple performance mea-
sures and datasets are typically used in existing literature. However, performance measures 
may overlap among different models or datasets. Significance tests (including parametric and 
non-parametric ones) are, therefore, performed to examine whether a certain model provide 
significantly better results than the others. 

The conventional comparison method of credit scoring suffers from two major shortcom-
ings. First, it lacks economic interpretability. For example, a model with higher accuracy 
does not necessarily brings more profit since the economic benefits are highly dependent on 
the predictive capability of risky applications and the selection of cut-off value. To enhance 
economic interpretability, profit-based metrics, such as misclassification cost and expected 
return, are further applied as performance measures. Misclassification cost assigns different 
costs to two types of error. Concretely, the loss function of misclassification cost is defined as 

 , ,
1 1

Misclassification cost 1| 0 0 1ˆ| ,ˆ
e en n

j i j j i j
j j

C c c c c
= =

   = ⋅ = = + = =   ∑ ∑
 

(9)

where C is the cost parameter. Due to the relatively high cost of type I error, C is assume to 
be larger than 1 but it is a tough work to derive an accurate estimate on it. Thus, we follow 
the settings of German dataset in University of California Irvine (UCI) machine learning 
repository to determine C = 5. Regarding expected return, the corresponding return of credit 
scoring models are compared and ranked. Specifically, the loss function of expected return 
is calculated as 

 ,
1

Expected return 0 ,ˆ
en

j i j
j

r c
=

 = ⋅ = ∑
 

(10)

where rj is the ARR or IRR of the j-th loan. In this paper, rj is measured as the ARR of the 
j-th loan. 

The profit-based performance measures further lead to the second pitfall: they seldom 
consider the capital charge from the regulatory perspective. Such a drawback has also been 
debated in Hurlin et al. (2018), who focused on the comparison of LGD models. As shown 
in panel A of Figure 1, current credit scoring models are compared independently of the 
corresponding capital charge. Concretely, the best model in terms of predictive accuracy or 
profit is held to predict PD of every sample and therefore the capital charge can be computed 
using ASRF model given other risk parameters (e.g., EAD, LGD, maturity, etc.). The aban-
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doned models, however, have no opportunities to examine their corresponding performance 
on capital charge. The dashed edges of sampling and probability calibration imply that they 
are optional steps. Such a conventional comparison method may hinder the exploration of 
best models in terms of regulatory capital charge. 

2.2. Regulatory scoring

In Basel III framework, PD, LGD, EAD, and maturity are four key risk parameters of ASRF 
model in calculating the capital charge for credit risk. Given that credit scoring models pre-
dict PDs of loan applications, the economic loss from the regulatory perspective is seldom 
considered when evaluating credit scoring models, whereas there is a clear causal effect of 
credit scoring models on financial stability. The global financial crisis has clearly showed 
that the ascent of credit can hinder asset quality and lead to financial fragility, which finally 
results in systemic risk when exogeneous shocks emerge (Gorton & Ordonez, 2014). Effi-
cient credit scoring models, however, contribute to the management of credit risk, enhance 
financial institution’s screening ability, and eventually improve asset quality (Demma, 2017). 
Consequently, we propose a new comparison framework (i.e., regulatory scoring) to compare 
model performance in predicting PDs to bridge the gap between financial stability and credit 
scoring. The panel B of Figure 1 illustrates the proposed regulatory scoring: the predictions 
of PD for each credit scoring model, along with other risk parameters (i.e., EAD, LGD, and 
maturity), are used to compute the capital charge. Then, the models are compared in terms 
of predictability on capital charge, rather than the predictive accuracy or profit. By these 
means, regulatory scoring takes cost-sensitivity and example-dependence into consideration 
and offers direct economic interpretability.

Figure 1. A comparison of convention comparison framework and the proposed regulatory scoring 
(the dashed boxes indicate the optional process)
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Analogy to loss functions described in Eqs (2) and (3), the capital charge loss function 
is defined as the difference between real capital charge and predicted capital charge, which 
is computed as 

 ( ) ( )( ), ,, , ,cc i j i ji j jcc cc L cc cc= =L L 
 

(11)

where L (⋅,⋅) is an integrable capital charge loss function. ccj is the real capital charge for j-th 
observation in test set, and  ,i jcc  denote the and predicted capital charge for j-th observation 
in test set provided by the i-th model. Before explaining the technical details on calculating 
capital charge using ASRF model (Gordy, 2003), we must introduce some basic concepts, 
namely expected loss (EL), unexpected loss (UL), and Value at Risk (VaR). Though it is hard 
to forecast the exact amount of potential loss that a financial institution may encounter in 
the following year, financial institutions can forecast the average level of credit loss, which is 
represented as EL. Financial institutions are urged to cover the EL by provisions. Following 
the specification of Basel Committee on Banking Supervision (BCBS, 2005), given a portfolio 
containing n credit exposures indexed by j = 1, 2, ..., n, the EL is calculated as follows 

 

1

,
n

j j j
j

EL EAD LGD PD
=

= × ×∑
 

(12)

where EL herein represents expected loss in currency amounts. The values of LGDj and PDj 
typically range between 0 and 1. It is noteworthy that the PDs are estimated under normal 
economic scenario, whereas “economic-downturn” LGDs, which reflect the comparatively 
high values when encountering recession business cycle, are used to calculate EL, based on 
the specifications in BCBS (2005). Meanwhile, financial institutions may incur UL, which 
means that losses above expected level whereas the timing and severity cannot be predicted. 
Provisions are unable to fully absorb the UL. As a result, the UL should be covered by regu-
latory capital. However, UL cannot be calculated directly. Thus, we introduce VaR, which 
measures the risk of potential loss for the portfolio at a confidence level of a. By these means, 
ASRF model defines regulatory capital requirement as the VaR in excess of EL, namely 

 ( )Capital .VaR EL= a −  (13)

To compute the VaR of credit portfolio, the ASRF model assumes the value of portfolio 
is modeled with a single common factor (Z), which represents the systemic credit risk in 
the market. 

 1j j jR Z= r + −r ò,
 

(14)

where Rj is the value of the j-th credit in the portfolio, Z is the single systematic risk fac-
tor, r is the correlation coefficient. ò herein denotes the idiosyncratic or specific risk fac-
tor. According to BCBS (2005), ASRF model assumes Z and ò follow mutually independent 
standard normal distribution. Rj is therefore a standard normal variable. Although Gaussian 
distribution of risk factor maybe doubted as a strong assumption and some scholars strive to 
a generalized non-Gaussian ASRF model (Hoese & Huschens, 2013), it is not surprising to 
see that Gaussian ASRF model is still adopted by Basel Committee on Banking Supervision, 
partially due to the close-form solution and easy-to-implementation. Thus, we follow BCBS 
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(2005) to use a conventional Gaussian ASRF model in this paper. Under this model, default 
losses L can be calculated as follows based on the Merton’s model (Merton, 1974): 

 ,L EAD I LGD= × ×  (15)

where I is the default indicator. Specifically, I = 0 if ( )1
j R jR PD−< F , which means the value 

of credit portfolio has fallen below a certain threshold for default, and a value of 0 otherwise. 
F (⋅) herein represents the probability density function of the standard normal distribution. 
The expected value of the default indicator I conditional on the common systemic risk factor 
Z is calculated as 
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ASRF model further assumes that the portfolio is well diversified and has perfect granu-
larity. The expected loss conditional on a value of the common factor is

 
( )1

1

( | ) .
1

n
R j j

j j
jj

PD Z
E L Z EAD LGD

−

=

 F − r
 = × ×F
 −r 
 

∑ ∈

 

(17)

The VaR of credit portfolio can therefore be directly computed as particular percentiles 
of the distribution of losses using the previous function:
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Recall that a herein indicates the significance level. Since regulatory capital requirement 
is defined as the VaR in excess of EL, we can derive the regulatory capital requirement for a 
given confidence level of a as follows 
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where ( ) ( ) ( )1 1 1

1
R j j R

j j
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PD
PD PD

− −  F − r F −a  δ = F −  −r    
∈ . By determining a confidence 

level a = 99.9% and we can get the internal rating-based formula without maturity adjust-
ment. The Basel Accord II suggested maturity adjustment depending on the type of expo-
sure. Regarding the corporate, sovereign, and large financial institutions exposure, maturity 
adjustment g(M) is defined as 
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1 2.5
,

1 1.5
M b PD

M
b PD

+ − ×
g =

− ×  
(20)

where the smoothed maturity adjustment ( ) ( )( )20.11852 0.05478b PD log PD= −  and M in-
dicates the maturity duration in years. Concerning retailing exposure, no maturity adjust-
ment is performed, that is, g(M) = 1.



Technological and Economic Development of Economy, 2022, 28(6): 1954–1990 1965

Subsequently, we introduce the correlation function, which shows the dependence of 
the value of portfolio and the economy. The correlation function offers a simple method to 
capture an element of default correlation. The correlation differs for different types of credit 
exposure. For corporate and sovereign exposure, the correlation function r(PD) is defined as 

 ( )
50 50

50 50
1 10.12 0.24 1 ,

1 1

PD PDe ePD
e e

− −

− −

 − −
r = × + − 

− −   
(21)

where e herein is the natural logarithm. Regarding the correlation function of large financial 
institutions, a multiplier of 1.25 is applied to the corporate and sovereign correlation func-
tion. For small and medium enterprises, the correlation is adjusted as follows 

 ( ) ( )50 50

50 50

max 5,01 10.12 0.24 1 0.04 1 ,
451 1

PD PD Se ePD
e e

− −

− −

 − − −
r = × + − − −    − −     

(22)

where S is the enterprise’s annual sales turnover in millions and max (⋅,⋅)is the max func-
tion that returns the largest value in the two arguments. Regarding residential mortgage and 
revolving retail exposure, the correlation function is relatively simple, being a constant of 
0.15 and 0.04, respectively. Since the credit datasets used in this paper belong to the retail-
ing exposure, we therefore determine the value of maturity adjustment as 1 and the value of 
correlation function as 0.04 in this paper.

To summarize, the real capital charge ccj and predicted capital charge  ,i jcc  are defined as 
follows, respectively:

                                               ( ) ( );j j j j jcc EAD LGD PD M= × ×δ × g
 

(23)

   ( ) ( ),, .i ji j jj jcc EAD LGD PD M= × ×δ × g
 

(24)

The two equations, namely Eqs (23) and (24), shows that the actual and predicted capital 
charge depends on EAD, LGD, PD, and maturity. Although the EADs and maturities are 
example-dependent, they remain constant given the j-th loan. The key factor affecting capital 
charge then centers on the LGD and PD, which must be determined to compare the credit 
scoring models from a regulatory perspective. Though abundant research has explored the 
determinants and the forecasting models of LGD, it is not the main focus of this paper. To 
make the performances of different credit scoring models comparable, we determine LGDj as 
the real LGD of the j-th loan and  jLGD  as a constant (i.e., 0.3) in this paper.  ,i jPD  is provided 
by the credit scoring model i, and PDj denotes the real PD of the j-th loan, where PDj = 0 
implies non-default and PDj = 1 indicates default. 

The differences between ccj and  ,i jcc  can be defined by mean absolute error (MAE) or 
mean squared error (MSE). For example, 
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Moreover, the loss functions described in Eqs (25) and (26) do not consider the cost-
sensitive characteristic. Since capital charge is employed to absorb UL, an under-estimation 
of it may incur instability of financial institutions whereas an over-estimation can only lead 
to a profit decline. The costs of under- and over-estimation are obviously different and we 
therefore develop an asymmetric cost (AC) of regulatory charge as follows:
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where I(⋅) is the indicator function. q is the asymmetric cost parameter, which is calculated as 
the ratio of the under-estimation cost to the over-estimation cost. In this paper, we determine 
q = 5. The loss functions based on capital charge provide direct economic interpretability for 
regulators. Specifically, the MAE and MSE of capital charge measure the gap between corre-
sponding capital charges of predicted PDs and real PDs. Models with low errors are preferred 
from a regulatory perspective. The AC of capital charge even considers the imbalanced costs 
of capital charge prediction. The regulators can adjust the asymmetric cost parameter to 
derive an overall cost of credit scoring model. As a result, the proposed loss functions are 
directly related to the concerns of regulators and have unit of currency. Thus, the proposed 
loss functions sharpen the decision-making tools of credit risk management.

3. Experimental setup

We aim to introduce the experimental setup, including the description of datasets, competing 
models, and comparison details in this section. 

3.1. Dataset description

Data is obviously a barrier for research on credit scoring. The existing literature mainly used 
public credit datasets from UCI machine learning repository or Kaggle community. How-
ever, most of these datasets provide several features such as loan characteristics, borrowers’ 
creditworthiness and historical record on payment, along with a binary status variable that 
represents whether the loan is default or not. Though public credit datasets make models 
proposed in different research comparable, they still suffer from two inherent pitfalls: first, 
the lack of information on EAD, interest rate and LGD hinders the calculation of expected 
return, which partially explains the relatively scarce research on profit scoring. The second 
drawback is related to the number of samples. Regarding the popular credit datasets, Japa-
nese, German, and Australian datasets of UCI machine learning repository, the number of 
samples for all the datasets is no larger than 1000. The limited examples are far from the 
reality and thus may affect the effectiveness of credit scoring models. 

The emerging peer-to-peer (P2P) lending provide us a supplementary data source for 
retailing loans. As a typical component of FinTech, P2P lending can match the demand and 
supply of money via online platforms. Due to the business is operated online, P2P lending 
usually incurs lower transaction cost relative to traditional financial institutions. Inspired by 
the spirit of the Internet, P2P lending is characterized by data transparency. Several main-
stream P2P lending platforms even disclosed the real transaction record excluding privacy 
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online. Though P2P lending platforms are often regarded as information intermediaries, 
they may also affect the prudential regulation since security business model of P2P lending 
is adopted in U.S. In such a business model, the loans are initially issued by the commercial 
banks. The banks subsequently sell the loans to individual investors. As a result, the issuing 
banks are subject to regulations concerning capital charge.

We use two real-world datasets in this paper. The first one is derived from the transaction 
records of Lending club that issued between January 2009 and December 2012. After exclud-
ing the samples containing missing values, the whole dataset includes 91,335 samples (77,313 
non-default and 14,022 default). The second dataset is acquired from loan transactions of 
Prosper ranging from January 2009 and December 2013. The Prosper dataset contains 11,230 
loans, with 8,501 non-default contracts and 2,729 default ones. For each contract in both da-
tasets, we can observe the loan status (default or non-default), loan characteristics (e.g., EAD, 
maturity, interest rate, and issuing date), borrowers’ creditworthiness (FICO score, internal 
rating grade) and solvency (annual income, debt-to-income (DTI) ratio, revolving utiliza-
tion rate and etc.). The summary statistics of the two datasets are shown in Tables 1 and 2,  
respectively. All the variables are used for modeling since this will provide an opportunity 
of a comprehensive analysis on SHapley Additive exPlanations (SHAP) value (Lundberg & 
Lee, 2017), a type of feature importance scores on prediction, for the whole feature set. We 
will elaborate this in Subsection 4.4.

Table 1. Summary statistics of Lending Club dataset

Feature Type
All samples (N = 37968) Non-default samples (N = 32590) Default samples (N = 5378)

Min Max Mean S.D. Min Max Mean S.D. Min Max Mean S.D.

EAD Numer-
ical

1000 35000 11462.98 7829.53 1000 35000 10938.10 7129.71 1000 35000 11880.10 7831.61 

Term Numer-
ical

36 60 41.41 10.79 36 60 42.07 10.43 36 60 46.90 11.95

Interest 
rate (%)

Numer-
ical

5.42 24.59 12.99 4.21 5.42 24.59 11.77 3.71 5.42 24.40 13.95 3.69 

LC grade Numer-
ical

1 35 10.95 6.85 1 35 10.40 6.63 1 35 14.25 7.20 

Employ-
ment 
length

Numer-
ical

0 10 4.88 3.60 0 10 4.87 3.59 0 10 4.91 3.66 

Annual 
income

Numer-
ical

4000 600000 69115.58 63687.96 4000 600000 70241.31 65912.00 4080 1250000 62293.81 47494.68 

Verifi-
cation 
status

Catego-
rial

0.86 0.85 0.92 

Delin-
quency

Numer-
ical

0 30 13.39 6.67 0 30 13.28 6.68 0 30 14.07 6.58 

DTI (%) Numer-
ical

0 1100 14.44 48.83 0 1100 14.03 48.02 0 800 16.92 53.41 

FICO Numer-
ical

660 825 715.22 35.77 660 825 717.10 36.03 660 820 703.84 31.90 

Inquire Numer-
ical

0 8 0.86 1.06 0 8 0.83 1.04 0 8 1.04 1.14 
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Feature Type
All samples (N = 37968) Non-default samples (N = 32590) Default samples (N = 5378)

Min Max Mean S.D. Min Max Mean S.D. Min Max Mean S.D.

Revolving 
utiliza-
tion (%)

Numer-
ical

0 100 49 28 0 100 28.24 0.26 0 100 56.01 27.84 

Total 
ACC

Numer-
ical

3 90 22.18 11.40 3 90 22.30 11.40 3 74 21.45 11.41 

Table 2. Summary statistics of Prosper dataset

Type
All samples (N = 11230) Non-default samples (N = 8501) Default samples (N = 2729)

Min Max Mean S.D. Min Max Mean S.D. Min Max Mean S.D.
Loan 
amount

Nu-
merical

1000 35000 6373.13 4813.07 1000 35000 6400.25 4926.21 1000 25000 6288.66 4441.98

Term Nu-
merical

12 60 37.99 10.64 12 60 37.13 10.65 12 60 40.66 10.14

Interest rate Nu-
merical

0.04 0.36 0.22 0.08 0.04 0.35 0.21 0.09 0.06 0.36 0.26 0.07

Prosper 
Score

Nu-
merical

1 11 6.27 2.30 1 11 6.53 2.30 1 10 5.48 2.12

Homeown-
ership

Catego-
rial

0.51 0.52 0.47

Lending 
group

Catego-
rial

0.05 0.06 0.04

Listing 
category 

Nu-
merical

0 20 3.75 4.09 0 20 3.70 4.03 1 20 3.89 4.24

Employment 
length

Nu-
merical

0 755 91.58 89.26 0 732 91.78 87.89 0 755 90.94 93.42

Credit score Nu-
merical

600 880 701.37 52.85 600 880 705.58 53.96 600 860 688.27 46.92

Current 
credit lines

Nu-
merical

0 48 9.55 5.28 0 48 9.73 5.24 0 40 8.96 5.35

Total credit 
lines

Nu-
merical

2 120 26.53 13.94 2 118 26.97 13.93 2 120 25.14 13.87

Revolving 
accounts

Nu-
merical

0 35 6.40 4.23 0 33 6.52 4.18 0 35 6.01 4.35

Revolving 
payment

Nu-
merical

0 5720 347.72 390.08 0 5720 354.22 393.52 0 3234 327.49 378.51

Inquiries-6m Nu-
merical

0 27 1.17 1.67 0 27 1.10 1.58 0 22 1.40 1.89

Total inqui-
ries

Nu-
merical

0 74 4.57 4.26 0 74 4.52 4.20 0 42 4.73 4.42

Current de-
linquency

Nu-
merical

0 24 0.38 1.21 0 22 0.33 1.12 0 24 0.53 1.45

Bank card 
utilization

Nu-
merical

0 1.26 0.52 0.33 0 1.26 0.51 0.33 0 1.23 0.52 0.34

Total trades Nu-
merical

1 118 22.76 12.20 1 102 23.26 12.21 1 118 21.19 12.03

Good trade 
rate

Nu-
merical

0.16 1 0.90 0.13 0.16 1 0.90 0.13 0.22 1 0.88 0.14

Stated in-
come

Nu-
merical

0 483333.33 5536.98 7209.77 0 483333.33 5848.95 8064.11 0 34813.25 4565.17 3176.99

End of Table 1
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3.2. Competing models

We employ seven mainstream models in our regulatory scoring comparison, namely (1) LR, 
(2) RF, (3) GBDT, (4) extreme gradient boosting (XGBoost), (5) LightGBM, (6) CatBoost, 
and (7) deep multi-layer perceptron network (DMLP). 

LR is a classical linear model for classification problems, which describes the PD of a 
single sample using a logistic function. LR has been considered as industry benchmark of 
credit scoring and widely used in academic literature (Bahnsen et al., 2014; Bensic et al., 
2005; Shen et al., 2019). RF is a tree-based ensemble model combining bagging and random 
subspace algorithms. RF trains multiple decision trees using only parts of features and train-
ing samples, which enhances the bias slightly whereas decreasing variance meanwhile and 
thus, lead to an overall better model. RF is even advocated by Lessmann et al. (2015) as a new 
industry benchmark model. RF has been used in credit scoring domain by Malekipirbazari 
and Aksakalli (2015) and Ala’raj and Abbod (2016a), among others. GBDT is a member of 
boosting algorithms, which trains models in a sequential manner. Specifically, a variety of 
weak models (i.e., decision trees) are added to derive a strong model. As a typical ensemble 
model, GBDT is regarded as a promising algorithm with good generalization capability. This 
model has been adopted in He et al. (2018) for PD prediction. XGBoost, LightGBM and 
CatBoost are advanced versions of GBDT. In these models, engineering optimizations have 
been performed to enhance the efficiency and scalability of the prototype GBDT model. Xia, 
Liu, Li, and Liu (2017b), X. Ma et al. (2018), and Xia et al. (2020a) have illustrated the sound 
performance of advanced GBDT-based models in PD prediction. Moreover, the training 
speed is also accelerated by multi-thread processing and parallel learning. Recent develop-
ment of deep learning inspires us to consider it as benchmark model in this paper. Following 
Gunnarsson et al. (2021), we employ two representative models of deep learning, namely a 
DMLP with three hidden layers (DMLP3) and a DMLP with five hidden layers (DMLP5).

3.3. Comparison details

An out-of-sample validation is applied to perform a careful comparison of the competing 
models. Following the work of Lessmann et al. (2015) and Shen et al. (2019), we adopt k-fold 
cross-validation since it ensures the stability of experimental results and makes full use of 
dataset. For k-fold cross-validation, the dataset is divided into k folds, namely, equal-sized 
groups of samples. The prediction is made using k−1 fold, and the remaining one is used as 
a test set. Specifically, this paper uses a 5-fold cross-validation and the experiment loops 50 
times. The performance measures, including the conventional measures and the proposed 
regulatory charge ones, during 50 times experiments are averaged and reported. Since the 
regulatory capital charge measures are relatively new evaluation metrics, we further examine 
their robustness by exploring the effects of sampling techniques, cut-off value modification, 
and probability calibration. 

GBDT-based techniques and DMLPs have several hyper-parameters that control the 
complexity of the model. Following Xia, Liu, Li, and Liu (2017b), we employ a Bayesian 
hyper-parameter optimization method which achieves a balance between efficiency and com-
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putational cost. A 5-fold cross validation AUC is used as the fitness function of the optimiza-
tion method. The Bayesian method is applied to determine the selection of several common 
hyper-parameters for GBDT, XGBoost, LightGBM, and CatBoost, namely maximum tree 
depth (D), number of iterations (N), subsampling rate (sub) and feature subsampling rate 
(fsub). The search spaces are set as D ∈ {2, 3, 4, 5, 6}, N ∈ N+ [50, 300], sub ∈ [0.6, 1], and 
fsub ∈ [0.6, 1]. The learning rate of the four types of models are preset as 0.05. For DMLPs, 
the learning rate is determined as 0.001, and the possible numbers of hidden neurons in each 
layer are determined as {5,10,15,20}, and the alternative drop rates are {0, 0.25,0.5}. The set-
tings of other hyper-parameters not mentioned remain the default of the package.

Since the performance of competing models may overlap among different measures, one 
cannot easily determine a specific winner. For example, models that provide good accuracy 
may perform poorly in the capital charge errors. Therefore, a significance test is useful to 
determine whether a certain model significantly outperforms the others. In this paper, we 
employ a non-parametric significance test to compare model performance over different 
datasets and measures. Specifically, a rank-based Friedman’s test is first utilized to examine 
if a significant difference exists among model performances. Once the null hypothesis of 
Friedman’s test is rejected, a post-hoc test adjusted by Finner procedure is employed to make 
pair-wise comparison. The adjusted p-value of post-hoc test finally determines whether a 
significant difference exists. 

4. Experimental results

4.1. Results of out-of-sample validation

Tables 3 and 4 reveal the results of out-of-sample validation for Lending club and Prosper 
datasets over eleven performance measures, consisting predictive accuracy, profitability, and 
capital charge errors. It is noteworthy that in original out-of-sample validation, the cut-
off value remains the default setting (i.e., 0.5) in this subsection. We also examine another 
possible cut-off value in Subsection 4.3.2. From the two tables, we can derive the following 
conclusions: 

Table 3. Results of out-of-sample validation for Lending club dataset

Model Accuracy Brier 
score AUC Type I  

error rate
Type II 

error rate
H  

measure
Misclassification 

cost
Expected 

return

Capital 
charge 
MAE

Capital 
charge 
MSE

AC of capital 
charge
(a = 5)

LR 0.84654 0.12327 0.67351 0.00013 0.99887 0.09678 70040.72 0.91107 0.015325 37.25534 2854.08398

RF 0.84559 0.12477 0.66584 0.00305 0.98898 0.08669 69573.34 0.90967 0.015581 39.30519 2855.06471

GBDT 0.84629 0.12240 0.68473 0.00148 0.99306 0.10829 69737.30 0.91135 0.015109 36.81905 2818.46470

XGBoost 0.84643 0.12231 0.68498 0.00037 0.99830 0.10875 70019.50 0.91086 0.015145 36.72264 2825.24873

LightGBM 0.84638 0.12230 0.68542 0.00071 0.99676 0.10907 69937.54 0.91089 0.015105 36.77669 2818.98086

CatBoost 0.84644 0.12232 0.68501 0.00042 0.99790 0.10872 69995.36 0.91109 0.015174 36.73894 2830.87713

DMLP3 0.83815 0.12423 0.66260 0.01592 0.95290 0.08374 69810.62 –0.25678 0.015267 36.99830 2882.68171

DMLP5 0.84022 0.12439 0.66064 0.02173 0.93440 0.08553 69941.50 –0.30412 0.015370 37.22686 2881.64460

Note: the best-performing model for each performance measure is highlighted in bold.
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Table 4. Results of out-of-sample validation for Prosper dataset

Model Accuracy Brier 
score AUC Type I 

error rate
Type II error 

rate H measure Misclassification 
cost

Expected 
return

Capital 
charge 
MAE

Capital 
charge 
MSE

AC of capital 
charge
(a = 5)

LR 0.76153 0.16275 0.72630 0.03383 0.87593 0.16926 12239.68 –0.01687 0.07018 99.80793 1613.75796 

RF 0.76910 0.16183 0.72789 0.03665 0.83599 0.17216 11718.66 0.21692 0.06961 97.91500 1617.59843 

GBDT 0.77100 0.15846 0.74538 0.05135 0.78237 0.19684 11112.04 0.45110 0.06607 92.94996 1535.60947 

XGBoost 0.77200 0.15788 0.74700 0.04290 0.80461 0.19907 11343.58 0.37221 0.06671 93.62930 1545.15975 

LightGBM 0.77152 0.15813 0.74560 0.04555 0.79833 0.19739 11280.44 0.38999 0.06600 93.64532 1535.28124 

CatBoost 0.76871 0.15890 0.74397 0.02649 0.86926 0.19421 12086.18 0.08692 0.06827 92.66337 1587.16814 

DMLP3 0.75142 0.17787 0.63721 0.02694 0.93900 0.06742 13041.72 –0.00301 0.07733 105.64085 1841.24817 

DMLP5 0.75096 0.18011 0.61024 0.01878 0.96633 0.04681 13345.22 –0.00357 0.07845 108.69811 1857.18981 

Note: the best-performing model for each performance measure is highlighted in bold.

First, model’s performances vary over different evaluation measures. Models with good 
predictive accuracy or profitability do not guarantee a sound performance on capital charge 
requirement error. Such a finding sheds light on the proposed regulatory scoring framework: 
the conventional comparison method and performance measures can only select the best PD 
model in terms of statistical accuracy or profit, rather than determine the optimal model 
from the perspective of regulation. As a result, the proposed regulatory scoring framework 
should be further considered when the stability of financial institutions becomes the main 
issue. 

Second, although LR and RF has been regarded as industry benchmarks, their perfor-
mances beat other models only in very limited metrics. Moreover, LR shows an imbalanced 
label prediction since it assigns most of test samples into non-default ones, which leads to a 
comparatively high accuracy and low type I error rate. The imbalanced prediction, however, 
is achieved at the cost of predictability of default loans. As a result, LR performs poorly in 
misclassification cost measure.

Third, GBDT-based models provide an overall better performance than industry bench-
mark. Concretely, they perform the best in most evaluation measures. Among GBDT-based 
models, XGBoost and LightGBM are two promising alternatives, outperforming the remain-
ing models over several performance measures especially in terms of discriminative ability 
and capital charge errors. Such a result is in accordance with Xia, Liu, Li, and Liu (2017b) 
and X.  Ma et  al. (2018) and encourages further adoption of GBDT-based models in PD 
modelling.

Fourth, DMLPs provide poor performance on the two datasets and do not show com-
petitiveness in the comparison. Concretely, they are inferior to other models in terms of 
accuracy, AUC, and H measure and only outperform LR on very limited evaluation metrics. 
This finding is consistent with those revealed in Gunnarsson et al. (2021). A possible expla-
nation is that deep learning has shown great power on discovering intricate structures when 
given a large dataset, whereas the credit datasets used in this paper are typically far from a 
big dataset. 

Finally, data imbalance diminishes the effectiveness of some performance measures. For 
highly imbalanced Lending club dataset, most models tend to predict all the samples as the 



1972 Y. Xia et al. From credit scoring to regulatory scoring: comparing credit scoring models ...

majority class (i.e., non-default). Consequently, the predictive accuracy measures of models 
are quite similar and close to the ratio of majority class samples to all samples. Under this 
circumstance, the PD models are invalid since they can rarely recognize default samples. Cut-
off value modification and sampling techniques are, therefore, become alternative solutions to 
handle data imbalance issue and we will further report the effects of them in Subsection 4.3.

4.2. Results of significance test

In this subsection, we conduct a significance test to examine whether a specific competing 
model shown in Tables 3 and 4 significantly outperforms the other ones among the datasets 
and performance measures. We first rank the competing models according to their perfor-
mance on each dataset and performance measure. The best-performing model is ranked 
as 1 and the worst model is sorted as 8. We therefore derive a sum of 22 ranking series (2 
datasets × 11 evaluation measures). A Friedman’s test is performed on the ranking series 
and the statistics of Friedman’s test is 70.333, rejecting the null hypothesis at 99% confidence 
level. We therefore perform a post-hoc test and the critical difference is shown in Figure 2. 
The line segment in Figure 2 indicates the average rank of competing models among all the 
performance measures. The models within the bold lines exhibit no significant difference in 
average rank on the evaluation measures. From the figure we can draw that GBDT-based 
methods provide better overall performance, sweeping the top four places in terms of average 
rank. Concretely, LightGBM becomes the best-performing model in terms of average rank, 
significantly outperforming other non-GBDT-based methods. This is in line with the findings 
of X. Ma et al. (2018) and Xia, Yang, and Zhang (2018b). Among the GBDT-based mod-
els, no significant difference is found. However, even inferior GBDT-based method, namely 
CatBoost, still significantly outperforms current industry benchmark LR and RF, as well as 
DMLP variants. Thus, our finding may challenge the adoption of LR, RF, or DMLP as model-
ing approaches when taking all the evaluation measures into consideration. 

One may be curious on whether there is statistically significant difference in the financial 
stability of the credit scoring models. To answer this, we conduct an extra non-parametric 

Figure 2. Critical difference plot of competing models over the average rank of all evaluation measures (sig-
nificance level = 0.05). The models within the bold lines exhibit no significant difference in average rank
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significance test that consider the performance of competing models on the three capital 
requirement error measures over the two datasets. The statistics of Friedman’s test is 31.889, 
which rejects the null hypothesis of Friedman’s test at 99% significance level and implies a 
significant difference among competing models on the capital charge errors. The result of 
post-hoc test is shown in Figure 3 and it is clearly illustrated that GBDT-based methods ac-
count for the top four places regarding the average rank of the three capital charge error mea-
sures. GBDT-based models except XGBoost significantly outperform the non-GBDT-based 
models as shown in Figure 3. This finding supports the adoption of GBDT-based models for 
modeling in credit scoring when financial stability is the main concern.

4.3. Sensitivity analysis

To examine whether the proposed comparison framework remains robust to varying set-
tings, we conduct a series of sensitivity analyses. These sensitivity analyses concentrate on 
the effects of sampling techniques, cut-off value modification, and probability calibration.

4.3.1. The effects of sampling techniques

Due to the severe imbalance of the two datasets, we initially carry out a certain type of 
sampling technique before training the models to deal with imbalanced class issue. After 
considering the popularity of the aforementioned techniques used in academic studies such 
as Crone and Finlay (2012), Moscato et al. (2021) and Xiao et al. (2021), we select random 
under-sampling, random over-sampling, SMOTE, one-side selection (OSS), and adaptive 
synthetic (ADASYN) for sampling. The class distribution in the training set after processing 
is determined as 1:1 for positive/negative observations. The results of out-of-sample valida-
tion for the two datasets are displayed in Tables 5 and 6, respectively. In each panel of the 
two tables, different sampling techniques are employed. The following findings are presented 
from the two tables.

Figure 3. Critical difference plot of competing models over the average rank of capital charge error measures 
(significance level = 0.05). The models within the bold lines exhibit no significant difference in average rank
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Table 5. Results of out-of-sample validation for Lending club dataset (with sampling techniques)

Model Accuracy Brier 
score AUC Type I  

error rate
Type II  

error rate
H  

measure
Misclassification 

cost
Expected 

return (%)

Capital 
charge 
MAE

Capital 
charge 
MSE

AC of capital 
charge
(a = 5)

Panel (a) Random over-sampling

LR 0.76153 0.16275 0.72630 0.03383 0.87593 0.16926 12239.68 –0.01687 0.07018 99.80793 1613.75796 

RF 0.76910 0.16183 0.72789 0.03665 0.83599 0.17216 11718.66 0.21692 0.06961 97.91500 1617.59843 

GBDT 0.77100 0.15846 0.74538 0.05135 0.78237 0.19684 11112.04 0.45110 0.06607 92.94996 1535.60947 

XGBoost 0.77200 0.15788 0.74700 0.04290 0.80461 0.19907 11343.58 0.37221 0.06671 93.62930 1545.15975 

LightGBM 0.77152 0.15813 0.74560 0.04555 0.79833 0.19739 11280.44 0.38999 0.06600 93.64532 1535.28124 

CatBoost 0.76871 0.15890 0.74397 0.02649 0.86926 0.19421 12086.18 0.08692 0.06827 92.66337 1587.16814 

DMLP3 0.75142 0.17787 0.63721 0.02694 0.93900 0.06742 13041.72 0.03010 0.07733 105.64085 1841.24817 

DMLP5 0.75096 0.18011 0.61024 0.01878 0.96633 0.04681 13345.22 0.03569 0.07845 108.69811 1857.18981 

Panel (b) Random under-sampling

LR 0.63367 0.22632 0.67589 0.36314 0.38389 0.09930 54989.78 0.79335 0.02516 93.20077 2847.55575 

RF 0.62477 0.22642 0.67387 0.37547 0.37394 0.09746 55245.08 0.80837 0.02502 92.37506 2839.09342 

GBDT 0.63234 0.22054 0.68374 0.36723 0.37000 0.10723 54332.50 0.85183 0.02462 90.37718 2807.35625 

XGBoost 0.62692 0.22283 0.68440 0.37532 0.36071 0.10806 54306.80 0.84655 0.02478 91.32978 2815.01263 

LightGBM 0.63123 0.22104 0.68442 0.36918 0.36652 0.10797 54239.02 0.85013 0.02463 90.53828 2806.77313 

CatBoost 0.62622 0.22300 0.68531 0.37677 0.35724 0.10891 54175.82 0.83585 0.02480 91.44898 2815.83580 

DMLP3 0.59425 0.23337 0.65712 0.41225 0.36993 0.08148 57807.40 0.53855 0.02543 94.79807 2882.61070 

DMLP5 0.47043 0.24712 0.53693 0.55167 0.40776 0.01583 71239.00 0.14174 0.02664 97.03853 3076.19762 

Panel (c) SMOTE

LR 0.63205 0.22725 0.67242 0.36436 0.38779 0.09561 55357.56 0.78347 0.02523 93.71715 2856.62309 

RF 0.61292 0.22867 0.66936 0.39066 0.36733 0.08944 55956.72 0.84812 0.02491 92.38322 2856.62309 

GBDT 0.62114 0.22555 0.68265 0.38317 0.35507 0.10541 54518.06 0.84781 0.02481 92.04726 2810.52555 

XGBoost 0.62225 0.22518 0.68387 0.38186 0.35510 0.10718 54418.80 0.84436 0.02486 92.15260 2815.75094 

LightGBM 0.62175 0.22551 0.68313 0.38248 0.35493 0.10607 54454.76 0.84582 0.02482 92.02716 2811.68738 

CatBoost 0.62133 0.22519 0.68372 0.38339 0.35265 0.10705 54365.28 0.82183 0.02496 92.23157 2827.00988 

DMLP3 0.59393 0.23408 0.65680 0.41307 0.36753 0.08067 57702.90 0.15051 0.02561 95.84126 2897.33140 

DMLP5 0.52465 0.24855 0.53135 0.47229 0.49224 0.01282 71025.04 0.06062 0.02677 97.60124 3091.58927 

Panel (d) OSS

LR 0.61151 0.22996 0.67316 0.39411 0.35750 0.09605 55534.20 0.72948 0.02546 93.55985 2883.16941 

RF 0.83506 0.13434 0.65116 0.02687 0.92622 0.07218 67015.06 0.73416 0.01791 49.69298 2883.16941 

GBDT 0.83346 0.14365 0.66088 0.03267 0.90466 0.08305 65951.00 0.71901 0.02019 58.18096 2856.76680 

XGBoost 0.81675 0.15622 0.65416 0.06377 0.84203 0.07596 63964.94 0.77885 0.02138 64.58850 2877.91574 

LightGBM 0.83715 0.14184 0.65913 0.02410 0.92783 0.08123 66913.58 0.74383 0.01997 57.04296 2861.96590 

CatBoost 0.83801 0.14018 0.67003 0.02486 0.91814 0.09295 66292.22 0.73333 0.01997 56.37138 2913.32194 

DMLP3 0.60110 0.23407 0.65039 0.39985 0.39365 0.07649 58512.54 0.58834 0.02554 93.84898 3049.73177 

DMLP5 0.66768 0.24332 0.56297 0.27454 0.65088 0.02736 66858.80 0.34473 0.02640 95.86473 2857.47943 

Panel (e) ADASYN

LR 0.84602 0.12371 0.67197 0.00146 0.99493 0.09459 69867.18 0.81399 0.01576 39.21210 2837.09672 

RF 0.84428 0.12584 0.66482 0.00775 0.97157 0.08628 68715.98 0.81380 0.01590 41.28582 2837.09672 

GBDT 0.84578 0.12282 0.68329 0.00414 0.98173 0.10677 69149.44 0.84459 0.01552 38.75366 2796.51585 

XGBoost 0.84610 0.12265 0.68396 0.00219 0.99038 0.10762 69604.70 0.86976 0.01555 38.65436 2800.79953 

LightGBM 0.84592 0.12273 0.68367 0.00299 0.98713 0.10709 69439.02 0.86004 0.01552 38.75915 2796.92506 

CatBoost 0.84639 0.12269 0.68342 0.00091 0.99555 0.10665 69868.40 0.89028 0.01557 38.53463 2809.83677 

DMLP3 0.82265 0.12448 0.66262 0.05545 0.84947 0.08544 63843.70 0.84391 0.01569 38.74524 2860.20224 

DMLP5 0.82216 0.12462 0.66159 0.05629 0.84805 0.08472 63808.52 0.85036 0.01574 38.92068 2863.37821 

Note: the best-performing model for each performance measure is highlighted in bold.
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Table 6. Results of out-of-sample validation for Prosper dataset (with sampling techniques)

Model Accuracy Brier 
score AUC Type I  

error rate
Type II  

error rate
H  

measure
Misclassification 

cost
Expected 

return (%)

Capital 
charge 
MAE

Capital 
charge  
MSE

AC of capital 
charge
(a = 5)

Panel (a) Random over-sampling

LR 0.65087 0.20498 0.74408 0.37448 0.27014 0.19425 6869.56 1.87014 0.08655 157.33992 1385.78252 

RF 0.68214 0.19471 0.74289 0.30959 0.34364 0.19279 7320.74 1.74793 0.08189 146.12897 1367.28315 

GBDT 0.67465 0.19725 0.74356 0.32549 0.32491 0.19415 7200.36 1.79474 0.08221 149.03876 1360.97987 

XGBoost 0.64684 0.21283 0.72648 0.37250 0.29293 0.16897 7163.62 1.63263 0.09042 174.37186 1425.70144 

LightGBM 0.64939 0.21231 0.72511 0.36803 0.29632 0.16699 7171.94 1.58781 0.08923 170.73510 1417.92425 

CatBoost 0.66580 0.20126 0.74567 0.34576 0.29820 0.19692 7008.22 1.88873 0.08433 154.58300 1364.56726 

DMLP3 0.60635 0.22648 0.68339 0.42046 0.31014 0.11559 7806.10 1.34290 0.09421 183.80401 1502.54206 

DMLP5 0.48384 0.24878 0.51385 0.53864 0.44612 0.00767 10666.28 -0.27689 0.10479 219.00539 1657.07035 

Panel (b) Random under-sampling

LR 0.64349 0.20842 0.74282 0.38743 0.26020 0.19207 6843.96 1.86934 0.08791 160.91132 1393.55164 

RF 0.65451 0.21033 0.73843 0.36354 0.28925 0.18554 7037.26 1.84855 0.08519 159.58311 1355.60395 

GBDT 0.65196 0.21006 0.73915 0.36919 0.28218 0.18646 6988.78 1.88907 0.08508 160.82452 1354.24616 

XGBoost 0.64271 0.21402 0.72454 0.37862 0.29088 0.16610 7187.62 1.57662 0.09094 175.35277 1432.39294 

LightGBM 0.64806 0.21136 0.73044 0.36954 0.29711 0.17266 7195.56 1.72700 0.08907 164.33337 1432.39294 

CatBoost 0.65486 0.20808 0.74331 0.36667 0.27809 0.19285 6911.52 1.90506 0.08621 160.59106 1364.90836 

DMLP3 0.57772 0.24410 0.63604 0.44128 0.36309 0.07530 8705.74 0.80913 0.10385 213.81809 1644.46533 

DMLP5 0.50114 0.25002 0.50031 0.49661 0.50589 0.00166 11124.56 -0.42177 0.10519 220.60582 1661.66353 

Panel (c) SMOTE

LR 0.75440 0.16601 0.73937 0.11135 0.66382 0.18529 10004.38 0.75397 0.07613 114.24698 1509.58183 

RF 0.76026 0.16222 0.73899 0.09293 0.69705 0.18610 10301.20 0.67879 0.07140 105.22026 1506.16669 

GBDT 0.76146 0.16209 0.73949 0.08846 0.70602 0.18676 10385.72 0.66148 0.07114 105.73671 1501.46889 

XGBoost 0.75834 0.16593 0.72919 0.09038 0.71292 0.17155 10496.12 0.59924 0.07399 110.54255 1425.70144 

LightGBM 0.74932 0.16957 0.72489 0.11044 0.68753 0.16381 10320.24 0.60137 0.07668 117.30740 1417.92425 

CatBoost 0.75513 0.16487 0.73884 0.11106 0.66169 0.18493 9972.80 0.78846 0.07410 111.93437 1493.99925 

DMLP3 0.59364 0.22508 0.68349 0.44579 0.28353 0.11601 7658.42 0.01417 0.09327 180.82363 1496.54258 

DMLP5 0.47465 0.24866 0.51973 0.55933 0.41952 0.01047 10479.16 -0.24222 0.10468 218.62487 1654.30793 

Panel (d) OSS

LR 0.62514 0.21963 0.71078 0.40475 0.28176 0.14711 7285.34 1.54428 0.09338 186.48648 1462.60116 

RF 0.75023 0.17197 0.71280 0.09528 0.73102 0.14891 10784.78 0.32551 0.07906 123.06909 1471.58775 

GBDT 0.75890 0.16549 0.72203 0.07949 0.74451 0.16360 10834.66 0.41141 0.07429 110.99084 1558.73547 

XGBoost 0.75467 0.16813 0.72058 0.09029 0.72830 0.16088 10705.18 0.42249 0.07725 118.26805 1556.91286 

LightGBM 0.76037 0.16531 0.72193 0.07203 0.76173 0.16331 11006.12 0.35702 0.07418 110.98777 1562.09058 

CatBoost 0.75102 0.17141 0.72392 0.10690 0.69156 0.16498 10345.06 0.51102 0.08050 125.88974 1553.70333 

DMLP3 0.59687 0.22736 0.67816 0.43589 0.30110 0.11077 7813.98 1.31284 0.09555 187.48108 1519.42719 

DMLP5 0.50956 0.24570 0.55545 0.51269 0.42113 0.02800 10104.72 0.11844 0.10373 214.66067 1644.45547 

Panel (e) ADASYN

LR 0.75720 0.16629 0.71187 0.05105 0.84011 0.14891 11897.26 0.03598 0.07254 108.24459 1605.89209 

RF 0.76634 0.16423 0.72014 0.04948 0.80738 0.16288 11437.36 0.22611 0.07204 104.59246 1783.76985 

GBDT 0.76498 0.16280 0.72905 0.07144 0.74460 0.17453 10767.30 0.48385 0.06926 101.09694 1544.48865 

XGBoost 0.76685 0.16178 0.73118 0.06202 0.76620 0.17731 10982.06 0.41054 0.06993 101.32340 1553.35530 

LightGBM 0.76669 0.16227 0.72964 0.06522 0.75693 0.17549 10882.76 0.44226 0.06941 101.30620 1548.25881 

CatBoost 0.76789 0.16230 0.72781 0.04201 0.82427 0.17238 11604.34 0.19519 0.07121 100.59622 1587.96309 

DMLP3 0.74119 0.17767 0.63798 0.06477 0.86325 0.06822 12329.60 -0.18006 0.07900 109.82531 1820.84096 

DMLP5 0.74129 0.18050 0.60753 0.04711 0.91787 0.04581 12924.86 -0.29399 0.08019 113.55700 1839.38305 

Note: the best-performing model for each performance measure is highlighted in bold.
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First, regarding the performance of PD models, LR and RF provide sound performance 
on label predictions in some cases. On the contrary, GBDT-based models tend to provide 
better probability predictions due to their comparatively good results on AUC and H mea-
sure. Importantly, GBDT-based models also outperform industry benchmarks in terms of 
capital charge errors in most cases, which is in line with the conclusions drawn in Subsection 
4.1 and shows the robustness of the comparison results. DMLPs perform poorly on almost 
every evaluation measure, which is also consistent with the results shown in Subsection 4.1 
and again shows the unsuitability of DMLPs as modeling approach for credit scoring. 

Second, when making a vertical comparison, sampling techniques lead to a balanced 
distribution of error rates, which can be explained by the relatively balanced class distribu-
tion after processing. In other words, the predictability of potential default transactions is 
enhanced at the cost of accuracy. The balanced distribution of error rates further causes a 
lower misclassification cost than models without sampling techniques. Furthermore, credit 
scoring models with sampling technique perform poorly in terms of probability estima-
tion and discriminative ability since they provide worse results than the original models 
on Brier score, AUC, and H measure. Moreover, sampling techniques contribute little on 
capital charge error measures. Such a phenomenon can be explained by the inherent draw-
backs of sampling techniques. Concretely, to achieve the goal of balanced class in a dataset, 
over-sampling techniques, such as random over-sampling, SMOTE, and ADASYN, iteratively 
select samples from the minority class and is prone to noisy data. Under-sampling tech-
niques, such as random under-sampling and OSS, drop the samples of majority class and 
may abandon valuable information during the process. Due to the negative effects of noisy 
data and scarce training samples, the models provide inferior predictions on PDs and thus 
achieve unsatisfactory performance in probability estimation and discriminative ability, as 
well as capital charge errors.

Finally, when making a horizontal comparison, a clear trade-off can be observed among 
different kinds of performance measures and datasets. Although it is hard to confirm a 
winning-solution for a certain performance measure since the results may vary in the two 
datasets, we can still make some simple recommendations on selecting the specific sampling 
techniques: when predictability of risky applications becomes the main issue, random un-
der- and over-sampling may be effective. However, when capital charge errors are the focus 
and sampling techniques must be employed, SMOTE, OSS and ADASYN algorithms are 
reasonable choices. 

4.3.2. The effects of cut-off value modification

Once the PD of each loan application is estimated, financial institutions must determine the 
cut-off value. Application with predicted PD above the cut-off value is regarded as risky loans 
and will not receive credit. To examine the effects of cut-off value on model performance, 
we follow Bequé and Lessmann (2017) to determine the cut-off value as the fraction of non-
default and default applications in the training set. The results of competing models on Lend-
ing club and Prosper datasets after cut-off value modification are shown in Table 7. It is worth 
mentioning that a modification on cut-off value will only affect accuracy, type I and II error 
rates, misclassification cost and expected return. Thus, we only report these performance 
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measures in Table 7. The empirical results demonstrate the profound effects of cut-off value 
modification on model performance. First, although accuracy decreases for all the models 
when compared with default settings. The type II error rate also decreases dramatically and 
thus benefits misclassification cost. Considering the easy-implementation and compatibility 
of cut-off value modification, financial institutions may integrate it with original PD models. 
Specifically, it is possible to make label prediction using models with cut-off value modifica-
tion and provide PD prediction with the original model. Second, we can observe that the 
expected returns of models for Prosper dataset are relatively higher than those revealed in 
Table 4, whereas the results for Lending club dataset exhibits different pattern which can be 
explained by the example-dependence. Finally, the superiority of GBDT-based method is 
highlighted again. GBDT-based models become the best-performing model in most cases. 
Although DMLPs provide good performance on accuracy and Type I error rate for Prosper 
dataset, they provide comparatively worse misclassification cost and expected return. 

4.3.3. The effects of probability calibration

Probability calibration is important at both micro- and macro-level. In Bequé et al. (2017), 
the researchers claimed that poor probability calibration led to higher regulatory capital 
charge but only Brier score is employed to evaluate the effectiveness of the different cali-

Table 7. Results of out-of-sample validation for Lending club and Prosper dataset (cut-off value modi-
fication)

Model Accuracy Type I  
error rate

Type II  
error rate

Misclassification 
cost

Expected 
return (%)

Panel (a) Lending club dataset
LR 0.78554 0.67351 0.12668 58764.36 0.83653
RF 0.78112 0.66581 0.13015 59707.02 0.88515
GBDT 0.78813 0.68473 0.12515 58052.76 0.87890
XGBoost 0.78820 0.68498 0.12511 58035.38 0.87121
LightGBM 0.78834 0.68542 0.12503 57996.60 0.87538
CatBoost 0.78821 0.68499 0.12510 58031.76 0.86469
DMLP3 0.77605 0.69619 0.08343 59502.60 0.71538
DMLP5 0.65872 0.64134 0.30161 62583.00 0.31988

Panel (b) Prosper dataset
LR 0.73798 0.17307 0.53911 8827.44 1.15389 
RF 0.74008 0.17168 0.53480 8756.76 1.23911 
GBDT 0.74033 0.17151 0.53428 8748.24 1.25587 
XGBoost 0.72840 0.17940 0.55883 9150.24 0.90120 
LightGBM 0.73038 0.17928 0.55103 9042.88 1.05638 
CatBoost 0.74035 0.17150 0.53424 8747.64 1.24063 
DMLP3 0.75095 0.02970 0.93312 12984.90 0.68578 
DMLP5 0.75076 0.01763 0.96995 13384.84 0.42873 

Note: the best-performing model for each performance measure is highlighted in bold.
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bration techniques. The proposed regulatory scoring framework provides an opportunity 
to examine the conclusion empirically. We consider three probability calibration methods, 
namely rescaling algorithm (Saerens et  al., 2002), Platt scaling (Platt, 1999), and isotonic 
regression. The results of out-of-sample validation for the two datasets are shown in Tables 
8 and 9 for Lending club and Prosper dataset, respectively. The results partially support 
the findings of Bequé et  al. (2017): though probability calibration techniques can hardly 
improve performance on Brier score, we can observe a dramatic decrease on capital charge 
MAE and MSE after applying rescaling algorithm. However, similar phenomenon does not 
appear for Platt scaling and isotonic regression. Such a conclusion further encourages the 
financial institutions to put more attention on the post-modelling and consider the usage of 
probability calibration.

Table 8. Results of out-of-sample validation for Lending club dataset (with probability calibration)

Model Accuracy Brier 
score AUC Type I  

error rate
Type II  

error rate
H  

measure
Misclassification 

cost
Expected 

return (%)

Capital 
charge 
MAE

Capital 
charge 
MSE

AC of capital 
charge
(a = 5)

Panel (a) Rescaling algorithm

LR 0.84654 0.14127 0.67351 0.00013 0.99887 0.09678 70040.72 0.91107 0.00950 30.55354 3014.20753 

RF 0.84557 0.13986 0.66579 0.00307 0.98897 0.08664 69574.50 0.90958 0.00967 30.42315 3018.45326 

GBDT 0.84629 0.14070 0.68473 0.00148 0.99306 0.10829 69737.30 0.91135 0.00944 30.38520 2997.82847 

XGBoost 0.84643 0.14085 0.68498 0.00037 0.99830 0.10875 70019.50 0.91086 0.00944 30.42442 3002.73211 

LightGBM 0.84638 0.14078 0.68542 0.00071 0.99676 0.10907 69937.54 0.91089 0.00944 30.40394 2999.94925 

CatBoost 0.84643 0.14094 0.68500 0.00042 0.99795 0.10874 69999.06 0.91104 0.00945 30.46261 3005.51008 

DMLP3 0.83776 0.12995 0.59751 0.02235 0.93356 0.00014 67179.94 0.34152 0.01612 37.01539 3128.15293 

DMLP5 0.83955 0.12995 0.59786 0.01759 0.94816 0.00015 67835.30 0.21554 0.01612 37.01539 3128.15293 

Panel (b) Platt scaling

LR 0.84648 0.12418 0.67271 0.00000 1.00000 0.09607 70110.00 0.91073 0.01563 36.25147 2951.57440 

RF 0.84648 0.12630 0.65545 0.00000 1.00000 0.08128 70110.00 0.91073 0.01638 37.77691 2955.33769 

GBDT 0.84648 0.12596 0.67160 0.00000 1.00000 0.09516 70110.00 0.91073 0.01635 37.54886 3023.57015 

XGBoost 0.84648 0.12536 0.66361 0.00000 1.00000 0.08694 70110.00 0.91073 0.01647 38.53351 2977.99303 

LightGBM 0.84648 0.12596 0.66171 0.00000 1.00000 0.08641 70110.00 0.91073 0.01692 39.77797 2990.18325 

CatBoost 0.84648 0.12513 0.66999 0.00000 1.00000 0.09497 70110.00 0.91073 0.01651 38.42644 2982.56385 

DMLP3 0.84648 0.12895 0.58963 0.00000 1.00000 0.03729 70110.00 0.91073 0.01707 39.89636 3159.73029

DMLP5 0.84648 0.12966 0.57631 0.00000 1.00000 0.02993 70110.00 0.91073 0.01709 39.91439 3178.69865

Panel (c) Isotonic regression

LR 0.84639 0.12348 0.67214 0.00059 0.99731 0.09540 69966.74 0.91089 0.01570 38.22815 2861.31100 

RF 0.84647 0.12486 0.66698 0.00003 0.99989 0.08793 70104.88 0.91074 0.01603 37.37074 2861.31100 

GBDT 0.84648 0.12413 0.67757 0.00001 0.99996 0.09960 70107.98 0.91074 0.01613 37.60759 2952.05645 

XGBoost 0.84646 0.12416 0.67379 0.00004 0.99988 0.09536 70104.62 0.91070 0.01611 38.41297 2911.73153 

LightGBM 0.84647 0.12429 0.67404 0.00002 0.99994 0.09517 70107.24 0.91071 0.01628 38.44589 2935.55935 

CatBoost 0.84646 0.12365 0.67962 0.00003 0.99992 0.10179 70106.56 0.91070 0.01592 37.34962 2924.73405 

DMLP3 0.84648 0.12890 0.59638 0.00000 1.00000 0.03427 70110.00 0.91073 0.01698 39.96128 3160.42866

DMLP5 0.84648 0.12971 0.56237 0.00000 1.00000 0.03001 70110.00 0.91073 0.01701 39.99521 3175.16890
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Table 9. Results of out-of-sample validation for Prosper dataset (with probability calibration)

Model Accuracy Brier 
score AUC Type I  

error rate
Type II  

error rate
H  

measure
Misclassification 

cost
Expected 

return (%)

Capital 
charge 
MAE

Capital 
charge 
MSE

AC of capital 
charge
(a = 5)

Panel (a) Rescaling algorithm

LR 0.76153 0.18790 0.72630 0.03383 0.87593 0.16926 12239.68 –0.01687 0.05502 78.89706 1876.65208 

RF 0.76904 0.18479 0.72797 0.03653 0.83661 0.17231 11726.04 0.21190 0.05475 77.76578 1876.65208 

GBDT 0.77100 0.18207 0.74538 0.05135 0.78237 0.19684 11112.04 0.45110 0.05251 76.06836 1802.12176 

XGBoost 0.77200 0.18296 0.74700 0.04290 0.80461 0.19907 11343.58 0.37221 0.05300 76.41118 1819.39928 

LightGBM 0.77152 0.18259 0.74560 0.04555 0.79833 0.19739 11280.44 0.38999 0.05265 76.27768 1810.61248 

CatBoost 0.76891 0.18602 0.74386 0.02632 0.86893 0.19406 12080.38 0.08984 0.05385 77.02242 1860.73354 

DMLP3 0.75219 0.17790 0.63701 0.02535 0.94075 0.06733 13052.14 –0.29912 0.07721 105.35975 1842.40238 

DMLP5 0.75310 0.17995 0.61213 0.01484 0.96981 0.04830 13359.12 –0.35451 0.07856 108.86077 1855.46944 

Panel (b) Platt scaling

LR 0.76133 0.16280 0.72602 0.03274 0.88016 0.16889 12288.16 –0.03172 0.07027 99.73941 1616.49522 

RF 0.77039 0.16141 0.73076 0.03910 0.82306 0.17732 11563.00 0.26773 0.06966 94.76807 1616.49522 

GBDT 0.77219 0.15777 0.74727 0.03719 0.82160 0.20009 11526.86 0.31720 0.06795 93.95840 1562.00377 

XGBoost 0.77275 0.15849 0.74798 0.04839 0.78440 0.20061 11114.46 0.45403 0.06870 94.35359 1580.46417 

LightGBM 0.77240 0.15836 0.74762 0.04493 0.79663 0.20045 11251.98 0.40550 0.06906 94.70389 1585.42100 

CatBoost 0.77052 0.15909 0.74495 0.04895 0.79184 0.19560 11220.82 0.35785 0.06815 92.06064 1587.34018 

DMLP3 0.74853 0.17797 0.63399 0.03200 0.93514 0.06350 13032.00 –0.30606 0.07615 102.50805 1823.61049 

DMLP5 0.75726 0.18003 0.61195 0.00306 0.98937 0.04841 13526.12 –0.38269 0.07796 107.10701 1847.70186 

Panel (c) Isotonic regression

LR 0.76184 0.16291 0.72509 0.03772 0.86254 0.16787 12090.02 0.03407 0.06946 99.69042 1602.38034 

RF 0.76934 0.16125 0.72968 0.03304 0.84626 0.17575 11828.10 0.18119 0.06788 93.92102 1602.38034 

GBDT 0.77218 0.15780 0.74660 0.03787 0.81954 0.19899 11504.54 0.32514 0.06676 93.93477 1543.14608 

XGBoost 0.77234 0.15780 0.74714 0.04114 0.80867 0.19938 11384.06 0.36324 0.06630 93.66287 1537.71779 

LightGBM 0.77209 0.15775 0.74696 0.03827 0.81866 0.19945 11495.96 0.32127 0.06670 94.26824 1543.87741 

CatBoost 0.77050 0.15862 0.74418 0.04340 0.80919 0.19444 11410.36 0.29971 0.06613 91.49968 1550.52186 

DMLP3 0.75183 0.17848 0.62301 0.02423 0.94577 0.05546 13111.00 –0.30935 0.07641 104.58151 1848.93525 

DMLP5 0.75441 0.17965 0.61963 0.01659 0.95896 0.05184 13226.00 –0.32576 0.08009 112.25530 1842.02424 

4.4. Analysis on the interpretability 

Interpretability becomes an important issue when persuading senior managers in financial 
institutions to employ a credit scoring model based on a certain type of black-box model, 
such as SVM, RF, and GBDT. When we focus on the interpretability of black-box models, 
one may be curious on how the prediction is derived and which variables are crucial that 
lead a potential customer to be defaulted or not. Luckily, the SHAP approach proposed by 
Lundberg and Lee (2017) creates a unified framework to interpreted model prediction. SHAP 
combines definition of Shapley values in coalitional game theory and local surrogate model. 
The fundamental goal of SHAP is to calculate Shapley value of a feature by quantifying the 
average marginal contribution of it across the possible combinations of features. Since GBDT-
based methods provide superior performance as described in the previous subsections, we 
mainly focus on the interpretability of GBDT-based models in this subsection. TreeSHAP al-
gorithm (Lundberg et al., 2018), a variant of SHAP designed for tree-based ensemble model, 
is employed in this paper due to its low computational complexity. TreeSHAP can provide a 
Shapley value for each feature and features with large absolute Shapley values are regarded as 
important predictors. Following this idea, we calculate the mean value of the absolute Shapley 
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values for each feature across the dataset and visualize all the average absolute Shapley values 
in SHAP feature importance figure. Take XGBoost as an example. Figures 4 and 5 illustrate 
the 5-fold cross-validation SHAP feature importance of XGBoost under Lending club and 
Prosper datasets, respectively. From the two figures we can summarize the following findings.

First, predictors concerning loan characteristics (e.g., interest rate, loan amount, and 
term), borrowers’ solvency (income and its verification status) and creditworthiness (e.g., 
internal or external credit rating) play an important role in making predictions. These predic-
tors have been extensively applied in industry and academia and again highlights the useful-
ness of traditional data source for credit scoring modeling. Second, we clearly observe some 

Figure 4. 5-fold cross-validation SHAP feature importance of XGBoost under Lending club dataset. The 
SHAP feature importance is measured by average absolute Shapley values and visualized in descending order 

Figure 5. 5-fold cross-validation SHAP feature importance of XGBoost under Prosper dataset. The SHAP 
feature importance is measured by average absolute Shapley values and visualized in descending order 
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potential redundant variables, such as FICO and Delinquency in Lending club dataset and 
credit-lines-related variables in Prosper datasets since they score extremely low SHAP feature 
importance. However, the result is a bit counter-intuitive since FICO score is a well-reputed 
external credit scores and should be powerful in discriminating risky loan applications. The 
reasons may require further investigation. Finally, we assume that it is the collinearity that 
leads to the low SHAP feature importance score for some features (e.g., FICO), which is 
partially supported by the high correlation between interest rate and FICO score. The cor-
relation may be due to the fact that interest rates in Lending club highly depend on the credit 
scores of borrowers. 

5. Managerial implications

The regulatory scoring framework proposed in this paper provides a feasible way to quan-
tify the necessary regulatory capital charge and compare the corresponding performance of 
different models. Furthermore, the proposed comparison framework allows the financial 
institutions to determine the optimal level of regulatory capital and gives the regulators an 
opportunity to evaluate internal credit scoring models from a regulatory perspective. Con-
sequently, the managerial implications are organized from two-fold, namely the financial 
institutions and the regulatory agencies.

Due to the large amount of daily transactions, a minor improvement in credit scoring 
benefits the financial institutions considerably. As a result, predictive accuracy and profit-
ability of credit scoring models have been emphasized for a long time. The discussion parts 
of several academic studies (Lessmann et al., 2015; Xia et al., 2018a) mainly debated on the 
paradox of complex but accurate models and managers’ resistance. In this paper, we raise an-
other problem: does accurate credit scoring models really contribute to financial stability? As 
we all know, financial institutions must meet the requirement of capital charge otherwise they 
will be penalized. The minimum requirement of capital charge, however, seems to impose a 
great burden on financial institutions and limits their business volume. Such an opinion is 
obviously short-termism since capital charge ensures the stability of an individual financial 
institution or even the whole financial system, which entails much more economic benefit 
than losing some business. Moreover, the loss incurred by capital charge can be alleviated if 
the financial institutions maintain an appropriate level of capital charge. The conventional 
comparison framework and performance measures, however, focus only on the predictive 
accuracy and profitability and do not reflect the corresponding performance on regulato-
ry capital charge. Our empirical results even show a trade-off among predictive accuracy, 
profitability and regulatory capital charge. The proposed regulatory scoring provides a tool 
to quantify and compare the corresponding capital charge error of different credit scoring 
models. Using such a framework, the financial institutions can choose an ideal credit scoring 
system that achieves a good trade-off among different performance measures.

The proposed regulatory scoring can potentially benefit the regulators. The global credit 
market is booming, whereas there is a growing trend of tightening regulations on financial 
industry since the 2008 financial crisis. The ascent of credit may hinder asset quality and lead 
to financial fragility, which finally results in systemic risk when exogeneous shocks emerge 
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(Gorton & Ordonez, 2014). The proposed regulatory framework, however, bridge the gap 
between financial stability and credit scoring. The experimental results clearly show that 
accurate or profitable credit scoring models do not necessarily perform well within regula-
tory scoring framework. The comprehensive comparison of model performance supports the 
adoption of GBDT-based models when financial stability (represented by capital charge error 
measures) is the main focus of the regulators. Given that the credit scoring models are re-
quired to be transparent (Dastile et al., 2020), the concern of interpretability of GBDT-based 
models can be further alleviated by SHAP algorithms. In the RegTech era, regulators can 
even establish an early-warning model themselves by collecting data from multiple sources 
to handle the information asymmetry between regulators and financial institutions.

Conclusions 

Credit scoring has become a research hotspot due to its considerable economic benefits. 
However, conventional comparison method mainly evaluates models in terms of predictive 
accuracy or profitability, which only reflects the pursuit of financial institutions and is not 
suitable for regulatory usage. In this paper, we develop regulatory scoring, a novel com-
parison framework that quantifies and compares the capital charge errors of different credit 
scoring models. The proposed regulatory scoring is validated on two real-world datasets and 
several popular competing models are introduced into the experiment. The empirical results 
demonstrate that models with good predictive accuracy or profitability do not guarantee 
a sound performance on capital charge requirement error. Such a finding sheds light on 
the proposed regulatory scoring framework. GBDT-based models significantly outperform 
industry benchmarks (i.e., LR and RF) and DMLPs when taking predictive accuracy, profit-
ability and regulatory charge measures into consideration. Sensitivity analysis not only shows 
that superiority of GBDT-based models remains robust, but also present several interesting 
findings: though sampling techniques achieve a balanced distribution on two types of errors, 
they contribute little to profitability or capital charge errors. Cut-off value modification can 
better off label prediction and thus benefit misclassification cost and expected return. Regard-
ing probability calibration, a simple rescaling algorithm leads to better capital charge errors 
and demonstrates the potential of probability calibration in regulatory scoring framework. 
The analysis on the interpretability via TreeSHAP alleviates the concerns on transparency of 
GBDT-based models, confirms the important roles of loan characteristics, borrowers’ sol-
vency and creditworthiness as predictors, and reveal some potential redundant variables in 
establishing credit scoring models.

This paper remains some limitations. First, the proposed capital charge errors were not 
considered as fitness function during building credit scoring model. Second, the other risk 
parameters, such as EAD and LGD were assumed to be fixed. Third, only a few common 
sampling techniques are considered in this paper and some complex ones lack further in-
vestigation. Finally, due to data limitation, the experiment is performed on two mainstream 
online lending platforms. The efficiency of our proposal may require further confirmation 
under other types of financial institutions.
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Under the framework of regulatory scoring, future research can move in the following 
directions: first, seven types of simple but popular competing models are considered in this 
paper. It is interesting to examine the performance of other complex models on regula-
tory capital charge measures. Second, since only indirect CSL algorithm (i.e., cut-off value 
modification) is employed in this paper, one may introduce some direct CSL techniques and 
compare their performance with the prototype of this paper. Third, to simulate the practical 
modelling process, it would be interesting to estimate other risk parameters in future research 
within the framework of regulatory scoring. Finally, since the interpretability of credit scor-
ing models is a critical consideration of regulators, comprehensive models accomplished 
either by self-explanation or rule extraction should be further emphasized in future research.
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APPENDIX 

The lists of abbreviation and mathematical symbols can be found on supplementary online 
material.

Table A1. List of abbreviations

Abbreviation Meaning

AC Asymmetric cost
ADASYN Adaptive synthetic
ANN Artificial neural network
ARR Annualized rate of return
AUC Area under the receiver operating characteristic curve
ASRF Asymptotic single risk factor
CSL Cost-sensitive learning
DMLP Deep multilayer perceptron network
DT Decision tree
EAD Exposure at default
EL Expected loss
GBDT Gradient boosting decision tree
IRR Internal rate of return
LGD Loss given default
LR Logistic regression
MAE Mean absolute error
MSE Mean squared error
OSS One-side selection
PD Probability of default
P2P Peer-to-peer
RF Random forests
SHAP Shapley additive explanations
SMOTE Synthetic minority oversampling technique
SVM Support vector machine
UCI University of California Irvine
UL Unexpected loss
VaR Value at Risk
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Table A2. List of mathematical symbols

Symbol Description

C Cost parameter for the calculation of misclassification cost
EADj Exposure at default of the j-th observation in the test set
LGDj True loss given default of the j-th observation in the test set
 jLGD  Predicted loss given default of the j-th observation in the test set

M Maturity duration in years

 ,i jPD  Predicted probability of default on the j-th observation in test set (portfolio) provided 
by the i-th model

PDj True probability of default on the j-th observation in test set (portfolio)
Rj Value of the j-th credit in the portfolio
S Enterprise’s annual sales turnover in millions
Z Single systematic risk factor

,î jc  Predicted label on the j-th observation in test set provided by the i-th model

cj True label on the j-th observation in test set
 ,i jcc  Predicted capital charge on the j-th observation in test set provided by the i-th model

ccj True capital charge on the j-th observation in test set
e Natural logarithm
ne Number of observations in test set
ne0 Number of non-risky observations in the test set
ne1 Number of risky observations in the test set
nt Number of observations in training set
rj ARR of the j-th observation
a Confidence level for the calculation of Value at Risk
g Maturity adjustment function

ò Idiosyncratic risk factor
q Asymmetric cost parameter for the calculation of asymmetric cost of regulatory charge
p Decision threshold for label prediction
r Correlation coefficient
max (⋅,⋅) Maximizing function
I (⋅) Indicator function
L (⋅,⋅) Loss function
F (⋅) Probability density function of the standard normal distribution


