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Abstract. With the rapid energy consumption increase in China’s non-ferrous metal industry 
(NMI), there are inequalities in energy-related CO2 emissions among the sub-sectors. In this 
paper, a meta-frontier decomposition analysis was proposed for decomposing inter-structural 
low-carbon economic development inequalities among 29 sub-sectors in China’s NMI from 2004 
to 2018 into 11 components, including four new factors, i.e., energy- and output- oriented tech-
nological gaps and scale economies. In addition, an I(CI) index is constructed to measure the 
inter-inequalities of low-carbon economic development among NMI and decomposed from the 
static and dynamic perspectives, respectively. Results show that: (1) I(CI) index was in a down-
ward trend during 2004–2010, while remained stable during 2010–2018; (2) the energy-oriented 
technological gap (ETG) was the key promoters to increase I(CI); (3) the potential energy in-
tensity (PEI) was the primary inhibiting factor for I(CI); (4) the government can reduce the 
inter-inequalities by narrowing the technological gap and reducing potential energy intensity in 
the energy market.

Keywords: low-carbon economy, non-ferrous metal industries, decomposition analysis, inter-
structural heterogeneities, scale economy.

JEL Classification: Q01, Q43, Q54, Q56.

Introduction

Global economic development has been accompanied by massive energy-related CO2 emis-
sions, leading to climate change, sea-level rise, and extreme weather, etc. In 2018, China 
accounted for 29% of global CO2 emissions, making it the largest CO2 emitter. However, 
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China’s carbon intensity in 2018 decreased by 45.8% compared to 2005. Carbon intensity can 
reveal the evolution and predict the development prospects of low-carbon economic devel-
opment. Since 2000, the carbon intensity of energy consumption has increased significantly 
in most regions of the world (Raupach et al., 2007). However, China’s low-carbon economic 
policies have been effective, and several studies have demonstrated a decreasing trend in Chi-
na’s carbon intensity (Fang & Deng, 2011; Li et al., 2019; Wang & Wang, 2020). In addition, 
many scholars have further investigated the driving factors of carbon intensity change in 
China from the national level (Fan et al., 2007; Wang et al., 2020; Pang et al., 2021) and the 
provincial level (Huang, 2018; Wu et al., 2019; Pan et al., 2022). Based on the study of carbon 
intensity evolution, scholars have predicted the future changes in China’s carbon intensity 
(Guo et al., 2016; Chang & Chang, 2016; Li et al., 2017). For example, Wang et al. (2018) 
predicted that China’s carbon intensity would decrease by 42.39%, 43.74%, and 42.67% from 
the 2005 level under the unconstrained scenario, the policy-constrained scenario, and the 
minimal external costs of carbon emissions scenario, respectively. 

From the above evolutionary studies, scholars have found carbon intensity inequalities in 
China. For example, Guan et al. (2014) found that China’s carbon intensity increased by 3% 
overall between 2002 and 2009, while the carbon intensity of the dominant sector showed 
the least change over the study period compared with other sectors. There were many other 
studies on the inequalities (Zhou et  al., 2020; Wang & Zheng, 2020; Lin et  al., 2021). To 
measure the carbon intensity inequalities in China, some studies have constructed inter-
provincial Gini coefficients of carbon intensity (Du et al., 2020; Zhang et al., 2020; Cheng 
et al., 2021). Wu et al. (2018) found that the Gini coefficients steadily increased from 1995 
to 2014. It indicated that the inter-provincial carbon intensity inequalities in China were 
gradually increasing. 

To further study the determinants of carbon intensity inequalities, scholars often use 
Index Decomposition Analysis (IDA) and Structural Decomposition Analysis (SDA) to de-
compose the carbon intensity inequalities. The SDA method is mainly based on the input-
output model to decompose the carbon intensity impact of input-output coefficients. Xiao 
et al. (2020) used the SDA method to decompose the carbon intensity inequalities among 
countries globally from 2010 to 2014 and found that the carbon emission coefficient was 
the main driving factor for inequalities. However, the application of the SDA method must 
be based on input-output tables, so the data is relatively difficult to obtain. Therefore, the 
SDA method is often limited by the data. As for the IDA method, it can decompose carbon 
intensity into the form of cumulative multiplication and then weight it according to the dif-
ferent factors (Wang et al., 2017a; Xu et al., 2021; Tian et al., 2021). Therefore, it can fully 
decompose without residual values and is simple to use. Based on the IDA method, scholars 
have found that energy intensity (Li & Ou, 2013; Chen et al., 2019; Chu et al., 2021), scale 
economy (Li et al., 2016; Song et al., 2019a), energy structure (Wang et al., 2013; Liu & Gong, 
2021), and carbon emission efficiency (Yang et al., 2020) are important influencing factors 
for the carbon intensity inequalities. 

The above approaches failed to take into account the impact of technology and efficiency 
factors on carbon intensity inequalities, which may play important roles (Zheng et al., 2019; 
Zhou et al., 2019; Zhang & Ke, 2022). However, it can be solved by the production decom-
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position analysis (PDA) method, which is able to measure the technology and efficiency 
effect (Lin & Du, 2014). Based on an integrated decomposition analysis model combining 
the IDA method and PDA method, Liu et al. (2020) found that potential energy intensity 
was the main influencing factor on low-carbon development inequalities. In addition, the 
influencing factors also included the decline of energy intensity and the advances in produc-
tion technology (Zang et al., 2021).

The non-ferrous metal industry (NMI) is an important basic material industry in China, 
while the process of mass production and consumption of non-ferrous metals is accom-
panied by a large amount of CO2 emissions. According to the China Carbon Accounting 
Database, from 2000 to 2018, CO2 emissions from the NMI increased by 580 million tons 
per year, with an average annual growth rate of 11%. In 2018, the NMI generated about 650 
million tons of carbon emissions, accounting for 6.5% of China’s total CO2 emissions. It can 
be seen that the overall CO2 emissions of the NMI were large and show a high growth trend. 
Therefore, it is crucial to clarify the past successes and shortcomings of the low-carbon eco-
nomic development in NMI. It can provide scientific evidence for China’s NMI to propose 
specific measures for future low-carbon economic development.

The NMI includes smelting industry (SI), mining industry (MI), and alloy manufacturing 
and rolling processing (AM&RP), which are subdivided into 29 sub-sectors. Since different 
types of nonferrous metals have different characteristics and production processes, the deter-
minants for the carbon intensity are also different. Therefore, the inequalities of low-carbon 
development within the NMI are widespread. If it is not controlled, the sub-sectors with high 
carbon intensity may fall into a vicious circle, thus generating more CO2 emissions. It is not 
conducive to the coordinated low-carbon economic development of China’s NMI, thereby 
hindering the completion of CO2 emissions reduction targets.

As for China’s NMI, it is characterized by high energy consumption, high CO2 emissions, 
and high carbon intensity (Wang & Chandler, 2010). Studying the evolution of low-carbon 
economic development in the NMI can help clarify past successes and shortcomings. There-
fore, the pathways to implement new low-carbon policies can be found. In studying the low-
carbon economic development of the NMI, many scholars have used scenario analysis (Wang 
et al., 2016), decoupling analysis (Wang & Feng, 2019; Song et al., 2019b), Logarithmic Mean 
Divisia Index (LMDI) method (Shi & Zhao, 2016; Wang et al., 2017b), SDA method (Huang 
et al., 2020), and Malmquist analysis (Chen & Lin, 2020). Among them, the decomposition 
analysis method can be used to study the determinants of carbon intensity changes. For ex-
ample, Ren and Hu (2012) found that economy size, energy structure, energy intensity, and 
utility structure had an impact on CO2 emissions in the NMI. Wang and Feng (2018) used 
the LMDI method to decompose energy consumption changes into energy structure effect, 
energy intensity effect, industry structure effect, labor productivity effect, and economy scale 
effect. It can be seen that the low-carbon economic development of NMI has been widely 
concerned and studied.

In the aforementioned studies, scholars have found that there were heterogeneities in 
the low-carbon economic development in China’s NMI. However, there is no study on the 
evolution and its determinants of CO2 emissions intensity inter-inequalities of China’s NMI. 
Therefore, the contributions of this study come are twofold: (1) this study uses an extended 
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PDA model to decompose CO2 emissions intensity inequalities, by considering heterogene-
ities and scale economy; (2) this study constructs the inter-inequalities index of low-carbon 
development within China’s NMIs and analyzes its determinants from the static and dynamic 
perspectives, respectively.

The arrangement of other sections in this paper is as follows: Section 1 introduces the 
Methodology and data; Section 2 carries out the empirical analysis; and the results and policy 
recommendations are elaborated in the last Section. 

1. Methodology and data

The PDA method will be introduced in Sections 1.1; Section 1.2 describes the construction 
and decomposition of the low-carbon development inter-inequalities index of NMI; and 
Section 1.3 presents the details on the data source and processing.

1.1. The production-theoretical decomposition analysis (PDA)

Assuming that the overall carbon intensity of NMI is CIm, and CIi represents the carbon 
intensity of the ith sub-sector. It can be decomposed as follows:
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Combined with the distance function, EIi can be written as follows:

= = ×,

,

( , , , , | )
( , , , , | )

G
i E i i i i i ii

i G
i i Y i i i i i i

E D l k e y c CRSE
EI

GDP GDP D l k e y c CRS

× ×, ,

, ,

( , , , , | ) ( , , , , | )
( , , , , | ) ( , , , , | )

G t
E i i i i i i E i i i i i i

t t
E i i i i i i gE i i i i i i

D l k e y c CRS D l k e y c CRS
D l k e y c CRS D l k e y c CRS

× ×,
,

,

( , , , , | )
( , , , , | )

( , , , , | )

t
gE i i i i i i t

gE i i i i i it
gE i i i i i i

D l k e y c CRS
D l k e y c VRS

D l k e y c VRS

× ×,,

, ,

( , , , , | )( , , , , | )
( , , , , | ) ( , , , , | )

tt
gY i i i i i iY i i i i i i

G t
Y i i i i i i Y i i i i i i

D l k e y c CRSD l k e y c CRS
D l k e y c CRS D l k e y c CRS

× =,

, ,

( , , , , | ) 1
( , , , , | ) ( , , , , | )

t
gY i i i i i i

t t
gY i i i i i i gY i i i i i i

D l k e y c VRS

D l k e y c CRS D l k e y c VRS

× × × × × × × × ;PEI EST TGE SEE PEE PT TGY SYE PYE  (2)

= = × × × × × × × × × ×∑ .i
i ij ij i i i i i i i i i

i j

C
CI CF ES PEI EST TGE SEE PEE PT TGY SYE PYE

GDP
 

= = × × × × × × × × × ×∑ .i
i ij ij i i i i i i i i i

i j

C
CI CF ES PEI EST TGE SEE PEE PT TGY SYE PYE

GDP
                                                 

(3)



1026 L.-X. Sun et al. Measuring the inter-structural low-carbon economic inequalities from perspectives ...

Among them, CRS represents the constant return to scale, and VRS represents the variable 
return to scale; , ( , , , , | )G

E i i i i i iD l k e y c CRS  is energy-oriented distance function based on global 
meta-frontier data envelopment analysis (DEA); , ( , , , , | )t

E i i i i i iD l k e y c CRS  means energy-ori-
ented distance function based on single phase meta-frontier DEA; , ( , , , , | )t

gE i i i i i iD l k e y c CRS  
and , ( , , , , | )t

gE i i i i i iD l k e y c VRS  represent energy-oriented distance function based on sin-
gle phase group-frontier DEA in CRS and VRS, respectively; , ( , , , , | )G
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for the specific solution process); , , , , , , , , , ,CF ES PEI EST ETG SEE PEE PT TGY SYE PYE rep-
resent carbon emissions factor (CF), energy structure (ES), potential energy intensity (PEI), 
energy-oriented saving technology (EST), energy-oriented technological gap (ETG), ener-
gy-oriented scale economy (SEE), energy-oriented pure technical efficiency (PEE), output-
oriented technology (PT), output-oriented technological gap (TGY), output-oriented scale 
economy (SYE), and output-oriented pure technical efficiency (PYE).

The gap between the ith sub-sector and the whole NMI is CIGi. Based on the extended 
kaya identity, the CIG change period from 0 to t can be decomposed into:
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The 11 determinants can be solved by the following equations:
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The logarithmic mean weight in Eqs (5)–(15) is calculated as follows:
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1.2. The construction and decomposition of low-carbon  
development inequalities index in NMI

To measure the inequalities of low-carbon development within NMI, an I(CI) index was 
constructed, as follows:

 
m= f −∑( ) i i

i
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where fi represents the share of the ith sub-sector in the total output of the whole NMI. I(CI) 
increases with the inequalities. The static index can be decomposed as follows:
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The dynamic decomposition of this index is as follows (the change period from 0 to t):
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1.3. Data source and processing

(1) Labor force

The annual average number of employees in each sub-sector of NMI is selected as the mea-
surement index. Among them, the data of employees from 2004 to 2011 come from the Non-
ferrous Metal Industry Statistical Data Collection; the data of employees from 2013 to 2016 
come from China Industrial Statistical Yearbook 2013–2017; the data in 2012 are the average 
of 2011 and 2013; and the data of employees in 2017 come from the China Economic Census 
Yearbook 2018. Data for 2018 are from China Nonferrous Metals Industry Yearbook 2019.

(2) Main business income

The original data of main business income during 2004–2011 come from Nonferrous Met-
als Industry Statistical Data Compilation, and the data during 2012–2017 come from China 
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Industry Statistical Yearbook 2013–2017. Data for 2018 come from China Nonferrous Met-
als Industry Yearbook 2019. Then, this study uses the PPI of smelting industry (SI), mining 
industry (MI), and alloy manufacturing and rolling processing (AM&RP) to convert the 
original data into 2004 constant price.

(3) Completed investment

The data from 2004 to 2015 come from the Statistical Data Collection of Nonferrous Metals 
Industry, and the data during 2016–2018 come from the Statistical Yearbook of China Nonfer-
rous Metals Industry.

(4) Capital stock

According to Wang and Lin (2017), the perpetual inventory method is used to measure the 
capital stock data of NMI. The calculation formula is as follows:

 −= − δ +1(1 ) /t t t t tK K I P . (20)

Capital stock in the base period: the average balance of net fixed assets in 2004 is ad-
opted, and the data are from the Statistical Data Collection of Nonferrous Metals Industry in 
2004. Annual fixed asset price index: the data come from the National Bureau of Statistics. 
Depreciation rate: 9.6% is adopted in all cases. Annual fixed asset investment: the data from 
2004 to 2015 are from the Nonferrous Metals Industry Statistical Data Compilation, and the 
data from 2016 to 2018 come from the completed investment in the Statistical Yearbook of 
China Nonferrous Metals Industry.

(5) Energy consumption

The data from 2004 to 2009 and 2012 are from the Statistical Data Collection of Nonferrous 
Metals Industry; the data during 2010–2011 and 2013–2018 are from the Statistical Yearbook 
of China Nonferrous Metals Industry. These data are converted into standard coal equivalent.

(6) CO2 emissions

According to the algorithm provided by Intergovernmental Panel on Climate Change [IPCC] 
(2006), the data include CO2 emissions from fossil energy and electricity. To ensure that the 
different indicators of each sub-sector are consistent in all years, this study combines silver 
mining and beneficiation with other precious metal mining and beneficiation into “precious 
metal mining and beneficiation”; this study merges “mining and beneficiation of radioactive 
metal ore” into “mining and beneficiation of other rare metal ore”; this study combines cop-
per calendering and aluminum calendering into “calendering of commonly used nonferrous 
metals”; this study deletes “nonferrous metal casting” and “other nonferrous metal calendar-
ing” in individual years; this study deletes the silicon smelting data due to only a few years 
have “silicon smelting” data. 
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2. Empirical analysis

2.1. Analysis of carbon intensity

2.1.1. Carbon intensity analysis at the level of three types of NMI

As can be seen in Figure 1, the carbon intensity change of China’s non-ferrous metal industry 
(NMI) as a whole can be divided into two stages. It continued to decline from 2004 to 2010 
and remained stable from 2010 to 2018. During 2004–2010, the carbon intensity of the NMI 
as a whole decreased from 7.5298 to 2.2983, by 69.48%. The average annual decrease of it 
was 16.65%. It may be related to the implementation of energy-saving and CO2 emissions 
reduction policies such as the China’s national energy efficiency standards for the NMI. For 
example, the NMI saved 14 million tons of standard coal in 2010, reducing CO2 emissions by 
38 million tons compared with 2005. It also achieved an energy-saving rate of 14.1%, exceed-
ing the target of 10%. Li et al. (2018) quantified low-carbon policies in the NMI sector, and 
the study found that the implementation of these policies can reduce carbon intensity and 
achieve peak CO2 targets. From 2010 to 2018, the carbon intensity of the NMI as a whole 
stabilized at about 2, with a fluctuation of less than 15%. However, there was a growing 
trend during 2016–2018. It shows that China’s NMI is following the path of steady progress 
in low-carbon development, but still has some potential for optimization. This is consistent 
with the research results from Lin and Chen (2019), the carbon emission performance of 
China’s NMI shows an upward trend.

By comparing the carbon intensity changes of the three industries in Figure 1, from large 
to little, they were smelting industry (SI), mining industry (MI), and alloy manufacturing and 
rolling processing (AM&RP). However, the carbon intensity increase of SI was much larger 
than that of the other two categories. It may be because that NMI’s energy consumption was 
mainly derived from SI, accounting for about 80% of the total energy consumption of the 
NMI. As can be seen from Figure 1, the carbon intensity changing trends of the three sub-
sectors were essentially the same, with a significant decline from 2004 to 2010, and a stable 
trend from 2010 to 2018. It indicates that China’s low-carbon development policies for NMI 
have been effective to some extent. However, there were still inequalities between sub-sectors.

Figure 1. Changes in the carbon intensity of the non-ferrous metal industry from 2004 to 2018

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
0
1
2
3
4
5
6
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 Alloy manufacturing and rolling processing
 Non-ferrous metal industry



1030 L.-X. Sun et al. Measuring the inter-structural low-carbon economic inequalities from perspectives ...

According to Table 1, compared with the NMI as a whole, the change of CO2 emissions 
intensity inequalities (CII) of the MI and AM&RP were –2.7019 and –4.0019 (<0), respec-
tively. It indicates that the CII of these two sub-sectors was narrowing. The CII change of SI 
was 3.3004 (>0), which indicates that SI had an increasing CII and a relatively large space 
for narrowing it. To further study the determinants, the CII changes of the three sub-sectors 
from 2004 to 2018 were decomposed into 11 components. As can be seen from Table 1 and 
Figure 2, PEI had the greatest influence on CII, followed by ETG and SEE. Simultaneously, 
there was a clear heterogeneity in their effects on different sub-sectors.

From the empirical results of the SI, it is clear that PEI was the main influencing factor 
for the CII change (Figure 2). It contributes 6.4438 (>0). This indicates that the inequality of 

Figure 2. The decomposition of carbon intensity inequalities among the three sub-sectors
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Table 1. The decomposition of carbon intensity inequalities among the three sub-sectors

Decomposition 
factors

Mining and dressing 
industry Smelting industry Alloy manufacturing and 

rolling processing

∆tot –2.7019 3.3004 –4.0019 
∆CF 0.0000 0.0000 0.0000 
∆ES 0.8265 –0.1668 0.2066 
∆PEI –6.9328 6.4488 –7.1398 
∆EST –3.6097 0.9518 –3.5681 
∆ETG 1.2149 –1.8828 5.9936 
∆SEE 4.6028 –3.3792 0.8937 
∆PEE 0.1256 1.3483 –0.6391 
∆PT –0.2741 0.1499 –0.2062 
∆TGY 1.0713 –0.0478 0.2370 
∆SYE 0.3253 –0.1261 0.2919 
∆PYE –0.0516 0.0044 –0.0715 
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potential energy intensity in the SI was very large, which led to the inequality of low-carbon 
economic development in the SI. However, the impact of PEI on the CII of MI and AM&RP 
was –6.9328 (<0) and –7.1398 (<0), respectively. Therefore, PEI suppressed the inequality of 
low-carbon economic development within the two sub-sectors. 

However, the impacts of ETG and SEE were the opposite of that of PEI. Compared with 
the whole NMI, ETG and SEE reduced the CII in SI but increased the CII in MI and AM&RP. 
It indicates that the CII was due to the very large ETG and SEE inequality between the MI 
and AM&RP. Further analysis shows that the impacts of PYE on the CII of the three sub-
sectors were all smaller than those of PEE. This suggests a potentially more serious misal-
location of resources in the energy market. In general, there were significant inequalities in 
CII changes among different sub-sectors, and the determinants were also heterogeneous.

2.1.2. Decomposition of CII among 29 sub-sectors

According to the above research, there were inequalities of the low-carbon economic devel-
opment in the three sub-sectors of China’s NMI, so 29 sub-sectors were further studied. The 
29 sub-sectors are listed in Appendix B. As can be seen from Figure 3, 12 sub-sectors have 
reduced their carbon intensity more than the NMI as a whole, while 17 sub-sectors have 
reduced their carbon intensity less than the whole NMI. This indicates that a small number 
of NMI sub-sectors were more prominent in low carbon performance.

For example, S19, S7, and S18 have reduced their carbon intensity more than the NMI 
as a whole, especially S19 has been outstanding, which has reduced its carbon intensity by 
26.0173 more compared to the NMI as a whole. It indicates that the low carbon development 
of the magnesium smelting industry performed well in 2004–2018. However, the carbon 
intensity of S4 has increased by 4.6068 more compared to the industry as a whole.

To further study the determinants of low-carbon development inequalities among 29 
sub-sectors. Based on the extended PDA model, the CII change of each sub-sector was de-
composed into 11 components, as shown in Table 2. For most of the sub-sectors in the 
NMI, the factors inhibiting the inequality of low-carbon development were EST, PT, and 
SYE. Technological change can reduce the carbon intensity of the NMI by reducing energy 
consumption and optimizing the energy mix (Zhong et al., 2021), so technological change 
in some sub-sectors can increase the inequality of low-carbon development within the whole 
industry. However, the factors promoting the inequality of low-carbon development were 
energy structure, TGY, and PEE. As with the above analysis, the direction and degree of 
influence of various factors on CII varied across sub-sectors. For example, the impact of PEI 
on sub-sector S19 was 62.4741, which was much higher than that of others, while the impact 
of it on sub-sector S26 was –10.0541.

Combined with the above analysis, the high CII of sub-sectors S19, S7, and S18 was main-
ly due to the large inequality in PEI, contributing 62.4741, 32.0260, and 11.3740, respectively. 
In analyzing the other decomposition factors for sub-sector S19, it was found that EST had 
the strongest effect in reducing inequality. The results indicate that the optimization of scale 
efficiency, production process, production efficiency and energy structure of magnesium 
smelting reduced inequality. In summary, there was significant heterogeneity in the impact 
of the decomposition factors on the sub-sectors.
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2.2. Analysis of inequalities index in NMI

2.2.1. Static analysis

To measure the inequality of low-carbon development within NMI in China, I(CI) was con-
structed. As shown in Figure 4, the change of I(CI) showed two stages. From 2004 to 2010, 
the change of I(CI) decreased rapidly from 7.4728 to 2.4989, by 66.56%. It held steady from 
2010 to 2018, with fluctuations of no more than 35%. It was similar to the variation of CII 
described above. This indicates that the inter-inequality of NMI was decreasing and stabiliz-
ing at a lower level since 2010. It can be seen from the decomposition results that PEI and 
PT were the main factors of promoting low-carbon inequality development, while ETG and 
PEE were the factors to restrain it.

From the perspective of driving factors, PEI was the main factor for the increase of I(CI), 
accounting for more than 95%. However, after a sharp decline in 2008–2009, its contribution 
stabilized at a lower level until a slight increase during 2016–2018. To reduce the inequality 
of low-carbon development in the NMI, there was still a large space to narrow the PEI in-
equality. PT contributed only second to PEI in promoting I(CI) from 2009 to 2013. Different 
from PEI, its contribution showed a clear decreasing trend year by year. From the perspec-
tive of factors restraining inequality, ETG and PEE contributed to the decline of inequality. 
However, its contribution gradually decreased. From 2014 to 2018, the main inhibiting factor 
of I(CI) was EST. 

2.2.2. Dynamic analysis

From the dynamic point of view, the ΔI(CI) during the study period in the whole fluctuation 
was not obvious. From 2008 to 2009, the decline was 47.46%, and the other ranges were no 
more than 35%. As shown in Figure 5, ΔETG and ΔPEE were the main factors promoting the 
inter-inequality of low-carbon economic development, ΔPEI was the main factor inhibiting 
inequality increase. The role of other factors changed over time.

During 2008–2009, it can be seen from Figure 5 that ΔI(CI) was simultaneously affected 
by the huge impetus of ΔPEI and ΔETG. On the one hand, it may be because of the problem 
of technological gap. Changes in the energy efficiency technology gap could hinder the low-
carbon decoupling process in most sub-sectors except the four major manufacturing and 

Figure 3. The inequalities of carbon intensity among 29 sub-sectors
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rolling processing industries (Wang & Feng, 2021), which could lead to further inequality.  
On the other hand, the NMI had the lower potential energy intensity this year. Those two 
factors simultaneously affected the low-carbon economic development within the NMI dur-
ing this period, leading to a sharp decline in ΔI(CI). From 2010 to 2018, as mentioned above, 

Figure 4. The inequalities index and its decomposition of the non-ferrous metal industry in 2004–2018

Figure 5. Dynamic change of the inequalities index and its decomposition of the non-ferrous  
metal industry in 2004–2018
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ΔI(CI) remained near 0, indicating that ΔI(CI) was stable and the inequalities of various 
driving factors changed very little. It was also consistent with the trend of carbon intensity 
changes in the NMI.

Conclusions and policy recommendations

This paper aims to study the inter-inequalities of low-carbon economic development in the 
sub-sectors of China’s NMI, by using an inequalities index considering heterogeneity and 
scale economy. Simultaneously, the determinants of the CII of 29 sub-sectors in NMI from 
2004 to 2018 were divided into 11 components. Additionally, the I(CI) index was also decom-
posed from the static and dynamic perspectives, respectively. Results are as follows:

(1) The carbon intensity change in NMI as a whole can be divided into two stages: it 
continued to decline from 2004 to 2010 and remained stable from 2010 to 2018. 
During 2004–2010, the carbon intensity decreased from 7.5298 to 2.2983, by 69.48%, 
with an average annual decrease of 16.65%. During 2010–2018, it stabilized at about 
2, with a fluctuation of less than 15%. It shows that China’s NMI was following the 
path of steady progress in low-carbon economic development. However, at the sub-
sector level, there were significant inter-inequalities in the NMI. For example, the 
tin ore selecting (sub-sector S4) had a carbon intensity change of –4.6068, while the 
carbon intensity of the magnesium smelting (sub-sector S19) increased by 26.0173, 
much higher than that of the NMI as a whole. Therefore, the Chinese government 
needs to focus on the inter-inequalities of low-carbon development within the NMI, 
especially on the production processes with large CO2 emissions such as magnesium 
and aluminum sectors, in order to formulate specific low-carbon policies from the 
perspective of inter-structural inequalities. Among them, the magnesium smelting 
industry can reduce internal inequality by reducing the potential energy intensity and 
promoting the advancement of energy-saving technologies.

(2) During the sample period, the EST was the main inhibiting factor for inequalities, 
followed by PT and SYE. While the adjustment in energy structure and the decline 
in TGY and PEE were the key promoters. The results suggest that there were signifi-
cant inequalities in the determinants of CII in China’s NMI. Therefore, the Chinese 
government should take targeted and appropriate measures to improve the situation. 
For example, the current electricity consumption structure of NMI is still biased 
towards fossil energy, while the Chinese government should take more measures to 
narrow the gap between energy structures in order to reduce the inter-inequalities. 
In addition, the Chinese government can promote market-oriented reforms in the 
energy sector and narrowed the technology gaps among the sub-sectors of the NMI, 
therefore the inter-inequalities of low-carbon economic development within NMI 
can be reduced.

(3) The I(CI) decreased rapidly (–66.56%) from 2004 to 2010, and remained stable (the 
fluctuation was no more than 35% from 2010 to 2018. It was mainly promoted by 
ETG and PEE, while PEI was the main inhibiting factor for the I(CI), accounting 
for more than 85%. However, its contribution had stabilized at a lower level after 
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decreasing sharply in 2008–2009. Specifically, the PEE was the main promoter during 
2004–2009, while an inhibiting factor since 2012. To reduce the I(CI), the Chinese 
government needs to make further efforts to rationalize the allocation of resources 
in the energy market and promoting technological progress.

There are two main limitations of this study: (1) this study uses an inequality index to 
measure the inter-inequalities of low-carbon economic development in China’s NMI and 
decomposes its determinants into 11 components. However, there may be more factors that 
contribute to the inter-inequalities. Therefore, more factors can be considered in future re-
search; (2) the existence of regional heterogeneity in low-carbon economic development 
in the NMI has been widely studied, therefore future research could try to consider both 
inequalities in sub-industries and regional heterogeneity.
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APPENDIX

A. Specific solution process

Energy-oriented distance function based on global meta-frontier DEA 
( ), ( , , , , | )G

E i i i i i iD l k e y c CRS  and the corresponding output-oriented distance function 

( )( , , , , | )G t t t t t
YD l k e y c CRS  can be solved by the following linear programming:

 

= = = = = =

= = = =


= θ




⋅ ≤ ⋅ ≤ θ ⋅ ≤


 ⋅ ≥ ⋅ = δ ≤ δ ≤



≥ ∀ = =

∑∑ ∑∑ ∑∑

∑∑ ∑∑
 

0 1 0 1 0 1

0 1 0 1

1 min
|

s.t. ; ; ;

; ;0 1;

0,  for 1,2,   ,  and 1,2,   , .

G t t t t t
E
T N T N T N

t t t t t t t t t
n n n n n n

t n t n t n
T N T N

t t t t t t
n n n n

t n t n
t
n

D (l ,k ,e , y ,c CRS)

z x l z e e z k k

z y y z c c

z n N t T

 (A.1)

                       

= = = = = =

= = = =


= η




⋅ ≤ ⋅ ≤ ⋅ ≤


 ⋅ ≥ η ⋅ = δ ≤ δ ≤



≥ ∀ = =

∑∑ ∑∑ ∑∑

∑∑ ∑∑
 

0 1 0 1 0 1

0 1 0 1

1 max
|

s.t. ; ; ;

; ;0 1;

0,  for 1,2,   ,  and 1,2,   , .

G t t t t t
Y

T N T N T N
t t t t t t t t t
n n n n n n

t n t n t n
T N T N

t t t t t t
n n n n

t n t n
t
n

D (l ,k ,e , y ,c CRS)

z x l z e e z k k

z y y z c c

z n N t T

 (A.2)

Energy-oriented distance function based on single phase meta-frontier DEA 
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Under the assumption of constant returns to scale, energy-oriented distance function 
based on single phase group-frontier DEA ( ), ( , , , , | )t
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Under the assumption of variable returns to scale, energy-oriented distance function 
based on single phase group-frontier DEA ( )( , , , , | )t t t t t t

gED l k e y c VRS and the correspond-
ing output-oriented distance function ( )( , , , , | )t t t t t t

gYD l k e y c VRS  can be solved by the fol-
lowing linear programming:
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 (A.8)

By setting ′ λ=n nz z  and ″ − λ=(1 )n nz z , model (A.7) and model (A.8) can be re-linearized 
as follows:
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 (A.10)

Among them, l, k, e, y, c are respectively labor, capital, energy, economic output, and CO2 
emissions; z represents the strength variable of linked input-output data; T means that the 
sample contains T periods; N is the number of decision units contained in the sample; Ng 
is the number of decision units in the gth group; CRS and VRS represent the assumption of 
constant return to scale and variable return to scale respectively.
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B. Sub-sectors of China’s NMI

ID Sub-sectors

S1 Copper acquisition
S2 Lead zinc ore mining and dressing
S3 Mining and beneficiation of nickel cobalt ore
S4 Tin ore selecting
S5 Antimony acquisition
S6 Aluminum acquisition
S7 Magnesite acquisition
S8 Other commonly used non-ferrous metal mining and beneficiation
S9 Mining and beneficiation of precious metal ore

S10 Tungsten-molybdenum ore mining and dressing
S11 Mining and beneficiation of rare earth metals
S12 Mining and beneficiation of other rare metals
S13 Copper smelting
S14 Lead and zinc smelting
S15 Cobalt nickel smelting
S16 Tin smelting
S17 Antimony smelting
S18 Aluminium smelting
S19 Magnesium smelting
S20 Other commonly used non-ferrous metal smelting
S21 Silver smelting
S22 Smelting of other precious metals
S23 Tungsten molybdenum smelting
S24 Rare earth metal smelting
S25 Smelting of other rare metals
S26 Nonferrous metal alloy manufacturing
S27 Commonly used nonferrous metal calendering processing
S28 Precious metal calendering processing
S29 Calendering processing of rare earth metals


