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Abstract. Pairwise comparison matrix (PCM) has been widely employed in the multi-criteria 
decision-making (MCDM) problems to rank the criteria and alternatives according to the con-
sidered criteria in Analytic Hierarchy Process (AHP). The PCM should have the acceptable con-
sistency before deriving a priority vector from it. Approximate thresholds of geometric consis-
tency index (GCI) and consistency ratio (CR) have been proposed to test whether the PCM has 
the acceptable consistency. However, approximate thresholds of GCI and CR always suffer from 
some criticisms and disagreements in existing literature. In this paper, we try to induce dynamic 
thresholds of GCI by combining hypothesis testing and random index (RI), which vary with 
the order of the PCM, significance level and assessment level of decision maker. The induced 
dynamic thresholds of GCI may explain different (or conflicting) results obtained by approximate 
thresholds of GCI and CR and avoid the unnecessary revisions of some judgments of the PCM 
for the desired consistency. Finally, several numerical examples and real-world decision-making 
problems are examined and compared with existing decision-making methods to illustrate the 
performance of dynamic thresholds of GCI. 

Keywords: analytic hierarchy process, pairwise comparison matrix, geometric consistency index, 
dynamic thresholds.
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Introduction

Multi-criteria decision-making (MCDM) (Brugha, 2004) has been widely applied in various 
fields to solve real-world decision-making problems (Jin et al., 2021). Analytic Hierarchy 
Process (AHP) developed by Saaty (1977), as one of the most popular MCDM methods, has 
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been extensively applied to evaluate the sustainability indicators selection process and select 
the best alternative considering economic, social, and environmental criteria (Georgiou et al., 
2015; Hamchaoui et al., 2015; Marques et al., 2015). AHP is converted to the multiplicative 
structure that is referred to as multiplicative AHP (Barzilai et al., 1987). Brugha (1996) sug-
gested that it is inappropriate to use the AHP to synthesize qualitatively identical attributes 
of an alternative. Pairwise comparison matrix (PCM) in AHP has been widely employed 
in the MCDM problems to rank the criteria and alternatives according to the considered 
criteria (Barzilai & Golany, 1994; Ishizaka & Labib, 2011; Saaty, 2013; Kou et al., 2014, 2016, 
2020; Csató & Petróczy, 2020). Generally, the PCM is not consistent due to the complexity 
of decision-making problem and the cognitive deficiency of decision maker. The lack of ac-
ceptable consistency easily leads to inconsistent conclusions (Jin et al., 2020). Given that the 
consistency is unattainable in practice, a degree of the inconsistency is acceptable (Amenta 
et al., 2020). That is to say, the PCM should have the acceptable consistency before deriv-
ing the priority vector derived from it. As highlighted by Aguarón et al. (2021), both the 
judgments and the derived priority vector will be close to the initial values. Therefore, it is 
necessary to test whether the PCM has the acceptable consistency. 

Consistency analysis and consistency improvement are two important issues for various 
preference relations (Lin et al., 2014; Jin et al., 2016, 2020). Recently, more than ten consis-
tency indices (also called inconsistency indices) have been proposed to measure the consis-
tency level of the PCM constructed on 1-9 scale, such as consistency ratio (CR) (Saaty, 1977), 
geometric consistency index (GCI) (Crawford & Williams, 1985), consistency measure (CM) 
(Salo & Hamalainen, 1997; Amenta et al., 2018), harmonic consistency index (HCI) (Stein 
& Mizzi, 2007), cosine consistency index (CCI) (Kou & Lin, 2014), and other consistency 
indices (Brunelli, 2018). Many researchers have conducted in-depth analysis on consistency 
indices (Koczkodaj, 1993; Duszak & Koczkodaj, 1994; Peláez & Lamata, 2003; Gass & Rapc-
sák, 2004; Fedrizzi & Giove, 2007; Bozóki & Rapcsák, 2008; Cavallo & D’Apuzzo, 2009, 2010; 
Kułakowski, 2015; Grzybowski, 2016; Fedrizzi & Ferrari, 2018; Dixit, 2018). For example, 
Cavallo (2020) looked for functional relations and correlations among nine inconsistency 
indices. Some authors have applied an axiomatic approach by reasonable properties required 
from an inconsistency index (Brunelli & Fedrizzi, 2015; Brunelli, 2016, 2017; Koczkodaj & 
Szwarc, 2014; Koczkodaj & Urban, 2018; Csató, 2018a, 2019a). 

As the maximum level permitted for accepting the inconsistency of the PCM, the thresh-
old of consistency index should be provided beforehand for the consistency testing of the 
PCM. If the value of consistency index is less than the corresponding threshold, then the 
PCM has the acceptable consistency; Otherwise, the PCM would be modified for the accept-
able consistency. In fact, many consistency indices lack extensive applications because of the 
absence of thresholds associated with them. As suggested by Monsuur (1997), the threshold 
of consistency index is the useful tool for decision maker to move towards his (her) true 
preferences. 

In existing literature, several thresholds of CR and GCI for the PCM constructed on 1-9 
scale have been proposed. More specifically, the first threshold (0.10) of CR was proposed by 
Saaty (1980), and then was revised by Saaty (1994). That is, 0.05 for n = 3, 0.08 for n = 4, and 
0.10 for n > 4. Approximate thresholds of GCI were induced by Aguarón and Moreno-Jimé-
nez (2003). That is, 0.3147 for n = 3, 0.3526 for n = 4, and 0.370 for n > 4. Moreover, the tran-
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sitivity thresholds of GCI were computed by simulation (Amenta et al., 2020). Aguarón and 
Moreno-Jiménez (2003) indicated that approximate thresholds of GCI have an interpretation 
analogous to the threshold (0.10) of CR. Thus, the above-mentioned approximate thresh-
olds of GCI will be confronted with the same criticisms and disagreements as the threshold 
(0.10) of CR in dealing with complex decision-making problems, which are listed below: 

1) The threshold (0.10) of CR may allow the contradictory judgments in the PCMs or 
reject reasonable PCMs (Karapetrovic & Rosenbloom, 1999; Kwiesielewicz & Uden, 
2004; Banae & Vansnick, 2008). As highlighted by Siraj et al. (2012), the threshold 
(0.10) of CR may accept many intransitive PCMs or reject many transitive ones. 

2) The threshold (0.10) of CR is typically relaxed for lower-order PCM and is stricter for 
higher-order PCM (Lin et al., 2013, 2014). As highlighted by Bozóki et al. (2013), the 
order of the matrix has impact on the inconsistency of the PCM.

3) It is ill-suited that approximate thresholds of CR and GCI are fixed ( =′ 0.10CR ,
′ = 0.370GCI ) for more than four-order PCM. As highlighted by Siraj et al. (2015), 

a value of CR lower than 0.1, representing an acceptable consistency, does not ensure 
the transitivity of comparisons.

There are two most popular prioritization procedures in multiplicative AHP: eigenvec-
tor method (EM) (Saaty, 1977) and logarithmic least squares method (LLSM) (Crawford & 
Williams, 1985) (also called row geometric mean method (RGMM)). Barzilai et al. (1987) 
argued that LLSM over performs EM in multiplicative AHP. The row geometric mean vector 
presented by Crawford and Williams (1985) in the basis of statistical and logarithmic least 
squares considerations has been supported by some researchers (Barzilai et al., 1987; Barzilai 
& Golany, 1994). Subsequently, some researchers further investigated GCI associated with 
LLSM from various scientific perspectives (Barzilai, 1997; Altuzarra et al., 2007; Lundy et al., 
2017; Csató, 2018b, 2019b; Amenta et al., 2020). However, many questions remain about the 
choice of the right cut-off rule to declare the inconsistency of a PCM (Amenta et al., 2020). 
Until now, there few reports on dynamic thresholds of GCI for the consistency testing of the 
PCM. In order to overcome these limitations, the main aims of this study are listed below: 

1) To induce dynamic thresholds of GCI varying with the order of the PCM, significance 
level and assessment level of decision maker (details given in Table 3 and Example 1). 

2) To explain the conflicting results obtained by different consistency thresholds with 
the help of significance level for the consistency testing of the PCM (details given in 
Examples 1 and 3).

3) To avoid the unnecessary revisions of some judgments of the PCM for only improving 
the value of consistency index (details given in Examples 2, 3 and 4).

According to these aims, we next try to induce dynamic thresholds of GCI by combing 
hypothesis testing and random index (RI).

The rest of this paper is structured as follows. Section 1 briefly reviews the related re-
search: definitions, theorems, prioritization procedures and consistency indices. Section 2 in-
duces dynamic thresholds of GCI by combing hypothesis testing and RI. Section 3 illustrates 
the performance of dynamic thresholds of GCI using numerical examples and real-world 
decision-making problems. The last Section concludes with some comments about dynamic 
thresholds of GCI.
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1. Related research

1.1. Definitions and theorems

Several definitions and theorems related to dynamic thresholds of GCI are briefly introduced 
as follows:

Definition 1 (Saaty, 1980). Matrix ×= ( )ij n nA a  is positive reciprocal matrix if > 0ija , =1iia  
and =1/ij jia a  for all { }∈, 1,2, ,i j n . 

Definition 2 (Saaty, 1980). Positive reciprocal matrix ×= ( )ij n nA a  is consistent if =ij il lja a a  
for all i, j, { }∈ 1,2, ,l n .

Definition 3 (Vargas, 1982). Matrix ×= ( )ij n nA a  is random reciprocal matrix if aij 
are random variables that satisfy the property that > 0ija , =1iia  and =1/ij jia a  for all 

{ }∈, 1,2, ,i j n .

Definition 4 (Escobar & Moreno-Jiménez, 2000). Random variable X defined in R+ is recip-

rocal if X and 1
X

 are identically distributed. That is to say, ( ) + ≤ = ≤ ∀ ∈ 
 

1P X x P x x R
X  

, 

where ( )⋅  P is the probability function. 

Definition 5 (Bernardo & Smith, 1994). If random variable X (X > 0) follows lognormal 
distribution ( )µ s2,LN

 
, then ln( )X  follows normal distribution ( )µ s2,N .

Definition 6 (Devore, 2000). If 1 2, , , nX X X  are independent random variables and 
( )( )∼ =0,1 1,2, ,iX N i n , then ( )c = + + ∼ c2 2 2 2

1 nX X n  and ( )( )c =2E n n.

Theorem 1 (Escobar & Moreno-Jiménez, 2000). If ×= ( )ij n nA a  is a random reciprocal ma-
trix, and the elements ≤ < ≤(1 )ija i j n  are independent and reciprocal random variables, 
then the priorities ( )=1,2, ,iv i n  derived by LLSM are reciprocal random variables.

Theorem 2 (Aguarón & Moreno-Jiménez, 2003). Given that the priorities ( )=1,2, ,iv i n  

are derived from the PCM ×= ( )ij n nA a  by LLSM, then ( )= + ε
−

32
2

nGCI CI o
n

, where 

( ) ( )= l − −/ 1CI n n  (l is the principal eigenvalue of ×= ( )ij n nA a ) and { }ε = ln ijMax e  

( )= /ij j ij ie v a v .

1.2. Prioritization procedures and consistency indices

It is well known that CR and GCI are the corresponding consistency indices for EM and 
LLSM, respectively. LLSM, EM, GCI and CR are briefly introduced as follows: 

Logarithmic least squares method (LLSM)

The desired priority vector = 1 2( , , , )T
nV v v v  is a solution of the constrained optimization 

problem:

= =
− +∑ ∑ 2

1 1
Min (ln ln ln )

n n
ij i ji j

a v v  subject to ( )> =0 1,2, , ,iv i n
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where ×= ( )ij n nA a  is the PCM. The priorities which minimize the above function are given 

by ( )
=

= =∏
1

1
( ) 1,2, ,

n
ni ijj

v a i n  (without the normalization factor).

Eigenvector method (EM)

The desired priority vector = 1 2( , , , )T
nW w w w  is derived by solving the linear system: 

= lAW W  subject to 
=

=∑ 1
1

n
ii

w , ( )> =0 1,2, ,iw i n , where ×= ( )ij n nA a  is the PCM, and 
l is the principal eigenvalue of ×= ( )ij n nA a .

Geometric consistency index (GCI)

GCI is defined by

 
( )( ) ≤ < ≤

 
= − 

− −   
∑

2

1

2 ln( ) ln( ) ,
1 2

i
iji j n j

v
GCI a

vn n
 (1)

where ×= ( )ij n nA a  is the PCM, and = 1 2( , , , )T
nV v v v  is the priority vector derived from 

×= ( )ij n nA a
 
by LLSM.

Consistency ratio (CR)

CR is defined by

 
= CR CI

RI
, (2)

where RI is the random index under the condition of 1–9 scale, and CI is consistency index 
that is denoted by ( ) ( )= l − −/ 1CI n n , where l and n are the principal eigenvalue and the 
order of the PCM, respectively.

Generally, GCI(CR) should be as small as possible since = 0GCI  =( 0)CR  if and only 
if the PCM is consistent. The PCM should be revised for the acceptable consistency when 
GCI(CR) is greater than the corresponding threshold. 

As mentioned above, approximate thresholds of CR and GCI for different order PCMs 
are shown in Table 1 (Saaty, 1994; Aguarón & Moreno-Jiménez, 2003).

Table 1. Approximate thresholds of CR and GCI for different order PCMs

n = 3 n = 4 n > 4

CR′ 0.05 0.08 0.10
GCI′ 0.3147 0.3526 0.370

2. Dynamic thresholds of GCI

Generally, complex scenario leads to uncertain contexts in which the preferences of decision-
makers eliciting their knowledge are viewed as random variables. From the statistical point 
of view, the rejection of a reasonable PCM would be type I error; allowing the contradictory 
judgments in the PCM would be type II error. It is well known that type I error depends on 
the significance level. A suitable significance level may be selected according to the actual 
situation. Thus, the thresholds of GCI are related to the selected significance level. In order to 
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test whether different order PCMs have the accepted consistency, we try to induce dynamic 
thresholds of GCI by combining hypothesis testing and RI.

Let the PCM ×= ( )ij n nA a  be a positive reciprocal matrix constructed on 1–9 scale, and 
= 1 2( , , , )T

nV v v v  be the priority vector derived from ×= ( )ij n nA a  by certain prioritization 
procedure. When ×= ( )ij n nA a  is consistent, it holds that

 
= /ij i ja v v  ( { }∈, 1,2, ,i j n ). (3)

In view of this, the ratios /i jv v  are approximate values of aij for all { }∈, 1,2, ,i j n  when 
×= ( )ij n nA a  is not consistent. Thus, the error terms are denoted by

 
= /ij j ij ie v a v  ( { }∈, 1,2, ,i j n ). (4)

Taking the logarithm for both sides of (4) and letting ε = ln( )ij ije , an equivalent expres-
sion is 

 
ε = + −ln ln lnij ij j ia v v  ( { }∈, 1,2, ,i j n ). (5)

Since ×= ( )ij n nA a  is a positive reciprocal matrix, it follows that > 0ija , =1/ij jia a  and 
=1iia  for all { }∈, 1,2, ,i j n  according to Definition 1. Accordingly, it follows that > 0ije

 
, 

=1/ij jie e  and =1iie  for all { }∈, 1,2, ,i j n  from (4). It further follows that ε = −εij ji  and 
ε = 0ii  for all { }∈, 1,2, ,i j n  from (5).

Escobar and Moreno-Jiménez (2000) suggested that the judgments in the PCM are 
reciprocal random variables and that lognormal distribution is reciprocal. Thus, we may 
assume that ≤ < ≤(1 )ija i j n  in ×= ( )ij n nA a  are independent random variables following 
lognormal distribution. Moreover, we further assume that the priorities ( )=1 1,2, ,iv n  in 
= 1 2( , , , )T

nV v v v  are derived from ×= ( )ij n nA a  by LLSM. According to Theorem 1, the pri-
orities ( )=1 1,2, ,iv n  are independent random variables following lognormal distribution. It 
follows that ≤ < ≤ln( )(1 )ija i j n  and ( )=ln 1 1,2, ,iv n  follow normal distribution according 
to Theorem 2. Moreover, ≤ < ≤ln( )(1 )ija i j n  and ( )=ln 1 1,2, ,iv n  are independent random 
variables as ≤ < ≤(1 )ija i j n  and ( )=1 1,2, ,iv n  are independent random variables. It is con-
cluded that ε = − + ≤ < ≤ln( ) ln( ) ln( )(1 )ij ij i ja v v i j n  follow normal distribution. We further 
assume that ε ≤ < ≤(1 )ij i j n  are independent and follow the normal distribution with mean 
0 and variance s2. That is

 ( )ε ∼ s ≤ < ≤20, (1 )ij N i j n . (6)

It follows that ( )
ε

∼ ≤ < ≤
s

0,1 (1 )ij N i j n  by standardization strategy. Thus, the test statistic 
is denoted by

 ≤ < ≤

ε
c =

s∑
2

2
21

ij

i j n
. (7)

According to Definition 6, the test statistic c2 follows Chi-square distribution with the 
degree of freedom ( )−1 / 2n n . That is

 
( )( )

≤ < ≤

ε
∼ c −

s∑
2

2
21

1 / 2ij

i j n
n n . (8)

If the PCM ×= ( )ij n nA a  is consistent, then c =2 0  since ε = =ln 0ij ije  ( =1ije ) for all 
{ }∈, 1,2, ,i j n . If the PCM ×= ( )ij n nA a  is not consistent, then c >2 0. Thus, the consistency 

testing of the PCM ×= ( )ij n nA a  are equivalently described as follows:
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Given the significance level a, if a< c < c2 20 , then the PCM ×= ( )ij n nA a  has the accept-
able consistency. If ac ≥ c2 2 , then the PCM ×= ( )ij n nA a  has not the acceptable consistency. 

From (1) and (5), we obtain

 ( )( ) ≤ < ≤
= ε

− − ∑ 2
1

2
1 2 iji j n

GCI
n n

. (9)

From (7) and (9), we obtain

 
( )( )

≤ < ≤

ε
c = = − −

s s∑
2

2
2 21

1 1 2
2

ij

i j n
n n GCI . (10)

That is,

 ( )( )
s c

=
− −

2 22 
1 2

GCI
n n

. (11)

From (11), it follows that = 0GCI  when ×= ( )ij n nA a  is consistent, and that > 0GCI  
when ×= ( )ij n nA a  is not consistent. Accordingly, the consistency testing of the PCM  
( ×= ( )ij n nA a ) is equivalently described as follows:

Given the significance level a, if  ( )′
a< <0 GCI GCI n , then ×= ( )ij n nA a  has the acceptable 

consistency. If ( )′
a≥GCI GCI n , then ×= ( )ij n nA a  has not the acceptable consistency. Here, 

( )′
aGCI n  is called the threshold of GCI at the significance level a for the n –order PCM, 

which is denoted by

 
( )

( )

( )( )

a
′
a

 −
s c   

 =
− −

2 2 1
2

2

1 2

n n

GCI n
n n

. (12)

Note that the critical value ( )( )ac −2 1 / 2n n  with the degree of freedom ( )−1 / 2n n  at the 
significance level a is obtained from Chi-squared distributions table (Johnson & Wichern, 
1998), and that the variance s2 should be determined beforehand in order to obtain the cor-
responding thresholds of GCI. Taking the expectation values for both sides of (10), we obtain

 
( ) ( )( ) ( )c = − −

s
2

2
1 1 2

2
E n n E GCI . (13)

According to Definition 6, from (8), it follows that

 
( ) ( )−
c =2 1

2
n n

E . (14)

From (13) and (14), we obtain

 

( ) ( )( ) ( )
−

= − −
s2

1 1 1 2
2 2

n n
n n E GCI . (15)

It follows that

 

( ) ( )
−

s =2 2n
E GCI

n
. (16)

According to Theorem 2, we obtain

 
( )= + ε

−
32

2
nGCI CI o

n
. (17)

Taking the expectation values for both sides of (17), since ( )( )ε =3 0E o , we obtain

 
( ) ( )=

−
2

2
nE GCI E CI

n
. (18)
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From (16) and (18), we obtain

 ( )s =2 2E CI . (19)

Note that ( )E CI  is the expectation of CI for the PCM constructed on 1-9 scale. More-
over, RI is the average value of CIs of randomly generated positive reciprocal matrices con-
structed on 1–9 scale. The corresponding values of RI have been calculated by Saaty (1980) 
and Aguarón and Moreno-Jiménez (2003). It may be seen that CI of the PCM provided by 
decision maker is certainly greater than or equal to 0, and almost less than CIs of randomly 
generated positive reciprocal matrices. Accordingly, the expectation ( )E CI  is less than the 
average value RI of CIs. Thus, it holds that ( )≤ <0 E CI RI . Thus, we estimate ( )E CI  accord-
ing to the relationship between ( )E CI  and RI. For simplicity and convenience, the relation-
ship between ( )E CI  and RI is assumed as follows:

 ( ) ( )( )= ≤ ≤0 1E CI kRI n k , (20)

where k is decision coefficient denoting the assessment level of decision maker, which is as-
signed the value in [0, 1] according to the actual situation. If k = 0, then ( ) = 0E CI . That is, 
the assessment level of decision maker is consistent. If k = 1, then ( ) =E CI RI . That is, the 
assessment level of decision maker degenerates into random consistency level without any 
rational analysis.

According to (19) and (20), the variance s2 is estimated by

 ( )( )s = ≤ ≤2 1ˆ 2 0kRI n k . (21)

From (21), s2ˆ  is related to the order of the PCM and assessment level of decision maker. 
(Here, the difficulty in determining the variance is avoided by means of transforming it 
into the assessment level of decision maker.) From (12) and (21), the thresholds of GCI are 
denoted by

 
( )

( ) ( )( )
( )( )

a′
a

c −
=

− −

22 1 / 2

1 2

kRI n n n
GCI n

n n
. (22)

From (22), dynamic thresholds of GCI are related to the order of the PCM, significance 
level and assessment level of decision maker. In order to test the consistency of the PCM, a 
suitable significance level a may be selected according to the actual situation. Generally, the 
selected significance levels are 0.01, 0.05 and 0.10.

Based on the previous discussions, the main procedure for the consistency testing of the 
PCM by dynamic thresholds of GCI is described as follows:

Step 1. Assign the decision coefficient k according to the expertise and experiences of deci-
sion maker, and then calculate s2ˆ  using (21);

Step 2. Select a suitable significance level a according to the actual situation, and then 
calculate the threshold ( )′

aGCI n  using (22);

Step 3. Derive the priorities ( )=1 1,2, ,iv n  from the PCM using LLSM, and then calculate 
GCI using (1);

Step 4. Judge whether ( )′
a≤GCI GCI n . If this condition holds, then the PCM has the ac-

ceptable consistency; otherwise, it has not the acceptable consistency.
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Note that the values of RI were obtained through the simulation of 500 matrices (Saaty, 
1977) and 100,000 matrices (Aguarón & Moreno-Jiménez, 2003) for different order PCMs. 
In this paper, we used the values of RI obtained by Aguarón and Moreno-Jiménez (2003) 
because it is the most complete study, which are given in Table 2.

Table 2. Values of RI for 3- to 16-order PCMs by simulation

n 3 4 5 6 7 8 9

RI (n) 0.525 0.882 1.115 1.252 1.341 1.404 1.452
n 10 11 12 13 14 15 16

RI (n) 1.484 1.513 1.535 1.555 1.570 1.583 1.595

Without any loss of generality, we assume that the decision coefficient k = 0.2, and then 
calculate dynamic thresholds of GCI by

     
( )

( ) ( )( )
( )( )

a′
a

c −
=

− −

20.4 1 / 2

1 2

RI n n n
GCI n

n n
.

The corresponding thresholds of GCI for 3-to 15-order PCMs at the significance levels 

(0.01, 0.05 and 0.10) are shown in Table 3 (we write 
( )−

=
1

2
n n

M ).
From Table 3, it is evident that the threshold of GCI increases as the order of the PCM 

increases, at the same significance level, and that the threshold of GCI increases as the sig-
nificance level increases for the same order PCM, which makes up for the criticism that the 
approximate threshold of GCI is fixed for more than four-order PCMs. It is just in accord 
with the fact that different-order PCMs correspond to different thresholds of GCI. 

Table 3. Dynamic thresholds of GCI for 3- to 15-order PCMs at different significance levels

 
n

 a = 0.01  a = 0.05  a = 0.10
 ( )ac2 M  ( )′

aGCI n  ( )ac2 M  ( )′
aGCI n  ( )ac2 M  ( )′

aGCI n

3 0.115 0.048 0.352 0.148 0.584 0.245
4 0.872 0.205 1.635 0.385 2.204 0.518
5 2.558 0.380 3.94 0.586 4.865 0.723
6 5.229 0.524 7.261 0.727 8.547 0.856
7 8.897 0.636 11.591 0.829 13.24 0.947
8 13.565 0.726 16.928 0.905 18.939 1.013
9 19.233 0.798 23.269 0.965 25.643 1.064

10 25.901 0.854 30.612 1.010 33.35 1.100
11 32.913 0.885 38.679 1.040 41.937 1.128
12 41.575 0.928 48.025 1.072 51.649 1.153
13 51.237 0.966 58.373 1.100 62.361 1.175
14 61.901 0.997 69.722 1.123 74.074 1.193
15 73.565 1.024 82.072 1.142 86.788 1.208
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3. Numerical examples and applications

In this section, we present several numerical examples and real-world decision-making prob-
lems to illustrate the performance of dynamic thresholds of GCI by the comparative analysis 
with approximate thresholds of CR and GCI and other decision-making methods. Dynamic 
thresholds of GCI at different significance levels (0.01, 0.05 and 0.10) are shown in Table 3. 
(The decision coefficient of decision maker is assumed k = 0.2 in the following numerical 
examples.) Moreover, approximate thresholds of CR and GCI are shown in Table 1.

Example 1. We test the consistency of six groups of PCMs taken from existing references by 
the induced dynamic thresholds of GCI, and then compare the results with that determined 
by approximate thresholds of GCI and CR. 

(1) The corresponding results for ×3 3A  and ′
×3 3A  are shown in Table 4.

          

×

 
 
 

=  
 
  
 

3 3

1 3 3
1 1 3
3
1 1 1
3 3

A , ′
×

 
 
 

=  
 
  
 

3 3

1 2 5
1 1 2
2
1 1 1
5 2

A .

Table 4. The corresponding results for two 3-order PCMs 

 ×3 3A  
′
×3 3A

= >0.1304 0.05CR NO = <0.0036 0.05CR YES

= <0.1341 0.3147GCI YES = <0.0037 0.3147GCI YES

= >0.1341 0.048GCI ( )a = 0.01 NO = <0.0037 0.048GCI ( )a = 0.01 YES

= <0.1341 0.148GCI ( )a = 0.05 YES = <0.0037 0.148GCI ( )a = 0.05 YES

= <0.1341 0.245GCI ( )a = 0.10 YES = <0.0037 0.245GCI ( )a = 0.10 YES

(2) The corresponding results for ×4 4A  and ′
×4 4A  are shown in Table 5.

         

×

 
 
 
 
 =
 
 
 
 
 

4 4

11 2 3
2

1 1 2 4
2
1 1 1 5
3 2

1 12 1
4 5

A , ′
×

 
 
 
 

=  
 
 
 
 

4 4

1 4 6 7
1 1 3 4
4
1 1 1 2
6 3
1 1 1 1
7 4 2

A .
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Table 5. The corresponding results for two 4-order PCMs

 ×4 4A  
′
×4 4A

= >0.5513 0.08CR NO = <0.0383 0.08CR YES
= >1.6815 0.3526GCI NO = <0.1349 0.3526GCI YES

= >1.6815 0.205GCI ( )a = 0.01 NO = <0.1349 0.205GCI ( )a = 0.01 YES

= >1.6815 0.385GCI ( )a = 0.05 NO = <0.1349 0.385GCI ( )a = 0.05 YES

= >1.6815 0.518GCI ( )a = 0.10 NO = <0.1349 0.518GCI ( )a = 0.10 YES

(3) The corresponding results for ×5 5A  and ′
×5 5A  are shown in Table 6.

×

 
 
 
 
 

=  
 
 
 
  
 

5 5

1 2 6 3 3
1 1 2 5 4
2
1 1 11 1
6 2 2
1 1 2 1 5
3 5
1 1 11 1
3 4 5

A , ′
×

 
 
 
 
 

=  
 
 
 
  
 

5 5

1 3 5 4 7
1 1 3 2 5
3
1 1 11 3
5 3 2
1 1 2 1 3
4 2
1 1 1 1 1
7 5 3 3

A .

Table 6. The corresponding results for two 5-order PCMs

 ×5 5A  ′
×5 5A

= >0.1234 0.10CR NO = <0.0283 0.10CR YES
= >0.4305 0.370GCI NO = <0.1042 0.370GCI YES

= >0.4305 0.380GCI ( )a = 0.01 NO = <0.1042 0.380GCI ( )a = 0.01 YES

= <0.4305 0.586GCI ( )a = 0.05 YES = <0.1042 0.586GCI ( )a = 0.05 YES

= <0.4035 0.723GCI ( )a = 0.10 YES = <0.1042 0.723GCI ( )a = 0.10 YES

(4) The corresponding results for ×6 6A  and ′
×6 6A  are shown in Table 7.

×

 
 
 
 
 
 
 =
 
 
 
 
 
 
 

6 6

1 6 6 6 6 5
1 1 4 4 4 6
6
1 1 1 2 4 4
6 4
1 1 1 1 2 2
6 4 2
1 1 1 1 1 2
6 4 4 2
1 1 1 1 1 1
5 6 4 2 2

A , ′
×

 
 
 
 
 
 
 =
 
 
 
 
 
 
 

6 6

1 2 4 6 8 9
1 1 2 4 6 8
2
1 1 1 2 4 6
4 2
1 1 1 1 2 4
6 4 2
1 1 1 1 1 2
8 6 4 2
1 1 1 1 1 1
9 8 6 4 2

A .
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Table 7. The corresponding results for two 6-order PCMs

×6 6A ′
×6 6A

= >0.1020 0.10CR NO = <0.0211 0.10CR YES
= <0.3585 0.370GCI YES = <0.0784 0.370GCI YES
= <0.3585 0.524GCI ( )a = 0.01 YES = <0.0784 0.524GCI ( )a = 0.01 YES

= <0.3585 0.727GCI ( )a = 0.05 YES = <0.0784 0.727GCI ( )a = 0.05 YES

= <0.3585 0.856GCI ( )a = 0.10 YES = <0.0784 0.856GCI ( )a = 0.10 YES

(5) The corresponding results for ×7 7A  and ′
×7 7A  are shown in Table 8.

×

 
 
 
 
 
 
 
 =
 
 
 
 
 
 
 
 

7 7

1 7 3 5 9 3 5
1 1 3 3 5 3 3
7
1 1 1 11 3 3
3 3 5 3
1 1 15 1 9 3
5 3 3
1 1 1 13 1 3
9 5 9 5
1 1 1 1 1 11
3 3 3 3 3 3
1 1 1 3 5 3 1
5 3 3

A ,
 

′
×

 
 
 
 
 
 
 
 =
 
 
 
 
 
 
 
 

7 7

1 1 11 1 2 3
3 5 4

1 13 1 2 3 3
2 3

5 2 1 4 5 6 5
1 1 11 1 1 2
2 4 4

14 3 4 1 3 1
5

1 1 1 1 11 1
2 3 6 3 3
1 1 1 1 1 3 1
3 3 5 2

A .

Table 8. The corresponding results for two 7-order PCMs

 ×7 7A  ′
×7 7A

= >0.3061 0.10CR NO = >0.1088 0.10CR NO
= >1.0040 0.370GCI NO = >0.3814 0.370GCI NO

= >1.0040 0.636GCI ( )a = 0.01 NO = <0.3814 0.636GCI ( )a = 0.01 YES

= >1.0040 0.829GCI ( )a = 0.05 NO = <0.3814 0.829GCI ( )a = 0.05 YES

= >1.0040 0.974GCI ( )a = 0.10 NO = <0.3814 0.947GCI ( )a = 0.10 YES

(6) The corresponding results for ×8 8A  and ′
×8 8A  are shown in Table 9.

×

 
 
 
 
 
 
 
 
 =  
 
 
 
 
 
 
  
 

8 8

1 11 5 3 7 6 6
3 4

1 1 1 11 5 3 3
5 3 5 7
1 13 1 6 3 4 6
3 5
1 1 1 1 1 1 11
7 5 6 3 4 7 8
1 1 1 1 1 13 1
6 3 3 2 5 6
1 1 1 1 14 2 1
6 3 4 5 6

1 13 5 7 5 5 1
6 2

4 7 5 8 6 6 2 1

A ,
 

′
×

 
 
 
 
 
 
 
 

=  
 
 
 
 
 
 
 
 

8 8

1 1 11 2 2 2 2
2 2 2

1 1 11 4 1 1 1
2 4 4

12 1 4 1 4 1 4
4

1 1 1 11 1 1 1
2 4 4 4
2 4 1 4 1 4 1 4
1 1 1 11 1 1 1
2 4 4 4
2 4 1 4 1 4 1 4
1 1 1 11 1 1 1
2 4 4 4

A .
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Table 9. The corresponding results for two 8-order PCMs

 ×8 8A  ′
×8 8A

= >0.1691 0.10CR NO = >0.1047 0.10CR NO
= >0.5292 0.370GCI NO = <0.2745 0.370GCI YES

= <0.5292 0.726GCI ( )a = 0.01 YES = <0.2745 0.726GCI ( )a = 0.01 YES

= <0.5292 0.905GCI ( )a = 0.05 YES = <0.2745 0.905GCI ( )a = 0.05 YES

= <0.5292 1.013GCI ( )a = 0.10 YES = <0.2745 1.013GCI ( )a = 0.10 YES

From the above results, it follows that
(1) For the PCMs with ≈ 0.10CR  (e.g., ×3 3A , ×6 6A  and ′

×8 8A ), the results determined by 
approximate thresholds of GCI are completely opposite with the ones determined by 
approximate thresholds of CR. The contradictory results cannot be clearly explained 
so far. It is quite difficult to adopt approximate thresholds of GCI or approximate 
thresholds of CR to test the consistency of the PCMs. In this case, we try to adopt 
dynamic thresholds of GCI to test the consistency of the PCMs (e.g., ×3 3A , ×6 6A  and 
′
×8 8A ), and then determine the clear results while avoiding the conflicting results. 

Moreover, for the PCM ×5 5A  with CR = 0.1234, the results determined by dynamic 
thresholds of GCI at the significance levels (a = 0.05, 0.10) are different from the ones 
determined by approximate thresholds of CR and GCI. Here, only significance level 
sufficiently explains these different results. 

(2) For the PCMs with 0.10CR  (e.g., ′
×3 3A , ′

×4 4A , ′
×5 5A  and ′

×6 6A ), the results deter-
mined by dynamic thresholds of GCI are the same as the ones determined by ap-
proximate thresholds of CR and GCI (have the acceptable consistency). Moreover, for 
the PCMs with 0.10CR  (e.g., ×4 4A  and ×7 7A ), the results determined by dynamic 
thresholds of GCI are the same as the ones determined by approximate thresholds 
of CR and GCI (have not the acceptable consistency). It is clearly concluded that 
the PCMs with too high or too low consistency are easily tested and have not strict 
requirements for the consistency index and its threshold. 

From Example 1, dynamic thresholds of GCI may be a better choice due to different 
significance levels when other thresholds of consistency index do not accurately test the 
consistency of the PCM.

Example 2. We consider the PCM taken from the reference (Dadkhah & Zahedi, 1993), 
which was used by Amenta et al. (2020). The considered PCM (A) is listed below. The priority 
vectors and rank orders obtained by LLSM and EM from A are shown in Table 10.

 
 
 
 

=  
 
 
 
 

1 5 6 7
1 1 4 6
5
1 1 1 4
6 4
1 1 1 1
7 6 4

A ,

 
 
 
 =
 
 
 
 

'

1 4.35 6 8.05
0.23 1 4 6

1 1 1 3.48
6 4

10.12 0.29 1
6

A , ″

 
 
 
 

=  
 
 
 
 

1 3 6 9
1 1 3 5
3

 1 1 1 2
6 3
1 1 1 1
9 5 2

A .
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Table 10. The priority vectors and rank orders by LLSM and EM from three PCMs

Priorities
 

( )V A LLSM
 

( )′V A LLSM
 

( )V A EM
 

( )′′V A EM

v1
v2
v3
v4

0.641(1)
0.239(2)
0.103(3)
0.045(4)

0.611(1)
0.246(2)
0.099(3)
0.045(4)

0.619(1)
0.235(2)
0.101(3)
0.045(4)

0.599(1)
0.250(2)
0.096(3)
0.054(4)

Amenta et  al. (2020) indicated that A has not the acceptable consistency since 
( ) = >0.504 0.3526GCI A , and then applied the revision procedure with the aim of improving 

the consistency and reducing GCI(A) to a value below 0.3526. The revisions for some judg-
ments are made by Amenta et al. (2020) to achieve the desired consistency ( ( ) =′ 0.344GCI A  <  
0.3526) by three iterations. The revised PCM(A′) (Amenta et al., 2020) is listed above. The 
priority vector and rank order obtained by LLSM from A′ are shown in Table 10.

Dadkhah and Zahedi (1993) indicated that A has not the acceptable consistency accord-
ing to the principal eigenvalue (l = 4.3907) (In fact, ( ) = >0.146 0.08CR A ), and then applied 
the multiple iteration algorithm for reaching the desired consistency ( ( ) =′′ 0.013CR A < 0.08). 
The revised PCM (A″) (Dadkhah & Zahedi, 1993) is listed above. The priority vector and 
rank order obtained by EM from A″ are shown in Table 10.

The changes in the derived priorities from the revised PCMs (A′ and A″) are very small 
(That is, the derived priorities are close to the initial values.) while the updated rank orders 
are identical with the original rank order (1234). That is to say, the revisions of some judg-
ments only for reaching the desired consistency are not necessary since they do not change 
the rank order.

However, approximate thresholds of GCI and CR do not explain the uniformity of the 
rank orders while not avoiding the unnecessary revisions of some judgments. Now, we try to 
adopt the induced dynamic thresholds of GCI to test the consistency of the PCM (A). From 
Table 3, when the significance levels a are 0.01, 0.05 and 0.10, dynamic thresholds of GCI 
(for n = 4) are 0.205, 0.385 and 0.518, respectively. Thus, A has the acceptable consistency 
when the significance level a is 0.10 according to ( ) = <0.504 0.518GCI A . Thus, it is not 
necessary to revise the PCM (A) with the single aim of reducing the value of GCI (CR) and 
reaching the desired consistency because of the uniformity and availability of the rank orders. 

From Example 2, dynamic thresholds of GCI may avoid the unnecessary revision of some 
judgments of the PCM. 

Example 3. We consider the real-world education evaluation problem taken from the ref-
erence (Lin et al., 2014). The teaching levels of six teachers are expressed by two PCMs 
provided by students and experts, which are ×6 6A  and 

′
×6 6A  in Example 1, respectively. 

We should test whether the PCMs ( ×6 6A  and ′
×6 6A ) have the acceptable consistency be-

fore ranking the teaching levels of six teachers according to the priority vectors derived from 
them. 

For the PCM ( ×6 6A ) provided by students, from Table 7, ( )× = >6 6 0.1020 0.10CR A  and 
( )× = <6 6 0.3585 0.370GCI A , thus it has not the acceptable consistency according to the ap-

proximate threshold (0.10) of CR, while it has the acceptable consistency according to the 

file:///D:/DARBAI/TTED/%2bTEDE_AIP_2022_1/javascript:;
file:///D:/DARBAI/TTED/%2bTEDE_AIP_2022_1/javascript:;
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approximate threshold (0.370) of GCI. In this case, we could not directly decide whether ×6 6A  
has the acceptable consistency because of two completely opposite results.

For the PCM ( ′
×6 6A ) provided by experts, from Table 7, ( )′

× = <6 6 0.0211 0.10CR A  and 
( )′

× = <6 6 0.0784 0.370GCI A , thus it has the acceptable consistency according to approximate 
thresholds (0.10 and 0.370) of CR and GCI. In this case, the results provided by experts are 
reliable according to the acceptable consistency of ′

×6 6A .
The final purpose of this problem is that the teaching levels of six teachers are ranked 

according to the priority vector of the given PCMs. The corresponding principal eigenvectors 
and rank orders derived from of ′

×6 6A  and ×6 6A  by EM and LLSM are shown in Table 11. 
The rank orders are identical (123456) according to the priority vectors derived from ×6 6A  
and ′

×6 6A , although the results of the consistency testing of them are completely opposite ac-
cording to approximate thresholds of CR. 

Table 11. The priority vectors and rank orders by LLSM and EM from two PCMs

Priorities  ( )×6 6V A EM  ( )′
×6 6V A EM  ( )×6 6V A LLSM  ( )′

×6 6V A LLSM

v1
v2
v3
v4
v5
v6

0.512(1)
0.220(2)
0.112(3)
0.067(4)
0.050(5)
0.040(6)

0.434(1)
0.262(2)
0.148(3)
0.082(4)
0.046(5)
0.029(6)

0.488(1)
0.226(2)
0.119(3)
0.075(4)
0.053(5)
0.040(6)

0.429(1)
0.265(2)
0.149(3)
0.082(4)
0.046(5)
0.028(6)

The PCM ( ′
×6 6A ) with the acceptable consistency may guarantee that the rank order 

(123456) is suitable. Thus, the rank order obtained from ×6 6A  is reliable although it has not 
the acceptable consistency according to the approximate threshold (0.10) of CR. Moreover, 
the results of the consistency testing of ×6 6A  and ′

×6 6A  are same according to approximate 
thresholds of GCI. However, approximate thresholds of GCI cannot explain conflicting re-
sults. Thus, approximate thresholds of CR and GCI, to some extent, have drawbacks for the 
consistency testing of the PCM.

We adopt the induced dynamic thresholds of GCI to test the consistency of the PCMs  
( ×6 6A  and ′

×6 6A ). From Table 7, ( )× =6 6 0.3585GCI A  and ( )′
× =6 6 0.0784GCI A , which are less 

than any of the corresponding dynamic thresholds of GCI when the significance levels a are 
0.01, 0.05 and 0.10 (See Table 3). Therefore, ×6 6A and ′

×6 6A  have the acceptable consistency 
under the selected significance levels. From Table 11, the priority vectors and rank orders 
obtained from ′

×6 6A  and ×6 6A  by LLSM are two identical (123456). Thus, the rank orders 
of teaching levels of six teachers obtained from ×6 6A  and ′

×6 6A  are reliable because of the 
acceptable consistency.

From Example 3, dynamic thresholds of GCI may explain conflicting results determined 
by approximate thresholds of CR and GCI for the PCM ( ×6 6A ), and avoid the unnecessary 
revisions of some judgments of the PCM for reaching the desired consistency according to 
the approximate threshold (0.10) of CR.

Example 4. We consider the real-world decision-making problem in water supply for the 
minimization of water loss by means of suitable leakage control, which is taken from the 
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reference (Benítez et al., 2011). Two management alternatives for leakage control (Farley & 
Trow, 2005) are active leakage control (ALC) (which involves taking actions in distribution 
systems to identify and repair not reported leaks) and passive leakage control (PLC) (which 
boils down to just repairing reported or evident leaks).

We briefly review decision making process implemented by Benítez et al. (2011). First, 
the following criteria are considered for two alternatives (ALC and PLC). 

C1: Planning development cost and its implementation; 
C2: Damage to properties and other service networks; 
C3: Effects (cost or compensations) of supply disruptions; 
C4: Inconveniences caused by closed or restricted streets;
C5: Water extractions (benefits for aquifers, wetlands or rivers); 
C6: Construction of tanks and reservoirs (environmental and recreational impacts); 
C7: CO2 emissions. 
The PCM about the relative importance among the seven criteria is ′

×7 7A  in Example 1, 
reflecting the opinions of a panel of experts of a water company in Valencia (Spain). Benítez 
et al. (2011) noted that the PCM ( ′

×7 7A ) is inconsistent, and then obtained the new consis-
tent matrix ( ×7 7M ) closest to it by linearization approach. The priority vector derived from 

×7 7M  by EM is

( ) ( )× =7 7 0.070, 0.134, 0.457, 0.089, 0.149, 0.041, 0.060V M .

Next, Benítez et  al. (2011) constructed seven matrices of alternative comparisons ac-
cording to the seven criteria, and then obtained the corresponding priority vectors of two 
alternatives (ALC and PLC) for each criterion. Seven priority vectors are listed as follows:

 
 
  
 

Criteria 1 C2 C3 C4 C5 C6 C7
0.11 0.83 0.83 0.25 0.80 0.17 0.86
0.89 0.17 0.17 0.75 0.20 0.83 0.14

C
ALC
PLC

.

These priority vectors reflect the weight or relative importance of each alternative for each 
criterion. Note that these priority vectors are calculated directly since any positive, reciprocal 
2-order matrix is always consistent. 

Finally, Benítez et al. (2011) computed the priority vector for two alternatives (ALC and 
PLC) by multiplying its priority value by the priority of any criterion and summing through 
all the criteria, which is as follows:

×
   =   
   

7 7
0.11 0.83 0.83 0.25 0.80 0.17 0.86 0.695( )0.89 0.17 0.17 0.75 0.20 0.83 0.14 0.305

TV M .

Benítez et al. (2011) noted that if the consistency of the PCM ( ′
×7 7A ) had been considered 

acceptable, then the priority vector derived from it would have been

( ) ( )′
× =7 7 0.082, 0.147, 0.381, 0.072, 0.196, 0.046, 0.076V A .

Thus, the priority vector for two alternatives (ALC and PLC) would have been

′
×

   =   
   

7 7
0.11 0.83 0.83 0.25 0.80 0.17 0.86 0.698( )0.89 0.17 0.17 0.75 0.20 0.83 0.14 0.302

TV A .
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It is discovered that the above priority vectors for two alternatives (ALC and PLC) are 
almost indifferent. However, the priority vector ( )′

×7 7V A  cannot be directly used to compute 
the priority vector for two alternatives (ALC and PLC) since the PCM ( ′

×7 7A ) has not accept-
able consistency according to the approximate threshold (0.10) of CR. 

It is known that the PCM ( ′
×7 7A ) should has the acceptable consistency before taking 

actions in distribution systems or individual district metered areas. Now, we adopt the in-
duced dynamic thresholds of GCI to test the consistency of the PCM ( ′

×7 7A ). From Table 8, 
( )′

× =7 7 0.3814GCI A , which is less than any of the corresponding dynamic thresholds of GCI 
when the significance levels a are 0.01, 0.05 and 0.10 (See Table 3). That is to say, the PCM 
( ′

×7 7A ) has the acceptable consistency according to the induced dynamic thresholds of GCI. 
Therefore, we directly compute the priority vector for two alternatives (ALC and PLC) with-
out revising the PCM ( ′

×7 7A ). The priority vector derived from the PCM ( ′
×7 7A ) by LSSM is

( ) ( )′
×′ =7 7 0.081, 0.154, 0.390, 0.076, 0.182, 0.049, 0.069V A .

The priority vector for two alternatives (ALC and PLC) is

′
×

   =   ′
   

7 7
0.11 0.83 0.83 0.25 0.80 0.17 0.86 0.692( )0.89 0.17 0.17 0.75 0.20 0.83 0.14 0.308

TV A .

This priority vector is reliable since the PCM ( ′
×7 7A ) has the acceptable consistency ac-

cording to dynamic thresholds of GCI, which is almost equivalent to the priority vector 
obtained by Benítez et al. (2011) using linearization approach. 

From Example 4, dynamic thresholds of GCI may avoid the unnecessary revisions of the 
PCM by linearization approach due to the equivalent results that the priority vectors for two 
alternatives (ALC and PLC) are almost indifferent. 

From the above examples, dynamic thresholds of GCI may clearly explain the conflicting 
results determined by approximate thresholds of CR and GCI, and different results at differ-
ent significance levels. Sometimes, dynamic thresholds of GCI may avoid the unnecessary 
revisions of some judgments of the PCM for reaching the acceptable consistency according 
to approximate thresholds of CR and GCI. As emphasized by Dadkhah and Zahedi (1993), 
attaining consistency is not a goal since the inconsistency may be in the nature of the deci-
sion maker’s preference. 

Conclusions

AHP has been used successfully in many institutions and companies to solve the real-world 
decision-making problems considering all quantitative and qualitative effective factors. This 
paper induces dynamic thresholds of GCI associated with PCM in AHP by combining hypoth-
esis testing and RI, which are related to the order of the PCM, significance level and assess-
ment level of decision maker. The induced dynamic thresholds of GCI may explain different 
(or conflicting) results obtained by other consistency thresholds, and avoid the unnecessary 
revisions of some judgments of the PCM for the acceptable consistency. Compared with ap-
proximate thresholds of GCI and CR by several numerical examples and real-world decision-
making problems, dynamic thresholds of GCI are more reliable and interpretable than ap-
proximate thresholds of GCI and CR. In a word, dynamic thresholds of GCI play an important 
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role in the technological and economic sustainable development, and are available in the field 
of management science and operations research, including objectives, criteria, and alterna-
tives. However, dynamic thresholds of GCI demand in application that the PCM is complete 
positive reciprocal matrix constructed on 1-9 scale, and cannot be directly extended to the in-
complete PCM and other preference relations such as fuzzy preference, fuzzy linguistic prefer-
ence, etc. In future research, we will extend dynamic thresholds of GCI to the incomplete PCM 
and other preference relations for sustainability performance measurement and assessment. 
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