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Abstract. Probability interpretations play an important role in understanding decision makers’ 
(DMs) behaviour in decision making. In this paper, we extend hesitant fuzzy sets to probability-
hesitant fuzzy sets (P-HFSs) to enhance their modeling ability by taking DMs’ probabilistic prefer-
ences into consideration. Based on P-HFSs, we propose the concept of probability-hesitant fuzzy 
preference relation (P-HFPR) to collect the preferences. We then develop a consensus index to 
measure the consensus degrees of P-HFPR, and a stochastic method to improve the consensus 
degrees. All these results are essential for further research on P-HFSs. 
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Introduction

Torra (2010) developed the concept of hesitant fuzzy sets (HFSs) as an extension of Zadeh’s 
fuzzy sets (Zadeh 1965). Compared with Zadeh’s fuzzy sets, HFSs have the advantage in 
describing hesitancy experienced by the decision makers (DMs) in decision making, thus it 
becomes a hot research topic in recent years (Wang et al. 2016; Yu et al. 2016; Zhu and Xu 
2016; Zhu et al. 2012). 

However, in group decision-making problems, HFSs may be not adequate to represent 
the preferences of a decision group. For example, following Torra and Narukawa (2009)’s 
example in their Introduction, two DMs discuss the membership of x into a set A, one 
wants to assign 0.5 to x, whereas the other assigns 0.6. In such a case, these preferences can 
be represented by a set {0.5, 0.6}. Let’s consider another case: if one assigns 0.5 and 0.6, and 
the other assigns 0.6 and 0.7, what are their preferences? If we assume that the DMs are 
homogeneous, then the preferences should be {0.5, 0.6, 07}. But, if they are heterogenous, 
this representation of preferences loses the preference 0.6 assigned by one of the DMs. In 
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addition, we also cannot identify the preferences 0.5 and 0.7 from different DMs who may 
have different importance in decision making. 

In the most literature of representing preferences based on HFSs, the DMs are assumed 
to be homogenous, for example see Xia and Xu (2011a), Xu and Xia (2011), Liao et al. (2014) 
and Zhu et al. (2014). Therefore, to enhance the modeling ability of HFSs in group decision 
making, we extend HFSs to probability-hesitant fuzzy sets (P-HFSs) in this paper. On the 
other hand, consensus reaching is essential in group decision making (see Alonso et al. 2010; 
Dong et al. 2010; Herrera-Viedma et al. 2007). Based on P-HFSs, we develop probability-
hesitant fuzzy preference relations (P-HFPRs) and a method for the DMs to reach consensus 
on their preferences. 

The rest of this paper is organized as follows. Section 1 develops probability-hesitant 
fuzzy sets (P-HFSs) and probability-hesitant fuzzy preference relation (P-HFPR). Then, we 
propose a consensus index and a consensus improving method for P-HFPRs in Section 2 
and Section 3, respectively. Section 4 provides some necessary discussions. Conclusions are 
presented in the last Section. 

1. Probability expressions for preferences

In this section, we provide probability interpretation on HFSs to propose the new concepts 
of P-HFSs and P-HFPRs. Using probability distributions to represent the DMs’ preferences, 
we describe P-HFSs in Definition 1 as follows: 

Definition 1. Let X be a reference set, a P-HFS on X is in terms of a function that when 
applied to X returns a stochastic variable that takes values on a subset of [0,1]. 

If the stochastic variable in P-HFSs is discrete, then the P-HFS can be represented as 
follows:

 { , ( ) | }x xH x h p x X= < > ∈ ,    (1)

where hx(px) is a subset of [0,1], hx denotes the possible membership degrees of the element 
x∈X to the set H, and px denotes the possibilities of hx satisfying 1xp =∑ . 

It is clear that if without the px, P-HFSs reduce to the HFSs. Thus, we have the following 
proposition:

Proposition 1. The HFS is a special case of the P-HFS. 
For convenience, we call h(p) a probability-hesitant fuzzy element (P-HFE) indicated by

 
( ) { ( ) | 1,2, ,| ( ) |}l lh p h p h p= l = ,  (2)

where pl is the probability of the possible membership degree hl, satisfying | ( )|
1 1h p l

l p= =∑ . 
Remark 1: For a P-HFE, we assume that the possible membership degrees are with the 

same probability if their probabilities are not specified in the paper. In this case, the P-HFE 
reduces to the hesitant fuzzy element (HFE) (Xia and Xu 2011a). 

Based on P-HFEs, for the information loss problem mentioned in Introduction, since the 
DMs are assumed to be homogenous, their preferences can be now represented by a P-HFE, 
denoted as ( ) {0.5(0.25),0.6(0.5),0.7(0.25)}h p = , which provides a better description for all 
their preferences without the information loss problem. 
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Next, we develop the concept of P-HFPRs utilizing P-HFEs in Definition 2 as follows: 
Definition 2. Let 1 2{ , , , }nX x x x=   be a fixed set, then a P-HFPR H on X is represented 

by a matrix ( ( ))ij ij n nH h p X X×= ⊂ × , where ( ) { ( ) | 1, ,| ( ) |}l l
ij ij ij ij ij ijh p h p l h p= =   is a P-HFE 

indicating all the possible preference degree(s) of the objective xi over xj. Moreover, hij(pij) 
should satisfy the following conditions:

 
( ) ( ) 1l l

ij jih hr r = , 0.5iih = , ( ) ( )l l
ij jip pr r= , , 1,2, ,i j n=  ;   (3)

 
( ) ( 1)l l

ij ijh hr r +≤ ,
 
i j< ,

 
 (4)

where ( )l
ijhr  is the rth possible value in hij, and ( )l

ijpr  is the probability of ( )l
ijhr .

Note that a P-HFPR shall reduce to a hesitant fuzzy preference relation (HFPR) intro-
duced by Zhu and Xu (2013) if all P-HFEs in the P-HFPR reduce to HFEs. In addition, if we 
aggregate the possible values in a P-HFE, then the P-HFPR shall reduce to a fuzzy prefer-
ence relation (FPR) (Orlovsky 1978; Xu 2004). In this paper, we term the FPR in this case an 
expected P-HFPR defined as follows: 

Definition 3. Given a P-HFPR ( ( ))ij ij n nH h p ×= , where ( ) { ( ) | 1, ,| ( ) |}l l
ij ij ij ij ij ijh p h p l h p= =  . 

If 

 
| ( )|

1

ij ijh p
l l

ij ij ij
l

h h p
=

= ∑ ,   (5)

then = −1 ( 2)jw n  is called an expected P-HFPR. 

2. Consensus checking 

2.1. A consensus index to P-HFPRs

Motivated by the approach of developing the consistency index of HFPRs formalized in Zhu 
et al. (2014), we first define the distance of FPRs. According to the well-known Hamming 
distance measures and Euclidean distance measures (Diamond, Kloeden 1994; Kacprzyk 
1997), the Hamming distance and the Euclidean distance of FPRs can be defined as follows:

(1) The Hamming distance of two FPRs 1 1( )ij n nR r ×=  and 2 2( )ij n nR r ×= :

 
( )1 2 1 2

1 1

2( , )
( 1)

n n

H ij ij
j i i

d R R r r
n n = + =

= −
− ∑ ∑ .   (6)

(2) The Euclidean distance of R1 and R2:

 
( )

2

1 2 1 2
1 1

2( , )
( 1)

n n

E ij ij
j i i

d R R r r
n n = + =

= −
− ∑ ∑ .  (7)

Given a decision group that consists of m DMs. The DMs provide preferences repre-
sented by P-HFPRs ( ( ))ijk n nk ijkH h p ×= ( 1,2, , )k m=  . Then, we can obtain the corre-
sponding expected P-HFPRs ( )n nk ijkH h ×= ( 1,2, , )k m=   according to Definition 3. Let 

kl ( 1,2, , )k m=   be the weights of kH ( 1,2, , )k m=  . We aggregate ( )n nk ijkH h ×=  into 
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a FPR to represent the preferences of the decision group, denoted as ( )ij n nR r ×=  . We say 
( )ij n nR r ×=   a group FPR, then it satisfies 

 ij ijk kkr r= l∑ , , 1,2, ,i j n=  .  (8)

We select one P-HFPR, denoted by ( ( ))ij ij n nH h pt t t ×= , from ( ( ))ijk n nk ijkH h p ×=  
( 1,2, , )k m=  , and then stochastically sample a FPR ( )l l

ij n nH ht t ×=  following the possi-
bilities ijp t ( , 1,2, , )i j n=   from Ht, where l

ij ijh ht t∈ . Moreover, according to the distance 
measure in Eq. (6) or Eq. (7), we calculate the distance between lHt  and R . Let Ht be a 
preference space, then the consensus index that measures the consensus degree of Ht can be 
defined as the expected value of ( , )ld H Rt

 :

 
, 1

1( ( , )) ( , )
| |

n
l l

HH
iji j

E d H R d H R
h tt

t t
t=

 
 =
 
 

∑∏    (9)

which can be denoted as ( ( , ))l
H H

CI E d H R
t t

t=   in brief.
Since HFPRs are a special case of P-HFPRs, and the consensus index of P-HFPRs and 

the consistency index of HFPRs are developed based on a similar approach, the consensus 
thresholds of P-HFPRs can refer to the consistency thresholds of HFPRs formalized in Zhu 
et al. (2014). We use Table 1 to show the consensus thresholds of P-HFPRs with different sizes 
n following Zhu et al. (2014). Let 

H
CI

t
 be the consensus thresholds of the P-HFPR Ht . If 

H H
CI CI

t t
≤ , then Ht is with the acceptable consensus degree. Otherwise, it is unacceptable. 

Table 1. The consensus thresholds of P-HFPRs

n = 3 n = 4 n = 5 n = 6 n = 7 n = 8
0.0882 0.1211 0.1396 0.1510 0.1586 0.1643

2.2. Calculating the consensus index

To calculate the consensus index 
H

CI
t
, we now develop an algorithm using Monte Carlo 

simulation. With all the settings being the same as above, the algorithm is as follows: 

Algorithm 1. Calculating the consensus index 
Input: ( )ij n nR r ×=  , )( )ij n nijH h pt t ×t= , the maximum number of iteration P = 10 000, an 

initial value of iteration P = 1, an initial value of the consensus index 0
H

CI
t
= . 

Step 1: If p P≤ , then we stochastically sample a FPR ( )l l
ij n nH ht t ×=  from Ht. Otherwise, 

go to Step 4.
Step 2: Calculate the distance between lHt  and R , denoted as ( , )l

l
H

CI d H R
t

t=  . 
Step 3: Let lH H H

CI CI CI
t t t
= + , p = p + 1. Go to Step 2.

Step 4: /
H H

CI CI P
t t
= , then end. 

Output: The consensus index of Ht denoted by 
H

CI
t
. 
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Example 1. Assume two P-HFPRs as follows:

 

1

0.5 0.2 {0.4,0.5,0.6} 0.3
0.8 0.5 {0.6,0.7} 0.3

{0.6,0.5,0.4} {0.4,0.3} 0.5 {0.5,0.6}
0.7 0.7 {0.5,0.4} 0.5

H

 
 
 =  
  
 

,

 

2

0.5 0.8 0.3 {0.6,0.7}
0.2 0.5 0.3 0.8
0.7 0.7 0.5 {0.2,0.3,0.4}

{0.4,0.3} 0.2 {0.8,0.7,0.6} 0.5

H

 
 
 =  
  
 

.

Let l1 = 0.5 and l2 = 0.5 be the weights of the two P-HFPRs. According to Eqs. (5) and 
(8), we get a group FPR denoted by 

 

0.5 0.5 0.4 0.475
0.5 0.5 0.475 0.55
0.6 0.525 0.5 0.425
0.525 0.45 0.575 0.5

R

 
 
 =  
  
 

 .

Let Eq. (7) be the selected distance measure in the consensus index. According to Al-
gorithm 1, we calculate the consensus indices of the two P-HFPRs, that are 

1
0.1771

H
CI =  

and 
2

0.1759
H

CI = , respectively. According to Table 1, the threshold of the P-HFPRs with 

size four is 0.1211. Thus, both the consensus degrees of the two P-HFPRs are not acceptable. 

3. Consensus improving

3.1. Consensus improving for individual P-HFPRs

With the settings ( ( ))ijk n nk ijkH h p ×= ( 1,2, , )k m=   and ( )ij n nR r ×=   being the same as above, 
consensus improving of ( ( ))ij ij n nH h pt t t ×= ( kH Ht ∈ ) is to make it approximate R  until it 
is with the acceptable consensus degree. We stochastically sample a FPR ( )l l

ij n nH ht t ×=  fol-
lowing the probabilities ijp t ( , 1,2, , )i j n=   from Ht, where l

ij ijh ht t∈ . Based on R  and lHt , 
we define the improved lHt  as ( )l l

ij n nH ht t ×′ ′= , where

 
(1 )

(1 ) (1 )

( )

( ) ((1 ( ) )(1 ))

l
ij ijl

ij l l
ij ij ij ij

h r
h

h r h r

−a a
t

t −a −aa a
t t

′ =
+ − −



 

, 0 1≤ a ≤ , , 1,2, ,i j n=  .   (10)

It can be easily proven that 1l l
ij jih ht t′ ′+ =  (For example, a similar proof can be found in 

Xia and Xu (2011b).
In Eq., we term a as an accuracy parameter. The bigger value of a, the better consensus 

degree of lHt′ . Based on the symbols and discussion above, we now develop an algorithm to 
improve the consensus degree of Ht. 
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Algorithm 2. Consensus improving for an individual P-HFPR
Input: ( )ij n nR r ×=  , ( )ij n nH ht t ×= , a. 
Step 1: According to Algorithm 1, we can obtain 

H
CI

t
 with the inputs ( )ij n nR r ×=   and 

( )ij n nH ht t ×= . 
Step 2: If 

H H
CI CI

t t
> , then we stochastically sample a FPR ( )l l

ij n nH ht t ×=  from Ht. 
Otherwise, go to Step 7.

Step 3: According to Eq., we can obtain ( )l l
ij n nH ht t ×′ ′=  with lHt  and R . 

Step 4: Calculate the distance between lHt′  and R , denoted by ( , )l
l

H
CI d H R

t
t′
′=  . If 

lH H
CI CI

t t′
> , then go to the next step. Otherwise, go to Step 6.

Step 5: Let l lH Ht t′= , then go to Step 3. 
Step 6: Use lHt′  to replace the original lHt  in Ht, then go to Step 1.
Step 7: Let H Ht t′ = , and 

H H
CI CI

t t′
= , then end. 

Output: The improved P-HFPR Ht′  that is with the acceptable consensus degree, and the 
consensus index 

H
CI

t′
of Ht′ . 

Example 2. We continue with Example 1. Since H1 and H1 are not with the acceptable 
consensus degrees, we now improve the consensus degree of H1. Let H1, R  and a = 0.1 be 
the inputs of Algorithm 2, and Eq. (7) be the selected distance measure in the consensus 
index. Then we can obtain the improved P-HFPR, denoted as

 

1

0.5 0.3237 {0.4,0.4807,0.5463} 0.3782
0.6763 0.5 {0.5576,0.6609} 0.4119

{0.6,0.5193,0.4537} {0.4424,0.3391} 0.5 {0.4795,0.5532}
0.6218 0.5881 {0.5205,0.4468} 0.5

H

 
 
 ′ =  
  
 

, 

and its consensus index, denoted as 
1

0.1110
H

CI
′
= . 

3.2. Consensus improving for multiple P-HFPRs

Based on Algorithms 1 and 2, we now develop Algorithm 3 to improve consensus degrees of 
multiple H-HFPRs. The symbols in Algorithm 3 are the same as mentioned before. 

Algorithm 3. Consensus improving for multiple P-HFPRs
Input: ( ( ))ijk n nk ijkH h p ×= , lk, 1,2, ,k m=  , a. 
Step 1 : Based on Hk and lk, we calculate the group FPR ( )ij n nR r ×=   by Eqs. and . 
Step 2: According to Algorithm 1, we can obtain 

kH
CI  with Hk and R . 

Step 3: Select the Ht satisfying max{ | 1,2, , }
kH H

CI CI k m
t
= =  . If 

H H
CI CI

t t
> , then go 

to the next step. Otherwise, go to Step 6. 
Step 4: According to Algorithm 2, we can get Ht′  with ( )ij n nR r ×=   and Ht.
Step 5: Let H Ht t′= , then go to Step 1.
Step 6: Let k kH H′ =  and 

k kH H
CI CI

′
= , then end.
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Output: The improved P-HFPRs kH ′  that are with the acceptable consensus degrees, and 
the consensus indices 

kH
CI

′
 of kH ′ . 

Example 3. Let H1 and H2 in Example 1 be the inputs of Algorithm 3, a = 0.1 and Eq. (7) 
be the selected distance measure in the consensus index. Following Algorithm 3, we can get 
the improved P-HFPRs, denoted as ( 1,2)kH k′′ = , and their consensus indices, denoted as 

( 1,2)
kH

CI k
′′

= , as follows:

 

1

0.5 0.3061 {0.4,0.5,0.5316} 0.3679
0.6939 0.5 {0.5767,0.6435} 0.3970

{0.6,0.5,0.4684} {0.4233,0.3565} 0.5 {0.4924,0.5404}
0.6321 0.6030 {0.5076,0.4596} 0.5

H

 
 
 ′′ =  
  
 

;

 

2

0.5 0.6939 0.3393 {0.5767,0.6435}
0.3061 0.5 0.3679 0.7111
0.6607 0.6321 0.5 {0.2663,0.3116,0.4}

{0.4233,0.3565} 0.2889 {0.7337,0.6884,0.6} 0.5

H

 
 
 ′′ =  
  
 

,

where 
1

0.1169
H

CI
′′
= , 

2
0.1174

H
CI

′′
= . Clearly, the two P-HFPRs are with the acceptable 

consensus degrees according to the Table 1. 

4. Discussion

4.1. Accuracy of Algorithm 1

As an iterative method, Algorithm 1 is performed by Monte Carlo simulation in the Matlab 
environment. As discussed by Zhu and Xu (2014), the outcomes accuracy of the iterative 
method depends on the total number of iterations. To achieve the accuracy d with 95% 
confidence degree for each outcome, the required number of iterations is

 2 21.96 / 4K d= ,  (11)

where we set d = 0.01 as the error limit. For Algorithm 1, we perform 10000 iterations in this 
paper to guarantee at least 95% confidence degree for the obtained consensus index. 

4.2. Accuracy parameter

The values of the accuracy parameter a formalized in Eq. (10) affects the outputs of Algo-
rithms 2 and 3. A smaller value of a implies that the more original preferences the output 
P-HFPRs preserve. However, it simultaneously requires more iterations to obtain the out-
comes. Following Example 2, for different values of a, we give the values of 

1H
CI

′
 and the 

numbers of the iteration p obtained by Algorithm 2 in Table 2. 
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Table 2. The values of 
1H

CI
′
 and p with different values of a

a 0.01 0.05 0.1 0.2 0.5

1H
CI

′ 0.1211 0.1198 0.1185 0.1160 0.1007

p 51 10 5 3 1

From Table 2, it is clear that when a decreases, the numbers of iteration increase, and the 
consensus degree of the output P-HFPR more approximates the consensus threshold 0.1211. 
In this case, the output P-HFPR can mostly preserve original preferences. 

4.3. Consistency checking for P-HFPRs

Following the approach we developed in this paper to calculate the consensus index, we can 
similarly develop a consistency index for P-HFPRs. Given a P-HFPR ( ( ))ij ij n nH h p ×= , we 
stochastically sample a FPR, denoted by ( )l l

ij n nH h ×= , from H, where l
ij ijh h∈ , , 1,2, ,i j n=  . 

According to Eq., we first get the expected P-HFPR of H, denoted by ( )ij n nH h ×= . By Theo-
rem 1 formalized in Xia and Xu (2011b), we then transform H  into a consistent FPR, de-
noted by ( )ij n nR r ×′ ′=  . By Eq.(6) or Eq.(7), we calculate the distance between lH  and R′ , 
denoted as ( , )l

l
H

CI d H R′=  . Next, let H be a preference space, then the consistency index 
that measures the consistency degree of H can be defined as follows: 

 
, 1

1( ( , )) ( , )
| |

n
l l

H H
iji j

E d H R d H R
h=

 
 ′ ′=
 
 

∑∏  ,    (12)

which can be denoted as ( ( , ))l
H HCII E d H R′=   in brief.

Since the algorithm that calculates the consistency degree of H is similar to Algorithm 1, 
we term it Algorithm 4 and omit the detailed derivation for clarity. To compare the consis-
tency index of HFPRs given by Zhu et al. (2014), we give a numerical example as follows: 

Example 4. We take a HFPR from Zhu et al. (2014), which is also the P-HFPR H2 in 
Example 1:

 

2

0.5 0.8 0.3 {0.6,0.7}
0.2 0.5 0.3 0.8
0.7 0.7 0.5 {0.2,0.3,0.4}

{0.4,0.3} 0.2 {0.8,0.7,0.6} 0.5

H

 
 
 =  
  
 

.

Using Algorithm 4 to deal with H2, we can get the value of the consistency degree 
of H2, denoted as 

2
=0.1865

H
CII , against 0.1781 given by Zhu et  al. (2014). Zhu et  al. 

(2014)’s method requires three steps to obtain the consistency index, that are estimating 
an optimized parameter, normalization, and solving an optimization model. However, we 
can follow Algorithm 4 as an easier approach to get the consistency index with an ap-
proximate result. 
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4.4. An example

The energy channels are significant for a country in transporting power, oil and gas etc. 
Five experts are invited to estimate the strategic positions of five energy channels. Let ix
( 1,2, ,5)j =   indicate the five energy channels, respectively, and iH ( 3,4, ,7)k =   be the 
P-HFPRs constructed by the preferences provided by the five experts, respectively, denoted 
as follows:

 

3

0.5 0.3 {0.6(0.4),0.7(0.6)} 0.4 0.6
0.7 0.5 {0.4,0.5} 0.3 0.2

{0.4(0.4),0.3(0.6)} {0.6,0.5} 0.5 0.7 0.5
0.6 0.7 0.3 0.5 0.2
0.4 0.8 0.5 0.8 0.5

H

 
 
 
 =
 
 
 
 

,

 

4

0.5 0.4 0.6 0.3 0.7
0.6 0.5 0.6 0.4 0.4
0.4 0.4 0.5 0.5 0.6
0.7 0.6 0.5 0.5 0.3
0.3 0.6 0.4 0.7 0.5

H

 
 
 
 =
 
 
 
 

,

5

0.5 {0.2(0.4),0.3(0.6)} 0.6 0.3 0.6
{0.8(0.4),0.7(0.6)} 0.5 0.6 0.4 0.3

0.4 0.4 0.5 0.7 {0.3,0.4}
0.7 0.6 0.3 0.5 {0.4(0.7),0.5(0.3)}
0.4 0.7 {0.7,0.6} {0.6(0.7),0.5(0.3)} 0.5

H

 
 
 
 =
 
 
 
 

,

 

6

0.5 0.3 0.4 {0.6,0.7} 0.2
0.7 0.5 0.2 {0.3,0.4} 0.6
0.6 0.8 0.5 0.9 {0.3,0.4}

{0.4,0.3} {0.7,0.6} 0.1 0.5 0.6
0.8 0.4 {0.7,0.6} 0.4 0.5

H

 
 
 
 =
 
 
 
 

,

 

7

0.5 {0.3,0.4} {0.6,0.7}
{0.7,0.6} 0.5 {0.4,0.5}
{0.4,0.3} {0.6,0.5} 0.5
{0.6,0.5} {0.7,0.6} {0.3(0.5),0.2(0.25),0.1(0.25)}

0.4 0.8 {0.6(0.25),0.5(0.25),0.4(0.5)}

H




=
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{0.4,0.5} 0.6
{0.3,0.4} 0.2

{0.7(0.5),0.8(0.25),0.9(0.25)} {0.4(0.25),0.5(0.25),0.6(0.5)}
0.5 0.2
0.8 0.5










.

Let Hi (i = 3, 4, …, 7) be the inputs of Algorithm 3, 0.2il = (i = 3, 4, …, 7) be the weights 
of the five P-HFPRs, respectively, a = 0.1 and Eq. (7) be the selected distance measure in the 
consensus index. Then according to Algorithm 3, we find that only H6 needs improving to 
achieve the acceptable consensus degree. For convenience, we still use H6 in the following to 
indicate the improved P-HFPR as follows: 

6

0.5 0.3068 0.4613 {0.5518,0.6749} 0.2985
0.6932 0.5 0.2759 {0.3157,0.3959} 0.5095
0.5387 0.7241 0.5 0.8540 {0.3281,0.4112}

{0.4482,0.3521} {0.6843,0.6041} 0.1460 0.5 0.5133
0.7015 0.4905 {0.6719,0.5888} 0.4867 0.5

H




=














.

In addition, the obtained consensus indices of Hi (i = 3, 4, …, 7) by Algorithm 3 are denot-
ed by 

3
0.0704

H
CI = , 

4
0.1066

H
CI = , 

5
0.0775

H
CI = , 

6
0.1362

H
CI =  and 

7
0.0827

H
CI = .

To aggregate the preferences in Hi (i = 3, 4, …, 7), we utilize a hesitant fuzzy averaging 
(HFA) operator introduced by Xia and Xu (2011a). We aggregate the preferences in each 
line of Hi (i = 3, 4, …, 7), denoted by a HFE hij (i = 3, 4, …, 7; j = 1, 2, …, 5), to indicate the 
aggregation results of the energy channels xj under Hi, and then aggregate hij to get hj that 
indicates the aggregated preferences of energy channel xj . With hj and the score function 
given by Xia and Xu (2011a), we calculate the scores of the five energy channels, denoted as 

1( ) 0.4946s h = , 2( ) 0.4905s h = , 3( ) 0.5503s h = , 4( ) 0.4969s h =  and 5( ) 0.6927s h = , respec-
tively. Since a higher score indicates more importance of an energy channel, it is clear that 
the third energy channel is the most important channel. 
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Conclusions

In this paper, we extend HFSs to P-HFSs. As a new tool in group decision making, P-HFSs 
can better describe the preferences of DMs without information loss. For the applications of 
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P-HFSs in group decision making, we develop P-HFPRs and a consensus index to measure 
the consensus degrees of P-HFPRs. The consensus index obtained by Monte Carlo simula-
tion is reliable with adequate iterations. For inconsistent P-HFPRs, we give an algorithm 
to improve their consensus degrees until they are acceptable. More importantly, with the 
preferences characterized by distributions, we can represent big-data preferences by P-HFEs. 
Consequently, P-HFSs is a new tool in decision making, and shall play an important role 
nowadays with the development of social media, IT technology and data science. 
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