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Abstract. An analysis of urbanization’s effects on energy efficiency (EE) is presented in this paper. 
We develop an input-oriented data envelopment analysis method to estimate EE in the presence 
of non-convex metafrontier, and examine how urbanization affects China’s EE using data from 
251 cities for the period 2003 to 2016. The findings indicate that demographic urbanization (DU), 
land urbanization (LU), and economical urbanization (EU) significantly exert positive effects 
on EE. Specifically, estimates from a Tobit model with random effects show that a unit increase 
in DU, LU and EU would result in an increase in EE by 0.15, 0.15 and 0.45, respectively. These 
results are robust across econometric specifications, including fixed and correlated random effects 
Tobit models. Sensitivity analysis of quasi-DID and stochastic frontier estimations also support 
our findings. The policy implications suggest policymakers should steer urbanization and energy 
consumption towards becoming more market-oriented and take advantage of how energy mar-
ket structure complements energy structure, cultivating new energy industries that can greatly 
improve EE.

Keywords: urbanization, energy efficiency, non-convex metafrontier, Tobit model, stochastic 
frontier analysis.
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Introduction

Economic growth in China has progressed greatly since reform and opening up. However, 
the growth mode of extensive economic mainly relies on factors of production such as labor 
and resources, is largely at the expense of the environment, resulting in serious damage to 
the ecological environment and low utilization rate of renewable energy. This unsustainable 
development mode urges us to explore new green economic growth modes. Policymakers 
propose that we should accelerate the urbanization of agricultural transfer population and 
support the economic transformation and development of resource-based areas. Therefore, it 
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is necessary to give full play to the positive role of urbanization in improving environmental 
problems and promoting sustainable economic development, organically combine urban-
ization with environmental protection, continuously eliminate regional economic growth 
differences, and promote energy transformation and high-quality economic development.

Compared with 56.16% in the world, as of 2020, the urbanization population (% of total 
population) in China was reached 61.43% (see Appendix, A). Different regions have different 
levels of urbanization, however, it also has different energy demand (Yu et al., 2020). Thus, 
there are obvious regional heterogeneity in energy efficiency in varied regions of China. The 
regions with high energy efficiency are still concentrated in the southeast coastal areas, while 
the vast areas in the central and western regions are still in a relatively backward position. 
With the continuous transfer of rural population to cities and towns, the population and 
economic volume are increasing, and the agglomeration level is constantly improving, which 
optimizes the energy consumption structure and improves the energy efficiency.

In terms of scale, China’s urbanization development speed far exceeds that of developed 
countries in the same period, but in terms of quality, there is still a significant difference 
between China’s urbanization level and developed countries. Although urbanization brings 
high-speed economic growth dividend, it also consumes a lot of energy. For example, the 
construction of urban transportation infrastructure requires a lot of energy such as electric-
ity and gas. However, whether urbanization is conducive to improving energy efficiency is 
remain unanswered.

To fill this gap, we attempt to examine ongoing practice of urbanization construction 
in Chinese cities by examining the pattern and dynamics of urbanization and its impacts 
on energy efficiency. The purpose is threefold, namely, (1) to identify the pattern and pro-
cesses of urbanization in Chinese cities; (2) to evaluate the relationship between urbanization 
and energy efficiency using econometrics analysis method apart from stylized fact analysis; 
(3) to ascertain whether the measures of urbanization levels have significant influence on 
the results. This paper will provide policy implications for developing countries to promote 
new urbanization and energy transformation, especially those developing countries that are 
similar to China’s actual situation. Moreover, it has policy guidance for policymakers and 
practioners to actively explore manners to improve energy efficiency. In addition, urbaniza-
tion has played a pivotal position in an economic system. Thus, it is of vital importance to 
investigate the relationship between urbanization and energy efficiency.

The rapid movement of rural populations to urban regions and the transition of indus-
tries from primary to secondary (tertiary) tiers, sees urbanization affecting energy efficiency 
(EE) through different channels. A growing volume of research strongly points to the affect 
urbanization has on EE. Until now, this research has followed two main paths. The first 
involves the evaluation of EE, making use of parametric or nonparametric techniques. The 
most commonly employed methods are data envelopment analysis (DEA) and stochastic 
frontier analysis (SFA) (He et al., 2018; Boyd & Lee, 2019; Haider & Mishra, 2021).

Mardani et al. (2017) reviewed the DEA models employed worldwide for the develop-
ment of EE and found that although there are a variety of procedures and methods employed, 
there is still significant agreement among the empirical results. For example, China’s EE 
shows significant regional heterogeneity, whose factors can be considered by conducting 
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metafrontier analysis in the empirics (Wang et al., 2013; Zhang et al., 2015; Ouyang et al., 
2021). However, the resulting metafrontiers produced by extant studies were found to be con-
vex. This includes the “infeasible input-output combinations” (Tiedemann et al., 2011; Huang 
et al., 2013) that in turn lead to efficiency scores being underestimated when compared to 
non-convex metafrontiers and biases while estimating the technology gap ratio (Afsharian, 
2017; Asfsharian & Podinovski, 2018). Yu et al. (2018) extended the convex metafrontier to 
include non-convex ones and measured the ecological efficiency of China’s industrial sector 
based on the proposed model. Using a DEA model incorporating non-convex metafrontier 
and undesirable outputs as well as super efficiency (Anderson & Peterson, 1993) in slacks-
based measures (Tone, 2001) (NCMeta-US-SBM)1, we propose a comprehensive and accurate 
way to compute China’s EE at the prefecture level.

The second path involved examining the actual impacts on EE resulting from urbaniza-
tion from an econometric perspective, with the associated research providing mixed results. 
For instance, according to Markandya et al. (2006), making use of an analysis of 12 Eastern 
European countries undergoing a transition to market economies, urbanization is seen to ex-
ert a positive impact on EE. In a study of how urbanization affects provincial EE for the case 
of China during the period 2003–2014, Li et al. (2018) found that urbanization has an overall 
negative impact on EE. On the contrary, based on a sample set of 22 emerging economies, 
Rafiq et al. (2016) found urbanization to be associated with decreased EE, while Sheng et al. 
(2017) showed from their study of 78 countries that urbanization is also negatively associated 
with EE. Furthermore, Bilgili et al. (2017) reported that in India and China, urbanization 
leads to increased EE, although it results in decreased EE in Nepal, Vietnam, the Philippines, 
South Korea and Thailand. Furthermore, Lv et al. (2020) found that the urbanization effects 
on both short and long run EE are significantly negative in China.

The objective of this work is to present a more comprehensive DEA model for measuring 
EE. We also attempt to provide an empirical assessment of what affects urbanization has on 
the EE of China. This is done making use of a dataset derived from 251 Chinese cities for 
the period 2003 to 2016.

The rest of this paper is arranged as follows. Section 1 presents the development of an 
input-oriented NCMeta-US-SBM model to measure EE, providing an econometric strategy 
for investigating the impact of urbanization. Data used for the empirical analysis is presented 
in Section 2, with Section 3 summarizing the main findings of this analysis. The last Section 
concludes the paper.

1 Although the abbreviation is the same as the model proposed by Yu et al. (2018), their model is based on non-
oriented which commonly used to measure ecological efficiency, while the model used in this study is mainly on 
input-oriented which adopted to measure EE. This is because energy consumption is treated as the input variable, 
so the input-oriented DEA model should be adopted when measuring EE.
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1. Methodology

1.1. Measuring energy efficiency with input-oriented NCMeta-US-SBM model

Assuming that the decision making units (DMUs) and technology hegerogeneous groups2 
are N and G, and Ng DMUs in Group g, we obtain 
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where lgn represents the nonnegative weighting vector of the nth DMU in Group g in terms 
of the convex metafrontier, which is encapsulated within all group frontiers (Battese et al., 
2004).

The non-convex metafrontier production technology could also be written as:
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where ggn represents a nonnegative weighting vector of the nth DMU in Group g in terms of 
the non-convex metafrontier. Assuming VRS, the optimal objective value for the oth DMU in 
Group g′ (o = 1, 2, ..., Ng; g′ = 1, 2, ..., G) in terms of the non-convex metafrontier is given by:

2 We divided our sample into three groups (i.e., eastern region, central region and western region) based on the 
geographical location and economic growth mode, which was also employed in previous studies.
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where ′
x
mg os  are the input slacks. The super efficiency model and the standard model differ 

in that the DMUgo in the super efficiency model’s reference set is excluded (Andersen & 
Petersen, 1993), which is then denoted by n ≠ o.

In Model (3), the resulting optimal values are sometimes treated as a measure of EE, 
however, they are related to the averages of the slacks of all inputs, while maximizing the av-
erage improvements in all of the relevant factors for the evaluated DMU in order to reach the 
non-convex metafrontier. To estimate EE, we should concentrate on the slack in the energy 
sector rather than the average slack of all inputs.Assuming that the actual energy input is xe, 
with the energy slacks referring to the non-convex metafrontier as estimated by Model (3) is 
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Eq. (4) defines our SBM based energy efficiency measure for the empirical analysis. Since 
−≤ <0 nc meta

e eS x , thus (− ∈ 0,1nc metaEE .

1.2. The Panel Tobit model

Since EE estimated in this study falls in ( 0,1 , there may be a bias and inconsistencies in 
the resulting ordinary least square (OLS) estimates with a censored dependent variable. This 
type of data can be dealt with by the Tobit regression, a limited variable model, by using 
Maximum Likelihood Estimation (MLE). To estimate how urbanization affects EE, a range 
of limited variable model specifications are used to deal with the problems that arise from 
possible endogeneity issues. This sees the baseline Tobit model being specified as:
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where EEit represents EE for city i in year t, xit denotes the control variables that affect EE, 
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and x is the parameter vector. The key variables of interest, urit, measures urbanization for 
city i in year t and q denote the parameter vector. Finally, dt indicates the year-fixed effects, 
pi covers the unobserved heterogeneity, and mit is the normal distributed error term.

Including fixed effects in a limited dependent variable model leads to the well-known 
incidental parameters problem in MLE (Greene, 2011). This sees the coefficients of the fixed 
effects Tobit model being likely to result in inconsistent slope coefficients estimates. Another 
approach other than the Tobit model is to employ a more general random effects mode. 
This allows the correlation between pi and xi (Wooldridge, 2010), where it assumes that: 

( )p ϕ+ η σ2~ ,i i i ax N x , where σ2
a  is the variance of ai in p =ϕ+ η+ i i ix a . Considering these 

factors, Eq. (5) may be rewritten as:
= x + q+ d + p +m*
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where ix  is a set of time-constant explanatory variables for each time step, representing the 
panel averages of all of the model’s time-varying variables. Combining this to a traditional 
random effects Tobit model will in turn solve the unobserved heterogeneity problem, provid-
ing consistent model parameter values (Wooldridge, 2010).

2. Data

2.1. Input and output variables for the DEA model

To comprehensively and accurately measure EE, all input and output variables that are rel-
evant to the energy sector need to be taken into account, dependent of course on data avail-
ability. These variables, which are used to estimate EE, are outlined below.

Capital stock. This variable is estimated from the annual fixed investment data making 
use of the perpetual inventory method (PIM), where the nominal investment data is first 
defined relative to the 2003 CNY (Chinese Yuan) by employing province-specific investment 
deflators (Huang et al., 2018).

Labor force. The total number of employees, depending on how much data is available, for 
each prefecture-level city was treated as a proxy for this parameter. We use linear interpola-
tion method to estimate the missing data.

Land input. The total land area of each administrative region was used as the proxy since 
this data was available.

Energy consumption. Huang et al. (2018) first estimated the primary energy consumption 
of 191 prefecture-level cities for the period of 2003–2013 using the bottom-up method. We 
estimated the primary energy consumption of the rest of the prefecture-level cities based on 
the same approach and extended the study to the years 2003 to 2016.

Desirable output. Gross city product (GCP) was selected as the proxy for this parameter 
(using 2003 as the base year).

Undesirable outputs. The various environmental pollutants form the proxy for the unde-
sirable outputs. These pollutants have similarities and differences, so a composite environ-
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mental pollution index (EPI) which makes use of the entropy method and considers four 
pollutants, i.e., wastewater, SO2, soot-dust and CO2, was developed so as to reduce the effect 
of extreme or singular values.

2.2. Interested and control variables in econometric framework

Urbanization can be categorized into three groups, namely demographic urbanization (DU), 
land urbanization (LU), and economically driven urbanization (EU). In addition to the rapid 
migration of people from rural to urban settings, urbanization also is characterised by the 
continuous expansion of construction land in urban areas, resulting in secondary and ter-
tiary industries replacing primary industries. Due to data availability, DU is measured as the 
proportion of urban population of total population, and LU is proxied as the proportion of 
land used for urban construction in land used for urban development. Finally, the proportion 
of the secondary and tertiary industries value added to the GCP is treated as a proxy for EU.

Following previous studies, we further control for the economic development (Sadorsky, 
2013), the foeign direct investment (FDI) (Al-Mulali & Tang, 2013), the technological inno-
vation (Kou & Liu, 2017), the industrial structure (Elliott et al., 2017), and the urban levels of 
income (Huang & Hua, 2018). These variables are proxied by real per capita GCP (GCP), the 
proportion of FDI that makes up GCP (SFDI), the technological innovation index (TECH), 
the proportion of the secondary industry’s value added in the GCP (SIND), and the dispos-
able income of urban residents (DINC).

2.3. Data descriptions

The sample consists of 251 prefectures in China (2003–2016), and cities located in Tibet, 
Taiwan, Hong Kong, and Macau are excluded due to unavailability of data. Data was col-
lected from several official sources, including China City Statistical Yearbook (2004–2019), 
China Energy Statistical Yearbook (2004–2019), China Statistical Yearbook (2004–2019), etc. 
Table 1 presents descriptive statistics of various variables, while the independent variables’ 
correlation coefficients are listed in Table 2.

Table 1. Descriptive statistics of various variables

Variables Unit Obser-
vations Mean Standard 

deviation Minimum Maximum

DEA 
model Capital Billion CNY 3514 1696.4220 2477.0770 27.7746 30734.9700 

Labor 10000 
persons

3514 52.2813 75.9818 5.4900 986.8700 

Land km2 3514 16547.6500 23060.9100 1113.0000 253356.0000 
Energy 10000 Tons 

of SCE
3514 1507.9060 1510.5200 46.5611 12100.0000 

GCP Billion CNY 3514 1317.8330 1825.3890 41.1659 20728.7000 
EPI – 3514 2.8458 4.8614 0.0356 181.2617 
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Variables Unit Obser-
vations Mean Standard 

deviation Minimum Maximum

Econo-
metric 
model

EE – 3514 0.5532 0.2308 0.1008 1.0000 
DU – 3499 0.0570 0.0707 0.0043 1.0000 
LU – 3460 0.0627 0.0374 0.0001 1.000
EU – 3514 0.8621 0.0890 0.5011 0.9997 
PGCP CNY/person 3514 2.9523 3.1972 0.2390 32.9734 
SFDI – 3514 0.1492 0.1622 0.0000 0.9383 
TECH – 3514 0.0783 0.4120 0.0000 10.6137 
SIND – 3514 0.4921 0.1081 0.1495 0.9097 
DINC CNY, 

logarithm 
value

3514 10.2302 0.5958 2.2834 11.7179 

Note: SCE denotes standard coal equivalent.

Table 2. Correlation coefficients among independent variables

EE DU LU EU PGCP SFDI TECH SIND

DU 0.0810*** 1.0000
LU 0.1180*** 0.1270*** 1.0000
EU –0.0370** 0.4420*** 0.0710*** 1.0000
PGCP 0.2660*** 0.6310*** 0.1060*** 0.5470*** 1.0000
SFDI 0.3530*** 0.3600*** 0.2430*** 0.3120*** 0.4730*** 1.0000
TECH 0.1230*** 0.4420*** –0.0030 0.2170*** 0.4650*** 0.2410*** 1.0000
SIND –0.2120*** 0.0580*** 0.0000 0.6050*** 0.1580*** –0.0220 –0.1410*** 1.0000
DINC 0.1180*** 0.1790*** 0.0220 0.4600*** 0.5250*** 0.1120*** 0.2640*** 0.1550***

Note: *** p < 0.01, ** p < 0.05, * p < 0.1.

3. Empirical results

3.1. Stylized facts

The urban construction land (UCL, 100 km2), urban residential population (URP, million per-
sons), and per capital energy consumption (PEC, Tons of SCE/person) in China shows a trend 
of synchronous growth (see Figure 1). More specifically, UCL has increased from 28972 km2  
to 52761 km2 with average annual growth rate of 4.72%, URP has increased from 338 mil-
lion persons to 403 million persons with an average annual growth rate of 1.36%, and PEC 
has increased from 1.53 per capita Tons of SCE to 3.15 per capita Tons of SCE, with average 
annual growth rate of 5.71%. Evidently, the fluctuation of UCL expansion is relatively large, 
and formed two turning points of slowing down in 2004 and 2008. It can be inferred that 
the growth rate of URP lags behind that of UCL, resulting in an imbalanced development of 
DU and LU over the long term.

End of Table 1
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Based on the estimation of EE, it is clear that there is a positive relationship between DU 
(LU) and EE, while a negative correlation is observed between EU and EE (see Figure 2). On 
the basis of the available findings and stylized facts, there is no evidence that LU or DU exert 
significant positive impacts on EE, or EU exert significant negative impacts on EE. Because 
of these factors, conducting an empirical analysis of urbanization’s impact on EE is necessary 
to provide a comprehensive assessment.

Figure 1. Evolution of UCL, URP and PEC in China over 2003–2016

Figure 2. Correlation between urbanization and energy efficiency
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3.2. Impacts of urbanization on energy efficiency

The panel Tobit model follows a random effects (RE) scheme with regards to the linear panel 
data model, where it is assumed that there is no correlation between the time-invariant error 
term and the independent variables. Table 3 presents the results from the panel Tobit model 
with RE. It is seen that urbanization contributes to the advancement of EE in China, indicat-
ing that urbanization has a significant and positive effect on EE. Specifically, if DU, LU, and 
EU increased by one unit, then EE would have increased by 0.15, 0.15, 0.45, respectively. 

Table 3. Estimation results of Tobit models with random effects

Variables (1) (2) (3) (4) (5) (6) (7)

DU 0.1881** 0.1814** 0.1317+ 0.1245
(2.0881) (1.9829) (1.4698) (1.3720)

LU 0.1832** 0.2221*** 0.1715** 0.2154**
(2.1488) (2.5899) (2.0237) (2.5297)

EU 0.5729*** 0.5911*** 0.5657*** 0.5858***
(5.7008) (5.8347) (5.6183) (5.7734)

AME(DU) 0.1504** 0.1451** 0.1024+ 0.0970
(2.1000) (2.0000) (1.4800) (1.3800)

AME(LU) 0.1476** 0.1777** 0.1346** 0.1678**
(2.1500) (2.5800) (2.0200) (2.5200)

AME(EU) 0.4491*** 0.4598*** 0.4439*** 0.4563***
(5.8500) (5.9800) (5.7600) (5.9200)

PGCP 0.0169*** 0.0180*** 0.0154*** 0.0174*** 0.0148*** 0.0158*** 0.0153***
(8.5591) (9.0909) (7.7191) (8.7638) (7.4464) (7.8815) (7.6444)

SFDI –0.0175 –0.0210 –0.0429 –0.0292 –0.0467 –0.0527 –0.0581
(–0.4255) (–0.5069) (–1.0450) (–0.7027) (–1.1316) (–1.2682) (–1.3938)

TECH 0.0339*** 0.0333*** 0.0339*** 0.0329*** 0.0335*** 0.0328*** 0.0326***
(3.8740) (3.6676) (3.8726) (3.6486) (3.8569) (3.6361) (3.6347)

SIND –0.3817*** –0.3895*** –0.5912*** –0.3811*** –0.5867*** –0.5901*** –0.5850***
(–8.5105) (–8.7016) (–10.3905) (–8.4776) (–10.3253) (–10.3320) (–10.2597)

DINC 0.0207*** 0.0172*** 0.0032 0.0198*** 0.0052 0.0026 0.0046
(3.8658) (3.1960) (0.5401) (3.6893) (0.8754) (0.4403) (0.7628)

Constant 0.4747*** 0.5122*** 0.2825*** 0.4704*** 0.2381*** 0.2840*** 0.2361***
(9.1007) (9.8984) (4.3176) (8.9858) (3.6139) (4.3300) (3.5749)

Year effects No No No No No No No
City effects No No No No No No No
Observa-
tions

3499 3501 3514 3486 3499 3501 3486

Log-
Likelihood

1544.1245 1529.1329 1550.2440 1540.3200 1561.1908 1544.9816 1557.0294

Wald Chi2 477.5000 460.8200 505.2600 472.3200 515.9100 497.0800 509.9300

Notes: 1) Z-statistics in parentheses; 2) *** p < 0.01, ** p < 0.05, * p < 0.1, + p < 0.15;  
3) AME denotes average marginal effects.
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Considering that two types of urbanization are possible to develop simultaneously, we ex-
amine if the outcome still indicates a significant impact of urbanization on EE (see columns 
(4)–(6) of Table 3). Exactly what we expected, EE is significantly and positively associated 
with PGCP, TECH, and DINC, but significantly negatively associated with SIND. It is evident 
from SFDI coefficients that foreign direct investment negatively affects EE thus indicating 
that there may be pollution haven effects as a result of the process of urbanization in China.

Next, the fixed effects Tobit model which controls for both yearly and city effects is con-
sidered in order to estimate the impacts of urbanization on EE (see Table 4). It may be seen 

Table 4. Estimation results of Tobit models with fixed effects

Variables (1) (2) (3) (4) (5) (6) (7)

DU 0.1346+ 0.1219 0.1178 0.1053
(1.5026) (1.3380) (1.3294) (1.1711)

LU 0.2606*** 0.3007*** 0.2463*** 0.2897***
(3.2946) (3.7783) (3.1338) (3.6652)

EU 0.6397*** 0.6603*** 0.6297*** 0.6519***
(6.0132) (6.2004) (5.9155) (6.1213)

AME(DU) 0.1223+ 0.1108 0.1070 0.0957
(1.5000) (1.3400) (1.3300) (1.1700)

AME(LU) 0.2367*** 0.2732*** 0.2238*** 0.2633***
(3.3000) (3.7800) (3.1300) (3.6700)

AME(EU) 0.5810*** 0.6000*** 0.5721*** 0.5924***
(6.0100) (6.2000) (5.9200) (6.1200)

PGCP 0.0135*** 0.0146*** 0.0139*** 0.0143*** 0.0135*** 0.0146*** 0.0143***
(5.8842) (6.3423) (6.0977) (6.2179) (5.9495) (6.3787) (6.2561)

SFDI 0.0199 0.0078 0.0119 0.0071 0.0119 0.0002 -0.0007
(0.4622) (0.1802) (0.2765) (0.1638) (0.2781) (0.0055) (-0.0167)

TECH 0.0336*** 0.0320*** 0.0331*** 0.0318*** 0.0327*** 0.0313*** 0.0311***
(4.1465) (3.8142) (4.0875) (3.8057) (4.0683) (3.7564) (3.7513)

SIND –0.1113** –0.1139** –0.3474*** –0.1055** –0.3467*** –0.3416*** –0.3390***
(–2.2842) (–2.3474) (–5.6375) (–2.1639) (–5.6303) (–5.5307) (–5.4922)

DINC 0.0122 0.0133 0.0085 0.0121 0.0072 0.0086 0.0071
(1.1614) (1.2588) (0.8039) (1.1444) (0.6845) (0.8127) (0.6746)

Constant 0.2711** 0.2896** –0.2038 0.2637** –0.2436* –0.2044 –0.2437*
(2.2647) (2.4505) (–1.4163) (2.1954) (–1.6787) (–1.4172) (–1.6761)

Year effects Yes Yes Yes Yes Yes Yes Yes
City effects Yes Yes Yes Yes Yes Yes Yes
Observa-
tions

3499 3501 3514 3486 3499 3501 3486

Log-
Likelihood

2321.8912 2314.5122 2333.4508 2322.5407 2340.9797 2331.8933 2341.1477

Wald Chi2 11887.8200 11812.7600 12006.1600 11852.2100 12045.6800 11956.2000 12006.5600

Notes: 1) Z-statistics in parentheses; 2) *** p < 0.01, ** p < 0.05, * p < 0.1, + p < 0.15;  
3) AME denotes average marginal effects.
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that for all the controls, the average marginal effects of DU (LU, EU) shows significance at 
the 15% (1%, 1%) level, with the corresponding coefficient equal to 0.1223 (0.2367, 0.5810), 
indicating DU (LU, EU) and EE have a positive relationship. Compared to the RE model, no 
major change in the coefficient for urbanization is seen. These results indicate that urbaniza-
tion is conducive to improving China’s EE. Additionally, it appears that EU exerts a greater 
impact on EE than both DU and LU, ceteris paribus. We also find that EE promotion will 
benefit from economic development and technology innovation.

Finally, to check whether our findings still hold without the time-invariant error term 
being uncorrelated with the independent variables assumption, the correlated random effects 
(CRE) approach is applied to the Tobit model (Wooldridge, 2008). In particular, the means 
of the independent variables are controlled for, and then Eq. (9) is determined (see Table 5). 
The empirical results imply that there is not a significant difference between the CRE and 
RE Tobit models.

Table 5. Estimation results of Tobit models with correlated random effects

Variables (1) (2) (3) (4) (5) (6) (7)
DU 0.3306*** 0.3346*** 0.2869*** 0.2889***

(3.1657) (3.1080) (2.8285) (2.7762)
LU 0.1679* 0.2092** 0.1558* 0.2014**

(1.9384) (2.4011) (1.8139) (2.3358)
EU 0.8004*** 0.8231*** 0.7940*** 0.8179***

(7.3062) (7.5113) (7.2323) (7.4500)
AME(DU) 0.2730*** 0.2766*** 0.2372*** 0.2391***

(3.1600) (3.1000) (2.8200) (2.7700)
AME(LU) 0.1386* 0.1730** 0.1288* 0.1667**

(1.9400) (2.4000) (1.8100) (2.3300)
AME(EU) 0.6615*** 0.6805*** 0.6568*** 0.6768***

(7.2400) (7.4400) (7.1700) (7.3800)
PGCP 0.0161*** 0.0166*** 0.0145*** 0.0167*** 0.0144*** 0.0149*** 0.0149***

(7.5028) (7.6545) (6.7567) (7.7011) (6.7406) (6.8996) (6.9235)
SFDI –0.1376*** –0.1505*** –0.1448*** –0.1495*** –0.1419*** –0.1551*** –0.1537***

(–2.9732) (–3.2003) (–3.1432) (–3.1946) (–3.0944) (–3.3260) (–3.3160)
TECH 0.0375*** 0.0378*** 0.0383*** 0.0365*** 0.0369*** 0.0373*** 0.0361***

(4.2175) (4.0793) (4.2979) (3.9791) (4.1818) (4.0501) (3.9617)
SIND –0.3567*** –0.3664*** –0.6305*** –0.3550*** –0.6251*** –0.6292*** –0.6230***

(–7.3979) (–7.5875) (–10.5251) (–7.3446) (–10.4699) (–10.4579) (–10.3922)
DINC 0.0203*** 0.0174*** –0.0041 0.0193*** –0.0027 –0.0048 –0.0034

(3.6524) (3.1234) (–0.6537) (3.4679) (–0.4356) (–0.7510) (–0.5454)
Constant 2.5499*** 2.4193*** 1.9669** 2.5684*** 2.2151*** 1.9813** 2.2543***

(3.5220) (3.3402) (2.5465) (3.5484) (2.8069) (2.5635) (2.8557)
Year 
effects

No No No No No No No
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Variables (1) (2) (3) (4) (5) (6) (7)
City 
effects

No No No No No No No

Observa-
tions

3499 3501 3514 3486 3499 3501 3486

Log-
Likelihood

1580.7651 1560.8780 1593.6349 1576.9146 1609.2742 1587.9946 1604.8927

Wald Chi2 566.4500 537.6400 608.9100 560.9000 631.8800 599.7700 625.0300

Notes: 1) Z-statistics in parentheses; 2) *** p < 0.01, ** p < 0.05, * p < 0.1, + p < 0.15;  
3) AME denotes average marginal effects.

3.3. Sensitivity analysis

The robustness of the empirical results determined in the previous sections are now assessed. 
On the one hand, the quasi-DID method (Nunn & Qian, 2011; Yang et al., 2017) is used to 
examine both the average and dynamic effects of urbanization on the EE as a result of the 
New National Urbanization Plan (NNUP) (2014–2020), outlined by the Chinese government 
in 2014 (see Table 6). It can be observed that the DU × I and LU × I coefficients are sig-
nificantly positive, which implies that the NNUP’s implementation since 2014 has positively 
promoted EE, especially for DU and LU. The dynamic effects of the NNUP on EE also show 
the positive effects of the policy, with urbanization exerting a positive influence on EE for 
the period from 2014 to 2016. Regarding the relative strength of the influence, it appears that 
LU exerts a greater impact on EE than DU and LU.

Table 6. Estimation results of quasi-DID method

Variables (1) (2) (3) (4) (5) (6)
Lag(EE) 0.8618*** 0.8586*** 0.8633*** 0.8561*** 0.8611*** 0.8525***

(277.4570) (301.9917) (376.8476) (288.7997) (285.6983) (263.8392)
DU × I 0.0509***

(8.4447)
DU × I2014 0.1749***

(44.4050)
DU × I2015 –0.0670***

(–10.4122)
DU × I2016 0.3062***

(25.2976)
LU × I 1.8548***

(22.1609)
LU × I2014 0.4216***

(28.6566)
LU × I2015 3.8632***

(7.4189)
LU × I2016 1.2838***

(13.9980)

End of Table 5
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Variables (1) (2) (3) (4) (5) (6)
EU × I 0.0160

(1.4315)
EU × I2014 0.0275***

(26.9173)
EU × I2015 0.0034

(0.2848)
EU × I2016 0.0569**

(2.1576)
Constant –0.3339*** –0.3285*** –0.3355*** –0.2791*** –0.3281*** –0.2698***

(–34.8366) (–33.0480) (–39.7780) (–33.2648) (–37.0225) (–31.0312)
Control 
variables

Yes Yes Yes Yes Yes Yes

Year effects Yes Yes Yes Yes Yes Yes
AR (1) –3.7900*** –3.7600*** –3.8100*** –3.7900*** –3.8000*** –3.7400***
AR (2) 1.0300 1.0500 1.0100 1.0400 1.0200 1.0400
Hansen test 
chi2

226.8900 224.6700 226.6700 232.1100* 226.3000 228.1700*

Observations 3253 3253 3251 3251 3263 3263

Notes: 1) Z-statistics in parentheses; 2) *** p < 0.01, ** p < 0.05, * p < 0.1.

Furthermore, as an alternative EE evaluation approach, we utilize a panel data stochastic 
frontier analysis (SFA) model in order to examine how urbanization impacts on EE. Both 
production and efficiency functions are estimated in this model. Table 7 presents the results 
of the SFA models and the technical inefficiency terms assumed to exponential distribution 
(see Appendix B for further details). Across all econometric specifications, the estimated co-
efficients of DU, LU and EU show how urbanization imposes significant negative impacts on 
technical inefficiency, indicating it exerts positive effects on EE (see Eq. (C.4)). Given these 
results, it may be said that the evidence generally supports our findings.

Table 7. Estimation results of SFA models with dependent variable technical inefficiency

Variables (1) (2) (3) (4) (5) (6) (7)
DU –3.2914** –3.0792* –3.1813* –2.3773

(–2.1180) (–1.7342) (–1.7540) (–1.4205)
LU –9.7293*** –8.6985*** –8.7435*** –8.1994***

(–3.9485) (–3.5960) (–3.6413) (–3.4009)
EU –3.9751** –3.0220** –1.6413 –1.7229

(–2.4202) (–2.0896) (–0.7888) (–0.8410)
Control 
variables

Yes Yes Yes Yes Yes Yes Yes

Observations 3499 3501 3514 3486 3499 3501 3486
Log-Likelihood –20253.9090 –29153.2210 –1348.5294 –28263.5300 –7613.0266 –25623.699 –24498.096

Wald Chi2 538.4500 397.5100 6036.6000 395.0400 1425.5900 444.3200 451.6000

Note: 1) Z-statistics in parentheses; 2) *** p < 0.01, ** p < 0.05, * p < 0.1.

End of Table 6
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Conclusions and policy implications

Analyzing efficiency and productivity with heterogeneity technology is important.Analyzing 
the metafrontier can be useful for considering heterogeneity technology, however, most of the 
prior literature develops convex metafrontiers that include infeasible combinations of inputs 
and outputs, leading to biased estimates.Given that, methodologically, the convex metafron-
tier is extended to a non-convex metafrontier, with China’s EE being determined based on 
a sample set of 251 prefecture-level cities for the period 2003 to 2016. Empirically, we also 
explore how urbanization influences EE using Tobit regression methods. The following policy 
implications are thus derived from our findings, and summarized as follows.

We find that DU, LU, and EU all have a positive impact on EE. Specifically, estimates from 
the Tobit model with random effects show that a unit increase in DU, LU, and EU would 
result in an increase in EE by 0.15, 0.15 and 0.45, respectively. These results are robust across 
econometric specifications, including fixed and correlated random effects Tobit models. Sen-
sitivity analyses of stochastic frontier analysis also support our findings.

The New Normal in China is characterized by urbanization as the engine for economic 
and social development. In order to improve China’s EE, it is critical to promote the urban-
ization strategy and use the dividend released by its urbanization. Through urbanization, 
it is also possible to promote and realize sustainable development. With reference to the 
empirical findings, we suggest the following policy implications and suggestions. On the 
one hand, it is imperative that policymakers take advantage of the complementarity between 
energy structure and energy market to improve the role that urbanization plays in the energy 
sector, cultivating new energy industries that can greatly improve EE. During the process 
of urbanization, the spillover effects of energy technologies are vital, transferring superior 
energy resources to industrial sectors and regions with comparative advantages, and generat-
ing new energy structures that may result. The high traction to the urbanization process and 
the promotion role of urbanization in EE improvement should be formed and strengthened 
continuously. The development of urbanization requires further improvement of endogenous 
power mechanisms. On the other hand, multidimensional heterogeneities, such regional and 
city size differences, when considering urbanization should be made full use of during the 
process of introducing high-quality energy. To improve China’s EE, the mobility and ag-
glomeration of high-end energy industries, that is, the consideration of environmental pro-
tection and energy-saving measures, as well as innovations in information technology and 
new sources of energy (vehicles), should be promoted. Furthermore, energy consumption/
demand levels and energy (types) endowments in different cities also need to be highlighted 
during the process of new urbanization. The governors should attach great importance to 
the coordinated development between demographic urbanization, land urbanization, and 
economic urbanization and EE, especially to the complementary and synergistic effects of 
all kinds of urbanization.

The following aspects will be studied further. We suggest an extension to the DEA model 
to measure and compare productivity changes across cities within a group as measured by 
the Malmquist-Luenberger productivity indicator.These indicators have the same non-convex 
metafrontier and are comparable and provide insightful information. Moreover, the spatial 
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effects and distance decay effects of urbanization on EE could also be verified using spatial 
econometrics models, e.g., the SLX model. In addition, it is also a worthy direction to analyze 
the channels and mechanisms through which urbanization affects energy efficiency.
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APPENDIX

A. Evolution of urban population (% of total population) during 1960–2020

Figure A1. Evolution of urban population (% of total population) in China and the world  
during 1960–2020 (data sources: the World Bank)
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B. SFA-based energy efficiency for sensitivity analysis

Following Battese and Coelli (1995), we investigate the impact of urbanization on energy 
efficiency which estimated by the panel data stochastic frontier function. Assuming the pro-
duction possibility function ( )f x  and the efficiency level < ε ≤0 1 , then we have the actual 
output ( )= εy f x . By introducing the random impact on production output, our output 
frontier function is expressed as:

 ( )= ⋅ε ⋅ vy f x e ,  (B.1)

where ( )f x  is assumed to follow the Cobb-Douglas production function in such form as 
( ) βββ= 

10 1
n

nf x e x x . By taking natural logarithm of both sides of Eq. (B.1), we can obtain:

 = =

= β + β + ε + = β + β + −∑ ∑0 0
1 1

ln ln ln ln ,
N N

n n n n
n n

y x v x v u  (B.2)

where = − ε >ln 0u  is a non-negative random variable capturing technical inefficiency, and 
v is random error independent of u whose distribution is Exponential. When panel data are 
used for estimation, the panel data stochastic frontier model can be expressed as:

 
=

= β + β + −∑0
1

ln ln , 
N

it n nit it it
n

y x v u
 

(B.3)

where i and t denote year and city, respectively.
Practically, urbanization does not directly enter the production function, it may affect 

energy efficiency through technical inefficiency term. Ignoring these factors may lead to 
inaccurate estimation results. Given that, the technical inefficiency equation is estimated as:

 = d + d0it i itu Z ,  (B.4)

where Zit denotes urbanization and other influence factors closely affecting the energy ef-
ficiency and its coefficients is di. Since the energy efficiency is calculated as ( )−ˆitexp u , ur-
banization and other influence factors exert positive (negative) impacts on energy efficiency 
if di < 0 (di > 0). 

We use capital stock (K), labor force (L), and energy consumption (E) as input factors, 
gross city product (GCP) as output to construct the panel data stochastic frontier model 
based on Jorgenson et al. (1987), which specified as:

 = β +β +β +β + −0 1 2 3ln ln ln lnit it it it it itGCP K L E v u ,  (B.5)

where lnGCPit is the logarithm term of real GCP with constant price at 2003 for city i in year 
t. K is measured using perpetual inventory method adopted by Ke and Xiang (2012) by tak-
ing 2003 as the base year. The total number of employees was used as proxy to labor force L. 
Additionally, E is energy input measured as total primary energy consumption and the esti-
mation procedure is referred to Huang et al. (2018). K, L, and E are all computed using their 
logarithm terms. v and u denote random error and technical inefficiency explained above.


