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Abstract. VIKOR is a well-defined multiple criteria decision-making (MCDM) method since it 
reflects different risk attitudes of decision-makers by measuring the overall performance of an 
alternative under all criteria as “group value” and the worst performance of the alternative under 
all criteria as “individual regret”, but it cannot deal with MCDM problems where the criteria of 
different alternatives are inconsistent (different) and the decision information is uncertain. To 
address these problems, we present a probabilistic linguistic VIKOR method by combining with 
probabilistic linguistic term sets which portrays uncertain information such as individual hesi-
tancy and incomplete belief flexibly. In addition, we introduce the aspired and tolerable values of 
criteria as reference points to measure the closeness degrees of alternatives to the ideal solution. 
To compare group values and individual regrets of different alternatives, we develop a vector nor-
malization method that considers the number of criteria. The robustness of the aggregation results 
of group values and individual regrets is improved based on the extended Borda rule, which takes 
into account both values and ranks of alternatives in the aggregation. A case study of personnel 
evaluation demonstrates the effectiveness of the proposed method for solving MCDM problems 
with inconsistent criteria and uncertain decision information.

Keywords: multiple criteria decision making, VIKOR, inconsistent criteria, probabilistic linguistic 
term set, personnel selection.

JEL Classification: C51, C61, D81, L00.

Introduction

Decision-making processes often need to measure the performance of several or even thou-
sands of alternatives (which also refer to as candidates, or reasons for action) against multiple 
irreplaceable criteria (which also refer to as goals, indicators, or attributes) in order to classi-
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fy, select or rank them (Cinelli et al., 2020). These so-called multiple criteria decision-making 
(MCDM) problems are common in our daily life (Hashemkhani Zolfani et al., 2021). For 
example, building redevelopment decisions depends on existing state, development possibili-
ties, and impact (Antucheviciene et al., 2011); water resource development planning alterna-
tives are measured from cost, water quality, and feasibility of implementation (Roozbahani 
et al., 2018); personnel selection needs to take into account candidates’ personality, educa-
tion, experience and skills to achieve a company’s goals (Kilic et al., 2020). In most of these 
MCDM problems, there are not obvious dominance relations between alternatives under 
different criteria because the performance of each alternative is usually inconsistent regarding 
different criteria. To enhance comparability among alternatives, MCDM theory provides a 
series of preference models that can reflect the value systems of decision makers. It aims to 
aggregate the performance of alternatives under different criteria into their comprehensive 
performance, so as to find compromise solutions that have the best comprehensive perfor-
mance, although they cannot satisfy all criteria at the same time.

MCDM approaches can be divided into three categories: 1) value theory-based methods 
such as the TOPSIS1 (Chen & Hwang, 1992) and VIKOR (Opricovic, 1998), 2) outranking 
methods such as the ELECTRE (Roy, 1968) and PROMETHEE (Brans & Vincke, 1985), and 
3) rule-based approaches (Greco et al., 2016). The first type is based on the multiple criteria 
value theory (Keeney & Raiffa, 1976), which refers to the conversion (namely a normalization 
process) of criterion values on inconsistent criterion dimensions into the values of the same 
dimension by means of marginal value functions, thus enabling the comparison or aggrega-
tion operation of the performances of alternatives under different criteria (Dyer & Smith, 
2021). Outranking methods are based on the pairwise comparisons of alternatives, while 
rule-based approaches apply decision rules to construct preference models. Compared with 
these two categories of MCDM methods, value theory-based methods have solid rationality 
axioms and have the advantages of being computationally simple and easy to understand 
(Zheng & Lienert, 2018). They have been widely used in many fields, such as manufactur-
ing, construction management, performance evaluation, health-care management, renewable 
energy management, emergency management, and human resource management (Mardani 
et al., 2016; Komazec & Petrović, 2019; S. Lin et al., 2021b). TOPSIS and VIKOR are the 
most widely used value theory-based methods. Both of them aim to find the optimal or com-
promise solutions2 closest to the ideal solution by coordinating multiple conflicting criteria 
through distance measures, so they are also known as distance-based methods. The compara-
tive analysis of VIKOR and TOPSIS shows the advantages of VIKOR in terms of aggregation 
and normalization techniques (Opricovic & Tzeng, 2004).

Through a balance between “group values” determined by the “majority” rule and “in-
dividual regrets” determined by the “opponent” rule, the compromise solutions found by 
VIKOR can satisfy the requirements of decision-makers with different risk attitudes (An-

1 TOPSIS-Technique for order preference by similarity to ideal solution; VIKOR-Vlsekriterijumska optimizacija 
I kompromisno resenje in Serbian, meaning multi-criteria optimization with compromise solution; ELECTRE-
Elimination et choix traduisant larealité in French, meaning elimination and choice expressing the reality; PRO-
METHEE-Preference ranking organization method for enrichment evaluations.

2 Compromise is an agreement reached through mutual concessions (Ou-Yang et al., 2009).
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tucheviciene et al., 2012; Su et al., 2020). Especially, when decision-makers pay more atten-
tion to the opponent rule, the compromise solutions determined by VIKOR not only have 
good overall performance, but also do not perform too badly under each criterion. Although 
previous studies have enhanced the theory and applications of the VIKOR method, there are 
still challenges to overcome:

1) The VIKOR method and its extensions are designed to solve the MCDM problems 
where all alternatives are measured by the same set of criteria. In many practical 
MCDM problems, however, different alternatives are associated with different criteria, 
meaning that the same set of criteria cannot be used to measure the performances of 
all alternatives (Anvari et al., 2014; Jing et al., 2019). For example, when evaluating the 
research ability of talents in the field of natural science, we can focus on the number 
of publications indexed by science citation index (SCI) database in web of science 
(WoS), while when evaluating the research ability of talents in the field of social sci-
ence, we would better focus on the number of publications indexed by social science 
citation index (SSCI) database in WoS. The criteria for measuring the profitability of a 
company’s different projects (e.g., technical support, technology services and software 
development projects) differ, and the criteria for evaluating the profitability of the 
same project at different stages of development differ. The criteria for evaluating the 
strength of different types of hospitals, such as general hospitals, specialty hospitals 
and rehabilitation hospitals, are different. As far as we know, there is little literature 
on solving such type of MCDM problems with different sets of criteria for different 
types of alternatives.

2) Although the VIKOR method has advantages over the TOPSIS method in theory, 
TOPSIS has obtained more applications than VIKOR. One reason is that the compro-
mise-ranking approach used in the traditional VIKOR method is not intuitive, and the 
existence of multiple compromise solutions increases the difficulty of decision-making 
(Liao & Wu, 2020). Specifically, although the VIKOR method can meet the require-
ments of decision-makers with different risk attitudes, it is difficult to determine the 
relative importance of the majority rule and opponent rule, and the result is sensitive 
to this parameter. 

3) The traditional VIKOR method aims to address quantitative forms of decision infor-
mation and has limitations to deal with uncertain linguistic information. In complex 
decision-making environments, decision information, including the performance of 
alternatives under different criteria, is difficult to collect directly and often needs to 
be assessed by experts in a subjective manner. Consequently, researchers (Bausys & 
Zavadskas, 2015; Liao et al., 2015; Awasthi et al., 2018; Abdel-Baset et al., 2019; Çalı 
& Balaman, 2019) have focused on extending the application of VIKOR by combining 
linguistic approaches, in which linguistic models were used to represent decision in-
formation. Experimental studies on subjective probabilistic judgment theory (Tversky 
& Kahneman, 1974; Machina & Schmeidler, 1992) have shown that evaluators tend to 
provide beliefs about possible “guesses” on “events” in their judgments under uncertain 
conditions by means of subjective probabilities expressed in numerical values (Tversky 
& Kahneman, 1974). In MCDM problems, “subjective probability” can be regarded as 
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the belief degree of an evaluator in the chosen linguistic term. For example, one may 
express that “the probability that a product is good is 80% and the probability that the 
product is bad is 20%”. Additionally, subjective probability can be expressed as the fre-
quency of a linguistic term when multiple evaluators evaluate an object. For example, 
in response to the evaluation of a product’s quality, 50% of the evaluators rated the 
quality as “good”, 30% rated the quality as “very good” and 20% rated the quality as 
“between good and very good”. To represent such type of complex linguistic informa-
tion, Pang et al. (2016) defined the probabilistic linguistic term set (PLTS), which is 
a generic linguistic representation model for describing evaluation information given 
by individuals or groups. The PLTS has gained the attention of researchers (Liao et al., 
2020). Although researchers (M. Lin et al., 2021a; Gou et al., 2021) have introduced 
PLTSs to the VIKOR method to solve MCDM problems, they failed to avoid the in-
ability of the VIKOR method in solving the problem of inconsistent criterion sets and 
the low robustness of decision results.

This study aims to propose a probabilistic linguistic VIKOR method to solve MCDM 
problems where the criteria for different alternatives may be different and the decision in-
formation of alternatives cannot be quantified. The motivations and contributions of this 
study include: 

1) When different alternatives are measured by different sets of criteria, the positive ideal 
solution and negative ideal solution, defined in the traditional VIKOR method, cannot 
be determined by comparing the values of different alternatives under the same set of 
criteria. To solve this problem, an aspired value and a tolerable value can be introduced 
for each criterion (Ou-Yang et al., 2009). The aspired value represents decision-makers’ 
aspired performance of alternatives under a criterion, that is, when the performance 
of an alternative equals or exceeds the aspired value, decision-makers are completely 
satisfied with the alternative. On the contrary, the tolerable value represents decision-
makers’ critical performance of alternatives under a criterion, that is, decision-makers 
are completely dissatisfied with an alternative if its performance is equal to or lower 
than the tolerable value. The closer the performance of an alternative to the aspired (or 
tolerable) value for each of its criteria is, the closer the alternative to the positive (or 
negative) ideal solution is. In this sense, by measuring the distances between the values 
of an alternative and the aspired (or tolerable) values, we can get how close each alter-
native to the positive (or negative) ideal solution is, and thus define the group values 
and individual regrets of alternatives. In addition, a normalization process considering 
the number of criteria is proposed to make the group values and individual regrets of 
different alternatives to the same scale. The problem of measuring different alternatives 
with different criteria is resolved. 

2) According to the majority rule and opponent rule, the group values and individual 
regrets of alternatives can be obtained to represent their overall performances, respec-
tively, and the two subordinate rankings of alternatives can be determined. The values 
can reflect the actual differences in performance between alternatives, while the ranks 
can reflect the preference relations between alternatives (Wu et al., 2018). In order to 
improve the robustness of aggregation results, we propose an aggregation method to 
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integrate the subordinate values and ranks of alternatives to determine their compro-
mise degrees and overall ranking, which avoids the poor robustness of the results due 
to considering only the subordinate values and the poor accuracy of the results due 
to considering only the subordinate ranks. The second challenge of the traditional 
VIKOR method is overcome.

3) We use PLTSs to describe the performance of alternatives under each criterion. To 
compare the performance of alternatives with the aspired and tolerable values, we 
adjust different PLTSs to the same probability distribution without losing any infor-
mation, and then apply a probabilistic linguistic distance measure to determine how 
close each alternative is to the positive (or negative) ideal solution. The third challenge 
mentioned above is addressed. 

The paper is organized in the following way. A brief introduction of the VIKOR and 
PLTS is given in the next section. In Section 2, a probabilistic linguistic VIKOR method is 
proposed to solve the MCDM problems where the criteria of different alternatives may be 
inconsistent. Section 3 illustrates the proposed approach using a case study on the evaluation 
of scientific and technological talents. Finally, conclusions and directions for future research 
are provided.

1. Preliminaries

This section first describes the implementation steps of the classical VIKOR method, and 
then introduces the PLTS to represent uncertain evaluations.

1.1. The VIKOR method 

The traditional VIKOR method can solve an MCDM problem with the purpose of ranking 
a set of alternatives (denoted as = 1 2{ , , , }mA a a a ) or selecting one or more compromise al-
ternatives, using the same set of criteria for each alternative, denoted as = 1 2{ , , , }nC c c c . The 
value of an alternative ai under a criterion cj is represented as an exact number xij. The steps 
of the traditional VIKOR method are as follows (Opricovic, 1998; Opricovic & Tzeng, 2004).

1) Determine the best and the worst values of each criterion by Eqs (1) and (2), respec-
tively. + + + += 1 2{ , , , }na x x x  is the positive ideal solution, and − − − −= 1 2{ , , , }na x x x  is the 
negative ideal solution.

 

+
= 


max , if criterion is in the benefit form
min , if criterion  is in the cost form

ij ji
j

ij ji

x c
x x c , for = 1,2, ,j n; (1)

 

−
= 


min , if criterion is in the benefit form
max , if criterion  is in the cost form

ij ji
j

ij ji

x c
x x c , for = 1,2, ,j n. (2)

2) Determine the group values Gi, i = 1, 2, …, m, of alternatives by a weighted average 
aggregation operator (Eq. (3)), and determine the individual regrets Ri, i = 1, 2, …, m, 
of alternatives by a maximization aggregation operator (Eq. (4)).
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G w x x x x ; (3)
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+ + −= − −max( ( ) ( ))i j j ij j jj

R w x x x x , (4)

where wj, j = 1, 2, …, n, are trade-off weights of criteria. + + −= − −( ) ( ) ( )ij j ij j jN a x x x x  
represents the normalization value of ai under criterion cj. ⋅( )N  is a linear normal-
ization function to measure the distance between the value of an alternative under a 
criterion and the best value of that criterion. The solution obtained with min ii

G  has 

the maximum group value (the majority rule), and the solution obtained with min ii
R  

has the minimum individual regret (the opponent rule). The next step is to make a 
trade-off between these two rules to determine compromise solutions. 

3) Compute the compromise degrees Qi, i = 1, 2, …, m, of alternatives by a weighted 
average aggregation operator:

  
= h − − + −h − −( min ) (max min ) (1 )( min ) (max min )i i i i i i i i ii i i ii i

Q G G G G R R R R , (5)

     where h is the weight of the majority rule used for ranking, and h∈[0,1] .
4) Rank alternatives according to the ascending orders of the three kinds of values, Gi, 

Ri, Qi, i = 1, 2, …, m, respectively. The compromise solutions are determined by the 
compromise-ranking method and should have high ranks in all three rankings.

Researchers have enhanced the VIKOR method from different perspectives. To solve 
inconsistent criteria, Ou-Yang et al. (2009) proposed a VIKOR variation which measured 
the closeness of each alternative to the ideal solution by an aspired level and a tolerable level 
on each criterion. Jing et al. (2019) applied this approach to select tools for lean manage-
ment. However, the method proposed by Ou-Yang et  al. (2009) has limitations: 1) it did 
not consider uncertain evaluation information, which limits its application in practice given 
that most decisions are made in uncertain environments (Hajiagha et al., 2014); 2) it did 
not consider the weights of criteria when measuring individual regrets of alternatives, which 
may amplify the effect of the values under unimportant criteria on final results; 3) it did not 
take into account the differences in dimensionality between the group values and individual 
regrets of alternatives when aggregating the values of them. 

Since language is the closest expression of human cognition, evaluators tend to use words 
such as “important”, “high” and “good” to express their opinions in decision-making process-
es. Linguistic approach (Zadeh, 1975) expresses evaluation information in linguistic terms, 
enhancing the feasibility, flexibility and credibility of the evaluation process (Wang et al., 
2018). To deal with linguistic evaluation information in MCDM problems, a number of ex-
tended VIKOR methods associated with different linguistic representation models have been 
proposed, such as the interval-valued neutrosophic set-based VIKOR (Bausys & Zavadskas, 
2015), triangular fuzzy number-based VIKOR (Awasthi et al., 2018), triangular neutrosophic 
number-based VIKOR (Abdel-Baset et al., 2019), intuitionistic fuzzy set-based VIKOR (Çalı 
& Balaman, 2019), and picture fuzzy number-based VIKOR (Peng et al., 2020). However, 
these methods portray the values of linguistic variables using single linguistic terms, and thus 
have weakness in representing uncertain evaluation information, including the hesitancy and 
incomplete confidence of individual evaluators, and the inconsistency and incompleteness 
of group opinions. Although the hesitant fuzzy linguistic VIKOR (Liao et al., 2015) can deal 
with hesitant fuzzy linguistic information in individual evaluations through multiple linguis-
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tic terms, it is difficult to portray the belief of individual evaluators and the distribution of 
group opinions. Such uncertain information can be modeled with PLTSs, and thus the com-
bination of the PLTS and VIKOR is conducive to MCDM problems in qualitative settings.

1.2. Probabilistic linguistic term set

For MCDM problems with qualitative criteria, subjective evaluations by experts or de-
cision-makers are required. A linguistic term set used for evaluation can be defined as 

−t t=  0{ , , , , }S s s s , in which sa, a = −t t , ,0, , , are linguistic terms used to describe the 
possible qualitative values of alternatives, satisfying a βs s  if a >β, ∀a β∈ −t t , { , ,0, , }. 
Especially, s–t, s0 and st indicate the worst, neutral and best performance values, respectively. 
A PLTS can be defined as (Pang et al., 2016):

 
t

a a aa=−t
= a = −t t ≤∑{ ( ) | , , , 1}P s p p , (6)

where pa represents the subjective probability that the performance of a linguistic variable is 
sa. pa = 0 (or pa = 1) means that the variable’s performance cannot (or can only) be described 
in sa. Linguistic terms with a probability of zero may not be listed in the PLTS.

Since a PLTS can be regarded as a probability distribution over a linguistic term set, its 
expected value can be defined as (Wu & Liao, 2019):

 
t t

a a aa=−t a=−t
= ×∑ ∑( ) ( ) ( )E P u s p p , (7)

where ⋅ →( ) : [0,1]u S  represents a linguistic scale function used to describe the numerical 
meaning of linguistic terms. If a βs s , then a β>( ) ( )u s u s . Here we set a = a + t t( ) ( ) 2u s  . 
Let P1 and P2 be two PLTSs. The preference relation between them can be determined by 
their expected values, that is, if >1 2( ) ( )E P E P , then 1 2P P , and if =1 2( ) ( )E P E P , then 1 2P P .

Probabilistic linguistic distance measure can be used to measure the difference between 
the information represented by two PLTSs. Before describing the difference, it is necessary 
to split the probability of linguistic terms in two PLTSs so that the number of their linguistic 
terms are the same and the corresponding probability of each linguistic term is consistent. 
For example, two PLTSs a a= a = −t t

1
1 { ( ) | , , }P s p  and a a= 2

2 { ( )P s p a = −t t| , , }  can be 
adjusted to a′ = 1( ) ( )

1 { ( )k kP s p = | 1,2, , }k K  and a′ = = 

2( ) ( )
2 { ( ) | 1,2, , }k kP s p k K , respectively, 

such that they all have K linguistic terms and the probability of their kth linguistic term 
is ( )kp  ( ∈ {1,2, , }k K )3. There may be duplication of linguistic terms in an adjusted PLTS, 
but the total probability of each linguistic term remains unchanged. The distance measure 
between a a= a = −t t

1
1 { ( ) | , , }P s p  and a a= 2

2 { ( )P s p a = −t t| , , }  can be defined as (Wu 
et al., 2018):

 
( ) a a=

= − t∑ ( ) 1( ) 2( )
1 2 1
, 2

K k k k
k

d P P p s s , (8)

where ( )∈1 2, [0,1]d P P . If and only if =1 2P P , ( ) =1 2, 0d P P . 

3 For the convenience of calculation, each linguistic term sa can be divided into 10pa terms, and each term cor-
responds to a unit probability “0.1” (here the probability preserves a decimal point) (Liao et al., 2019). If there are 
missing probabilities in a PLTS, then we normalize the probability of each linguistic term such that the sum of 
the probabilities is 1.
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Example 1. Let −= 1 0 1{ , , }S s s s  be a linguistic term set, and =1 0 1{ (0.6), (0.4)}P s s  and 
−=2 1 0{ (0.3), (0.7)}P s s  be two PLTSs. The adjusted forms of these two PLTSs can be expressed as 

′ =1 0 0 1{ (0.3), (0.3), (0.4)}P s s s  and −′ =2 1 0 0{ (0.3), (0.3), (0.4)}P s s s , respectively, and their distance 
measure can be calculated by ( ) = × − − + × − + × − =1 2, (0.3 |0 ( 1) | 0.3 |0 0 | 0.4 |1 0 |) 2 0.35d P P .

2. The proposed probabilistic linguistic VIKOR method

This section proposes an extension form of the VIKOR method to solve MCDM problems 
with inconsistent criteria for different alternatives and the evaluation information is ex-
pressed in PLTSs. 

Suppose that there are m alternatives, = 1 2{ , , , }mA a a a , and m sets of criteria, 


111 12 1{ , , , }nc c c , 

221 22 2{ , , , }nc c c , , 1 2{ , , , }
mm m mnc c c , in which ni is the number of cri-

teria for measuring the performance of ai and cij represents the jth criterion of alterna-
tive ai, ∈ {1,2, , }i m , ∈ {1,2, , }ij n . The weight vector of each set of criteria is denoted 
as 

1
T

11 12 1( , , , )nw w w , 

2
T

21 22 2( , , , )nw w w , , 

T
1 2( , , , )

mm m mnw w w , respectively, in 
which wij represents the weight of the jth criterion of alternative ai, satisfying 

=
=∑ 1

1in
ijj

w
 
. 

The performance of alternative ai with respect to criterion cij is described by a PLTS 
a a= a = −t t{ ( ) | , , }ij

ijP s p . The decision information of alternative ai can be represented as 
a set

 
= 1 2( ) { , , , }

ii i i inH a P P P .  (9)

The probabilistic linguistic VIKOR method proposed in this study has the following steps.

Step 1. Determine the aspired value +
ijP  and tolerable value −

ijP  of each criterion cij, 
∈ {1,2, , }ij n , ∈ {1,2, , }i m . These values are determined by decision-makers based on 

their expectations and tolerance degrees to alternatives regarding different criteria. When 
all alternatives are evaluated by the same set of criteria, the aspired and tolerable values of 
each criterion can be objectively determined by the method used in the traditional VIKOR 
method. That is, if the criterion is in the benefit form, then + = maxij iji

P P  and − = minij iji
P P , 

and if the criterion is in the cost form, then + = minij iji
P P  and − = maxij iji

P P . 

Step 2. Calculate the degree of closeness ( )ijN a  between the value Pij of alternative ai under 
criterion cij in a criteria set 1 2{ , , , }

ii i inc c c  and the aspired value +
ijP  of criterion cij. If cij 

is in the benefit form, then

 

( )
( )

−

+
−

− +

 ≤



= − <

 ≥

+

+

0, if 
,

( ) 1 , if <
,

1, if 

ij ij

ij ij
ij ij ij ij

ij ij

ij ij

P P
d P P

N a P P P
d P P

P P

. (10)

If cij is in the cost form, then

 

( )
( )

−

+
+ −

− +

 ≥



= − <

 ≤

+

0, if 
,

( ) 1 , if <
,

1, if 

ij ij

ij ij
ij ij ij ij

ij ij

ij ij

P P
d P P

N a P P P
d P P

P P

, (11)
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where ( )+,ij ijd P P  is the probabilistic linguistic distance measure (see Eq. (8)) between the 
value Pij of alternative ai under its jth criterion and the aspired value +

ijP  of this criterion. 
( )− +,ij ijd P P  is the probabilistic linguistic distance measure between the aspired value +

ijP  
and the tolerable value −

ijP  of the jth criterion of alternative ai. The preference relations 
between the PLTSs ijP , +

ijP  and −
ijP  are determined by their expected values (see Eq. (7)). If 

− +<<ij ij ijP P P
 
, then ( ) ( )+ − +≤, ,ij ij ij ijd P P d P P . Thus, ∈( ) [0,1]ijN a . The larger the value of ( )ijN a  

is, the better the performance of alternative ai under its jth criterion is.

Step 3. Compute the group value iG  and individual regret iR  of each alternative by 
Eqs. (12) and (13), respectively. 

 =

=∑

1

( ) ( )
in

i ij ij
j

G a w N a , i = 1, 2, …, m; (12)

 
 = − 

( ) max (1 ( ))i ij ijj
R a w N a , i = 1, 2, …, m. (13)

In order to define the compromise degrees of alternatives by integrating their group 
values and individual regrets, the traditional VIKOR method uses a linear normalization 
method to convert group values and individual regrets into the same scale such that the 
smallest group value and the smallest individual regret are 0, and the largest group value and 
the largest individual regret are 1. When the group values and individual regrets of alterna-
tives are not equally distributed, the results obtained by the linear normalization may reduce 
the reliability of their aggregation. For example, if the group values of most alternatives do 
not differ much but their individual regrets do, then the linear normalization will exaggerate 
the differences between the group values of alternatives. To solve this problem, we use the 
vector normalization which normalizes the maximum value to 1 to preserve the differences 
between the values of alternatives.

Normalize the group values iG , i = 1, 2, …, m, by a vector normalization method4:
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The individual regrets of alternatives defined by the maximization aggregation operator 
(see Eq. (13)) have different scales and thus cannot be compared directly, especially when 
the number of criteria for different alternatives differs. The smaller the number of criteria in 
a criterion set is, the greater the average weight of each criterion is, and therefore the greater 
the individual regrets of corresponding alternatives are. In this regard, we need to normalize 
individual regrets to the same scale according to the number of criteria. The individual re-
grets of different alternatives are first adjusted to the same scale by the factor 

=
∏
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and then normalized by a vector normalization method. That is
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. (15)

4 The group value is defined as the average value of an alternative under different criteria. Thus, the group values of 
different alternatives have the same scale.
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After normalization, the group values and individual regrets of alternatives have the same 
scale, that is, both the maximum group value and individual regret are 1. Then, we rank 
alternatives by the values of  ( )N

iG a , = 1,2, ,i m, in decreasing order. The results are the 
first subordinate ranking list, denoted as = 1 1 1 1 2 1{ ( ), ( ), , ( )}mr r a r a r a . In addition, we rank 
the alternatives by the values ( )iR a , i = 1, 2, …, m, in ascending order. The results are the 
second subordinate ranking list, denoted as = 2 2 1 2 2 2{ ( ), ( ), , ( )}mr r a r a r a . When there is no 
solution that satisfies 

=
=



 

1,2, ,
( ) max ( )i tt m

G a G a  and 
=

=


 

1,2, ,
( ) min ( )i tt m

R a R a , we cannot determine 

the best alternative directly. In this case, we need to make trade-offs between the group values 
and individual regrets. 

Step 4. As one of the most famous group voting rules, Borda rule calculates the Borda 
number of an object based on the ranking of m objects and uses it as the score of that 
object (Panja et al., 2020). The Borda number of the ith ranked object is m – i + 1. The 
Borda numbers can visualize the preference relations between alternatives. The values of 
alternatives can reflect the specific differences between alternatives. The extended Borda 
rule (Wu et al., 2018) integrates the rank and value information of alternatives to determine 
the global Borda numbers of alternatives. In this way, the aggregation results are not only 
robust but also can reflect the specific differences between alternatives. Based on the idea 
of the extended Borda rule, we define the compromise degree ′( )iQ a  of alternative ai as
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where j and 1 – j are the weights of “values” and “ranks” used for ranking, and j∈[0,1] . 
The majority rule and opponent rule, which measure the comprehensive performance of 
alternatives, can be considered as two evaluators defined in the Borda rule.  ( )N

iG a  and 
1( )ir a  , = 1,2, ,i m, are the values and ranks of alternatives determined by the majority 

rule, and  ( )N
iR a  and 2( )ir a , i  = 1, 2, …, m, are the values and ranks of alternatives de-

termined by the opponent rule. Because the values of  ( )N
iR a , i  = 1, 2, …, m, are in the 

cost form, the Borda number determined by the opponent rule is the negative value of 

( )  
j + −j  

 


2
2 2( )

( ) (1 ) iN
i

r a
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m
.

We rank alternatives by the values ′( )iQ a , i = 1, 2, …, m, in decreasing order. The results 
are a compromise ranking list, denoted as = 1 2{ ( ), ( ), , ( )}mr r a r a r a . The compromise solu-
tion is

≤ ≤
′=*

1
{ | max ( )}i ii m

a a Q a .

3. A case study: personnel evaluation for different talents

This section elaborates a case study of personnel evaluation to demonstrate the applicability 
of the proposed method.
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3.1. Case description

Personnel evaluation is important for governments and enterprises to identify outstanding 
talents, and it is a typical MCDM problem that requires comprehensive consideration of 
knowledge, skills, social roles and other factors. Golec and Kahya (2007) developed a sys-
tematic hierarchy for personnel evaluation and selection based on a fuzzy analytic hierarchy 
process to facilitate the decision-making process through a consistent evaluation standard. To 
deal with both quantitative and qualitative information in personnel selection, Durson and 
Karsak (2010) presented an integrated MCDM approach by combining the fuzzy informa-
tion, 2-tuple linguistic representation model and TOPSIS method. Lin (2010) combined a 
network analysis method with data envelopment analysis for personnel selection. Dağdeviren 
(2010) proposed a combination of the network analysis method with TOPSIS method to 
deal with personnel selection problems in which the network analysis method was used 
to determine the weights of criteria and the TOPSIS method was used to rank candidates. 
However, these MCDM methods for personnel evaluation used the same set of criteria for 
different candidates. 

According to research fields, scientific and technological talents can be divided into three 
categories, including basic research talents, engineering technology talents and innovation 
and entrepreneurship talents. Basic research talents are in basic research and applications. 
They mainly study the laws of material movement in nature, reveal the inner connection and 
objective laws of natural phenomena in scientific and technological activities, and apply the 
obtained results to practical research. Engineering technology talents focus on technology 
research and development and application of science and technology, aiming to carry out 
research on new systems, new products, new structures, new processes and new materi-
als based on applied basic research and application research results. Innovation and en-
trepreneurship talents are committed to applying scientific research results to practice and 
transforming existing scientific research results into productivity. Obviously, the evaluation 
criteria for scientific and technological talents in different fields should be different. The 
proposed probabilistic linguistic VIKOR method allows assessing different types of scientific 
and technical talents within the same framework. The following is a case study to illustrate 
the steps of the proposed method in detail.

A university plans to carry out personnel evaluation and award four prizes: one each for 
the first, second and third prizes, and one for the ordinary prize. Seven alternatives have 
passed the preliminary screening and have been recommended for this award. Among these 
seven candidates, three (a1, a2, a3) belong to basic research talents, two (a4, a5) belong to 
engineering technology talents, and two (a6, a7) belong to innovation and entrepreneurship 
talents. The evaluation criteria for each of the three categories of scientific and technological 
talents are set as follows:

1) Basic research talents: H index (a comprehensive indicator reflecting the number of 
posts and citations) (c11), ownership of intellectual property rights (c12), degree of rec-
ognition in academia (c13), learning ability (c14), and scientific research interest (c15);

2) Engineering technology talents: ownership and application of intellectual property 
rights (c21), degree of recognition by industry peers (c22), industry/market analysis 
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capabilities (c23), influence in industrial field (c24), and engineering planning and de-
cision-making capabilities (c25);

3) Innovation and entrepreneurship talents: ownership and application of intellectual 
property rights (c31), degree of recognition by industry peers (c32), intellectual prop-
erty influence (c33), and marketing and management capabilities (c34).

The three categories of scientific and technological talents have two common criteria: 
intellectual property rights (c12, c21, c31) and peer recognition (c13, c22, c32), but they differ 
slightly in content. Basic research talents place emphasis on the ownership of intellectual 
property rights, while the other two types place emphasis on both the ownership and use. For 
basic research talents, we mainly examine their peer recognition in academia. For the other 
two types of talents, we need to examine their peer recognition in enterprises and industries. 
The innovative knowledge and achievements of basic research talents can be quantitatively 
evaluated by the number of publications and citations, while engineering technology talents 
and innovation and entrepreneurship talents have no quantitative requirement on the num-
ber of publications and citations due to the characteristics of their research directions, but 
pay more attention to their industrial capabilities and the influence of intellectual property.

Three kinds of linguistic term sets are used for evaluation, including S1 = {s–3 = very low, 
s–2 = low, s–1 = a litle low, s0 = medium, s1 = a litle high, s2 = high, s3 = very high}; S2 = {s–3 = 
very bad, s–2 = bad, s–1 = a litle bad, s0 = medium, s1 = a litle good, s2 = good, s3 = very good}; 
S3 = {s–3 = very small, s–2 = small, s–1 = a litle small, s0 = medium, s1 = a litle big, s2 = big, 
s3 = very big}. S1 applies to the evaluation of the criteria c11, c13, c14, c15, c22, c23, c25, c32 and 
c34, S2 applies to the evaluation of the criteria c12, c21 and c31, and S3 applies to the evaluation 
of the criteria c24 and c33. All criteria are benefit forms. The weight vectors of the three sets 
of criteria = 1 11 15{ , , }C c c , = 2 21 25{ , , }C c c  and = 3 31 34{ , , }C c c  used for measuring the 
performances of basic research talents, engineering technology talents and innovation and 
entrepreneurship talents are =1 (0.5,0.1,0.2,W  T0.1,0.1) , = T

2 (0.25,0.25,0.2,0.2,0.1)W  and 
= T

3 (0.3,0.2,0.3,0.2)W , respectively. Experts’ evaluation information of the seven candidates 
is expressed in PLTSs, as shown in Tables 1–3.

Table 1. The evaluation information of basic research talents

c11 c12 c13 c14 c15

1a −1 0{ (0.6), (0.4)}s s −1 0{ (0.4), (0.6)}s s 2{ (1)}s 1 2{ (0.2), (0.8)}s s −1{ (1)}s

2a 2 3{ (0.5), (0.5)}s s 1{ (1)}s 2 3{ (0.5), (0.5)}s s 2{ (1)}s 1 2{ (0.2), (0.8)}s s

3a 0 1{ (0.2), (0.8)}s s 0{ (1)}s 1 2{ (0.6), (0.4)}s s 1 2{ (0.5), (0.5)}s s 1{ (1)}s
*( )j

Sh p 3{ (1)}s 3{ (1)}s 3{ (1)}s 3{ (1)}s 3{ (1)}s

( )j
Sh p −1{ (1)}s −1{ (1)}s −1{ (1)}s −1{ (1)}s −1{ (1)}s
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Table 2. The evaluation information of engineering technology talents

c21 c22 c23 c24 c25

4a 2 3{ (0.5), (0.5)}s s 1 2{ (0.4), (0.6)}s s 2{ (1)}s 1{ (1)}s 2{ (1)}s

5a 1{ (1)}s 0 1{ (0.3), (0.7)}s s 1 2{ (0.5), (0.5)}s s 0 1{ (0.8), (0.2)}s s 1{ (1)}s
*( )j

Sh p 3{ (1)}s 3{ (1)}s 3{ (1)}s 3{ (1)}s 3{ (1)}s

( )j
Sh p −1{ (1)}s −1{ (1)}s −1{ (1)}s −1{ (1)}s −1{ (1)}s

Table 3. The evaluation information of innovation and entrepreneurship talents

c31 c32 c33 c34

6a 2 3{ (0.6), (0.4)}s s 1 2{ (0.2), (0.8)}s s 1 2 3{ (0.6), (0.2), (0.2)}s s s 1{ (1)}s

7a −1 0{ (0.8), (0.2)}s s 0 1{ (0.8), (0.2)}s s 2 3{ (0.6), (0.4)}s s −1 0 1{ (0.6), (0.3), (0.1)}s s s
*( )j

Sh p 3{ (1)}s 3{ (1)}s 3{ (1)}s 3{ (1)}s

( )j
Sh p −1{ (1)}s −1{ (1)}s −1{ (1)}s −1{ (1)}s

3.2. Resolving process to the case

The calculation steps are as follows:

Step 1. The aspired and tolerable values of each criterion are set as 3{ (1)}s  and −1{ (1)}s  , 
respectively.

Step 2. Using Eq. (10), we obtain the degrees of closeness between the values of alternatives 
and the aspired values of criteria, as shown in Table 4. 

Table 4. The degrees of closeness between the values of alternatives and the aspired values of criteria

Basic research talents c11 c12 c13 c14 c15

a1 0.100 0.150 0.750 0.700 0
a2 0.875 0.500 0.875 0.750 0.700
a3 0.450 0.250 0.600 0.625 0.500

Engineering technology talents c21 c22 c23 c24 c25

a4 0.875 0.650 0.750 0.500 0.750
a5 0.500 0.425 0.625 0.300 0.500

Innovation and entrepreneurship talents c31 c32 c33 c34

a6 0.850 0.700 0.650 0.500
a7 0.050 0.300 0.850 0.125

Step 3. Calculate the group values and individual regrets of alternatives by Eqs (12) and 
(13), respectively, and then normalize them by Eqs  (14) and (15), respectively. The re-
sults are shown in Table 5. The first subordinate ranking list of the seven alternatives is 
=1 {7,1,4,2,5,3,6}r , that is      2 4 6 3 5 7 1a a a a a a a . The second subordinate ranking 

list is =2 {7,1,6,3,4,2,5}r , that is      2 6 4 5 7 3 1a a a a a a a .
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Table 5. The group values and individual regrets of alternatives obtained by the proposed method

Alternative
Group value Individual regret Compromise degree

Value Rank Value Rank Value (h = 0.5, j = 0.5) Rank

a1 0.353 7 1.000 7 –0.459 7
a2 1.000 1 0.139 1 0.496 1
a3 0.598 4 0.611 6 –0.008 5
a4 0.875 2 0.222 3 0.349 2
a5 0.577 5 0.319 4 0.101 4
a6 0.854 3 0.187 2 0.334 3
a7 0.440 6 0.507 5 –0.028 6

Step 4. 11 values of the parameter h are considered, including 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 
0.7, 0.8, 0.9 and 1. In determining the compromise degrees of alternatives, h < 0.5 means 
that the majority rule is important than the opponent rule, h > 0.5 means that the opponent 
rule is important than the majority rule, and h = 0.5 means that the two rules are the same 
important. In this case, let j = 0.5, that is, the ranks and values are equally important in 
aggregation. Using Eq. (16), we calculate the compromise degrees of alternatives based on 
the 11 values of h, respectively. The ranks are shown in Figure 1. To test the robustness of 
the results, we calculate the deviation D (see Eq. (17)) between the rankings obtained by 
different values of the parameter, and get D = 0.906.

 = = =

 
 = − −
 
 

∑ ∑ ∑
1 1 1

1 1 11 ( ) ( )
m L L

l l
i i

i l l

D r a r a
M L L

, (17)

where L is the number of the values of the parameter considered in sentiment analysis. 
( )l

ir a  is the rank of ai obtained based on the lth value of the parameter. M indicates the 
maximum difference in ranks between the two rankings. If m is even, then = 2 2M m , and 
if it is odd, then = −2( 1) 2M m .

Figure 1. Rankings of alternatives obtained based on different values of h
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When h∈{0,0.1,0.2}, the ranking list is      2 6 4 5 7 3 1a a a a a a a  ; when 
h∈ {0.3,0.4, ,0.8}, the ranking list is      2 4 6 5 7 3 1a a a a a a a  or     2 4 6 5 3a a a a a 

    2 4 6 5 3a a a a a 7 1a a ; when h∈{0.9,1}, the ranking list is      2 4 6 3 5 7 1a a a a a a a . 
Overall, alternative a2 always ranks first, while alternative a1 ranks last. In the case that the 
parameter h takes different values, alternative a3 has the biggest change in ranking, because 
it performs not outstanding under criterion c11, but performs good on the other criteria. The 
award can be determined based on the following three scenarios:

1) If decision-makers value the opponent rule rather than the majority rule (risk averse 
attitude), then it should give talents a2, a6 and a4 first, second and third prize, respec-
tively, and give talent a5 ordinary prize.

2) If decision-makers value both the opponent rule and the majority rule (risk neutral 
attitude), then it should give talents a2, a4 and a6 first, second and third prize, respec-
tively, and give talent a5 ordinary prize.

3) If decision-makers value the majority rule rather than the opponent rule (risk prefer-
ence attitude), then it should give talents a2, a4 and a6 first, second and third prize, 
respectively, and give talent a3 ordinary prize.

In order to analyze the impact of the parameter j on ranking results, 11 values of j are 
considered, including 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1. In this case, let h = 0.5. The 
ranking lists of alternatives obtained based on the 11 values of j are shown in Figure 2. The devi-
ation between the rankings is 0.961. Overall, only the preference relation between alternatives 
a3 and a7 changes. If j∈{0,0.1,0.2,0.3} , the ranking list is      2 4 6 5 7 3 1a a a a a a a ; 
otherwise, the ranking list is      2 4 6 5 3 7 1a a a a a a a  . Therefore, the decision results 
obtained in this case study are robust. 

3.3. Comparative analysis

To illustrate the effectiveness of the proposed method, this section uses the probabilistic 
linguistic VIKOR method proposed by M. Lin et al. (2021a) to solve the case. This method 
is a direct extension of the original VIKOR method. More specifically, to address the MCDM 

Figure 2. Rankings of alternatives obtained based on different values of j
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problems with PLTSs, this method used the probabilistic linguistic distance measure to cal-
culate the distance between the values of alternatives and the best values of all criteria. The 
other steps of this method are the same as the original VIKOR method. The best and the 
worst values of each criterion are obtained by comparing the values between alternatives. 
Using Eq. (10), we obtain the normalization values of alternatives under different criteria, 
as shown in Table 6.

Table 6. The normalization values of alternatives under different criteria

Basic research talents c11 c12 c13 c14 c15

a1 0.000 0.000 0.375 0.200 0.000 
a2 0.861 0.412 0.688 0.333 0.700 
a3 0.389 0.118 0.000 0.000 0.500 

Engineering technology talents c21 c22 c23 c24 c25

a4 0.750 0.391 0.333 0.286 0.500 
a5 0.000 0.000 0.000 0.000 0.000 

Innovation and entrepreneurship talents c31 c32 c33 c34

a6 0.842 0.571 0.000 0.429 
a7 0.000 0.000 0.571 0.000 

Using Eqs  (3) and (4), we obtain the group values and individual regrets of alterna-
tives, and then rank the alternatives by these two kinds of values, respectively. The results 
are shown in Table 7. When calculating the compromise degrees by Eq.  (5), we consider 
11 values of the parameter h, including 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1. 
Figure 3 shows the ranks of alternatives determined by the compromise degrees of alterna-
tives. The deviation between the rankings is 0.886. If h = 0.5 and j = 0.5, the ranking list is 
     2 4 6 3 7 5 1a a a a a a a , which is different from the result obtained by the proposed 

method. The WS coefficient of similarity (Sałabun & Urbaniak, 2020) between the ranking 
obtained by the proposed method and that by the method proposed by M. Lin et al. (2021a) 
is 0.965.

1. From Table 3, we can find that a6 performs better than a7 in all criteria except criterion 
c33, and a6 performs at least a little good under criterion c33, but a7 performs not good 
under both criteria c31 and c34. Therefore, the worst performance of a6 is better than 
that of a7. However, according to the method proposed by M. Lin et al. (2021a), the 
individual regrets of a6 and a7 are the same. If h = 0, then both a6 and a7 are equally 
ranked, which is not consistent with intuitive judgment. According to our proposed 
method, the individual regret of a6 is larger than the individual regret of a7, and the 
rank of a6 is always higher than the rank of a7. 

2. From Table 3, we can find that a5 performs at least moderate under all its criteria, but 
a1 performs a little bad under criterion c11, c12 and c15. Therefore, a5 is better than 
a1. However, according to the method proposed by M. Lin et al. (2021a), the group 
value of a1 is larger than the group value of a5. If h = 0.9 or 1, a1 ranks higher than 
a5, which is inconsistent with intuitive judgments. According to the proposed method, 
a1 always ranks the last.
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3. The deviation between the rankings obtained in sensitive analysis shows that the rank-
ing results obtained by our proposed method are more stable than the ranking results 
obtained by the method proposed by M. Lin et al. (2021a). It is proved that the pro-
posed aggregation operator (i.e., Eq. (16)) is more robust than the aggregation operator 
(i.e., Eq. (5)) used in the original VIKOR method. 

Overall, the results obtained by our proposed method are consistent with intuition, which 
indicates the reliability of the method. This case study also proves that the traditional VIKOR 
method is not suitable for solving the MCDM problems with inconsistent criteria of different 
alternatives. 

Table 7. The group values and individual regrets of alternatives obtained by the method in M. Lin et al. 
(2021a)

Alternative
Group value Individual regret Index value

Value Rank Value Rank Value (h = 0.5, j = 0.5) Rank

a1 0.095 6 0.500 7 0.933 7
a2 0.713 1 0.069 1 0.000 1
a3 0.256 4 0.306 6 0.594 4
a4 0.459 2 0.152 2 0.274 2
a5 0.000 7 0.250 3 0.710 6
a6 0.453 3 0.300 4 0.450 3
a7 0.171 5 0.300 4 0.647 5

Figure 3. Rankings of alternatives obtained by the method in M. Lin et al. (2021a)  
based on different values of h
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3.4. Discussions

Existing MCDM methods aim to achieve comparability among alternatives which are mea-
sured by the same set of criteria. The main advantage of the proposed MCDM method is 
that the comparability among alternatives can be achieved in the case of inconsistent sets of 
criteria for different alternatives. For the case study, since the evaluation criteria (even the 
number of criteria) for the three types of talents are inconsistent, it is not possible to calculate 
the marginal values for each talent under each criterion using the multiple criterion value 
theory and obtain the overall values of the talents by an aggregation operator. A common and 
simple solution is to directly aggregate the evaluations of alternatives under their respective 
criteria in a weighted average manner to obtain a comprehensive evaluation. This method 
is easy to understand, but it does not yield reliable results. On the one hand, the perfor-
mances of an alternative under different criteria have different dimensions, even if they are 
evaluated with the same linguistic term sets. For example, an acceptable price of a product 
for a consumer is “not expensive” and an acceptable quality is “at least a little good”. In this 
regard, the overall performance of an alternative cannot be measured by directly combining 
evaluations under different criteria. On the other hand, the weighted average is a fully com-
pensation operator that allows an alternative’s poor performance under some criteria to be 
fully compensated by its good performance under other criteria. The compromise solutions 
selected in this way may perform poorly under some criteria. This does not satisfy the value 
system of risk-averse decision makers. The approach proposed in this paper avoids these two 
problems. To address the problem of inconsistent dimensions, the closeness of an alternative 
to the aspired value of each criterion is measured by the distance measure, making the values 
of an alternative under different criteria comparable (see Table 4). To satisfy the value system 
of decision makers with different risk attitudes, two aggregation rules including the majority 
rule and the opponent rule are used to determine compromise solutions. The decision result 
varies flexibly depending on the decision maker’s tolerance attitude toward poor performance 
under a criterion (see Figure 1). 

Another advantage of the proposed method is the improved trade-off mechanism between 
the majority rule and the opponent rule to define the compromise degrees of alternatives. The 
integration of both subordinate values and ranks to judge the overall performance of alterna-
tives increases the robustness of decision results (see Figures 1 and 2). Decision-makers can 
determine the overall ranking of alternatives directly and no longer need to further make 
trade-offs among the rankings determined by group values, individual regrets and com-
promise degrees of alternatives. In addition, the case study demonstrates that the proposed 
approach can effectively handle qualitative decision information. Uncertainty in decision 
information does not affect uncertainty in decision results. The main purpose of linguistic 
approaches is to enable evaluators to express their opinions as truly and comprehensively as 
possible in a customary manner, rather than to increase the difficulty of expressing infor-
mation. The PLTS provides the flexibility to depict different types of qualitative evaluation 
information by combining two commonly used tools for expressing uncertain information: 
linguistic terms and probabilities. Therefore, the findings of this study on combining MCDM 
methods with PLTSs have implications for uncertainty decision analysis.
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Conclusions

In this paper, we considered MCDM problems with different sets of criteria for different 
alternatives and proposed a probabilistic linguistic VIKOR method to measure the group 
values and individual regrets of alternatives based on the aspired and tolerable values of cri-
teria. We perceive the introduced method as a novel VIKOR method, because the method to 
measure the closeness degree of each alternative to the ideal solution, the normalization tech-
niques and the aggregation function were improved. The aggregation function proposed in 
this paper is robust, since it integrates both the cardinal and ordinal information determined 
by the group values and individual regrets, respectively. If the risk attitude (i.e., the tolerance 
to the worst performance of an alternative under a single criterion) of a decision-maker is 
determined, the compromise solution can be judged and all alternatives can be ranked di-
rectly based on the compromise degrees of alternatives obtained by the aggregation operator, 
instead of judging the compromise solution by considering the group values, individual re-
grets and compromise degrees of alternatives together according to the compromise-ranking 
rule used in the traditional VIKOR. The proposed method has a wide range of applications 
because it can deal with MCDM problems with qualitative criteria whose values are gener-
ated by subjective evaluations.

Some issues remain for future research. The proposed method did not take into account 
the interactions between criteria. Future research may consider the introduction of Cho-
quet integral to improve the aggregation operators to model interactions between criteria. 
In addition, the proposed method for MCDM is based on direct preference elicitation, and 
decision-makers are required to provide the values of parameters in this method, including 
the weights of criteria and the tolerance degree to the worst performance under a criterion. 
This requires a large cognitive effort for decision-makers. In the future, it is interesting to 
consider preference disaggregation analysis with indirect preference elicitation, which is user-
friendly, only requiring decision-makers to make holistic judgments on reference alternatives 
that they are familiar with (Doumpos & Zopounidis, 2019). The proposed VIKOR method 
can be used as the underlying preference model in which the parameters are learned through 
ordered regression techniques to reconstruct decision examples. 
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