
Introduction

In the context of the “Supply Chain Management (SCM)”, “Internet of things (IoT)” plays the 
role of an active system of sensors and gateways that are digitally connected to each other 
for sensing and monitoring tasks. IoT has the capacity to facilitate the coordination of the 
SCM stakeholders through sharing the available information and resources to help them 
with planning, controlling, and coordinating of procedures for SCs (Li et al., 2020; Ren et al., 
2017). Tu (2018) put forward to identify the factors that can impact the enterprises’ goal for 
the implementation of IoT in their logistics and SCM processes. They showed that enterprises 
mainly use Industrial IoT (IIoT) for the purpose of collecting onsite real-time information. IoT 
clearly depicts the product flow at all steps, which starts from manufacturing and keeps on 
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its path towards warehouse, distributors, and finally to consumers; this way, IoT brings out 
transparency to the whole system (Guo et al., 2021). 

All items that enter a SC are tagged with “Radio Frequency Identification (RFID)” (Li et al., 
2018; Wang et al., 2018). Goods are transported by means of vehicles equipped with active 
GPS modules. With entering or leaving warehouse or inventory by the goods, RFID scanners 
automatically read tags and create database entry. The delivery processes are monitored by 
smart IoT devices, which involve inventory and order management at the warehouse and 
transportation. The IoT sensors are capable of detecting the low stock of any product and 
automatically ordering from the manufacturers on the basis of pending demands and former 
order data. The information in regard to the product or the RFID reader ID can be stored by 
the smart active RFID tags, along with the tag ID; as a result, it could be kept secured against 
tapering. Note that date and timestamp are also stored by RFID reader scanning tags. The 
reliability of the system is established based on two key factors, i.e., on-time delivery and 
safe delivery (Li et al., 2013, 2018). The information gathered by the sensors are accumulated 
through the internet to the cloud, which offers storage, virtual resources, and computing 
services hosted by skilled networking firms (He et al., 2020). 

Those SCs that are supported by the IoT technology can be managed remotely; they 
can provide improved coordination between the stakeholders. In general, the accessibility of 
more precise real-time information can significantly improve customer satisfaction levels and 
decision-making processes (Ben-Daya et al., 2019). The sensors make available some infor-
mation regarding the demands, location of goods throughout the transport path, stocking 
details at the warehouse, delivery, etc.; this way, it indeed covers the products’ whole lifecycle. 
In addition, it helps to manage geographically detached vendors, distributors, and custom-
ers in effective ways. On the other hand, SCs may encounter security challenges due to the 
contribution of numerous stakeholders as well as the undependability of IoT infrastructure. 

IoT organizes physical objects into a digitally connected network in which all the objects 
are capable of sensing, monitoring, and making the interaction between a firm and its SC that 
involves factories, suppliers, distributors, retailers, and consumers (Ben-Daya et al., 2019). IoT 
can enhance the information exchange, visibility, and agility, which can eventually lead to data 
transparency; it can provide countless of data in regard to the positions, weather conditions, 
temperatures, and other parameters associated with the products of the firm, which could 
not be observed at once previous to IoT emergence (Miorandi et al., 2012). Furthermore, 
IoT is able to prolong the products’ life cycle, draw higher customers’ satisfaction levels, and 
enhance the quality of the products with lower costs and less volume of generated waste (Gu 
& Liu, 2013; Harris et al., 2015; Mathaba et al., 2017). 

In spite of all the above-mentioned benefits of IoT, this technology has faced a number 
of consequent risks (Birkel & Hartmann, 2019; Whitmore et al., 2015). The literature is be-
ing loaded with more and more studies conducted on SCM. Researchers and practitioners 
working in this domain are mainly concentrated upon the potential value and applications 
of IoT. On the other hand, adverse effects have been often ignored, generalized, or dealt 
with in isolation (Strange & Zucchella, 2017). The potential risks can negatively affect the 
rate of adopting the technology, thereby hindering the achievement of predicted benefits; 
as a result, special attention is needed (Bauk et al., 2017). Due to the risks of IoT in SCM and 
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the recently-observed increase of the studies on this subject, there is a need to pay more 
attention to this topic. 

In another research, Musa and Dabo (2016) focused upon the use of RFID from the year 
2000 to 2015. Liu et al. (2017) performed a content analysis on IoT from the technological 
perspective. Belinski et al. (2020) provided a systematic literature survey and research plan 
that covers organizational learning and Industry 4.0. Meng (2021) discussed a study to pres-
ent how SC enterprisers or business can collaborate with government or community in disas-
ter SC risk management. In addition, the literature consists of numerous reviews with a special 
focus upon the topics connected with IoT (Guo et al., 2021; Qi et al., 2021; Zhang et al., 2018; 
Zielonka et al., 2021; Wu et al., 2019, 2021a, 2021b). 

“Decision experts (DEs)” cannot provide solutions to “Multi-Criteria Decision-Making 
(MCDM)” problems in the real world, which is mainly due to human errors, lack of knowledge, 
wide-spread changes and computational complexity of today’s environment. To overcome 
these complexities and facilitate the decision-making process in these situations, the idea of 
“Intuitionistic Fuzzy Sets (IFSs)” was introduced by Atanassov (1986). IFS is described by two 
factors: the “Belongingness Degree (BD)” and “Non-belongingness Degree (ND)”, and holds a 
constraint according to which the addition of its BD and ND is ≤ 1. Afterward, Yager (2014) 
put forward the notion of “Pythagorean Fuzzy Sets (PFSs)” with the aim of mending the IFS 
drawback. PFS is also described by BD and ND and holds a constraint that the square sum 
of BD and ND is ≤ 1. At the present time, because of its capability for tackling the uncer-
tainty that generally exists in real-world MCDM problems, PFSs are a very popular tool. The 
literature contains many theories, methods, and applications regarding PFSs (Peng, 2019; 
Rani et al., 2019, 2021). 

Nonetheless, the space of PFS information is very narrow with the constraint that the 
square sum of BD and ND should not be greater than one. To address such a situation in an 
effective way, the “q-Rung Orthopair Fuzzy Sets (q-ROFSs)” was suggested by Yager (2017). 
These sets are also described by BD and ND. The theory of q-ROFSs holds a condition that the 
sum of the qth powers of BD and ND is ≤ 1, where q ≥ 1. This model is capable of properly 
handling the above-mentioned example. Therefore, the range of the q-ROFSs is broader than 
PFSs and IFSs corresponding to the variation of the parameter q (q ≥ 1). Thus, the q-ROFS has 
higher flexibility in handling complex uncertain information. In recent years, many research-
ers have focused on the q-ROFSs environment. For instance, Peng and Liu (2019) examined 
novel formulae for information measures under q-ROFSs and studied their relationships. 
Liu and Liu (2019) studied some q-ROF-Bonferroni mean operators. An innovative model 
based on q-ROFS was proposed by Tang et al. (2020) with the aim of addressing the 3-way 
decision-making problem. A decision-making framework based on q-ROF was discussed by 
Krishankumar et al. (2021) to obtain an effective solution for renewable energy resource 
decision-making problem. Cheng et al. (2021) designed an integrated MCDM method for 
assessing the sustainable enterprise risk management in manufacturing small and medium-
sized enterprises. Further, Zeng et al. (2021) suggested a weighted induced logarithmic dis-
tance measure based method for solving MCDM problems within the context of q-ROFSs.

The DEs often provide high significance to the criteria weights in the decision-making 
process. The attribute weights are divided into “objective and subjective” weights (Yang et al., 
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2021; He et al., 2021). The former is measurable with the help of decision-matrices; objec-
tive weights are defined by means of information given by the DEs (Dehnavi et al., 2015). In 
contrast, subjective weights reflect the DEs’ opinions, who describe the relative importance 
of the criteria (Karabasevic et al., 2016a). To measure the subjective weights, the “Stepwise 
Weight Assessment Ratio Analysis (SWARA)” approach was initiated by Keršulienė et al. (2010). 
Compared to diverse tools such as AHP, the computational operations of SWARA are sim-
pler. The “Analytic Network Process (ANP)” (Saaty, 1999) and AHP (Saaty, 1980) are the most 
commonly employed methods to predict the criteria weights; although, amongst the novel 
criteria weighting procedures, SWARA (Keršulienė et al., 2010), “Level Based Weight Assess-
ment (LBWA)” (Žižović & Pamucar, 2019),“Full Consistency Method (FUCOM)” (Pamucar et al., 
2018), and “Best-Worst Method (BWM)” (Rezaei, 2015) are worth considering. Apart from 
SWARA, the other methods work on the basis of pairwise comparisons; though, considerable 
differences still exist in how they calculate the criteria weights. In AHP, n(n – 1)/2 comparisons 
are required to be made in pairs of criteria. Note that making many comparisons results in 
higher complexity of the model implementation, particularly when there are many criteria to 
be taken into account. BWM became extensively utilized in a short time. In comparison with 
AHP, it has a smaller number of pair comparisons (2n – 3). On the other hand, the existence 
of lots of comparisons in pairs of attributes, which define the limitations for the solution 
of nonlinear model, has caused the use of BWM to be of high complexity. For that reason, 
numerous scholars do not show any tendency to use it. FUCOM works on the basis of the 
pairwise comparisons of criteria, where there is a need only for the (n – 1) comparison in 
the model. FUCOM aids in validating the model by computing the error value for considered 
weights by “Deviation from Full Consistency (DFC)” (Pamucar & Ecer, 2020). LBWA works 
based on the pairwise comparisons of criteria, in which there is a need only for the (n – 1) 
comparison in the model. SWARA can effectively measure the criteria weights. In compari-
son to AHP, SWARA does not need many pairwise comparisons and also is more consistent. 
In addition, unlike BWM (Rezaei, 2015), SWARA does not involve the solution of complex-
linear objective functions; it has lesser assessment intricacy and is easier to recognize than 
BWM. Mishra et al. (2020b) integrated SWARA with COPRAS with the aim of evaluating the 
bioenergy production processes with IFSs. He et al. (2021) put forward an interval-valued 
Pythagorean fuzzy SWARA based decision support system for assessing community-based 
tourism from sustainable perspective.

During the past few decades, MCDM was taken into consideration as a key process of 
people’s daily lives. In real-life situations, it is not easy to solve MCDM problems (Cavallaro, 
2010). Because of the increasing complexity and widespread alterations to today’s environ-
ments, the conventional MCDM methods are generally inapplicable to the MCDM prob-
lems. The additive ratio assessment (ARAS) method (Zavadskas & Turskis, 2010) provides 
the argument that the phenomenon of complex domains could be tackled by simple relative 
comparisons. ARAS makes use of the concept of an optimality degree in order to achieve pri-
oritization. The most important benefits of ARAS include: 1) direct and proportional relation 
with attribute weights (Iordache et al., 2019); 2) having the ability to solve complex problems 
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(Mishra et al., 2021); 3) involving some simple and direct steps for the assessment of a num-
ber of options or choices based on their performance in comparison with the chosen evalua-
tion criteria that obtained suitable, sensible, and comparatively-accurate results (Zavadskas & 
Turskis, 2010). Most situations where the conventional ARAS has been recently utilized have 
been aimed at personnel evaluation purposes (Karabasevic et al., 2016a), the ranking of firms 
on the basis of indicators of corporate social accountability (Karabasevic et al., 2016b), and 
the evaluation of drug selections for COVID-19 (Mishra et al., 2021). Recently, this approach 
has been elaborated in various uncertain fields. A popular instance is the ARAS Grey model 
(Turskis & Zavadskas, 2010), which was extended on interval-valued triangular fuzzy numbers 
(Stanujkic, 2015). ARAS was used by Mishra et al. (2020a) for the assessment and selection 
of desired IT personnel for a firm on IFSs. Büyüközkan and Güler (2020) made use of two 
methods, i.e., SAW and ARAS, and then considering the results obtained, they evaluated and 
selected smart watch options. 

The considered review studies contributed significantly to Internet of Things and its rel-
evant topics; however, some significant knowledge gaps motivated the current research. 
Some of these studies focus on a specific topic, and some address IoT as a topic amongst 
many other subtopics. Some of the studies considered in this research have overlooked the 
field of SCM and its associated risks. Therefore, to classify the most imperative IoT risks in 
SCM, a survey approach has been regulated based on the literature review and experts’ 
interviews. To doing so, a comprehensive framework including several risks related to IoT in 
the area of SCM has been developed in manufacturing companies. To analysis the IoT risk 
framework, an integrated decision-making approach has been proposed using SWARA and 
ARAS methods under q-ROFSs. Based on above-mentioned discussions, the main contribu-
tions of this study are as

 ■ To conduct a survey approach utilizing expert interviews and literature review to inves-
tigate the IoT risks for the supply chain management.

 ■ To propose an innovative approach to decision-making by means of the SWARA-ARAS 
method from q-rung orthopair fuzzy perspective to prioritize the organizations and 
analysis the main IoT risks for the supply chain management.

 ■ The SWARA model is used to assess and prioritize the IoT risks for the supply chain 
management.

 ■ The ARAS method from q-rung orthopair fuzzy perspective is discussed to prioritize 
the organization, analysis and evaluate the IoT risks for the supply chain management. 

 ■ To comparison and validation of the proposed q-ROF-SWARA-ARAS approach using 
other extant decision-making models.

The next sections are structured as: Section 1 presents the literature review related to the 
risks of IoT for the SCM. Section 2 firstly presents the fundamental ideas of q-ROFSs and then 
proposes an integrated SWARA-ARAS method under q-rung orthopair fuzzy environment. 
Section 3 presents the implementation results of the current method on a case study and 
further performed the sensitivity and comparative analyses. At last, the last Section confers 
the concluding remarks of this work.
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1. Literature review 

1.1. IoT risk in SCM 

The effective factors of IoT are highly complex and diverse, resulting in an information-
intensive SCM process and, in turn, lots of obstacles for companies and their SCs (Birkel & 
Hartmann, 2019). Furthermore, despite the fact that the significance of the exchange between 
SC associates and the significance of risk information has been well recognized in the litera-
ture, only limited research has been carried out with a focus on the cohesion of information 
requests and processing capacities in the SCM setting (Fan et al., 2017; Rogers et al., 1999). 

A consequent risk for the IoT growth can be the shift of the providers’ perspectives from 
a rather linear SC to an ecosystem (Birkel & Hartmann, 2019) wherein one platform plays the 
role of the architect of the structure and the setter of the benchmarks. This can result in the 
dominance of one supplier and also the formation of winner-takes-all markets (Rymaszewska 
et al., 2017). Such a problem can also be the case for firms in addition to smart capabilities, 
resulting in indistinct planned differences and zero-sum competitions. The problems stated 
sporadically comprise higher financial complexity and the indefinite effects of IoT on SCs 
(Neirotti et al., 2018). Thus, the substantial impacts of IoT on SCs and the macro-environment 
may result in numerous widespread risks.

The uncertainty in the adoption of technology and surveillance and suspicion to com-
panies are consequent risks that emerge from privacy concerns. Societal risks are prevalent 
dealing with the adverse effects upon persons’ lives, together with the rise of injuries rates 
(Ahmed et al., 2017) and missing of simple jobs, which occurs due to the increase of auto-
mation (Dweekat et al., 2017). More than 50% of the identified articles have addressed the 
security-related issues and recognized them as the origin of many other risks at diverse stag-
es. Security has been conferred from several points of view (Khan & Salah, 2018), including 
the absence of transport encryption, non-secured web interfaces, or deficient authorization, 
which cause the IoT system to be susceptible to attacks (Karkouch et al., 2016). To moderate 
potential risks, many scholars have attempted to develop distinctive protocols, verification, 
and authorization to access control and trusted communications, security through transpar-
ency or hardware-based security at chipset stage (Díaz et al., 2016). 

When the presented challenges are combined, many technological risks will arise. The 
attack-related risks are the main risks that may emerge, which have far-reaching conse-
quences for people, companies, and SC networks (Qiu et al., 2015). In the majority of cases, 
there is an unbalanced information exchange between SC parties, which results in informa-
tion irregularity. Therefore, the other risks from the increase of data exchange include the 
threat of being punished for unfair behaviors, the loss of information advantages, the ex-
pose of distribution channels, skipping SC stages, and the decrease of bargaining power. A 
portion of every network coordination demands high expenses for the management of the 
complicated heterogeneous network, which includes managing the enterprise relationships 
and data exchange processes (Lee & Lee, 2015). The objective of such expenses is to stay 
resilient against SC disruptions and also to avoid the decline of the network efficiency due 
to deficient management (Ochoa et al., 2017). The adoption and implementation of different 
technologies is an obstacle to the constant orchestration of SCs (Khan & Salah, 2018). It may 
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result in the problem of dependency that can, in turn, bring about different risks (Friedewald 
& Raabe, 2011). 

Opportunism addresses the problems that may arise due to malicious behaviors. Such 
behaviors (e.g., data manipulation, data misuse, financial penalties, and customer preference 
and favoritism) have negative impacts on both companies and consumers (Cavalcante et al., 
2016a). Every company has to cope with different risks that may range from data manage-
ment to human resources. The literature has emphasized the significance of complex data 
management for companies since it is taken into account as both challenge and risk (Parry 
et al., 2016). In strategic management, the risk is extensively prevalent and involves the risks 
that arise because of the adaption of decision models, the accomplishment of improper plans 
through undeveloped technologies, and complicated system management. In the context of 
operational management, the adoption of IoT may induce some risks such as imprecise risk 
detection, work intensification, loss of goods, delivery failure, etc (Qiu et al., 2015). 

The financial risks involve the expenses of the maintenance of managerial IoT organiza-
tions, IoT-related operating costs, and technological developments (Birkel & Hartmann, 2019). 
Subsequent risks cover the adverse impacts on the company’s stock price (De Cremer et al., 
2017). The most addressed risks are related to attacks; this has directly resulted from the 
security issues with disturbing impacts upon both companies and SCs. The potential conse-
quences scope is ranged from data leakage to physical damages to employees. Though, due 
to the high complexity of this issue, we can see that the literature suffers from a deficiency 
in quantifying the effects of attack-related risks with respect to companies and SCs (Birkel & 
Hartmann, 2019). The second mostly-discussed risk is network coordination, which plays an 
important role in SCM and IoT (De Cremer et al., 2017). To effectively address such challenges, 
there is a need for communication, trust management, and technological frameworks of high 
efficiency; in addition, it is necessary to carry out multidisciplinary research involving as many 
disciplines as possible. This has also been suggested by (Thomas, 2014). 

For the alleviation of the opportunistic behaviors risks and distrust risks and also for the 
promotion of practical applications, there is a need for further research into delineated and 
incomplete information exchange between companies. In every IoT-based system, trust plays 
the role of a critical enabler. The IoT adoption results in changing value establishment in 
close association with the last customer; this needs relationships to be set both inside and 
across industries. 

The most durable relationship continues among the attack-associated risks, the absence 
of permissible guidelines, high costs, reliance-related problems, and the complexity of the 
system use. It can be unexpected for a number of categories such as competition and asym-
metry of information, low data quality and data exchange, and unknown productivity and lack 
of knowledge; although, it reflects single perspective approaches. Discussing the risks and re-
lations can open a wide area of research and provide good opportunities for the contribution 
of knowledge. As a result, the current paper carried out a survey approach for the purpose 
of identifying the key risks, with the review of the existing literature and considering experts’ 
opinions. This way, the present study also developed a comprehensive framework. Table 1 
summarizes the IoT-related risks in the SCM context in the case of manufacturing firms.
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Table 1. Considered IoT risks for SCM

IoT risks References

Creation of zero-sum competition (r1) Bauk et al. (2017); Birkel and Hartmann (2019)
Economic risks (r2) Leone (2017); Strous et al. (2021)
Uncertain technology adoption (r3) Ahmed et al. (2017); Friedewald and Raabe (2011)
Surveillance and distrust (r4) Dutton (2014); Grieco et al. (2014)
Social risks (r5) Dweekat et al. (2017); Eling and Schnell (2016)
Security and privacy risks (r6) Ho-Sam-Sooi et al. (2021); Strous et al. (2021)
Low data quality (r7) Jing et al. (2014); Karkouch et al. (2016)
Technological risks (r8) Li et al. (2015); Lowry et al. (2017)
Political risks (r9) (Kshetri, 2017); Leone (2017)
Asymmetry of information (r10) Docherty et al. (2018); Eurich et al. (2010)
Distrust and trust management (r11) De Cremer et al. (2017); Díaz et al. (2016)
Complex network coordination (r12) Bogle (2017); Yee-Loong Chong et al. (2015)
Dependencies and consequences (r13) Gu et al. (2017); Docherty et al. (2018)
Opportunism (r14) Cavalcante et al. (2016b); De Cremer et al. (2017)
Competition (r15) Ghanbari et al. (2017); Jing et al. (2014)
Complex data management (r16) Badia-Melis et al. (2018); Bardaki et al. (2012)
Strategic management (r17) Bauk et al. (2017); Boos et al. (2013)
Operational management (r18) Cavalcante et al. (2016b); Gu et al. (2017)
Financial-related (r19) Badia-Melis et al. (2018); Bardaki et al. (2012)
Human resources (r20) Yee-Loong Chong et al. (2015); Gubbi et al. (2013)

2. Proposed research method

2.1. Preliminaries

In the current part of study, some basic concepts of q-ROFSs are presented.

Definition 1. A q-rung orthopair fuzzy set B on a universal set { }= 1 2, , ..., nC c c c  is described 
as follows (Yager, 2017):

 
( ) ( ){ }= ∈, , ,i B i B i iB c Cc c c 

where →  : 0,1B C  and →  : 0,1B C  show the BD and ND of an object ∈ ,ic C  respective-

ly, with the constraints ( )≤ ≤0 1,B ic ( )≤ ≤0 1,B ic ( )( ) ( )( )≤ + ≤0 1,
q q

B i B ic c  ≥ ∀ ∈1, .iq c C  The 

indeterminacy degree is presented by ( ) ( )( ) ( )( )= − − ∀ ∈1 , .B i

q qq
B i B i ic c c c C    For ease, 

( ) ( ),B i B ic c   is said to be a “q-Rung Orthopair Fuzzy Number (q-ROFN)” and is signified 
by ( )= , .   

Definition 2. Let ( )= , ,    ( )=
1 11 ,     and ( )=

2 22 ,     be the q-ROFNs. Then, the 
operational laws on q-ROFNs is given by (Liu & Wang, 2018)

(1) (1) ( )σ σσ = ν µ ;,c
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(2)   ⊕ = + − 
 1 21 2 1 21 2 , ;q q q qq

          

(3)   ⊗ = + − 
 1 2 1 2 1 21 2 , ;q q q qq

            

(4)   ( )= >
 

− −  
 

, , 0;1 1q q 


    

(5)   ( )= >
 

− −  
 

, , 0.1 1q q 
 

   

Definition 3. Let ( )= ,   
 
be a q-ROFN. Then, Liu & Wang (2018) defined the score and 

accuracy values of s, which as

( ) = −q q
     and ( ) = +

q q
     where ( )  ∈ − 1,1  and ( )  ∈   0,1 .

The normalized score and uncertainty values of q-ROFNs are given by

 
( ) ( )( )= +* 1 1 ,

2
  

 
and ( ) ( )° = − 1 

 
such that ( ) ( )°  ∈  

* , 0,1 .   (1)

Definition 4. Let ( )=
1 11 ,   

 
and ( )=

2 22 ,   
 
be q-ROFNs, then, the distance measure 

on s1 and s2 is given by
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2.2. Proposed q-ROF-SWARA-ARAS approach

In the current section, we propose a hybrid decision-making method, called as q-ROF-
SWARA-ARAS, for solving MCDM problems from q-rung orthopair fuzzy perspective. The 
procedural steps of the q-ROF-SWARA-ARAS framework are presented:

Step 1. Create a decision matrix
A committee of DEs { }1 2, , ..., le e e is created to find the best option from a set of al-

ternatives { }= 1 2, , ..., mP P P P by means of attribute/criterion set { }= 1 2, , ..., nr r r r . Let 
( ) ( ) ( )

×

 = = = 
 

, 1 1 , 1 1k
ij

m n
M i m j n  denotes the “q-ROF-decision matrix (q-ROF-DM)” given by 

DEs, in which ( )k
ij

 
presents the evaluation of an alternative Pi over a criterion rj in the form 

of q-ROFNs for kth DE.

Step 2. Derive the DEs weights (lk) 
The determination of the DEs’ weights is a vital concern in the MCDM process. To do this, 

assume ( )= ,k k ke    be a q-ROFN, then the weight of kth expert is given by 
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Clearly, ≥0k  and 
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
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Step 3. Construct the aggregated q-ROF-DM (A-q-ROF-DM)
During the MCDM process, it is significant to combine the distinct decision opinions into 

one matrix. Here, the q-rung orthopair fuzzy weighted aggregated operator is utilized and 
then obtained the A-q-ROF-DM ( )

×
= 

 ij m n
 , where

 

( ) ( ) ( )
= =

 
 = − = − −  
 

∏ ∏
 





(1) (2) ( )

1 1

, , ..., 1 1 , .k kqqij ij ij ij k k
k k

q ROFWA
 

       (4)

Step 4. Determination of the criteria weights using the SWARA approach
The procedure for computing the criteria weights is discussed as 

Step 4.1. Predict the crisp values. The score values ( )*
ij  of q-ROFNs are calculated 

with the use of Eq. (2). 
Step 4.2. Prioritize the attribute. The prioritization of the attributes is done based on 
the DE’s preferences from the highly important to the lower important attributes.
Step 4.3. Evaluate the comparative significance of the mean value. The significance 
degree can be predicted considering the attribute placed in the second spot, and the 
subsequent comparative significance is calculated by making a comparison between 
the attribute rj 

and attribute −1.jr
Step 4.4. Assess the comparative factor kj as follows:

 

 ==  + >

1, 1
1, 1,j

j

j
s j  (5)

wherein sj symbolizes the significant value.
Step 4.5. Calculate the weights. The reassessed weight rj is presented as
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Step 4.6. Compute the normalized weight. The attribute weights are normalized as 
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=

∑ 1

.j
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w
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  (7)

Step 5. Define optimal rating of alternative
The best rating of option can be obtained as 
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wherein rb and rn are the benefit and cost attributes, respectively.

Step 6. Normalize the A-q-ROF-DM 
In the MCDM procedure, the A-q-ROF-DM ( )

×
= 

 ij m n
  is transformed into normalized 

A-q-ROF-DM (NA-q-ROF-DM) ( )
×

=


 ij m n
  such that 
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Step 7. Make weighted NA-q-ROF-DM (WNA-q-ROF-DM)
The WNA-q-ROF-DM ( )

×
=





w ij m n
  is assembled as below:
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Step 8. Evaluation of the score value of option
By employing Eq. (1), the score values of WNA-q-ROF-decision matrix ( )

×
= 

w ij m n
  are 

computed by

 
( ) ( )( )= − +  

* 1 1 .
2

q q
ij ij ij  

  
(11)

Step 9. Evaluate the “Overall Performance Rating (OPR)” and “Utility Degree (UD)”
The OPR can be assessed using the expression

 
( )

=

=∑ 

*

1

.
n

i ij
j

   (12)

The suitable option has the higher OPR, whilst the worst option has the minimum value 
of .i Hence, the prioritization of the options can be obtained using .i

To obtain the suitable option(s), it is not only essential to analyze the best option but 
also significant to obtain the relative significance of obtained choices with the most desirable 
rating. Hence, the UD  i  of an alternative Pi is computed by

 
=

0
.i

i
 �  (13)

Clearly,  ∈   0, 1i  
and can be preferred in descending ranking, which is the essential 

preference order.

Step 10. Choose the most desirable one
The highest UD  i  of each option Pi is the best one. Therefore, the suitable option is 

evaluated using the procedure

 
( ){ }= =

* | max ; 1 1 ,i ii
i m 

 
(14)

Step 11. End.

3. Results and discussion

3.1. Case study

In the current part of the study, to recognize the key IoT risks in SCM, a comprehensive survey 
model by means of the current literature review and interviews with experts has been carried 
out. In total, 20 IoT risks including, the creation of zero-sum competition, economic risks, 
uncertain technology adoption, surveillance and distrust, social risks, security and privacy 
risks, low data quality, technological risks, political risks, asymmetry of information, distrust, 
and trust management, complex network coordination, dependencies and consequences, 
opportunism, competition, complex data management, strategic management, operational 
management, financial-related and human resources related to SCM are identified using a 
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survey study. In the next stage, to evaluate the selected IoT risks in the manufacturing sec-
tor, a decision team of three DEs has been created. The procedural steps of the proposed 
method are as follows:

Steps 1 and 2. Assume that the DEs’ weights are presented in the form of q-ROFNs, pre-

sented by {(0.90, 0.40, 0.5266), (0.75, 0.65, 0.6720), (0.80, 0.60, 6479)}. Now, Table 1 presents 

the q-ROF-DM ( ) ( )
×

 = = 
 

 , 1,2,3kk
ij

m n
k .

Since DEs’ importance degrees as provided by the experts, are in terms of q-ROFNs. Now, 
the weights : 1,2,3k  of DMs are evaluated by employing Eq. (3) and given as {v1 = 0.3659, 
v2 = 0.2808, v3 = 0.3533}. Table 2 shows the grades in terms of “Linguistic Values (LVs)” of 
DEs to measure the options related to IoT risks for SCM.

Table 2. Ratings of options and IoT risks in terms of LVs 

LVs q-ROFNs

Absolutely Significant (AS) (0.95,0.20)
Very Significant (VS) (0.90,0.40)
Significant (S) (0.80,0.60)
Moderately Significant (MS) (0.75,0.65)
Average (A) (0.60,0.70)
Moderately Insignificant (MI) (0.50,0.75)
Insignificant (I) (0.40,0.80)
Very Insignificant (VI) (0.30,0.90)
Absolutely Insignificant (AI) (0.20,0.95)

Table 3. LVs of alternative under different evaluate the IoT risks by DEs 

P1 P2 P3 P4

r1 (S,A,S) (A,MS,VI) (MS,MS,A) (S,S,A)
r2 (A,VS,MS) (A,S,S) (S,A,MS) (S,MS,MS)
r3 (MS,VS,S) (VS,MS,VS) (MS,A,S) (A,A,MS)
r4 (MS,A,MS) (VS,A,MS) (MS,MI,MS) (MI,A,S)
r5 (A,MS,S) (MS,S,S) (S,MI,A) (S,A,A)
r6 (VI,MI,I) (A,VI,I) (VI,MS,A) (VI,I,MS)
r7 (MI,A,I) (I,VI,I) (A,MI,A) (I,MI,A)
r8 (S,MS,VS) (A,S,MS) (MI,A,MS) (I,A,MS)
r9 (MS,A,S) (A,MS,S) (A,MI,S) (I,MI,S)
r10 (MI,I,A) (I,MI,VI) (I,A,MI) (I,I,MI)
r11 (MI,I, I) (MS,MI,I) (MS,I,A) (MS,MI,A)
r12 (MI,I,MI) (MI,A,MI) (S,I,A) (MS,I,A)
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P1 P2 P3 P4

r13 (MI,VI,VI) (I,MI,I) (MI,A,MI) (MI,VI,MI)
r14 (MI,A,S) (MI,MS,S) (MS,VS,MS) (A,VS,S)
r15 (VS,MS,A) (MI,VS,S) (A,MI,VS) (A,A,MS)
r16 (MI,I,VI) (A,I,VI) (MS,A,VS) (MS,A,S)
r17 (MS,MI,A) (I,VS,MI) (MS,MI,A) (MS,I,A)
r18 (MS,VS,S) (A,VS,S) (A,VI,MI) (A,VI,MI)
r19 (ML,A,S) (MS,VS,S) (MI,MS,A) (MI,S,A)
r20 (MS,VS,S) (A,MS,A) (MS,S,A) (MS,MS,A)

Step 3. The LVs ratings of options, which are depicted in Table 3, provided by three decision 
experts have been combined using Eq. (4) and constructed an A-q-ROF-DM ( )

×
=A ,ij m n

  
portrayed in Table 4.

Table 4. A-q-ROF-DM for IoT risks for SCM 

P1 P2 P3 P4

r1 (0.762, 0.627, 0.678) (0.612, 0.749, 0.705) (0.709, 0.667, 0.703) (0.751, 0.634, 0.686) 

r2 (0.782, 0.583, 0.687) (0.749, 0.635, 0.687) (0.742, 0.645, 0.687) (0.770, 0.631, 0.663) 

r3 (0.805, 0.581, 0.656) (0.880, 0.448, 0.612) (0.741, 0.645, 0.687) (0.666, 0.682, 0.729) 

r4 (0.762, 0.627, 0.678) (0.806, 0.556, 0.674) (0.705, 0.677, 0.698) (0.677, 0.680, 0.722) 

r5 (0.731, 0.649, 0.695) (0.783, 0.618, 0.657) (0.684, 0.675, 0.720) (0.699, 0.662, 0.718) 

r6 (0.409, 0.820, 0.724) (0.484, 0.787, 0.736) (0.605, 0.752, 0.708) (0.584, 0.776, 0.693) 

r7 (0.508, 0.753, 0.762) (0.377, 0.827, 0.725) (0.576, 0.714, 0.763) (0.516, 0.749, 0.762) 

r8 (0.836, 0.532, 0.643) (0.727, 0.653, 0.696) (0.517, 0.699, 0.804) (0.629, 0.716, 0.727) 

r9 (0.741, 0.645, 0.687) (0.731, 0.649, 0.695) (0.681, 0.676, 0.721) (0.647, 0.710, 0.719) 

r10 (0.508, 0.734, 0.780) (0.410, 0.819, 0.725) (0.507, 0.753, 0.762) (0.441, 0.782, 0.758) 

r11 (0.443, 0.781, 0.578) (0.613, 0.728, 0.727) (0.641, 0.707, 0.726) (0.652, 0.695, 0.729) 

r12 (0.477, 0.764, 0.764) (0.533, 0.736, 0.559) (0.675, 0.687, 0.717) (0.641, 0.707, 0.726) 

r13 (0.400, 0.842, 0.697) (0.434, 0.786, 0.757) (0.533, 0.736, 0.767) (0.462, 0.789, 0.743) 

r14 (0.677, 0.680, 0.722) (0.716, 0.666, 0.697) (0.811, 0.567, 0.658) (0.798, 0.567, 0.677) 

r15 (0.800, 0.559, 0.679) (0.787, 0.581, 0.681) (0.763, 0.586, 0.708) (0.666, 0.682, 0.729) 

r16 (0.420, 0.815, 0.728) (0.480, 0.794, 0.730) (0.803, 0.559, 0.675) (0.741, 0.645, 0.687) 

r17 (0.652, 0.695, 0.729) (0.708, 0.644, 0.723) (0.652, 0.695, 0.729) (0.641, 0.707, 0.726) 

r18 (0.824, 0.551, 0.648) (0.798, 0.567, 0.677) (0.512, 0.770, 0.743) (0.512, 0.770, 0.743) 

r19 (0.677, 0.680, 0.722) (0.824, 0.551, 0.648) (0.631, 0.703, 0.738) (0.659, 0.687, 0.730) 

r20 (0.824, 0.551, 0.648) (0.654, 0.686, 0.735) (0.728, 0.652, 0.695) (0.709, 0.667, 0.703)

End of Table 3
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Table 5. Weights of the IoT risks for supply chain management

Risk factor e1 e2 e3 A-q-ROFNs Crisp degrees ( )*
kj

r1 A MS MI (0.631, 0.703, 0.738) 0.4526 
r2 MS A MS (0.718, 0.664, 0.696) 0.5390 
r3 MI MI I (0.470, 0.767, 0.763) 0.3261 
r4 MS A MI (0.647, 0.698, 0.730) 0.4654 
r5 VI MI MI (0.449, 0.802, 0.733) 0.2875 
r6 MS MS S (0.769, 0.632, 0.664) 0.6016 
r7 MI MS S (0.716, 0.666, 0.697) 0.5356 
r8 MS A I (0.633, 0.714, 0.726) 0.4446 
r9 MI A MI (0.533, 0.736, 0.767) 0.3768 
r10 S MS MI (0.719, 0.649, 0.708) 0.5487 
r11 I MI MS (0.608, 0.730, 0.728) 0.4181 
r12 A A MS (0.666, 0.682, 0.729) 0.4895 
r13 S MI I (0.651, 0.707, 0.718) 0.4613 
r14 S MI MI (0.664, 0.691, 0.722) 0.4816 
r15 MS MS I (0.680, 0.699, 0.700) 0.4862 
r16 MI S MI (0.636, 0.704, 0.733) 0.4539 
r17 I MS MI (0.586, 0.738, 0.735) 0.4001 
r18 MI MS MS (0.689, 0.685, 0.706) 0.5029 
r19 A MI MS (0.649, 0.695, 0.731) 0.4689 
r20 A A S (0.696, 0.663, 0.719) 0.5228

Table 6. Significance degree of IoT risks for supply chain management using SWARA method

Risk 
factor

Crisp de-
grees 

Comparative importance of 
attributes (sj) 

Coefficient  
(kj) 

Reassessed weight 
(rj)

Final weight 
(wj) 

r6 0.6016 – 1.0000 1.0000 0.0572
r10 0.5487 0.0529 1.0529 0.9498 0.0543
r2 0.5390 0.0097 1.0097 0.9407 0.0538
r7 0.5356 0.0034 1.0034 0.9375 0.0536
r20 0.5228 0.0128 1.0128 0.9256 0.0529
r18 0.5029 0.0199 1.0199 0.9075 0.0519
r12 0.4895 0.0134 1.0134 0.8955 0.0512
r15 0.4862 0.0033 1.0033 0.8926 0.0510
r14 0.4816 0.0046 1.0046 0.8885 0.0508
r19 0.4689 0.0127 1.0127 0.8774 0.0502
r4 0.4654 0.0035 1.0035 0.8743 0.0500
r13 0.4613 0.0041 1.0041 0.8707 0.0498
r16 0.4539 0.0074 1.0074 0.8643 0.0494
r1 0.4526 0.0013 1.0013 0.8632 0.0493
r8 0.4446 0.0080 1.0080 0.8563 0.0489
r11 0.4181 0.0265 1.0265 0.8342 0.0477
r17 0.4001 0.0180 1.0180 0.8194 0.0468
r9 0.3768 0.0233 1.0233 0.8007 0.0458
r3 0.3261 0.0507 1.0507 0.7621 0.0436
r5 0.2875 0.0386 1.0386 0.7338 0.0419
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Step 4. To estimate the weight of each challenge using the SWARA tool, DEs play an impor-
tant role (see Table 5). The DEs were asked to choose the importance of each IoT risk. Using 
Eqs (5)–(7), DEs ordered all the available attributes from the first attribute to the last one. On 
the basis of the SWARA method, the IoT risk with the maximum importance was ranked the 
1st, whereas that of the least significant barrier was ranked as the last one. DEs find the total 
prioritization was predicted. Table 6 presents all IoT risk weights under the wj 

column. This 
table demonstrates that the weight of the IoT risks for SCM is given by

wj = (0.0493, 0.0538, 0.0436, 0.0500, 0.0419, 0.0572, 0.0536, 0.0489, 0.0458, 0.0543, 0.0477, 
0.0512, 0.0498, 0.0508, 0.0510, 0.0494, 0.0468, 0.0519, 0.0502, 0.0529).

Here, Figure 1 illustrates the significance values or weights of diverse IoT risks for supply 
chain management with respect to the goal. Security and privacy risks (r6) with a weight value 
of 0.0572 have come out to be the prime IoT risks for the SCM. Asymmetry of information 
(r10) with a weight value of 0.0543 is the second main IoT risk for SCM. Economic risks (r2) 
have third with weight value 0.0538, low data quality (r7) has fourth with a weight value of 
0.0536, human resources (r20) with a significance value of 0.0529 has fifth main IoT risks for 
supply chain management, and others are considered crucial IoT risks for the supply chain 
management.

Step 5. Afterward, the optimum performance rating of options to use the IoT risks for supply 
chain management is determined using Eq. (8). The obtained optimal performance ratings of 
rank the organizations and analysis the IoT risks for supply chain management are

P0 = {(0.762, 0.627, 0.678), (0.782, 0.583, 0.687), (0.880, 0.448, 0.612), (0.806, 0.556, 0.674), 
(0.783, 0.618, 0.657), (0.605, 0.752, 0.708), (0.576, 0.714, 0.763), (0.836, 0.532, 0.643), (0.741, 

Figure 1. Significance values/weight of different IoT risks for supply chain management
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0.645, 0.687), (0.508, 0.734, 0.780), (0.652, 0.695, 0.729), (0.675, 0.687, 0.717), (0.533, 0.736, 
0.767), (0.811, 0.567, 0.658), (0.800, 0.559, 0.679), (0.803, 0.559, 0.675), (0.708, 0.644, 0.723), 
(0.824, 0.551, 0.648), (0.824, 0.551, 0.648), (0.824, 0.551, 0.648)}.

Steps 6–7. As all attributes are of beneficial type thus, there is no requirement to N-A-q-ROF-
DM. By Eq. (9)–Eq. (10), the WNA-q-ROF-DM is discussed in Table 7.

Table 7. WNA-q-ROF-DM for options over different IoT risks for SCM 

P0 P1 P2 P3 P4

r1 (0.305, 0.977, 0.337) (0.305, 0.977, 0.337) (0.234, 0.986, 0.307) (0.278, 0.980, 0.332) (0.299, 0.978, 0.338) 

r2 (0.325, 0.971, 0.366) (0.325, 0.971, 0.366) (0.307, 0.976, 0.347) (0.303, 0.977, 0.344) (0.318, 0.976, 0.340) 

r3 (0.365, 0.966, 0.371) (0.316, 0.977, 0.333) (0.365, 0.966, 0.371) (0.282, 0.981, 0.321) (0.248, 0.983, 0.323) 

r4 (0.331, 0.971, 0.363) (0.306, 0.977, 0.339) (0.331, 0.971, 0.364) (0.277, 0.981, 0.329) (0.264, 0.981, 0.336) 

r5 (0.300, 0.980, 0.316) (0.274, 0.982, 0.318) (0.300, 0.980, 0.316) (0.252, 0.984, 0.318) (0.259, 0.983, 0.322) 

r6 (0.242, 0.984, 0.322) (0.159, 0.989, 0.309) (0.190, 0.986, 0.322) (0.242, 0.984, 0.323) (0.233, 0.986, 0.310) 

r7 (0.224, 0.982, 0.346) (0.196, 0.985, 0.334) (0.144, 0.990, 0.301) (0.225, 0.982, 0.346) (0.199, 0.985, 0.335) 

r8 (0.348, 0.970, 0.359) (0.348, 0.970, 0.360) (0.286, 0.979, 0.334) (0.193, 0.983, 0.353) (0.240, 0.984, 0.324) 

r9 (0.330, 0.980, 0.283) (0.287, 0.980, 0.326) (0.282, 0.980, 0.328) (0.258, 0.982, 0.328) (0.290, 0.984, 0.278) 

r10 (0.170, 0.987, 0.325) (0.197, 0.983, 0.346) (0.157, 0.989, 0.304) (0.196, 0.985, 0.335) (0.170, 0.987, 0.325) 

r11 (0.249, 0.983, 0.328) (0.163, 0.988, 0.312) (0.231, 0.985, 0.317) (0.244, 0.984, 0.324) (0.248, 0.983, 0.329) 

r12 (0.265, 0.981, 0.334) (0.180, 0.986, 0.326) (0.203, 0.984, 0.335) (0.265, 0.981, 0.335) (0.249, 0.982, 0.331) 

r13 (0.201, 0.985, 0.332) (0.149, 0.991, 0.281) (0.162, 0.988, 0.315) (0.201, 0.985, 0.332) (0.173, 0.988, 0.309) 

r14 (0.336, 0.972, 0.355) (0.265, 0.981, 0.338) (0.284, 0.980, 0.334) (0.336, 0.972, 0.355) (0.328, 0.972, 0.362) 

r15 (0.330, 0.971, 0.366) (0.330, 0.971, 0.367) (0.322, 0.973, 0.359) (0.309, 0.973, 0.366) (0.261, 0.981, 0.340) 

r16 (0.328, 0.972, 0.361) (0.156, 0.990, 0.297) (0.179, 0.989, 0.303) (0.328, 0.972, 0.361) (0.294, 0.979, 0.334) 

r17 (0.273, 0.980, 0.341) (0.247, 0.983, 0.327) (0.273, 0.980, 0.341) (0.247, 0.983, 0.327) (0.242, 0.984, 0.322) 

r18 (0.347, 0.970, 0.361) (0.386, 0.970, 0.315) (0.331, 0.971, 0.365) (0.195, 0.987, 0.319) (0.195, 0.987, 0.319) 

r19 (0.343, 0.971, 0.357) (0.264, 0.981, 0.336) (0.343, 0.971, 0.357) (0.243, 0.982, 0.334) (0.256, 0.981, 0.337) 

r20 (0.042, 0.969, 0.448) (0.349, 0.969, 0.602) (0.258, 0.980, 0.345) (0.294, 0.978, 0.342) (0.023, 0.979, 0.396)

Table 8. Overall performance degree of organization of weighted evaluation matrix 

P0 P1 P2 P3 P4

r1 0.048 0.048 0.027 0.040 0.046 
r2 0.059 0.059 0.050 0.048 0.052 
r3 0.074 0.050 0.074 0.039 0.032 
r4 0.060 0.048 0.060 0.039 0.037 
r5 0.043 0.037 0.043 0.032 0.034 
r6 0.031 0.019 0.024 0.031 0.028 
r7 0.032 0.026 0.017 0.032 0.027 
r8 0.065 0.065 0.042 0.029 0.031 
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P0 P1 P2 P3 P4

r9 0.047 0.041 0.040 0.035 0.035 
r10 0.028 0.028 0.018 0.026 0.022 
r11 0.033 0.020 0.028 0.031 0.033 
r12 0.037 0.023 0.027 0.037 0.034 
r13 0.026 0.014 0.020 0.026 0.020 
r14 0.060 0.038 0.042 0.060 0.059 
r15 0.061 0.061 0.057 0.054 0.037 
r16 0.059 0.017 0.020 0.059 0.044 
r17 0.040 0.032 0.040 0.032 0.031 
r18 0.065 0.073 0.060 0.024 0.024 
r19 0.063 0.037 0.063 0.033 0.036 
r20 0.045 0.066 0.038 0.046 0.031

Overall performance rating 0.978 0.8026 0.7890 0.755 0.692
Utility degree – 0.8208 0.8068 0.7722 0.7080
Ranking 1 2 3 4

Steps 8–10. Next, using Eq. (11)–Eq. (12), we compute the score value and overall perfor-
mance degrees of the weighted evaluation matrix of organizations to evaluate the IoT risks 
for supply chain management and are presented in Table 8. By Eq. (13), the UD  i  is esti-
mated by =1 0.8208, =2 0.8068, =3 0.7722  and = 4 0.7080.  Based on the UD  ,i  the 
prioritization of the organizations to evaluate the IoT risks for SCM is   1 2 3 4P P P P  , and 
thus from Eq. (14), the organization-I (P1) is the best option with diverse IoT risks for SCM.

3.2. Comparison with other models

This subsection examines the efficiency of the proposed q-ROF-SWARA-ARAS methodol-
ogy. To this end, q-rung orthopair fuzzy information based TOPSIS (Liu et al., 2019), COPRAS 
(Krishankumar et al., 2019), and WASPAS (Rani & Mishra, 2020) approaches were utilized to 
find a solution to above-mentioned problem. The process of the q-ROF-COPRAS operation 
is discussed as

Steps 1–4. These steps are completely comparable to steps 1 to 4 of the aforementioned 
model.

Step 5. Combine the benefit and cost criteria in A-q-ROF-DM with the use of Eq. (4). Re-
member that all criteria are of the benefit-type; for that reason, the assessment index was 
analyzed for each alternative to maximize the risk preference ( )

=
= ⊕ =

1
, 1 1 .

n

i j ijj
w i m 

 
Hence, 

we obtain =1 0.2835,  =2 0.2853,  =3 0.2661 and = 4 0.2620.  And the priority of or-
ganizations as    2 1 3 4. Thus, the organization P2 is the best candidate among set 
of four options. 

End of Table 8
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Step 6. Find the “UD” = ×




max
100%,i

i  to evaluate the IoT risks for SCM. Then, we obtain 

=1 99.37%,  = 2 100.00%,  = 3 93.27%  and = 4 91.83%.
Consequently, the present study applies various currently-used approaches to the same 

instance to compare with the outcomes assessed by the proposed method (see Figure 2). 
In comparison with the TOPSIS, COPRAS and WASPAS approaches, q-ROF-SWARA-ARAS has 
the following advantages:

a) The q-ROF-SWARA-ARAS works based on a broader norm of “Additive Ratio As-
sessment (ARAS)” with q-ROFNs to select the organizations to evaluate the IoT risks 
for SCM problems in comparison to q-ROF-COPRAS (Utility degree), q-ROF-WAS-
PAS (Utility degree), q-ROF-TOPSIS (Compromise programming), q-ROF-WSM and  
q-ROF-WPM methods. 

b) For the q-ROF-TOPSIS (Liu et al., 2019) procedure, an important task is the estimation 
of the distance between each alternative over given criteria with the q-ROF-IS, which 
is time-taking and decreases the accuracy of the results, while the computation pro-
cedure of the q-ROF-SWARA-ARAS framework is simple and straightforward with the 
determination of higher effectiveness.

c) The developed method only evaluates q-ROF-IS, whereas q-ROF-TOPSIS requires to 
obtain both q-ROF-IS and q-ROF-AIS, and the q-ROF-WASPAS model (Rani & Mishra, 
2020) utilizes q-ROFWAO and q-ROFWGO. To conclude, it can be said that for MCDM 
methods with more criteria or options, q-ROF-SWARA-ARAS is capable of, to some 
extent, increasing the operational effectiveness with higher operability. 

Figure 2. Utility degree of each organization to evaluate the IoT risks for SCM with extant methods
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Conclusions

The current paper was primarily aimed at identifying, ranking, analyzing, and evaluating dif-
ferent “Internet-of-Things (IoT)” risks for “Supply Chain Management (SCM)” using an inte-
grated MCDM approach. At first, to recognize the key IoT risk factors for SCM, a survey study 
by means of literature review and experts’ opinions has been presented. For this purpose, a 
comprehensive framework including 20 risk factors, which included the formation of zero-
sum competition, uncertain technology adoption, economic risks, technological risks, surveil-
lance and distrust, security and privacy risks, social risks, low quality of data, political risks, 
asymmetry of information, distrust and trust management, complex network coordination, 
dependencies and consequences, opportunism, competition, complex data management, op-
erational management, strategic management, financial-related and human resources was 
developed in regard to the execution of IoT technologies for SCM. In the next step, an inte-
grated MCDM framework has been proposed to rank, analysis and evaluate the selected IoT 
risk factors using two important decision-making approaches, including SWARA and ARAS 
under the q-ROFSs setting. 

In this study, for the purpose of determining the accurateness of the experts’ outlooks 
regarding the weights, the SWARA approach was applied, and the ARAS approach was used 
to an optimal degree with the aim of evaluating the priority ordering of the candidate orga-
nizations with respect to a set of IoT risk factors for SCM. The outcomes of this study found 
that the security and privacy risks (0.0572) was the most important IoT risk factors for supply 
chain management followed by, asymmetry of information (0.0543), economic risks (0.0538), 
low data quality (0.0536), human resources (0.0529), operational management (0.0519), etc. 
The study proposed a comprehensive framework of the IoT risks in SCM through the analysis 
of the concerns before and after the assessment. Due to the concurrent presence of various 
levels, the present paper provided insights into both soft factors (e.g., trust issues or privacy 
concerns) and hard factors (e.g., costs or technological maturity). In addition, the relationships 
between the levels and categories were identified, and the risks were revealed indifference 
to the few applications. The rest of the unknown benefits are a reflection of the initial phase 
of IoT in SCM in spite of the robust interest and disruptive nature. 

As a result, there is a need to further analyze the relationships amongst the challenge 
and risk categories and find target-oriented solutions. In addition, it is highly necessary to 
give support to companies and provide a suitable stage for the effective utilization of IoT. 
The risks identified provide managers with a valued insight into IoT and the issues associated 
with this relatively new technology. The framework proposed in this study provides a holistic 
view, offers practical correlations, links organizational, environmental, strategic, and further 
dimensions, and supports constructive use of IoT. To respond the varying structure of the 
supply network, there is a requirement for effective collaboration, communication, and data 
exchange. To establish closer relations in the SC context and manage the distrust of society, it 
is essential to recover trust management, especially in the organizational contexts. Such prob-
lematic areas result in a extensive inter-organizational task definition for the SC executives. 
Though, due to the concentration upon the technical challenges, this paper also exposes 
the inadequate decision-making effect upon definite features of IoT in the setting of SCM.
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