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Abstract. This study formulates an inventory model with limited storage capacity under the 
condition of order-size dependent trade credit. Shortages are allowed and partially backlogged. 
The objective of this study is to determine the optimal replenishment cycle length, the optimal 
fraction of no shortage, and whether retailers should choose to rent an extra warehouse to store 
more items, such that retailers’ total annual profit is maximized. We prove the global optimally 
of objective functions and derive the closed-form optimal solution. Some numerical examples are 
presented to illustrate the applicability of the proposed model. Sensitivity analysis is carried out 
and managerial insights are obtained. We find that if retailers’ own warehouse capacity is relatively 
small, they always benefit from enlarging order quantity and renting an extra warehouse; mean-
while, suppliers further prolong the credit period is beneficial for both parties. On the contrary, 
as retailers’ own warehouse capacity increases and exceeds the optimal order quantity under that 
of without capacity constraints, adopting the same replenishment strategy as that without capac-
ity constraints is profitable for retailers. Our results also reveal that other model parameters (e.g., 
ordering cost, inventory holding cost, shortages cost, backordering rate, etc.) have a significant 
impact on retailers’ optimal decisions.
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Introduction

Providing a reasonable and efficient way to manage inventory is one of the most challenging 
activities that business organizations face; this provision serves as a significant role in the 
success of organizations in the current competitive market (Taleizadeh et al., 2013; Diabat 
et  al., 2017; Lashgari et  al., 2018; Tiwari et  al., 2020). In the traditional economic order 
quantity (EOQ) model, it is generally assumed that retailers must pay for the entire purchase 
costs immediately after goods are received. However, as market trends change and competi-
tion intensifies in today’s business world, suppliers usually grant trade credit to retailers to 
increase sales and reduce inventory (Ouyang et al., 2008; Teng et al., 2012; Jaggi et al., 2017; 
Wu et al., 2018; Li et al., 2021). Under this policy, suppliers agree to offer retailers a certain 
grace period to pay off their purchase costs. During this grace period, retailers can start to 
accumulate sales revenue and earn interest, but suppliers charge interest beyond this period. 
Clearly, paying later indirectly reduces inventory holding costs, retailers thus are motivated to 
enlarge their order quantity. In real business, trade credit has rapidly grown and gained popu-
larity among many industries. It reported that over 80% of B2B transactions in the United 
Kingdom are underpinned by trade credit. Moreover, in the United States, approximately 
80% of companies sell their goods through trade credit (Seifert et al., 2013). Additionally, 
some larger companies, such as Ford Motor, Gree Electric, IBM, HP, etc., are also willing to 
offer trade credit to their dealers or retailers (Feng & Chan, 2019; Yao et al., 2021). Seifert 
et al. (2017) also point out that enterprise profitability is positively related to payment delay 
after investigating a sample of 3,383 groups of public US enterprises. 

In the existing inventory models involving trade credit, it is usually assumed that the 
length of the trade credit period is constant and regardless of retailers’ order quantities. 
However, in practice, suppliers may provide the trade credit period is linked to the order 
quantity to encourage retailers to place larger quantities (Chen et al., 2014; Chang et al., 2015; 
Tiwari et al., 2020). A common form of this trade credit policy is called conditional trade 
credit, i.e., suppliers preset an order quantity threshold and below which delay in payment 
is not permitted and retailers must pay for purchase costs with cash. For order quantities 
above this threshold, trade credit is available (Huang, 2007; Liang & Zhou, 2011; Chung 
et al., 2013; Tiwari et al., 2020; Taleizadeh et al., 2021). Undeniably, the above conditional 
trade credit policy has two obvious disadvantages: (1) suppliers must fully grasp all kinds 
of information about retailers (including market demand information, warehouse capacity 
information, and cost structures information, etc.) to set an accurate order quantity thresh-
old. Doing so is difficult, even impossible to achieve in today’s highly competitive market 
environment, especially in the buyers’ market. (2) Trade credit with a single order quantity 
threshold forces retailers to make two extreme choices: to enjoy delay in payment by making 
the order quantity exceeds the predetermined quantity or to pay for the full purchase amount 
immediately when the order quantity is less than the quantity threshold. Therefore, a flexible 
order-size dependent trade credit policy (i.e., offer different trade credit periods with differ-
ent predetermined order quantity thresholds) should be proposed to reduce the difficulty of 
suppliers’ decision-making and increase the choice of retailers. However, as far as we know, 
only very limited attention has been paid to this kind of trade credit policy, despite it has 
various advantages and applicability in the real business world.
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When retailers are faced with an order-size dependent trade credit policy, they usually 
prefer to order higher quantities to obtain a longer trade credit period. From retailers’ per-
spectives, holding a high stock level means that they need additional warehouse space. How-
ever, retailers’ own warehouse (OW) storage capacity is always limited in practice, implying 
retailers need an extra rented warehouse (RW) to keep the exceeded part (if any) (Ghiami 
et al., 2013; Tiwari et al., 2016, 2018; Jonas, 2019). Obviously, the above consideration raises a 
problem for retailers to have to address, i.e., whether retailers should rent an extra warehouse 
to hold more items and thus obtain a longer trade credit period? In addition, shortages are 
a natural phenomenon that occurs in many retail industries; meanwhile, in real business, 
to reduce the inventory holding cost and avoid physical items losses, retailers are always 
motivated to adopt the planning shortage strategy to manage their inventory (Taleizadeh, 
2016; Tiwari et al., 2018; Lashgari et al., 2018). In reality, employing the planning shortage 
strategy is also an effective approach to alleviate the dilemma of OW capacity constraints. 
Nevertheless, considering that shortages may not be fully backlogged in a practical scenario 
and extra costs caused by shortages, retailers must fully account for various costs (i.e., the 
shortage cost, lost sale cost, and inventory holding costs in RW and OW) in determining 
whether they should operate an inventory system with shortages. Especially, if adopted, How 
retailers determine the optimal shortage level?

Motivated by the facts aforementioned, this paper aims to complement the existing works 
by examining the following questions:

(1) Under the conditions of limited storage capacity, partial backordering, and order-
size dependent trade credit, how should retailers decide the optimal replenishment 
schedule to optimize their annual profit? 

(2) Is it always optimal for retailers to rent an additional warehouse? Under what situ-
ations in which retailers rent an additional warehouse may not be optimal? That is, 
how do retailers balance the profit gained from a longer credit period and loss due 
to a rented warehouse? 

(3) How do different operational costs affect retailers’ replenishment policy and rented 
warehouse choice?

To address the above concerns, this study develops an inventory model with limited stor-
age capacity under the condition of order-size dependent trade credit. Shortages are allowed 
and partially backlogged. We first formulate four possible mathematical models that may 
arise owing to different parameter values. Then, we establish the condition that objective 
functions have an interior optimal value, derive the closed-form optimal solution, and design 
a solution procedure to find the global optimal solution in an integrated manner. Finally, 
some numerical examples are presented and the sensitivity analysis is performed to illustrate 
the applicability of the proposed model and obtain some managerial insights. Specific results 
include: (1) when retailers’ OW capacity is relatively small, they always benefit from enlarging 
order quantity and renting an additional warehouse, thereby enjoying a longer credit period. 
In this situation, suppliers further prolong the credit period is beneficial for both parties 
because retailers will place a larger order quantity that is directly favorable for suppliers’ busi-
ness. (2) When retailers’ OW capacity becomes larger enough and exceeds the optimal order 
quantity under that of without capacity constraints, they neither increase the order quantity 
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nor rent an additional warehouse, even though suppliers grant a longer credit period. This 
result indicates that retailers should adopt the same replenishment strategy as that without 
capacity constraints. At the same time, the further extension of the credit period is not prof-
itable for suppliers, as such extension only increases suppliers’ capital cost. (3) Compared 
with the fixed credit period policy and the conditional trade credit policy, the order-size 
dependent trade credit policy has notable advantages in encouraging retailers to order more, 
reducing the difficulty of suppliers’ decision-making, and increasing the choice of retailers. 
(4) Other model parameters (e.g., ordering cost, inventory holding cost, shortages cost, back-
ordering rate, the interest rate earned, etc.) also play a significant role in influencing retailers’ 
optimal decisions. For example, an increase in backordering rate or interest earned leads to 
retailers’ annual profit, optimal order quantity, and replenishment cycle length all increase, 
but the optimal fraction of no shortage decreases. When the shortage cost, opportunity cost, 
or selling price increase (or the backordering rate decreases), retailers’ optimal replenishment 
cycle length and order quantity decrease (or increase). At the same time, retailers tend to 
operate an inventory system without shortages (or with shortages) and transfer the decision 
of renting an additional warehouse from “Yes” to “No” (or “No” to “Yes”). Retailers prefer to 
rent an extra warehouse if the fixed ordering cost, demand rate, backordering rate, interest 
rate earned, or purchase cost is high.

The rest of this paper is organized as follows. Section 1 presents the literature review. 
Section 2 introduces notations and assumptions of the problem. Section 3 formulates the 
mathematical model. In Section 4, we analyze the model and derive the closed-form optimal 
solution. We also design a solution procedure to search for the global optimal solution in 
an integrated manner. In Section 5, numerical studies are presented and sensitivity analysis 
is conducted concerning major parameters. Section 6 discusses some important managerial 
insights. Finally, we conclude this paper by summarizing conclusions and possible directions 
for further research.

1. Literature review

Our work is mainly related to two streams of literature: (1) inventory models with trade 
credit, and (2) inventory models with limited storage capacity. In this part, we only review 
the related literature in these two areas and clarify the differences between our paper and the 
extant literature in highlighting our main contributions.

1.1. Inventory models with trade credit

The inventory models under the condition of trade credit is an important and popular topic 
because it characterizes the real situation in the market, and has received a lot of attention 
from researchers in recent years.

Goyal (1985) was the first to investigate an EOQ model under the condition of trade 
credit. Aggarwal and Jaggi (1995) extended Goyal’s (1985) study to consider a constant de-
terioration rate. Jamal et al. (1997) further extended Aggarwal and Jaggi’s (1995) work by 
considering shortages, thereby making the inventory model more applicable in practice than 
before. Huang (2006) and Teng and Goyal (2007) studied an EOQ model in which suppliers 
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offer retailers upstream credit period M, whereas retailers grant downstream credit period N 
to customers. Teng et al. (2012) discussed an inventory model with permissible delay in pay-
ments under a non-decreasing demand pattern. Chen and Teng (2015) obtained the optimal 
ordering and credit period decisions for time-varying perishable items under two-level trade 
credit. Khanna et al. (2017) formulated an inventory model for deteriorating imperfect quality 
items under trade credit. They assumed demand rate depends on the selling price and short-
ages are partially backlogged. Wu et al. (2018) addressed the optimal inventory policy for 
perishable products with two-level trade credit under trapezoidal-type demand patterns. Lin 
et al. (2019) studied an integrated inventory model for items with in-transit and retail dete-
rioration under trade credit. Yao et al. (2021) explored the optimal replenishment strategy in 
a three-echelon supply chain under two-level trade credit. Many similar studies can be found 
in Jain and Aggarwal (2012), Taleizadeh et al. (2013), Taleizadeh (2016), Diabat et al. (2017), 
Lashgari et al. (2018), Jaggi et al. (2018a, 2018b), Li et al. (2019, 2021), Feng and Chan (2019), 
Feng et al. (2021), and their references. All the inventory models above assume that the length 
of the trade credit period is a fixed value and independent of retailers’ order quantities. 

In today’s business transactions, suppliers usually provide the trade credit is linked to the 
order quantity to encourage retailers to place a larger order. In this regard, the conditional 
trade credit policy is a common form and considered by several scholars. For example, Chang 
et al. (2003) formulated an inventory model for perishable goods where suppliers allow re-
tailers to delay in payments only if their order quantity exceeds a specified threshold. Huang 
(2007) further enriched Chang et al. (2003)’s study to consider partial trade credit if the lot 
size is lower than a specific threshold. Ouyang et al. (2009a) proposed an inventory model 
for deteriorating goods under partial trade credit that related to order quantity. Other re-
lated studies for references include Chung and Liao (2009), Chung et al. (2013), Chen et al. 
(2014), Ting (2015), Shah and Cárdenas-Barrón (2015), Zia and Taleizadeh (2015), Tiwari 
et al. (2020), and Taleizadeh et al. (2021). The above-mentioned studies consider the con-
ditional trade credit based on only one order quantity threshold. As we stated earlier, this 
form of trade credit policy has two obvious disadvantages. To this end, this study considers 
a flexible order-size dependent trade credit in formulating a specific inventory model to 
further adapt to the real business world. To the best of our knowledge, only Ouyang et al. 
(2008, 2009b) and Chang et al. (2015) incorporated order-size dependent trade credit into 
inventory models. But their works ignored two significant facts, that is, warehouse capacity 
constraints and shortages. Intuitively, when the length of the trade credit period is linked to 
order quantity instead of a given parameter, retailers are motivated to order more items that 
may exceed their OW can be accommodated. Faced with such a dilemma, retailers can rent 
an additional warehouse or adopt the planning shortage strategy to cope with OW capacity 
constraints. As a result, retailers have to reconsider their replenishment policy under the 
aforementioned conditions.

1.2. Inventory models with limited storage capacity 

In practice, there exist many reasons that force retailers to order more items than that can 
be stored in their own warehouse. For example, to obtain attractive trade credit terms, avoid 
frequent transportation inconvenience, guard against commodity scarcity, etc. Therefore, cap-
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turing limited storage capacity in formulating the inventory model becomes more consistent 
with the current business environment, that is, extending the traditional single-warehouse 
inventory model to the two-warehouse inventory model.

Hartley (1976) was the first to establish a two-warehouse inventory model where short-
ages are not allowed. Subsequently, Sarma (1987) extended Hartley’s (1976) work by consid-
ering perishable products in which shortages are allowed. Zhou and Yang (2005) addressed 
the optimal inventory policy for a two warehouses inventory system under the condition 
of inventory-level-dependent demand rate. Banerjee and Agrawal (2008) investigated a 
two warehouses inventory system for deterioration items under time-varying demand rate. 
Agrawal et al. (2013) developed a two warehouses inventory model for deterioration items 
under ramp-type demand and partially backlogged. Shaikh et al. (2019) considered partial 
backlogged shortages and interval-valued inventory costs to analyze an inventory model with 
two storage facilities. Ghiami and Beullens (2020) considered a two-warehouse supply chain 
to address the optimal integrated inventory policy. Other researchers who have investigated 
this topic include Lee and Hsu (2009), Ghiami et al. (2013), Xu et al. (2017), Tiwari et al. 
(2018), and Khan et al. (2019a). All the above studies ignore the impact of trade credit on 
the optimal inventory strategy.

Huang (2006) first established an inventory model with two warehouses under the condi-
tion of two-level trade credit. Liang and Zhou (2011) studied an inventory model with two 
warehouses and trade credit. They assumed that the OW has a lower deterioration rate than 
RW. Yang and Chang (2013) described a two warehouses partial backlogged inventory model 
for perishable goods under trade credit. Tiwari et al. (2016) worked on a two warehouses 
inventory system for perishable goods with trade credit and inflation. Chakraborty et  al. 
(2018) formulated a partial backordering inventory model for perishable goods with two 
storage facilities under trade credit, inflation, and ramp-type demand pattern. Panda et al. 
(2019) considered price- stock- and advertisement frequency-dependent demand rate to in-
vestigate a two-warehouse inventory model with trade credit. Gupta et al. (2020) developed 
a two-warehouse inventory model by capturing partial backlogging, time-varying deteriora-
tion rate, and trade credit. Other related papers include Liao et al. (2012, 2013, 2014), Jaggi 
et al. (2014), Bhunia et al. (2014), Jonas (2019), Mashud et al. (2021), Khan et al. (2020), and 
their references. 

Our study also formulates a two warehouse inventory model under the condition of trade 
credit, but we consider a flexible order-size dependent trade credit policy. Importantly, in 
our study, we do not strictly limit retailers to adopt a two-inventory system that allows us 
to discuss retailers whether or not to rent an extra warehouse and what conditions should 
be satisfied.

1.3. Contributions to the literature

Table 1 presents a brief comparison between the previous models and ours. Along with Table 1, 
we clarify the contributions of the current inventory model from two aspects. First, regarding 
research content, this paper is the first to study an inventory model under the condition of 
order-size dependent trade credit, limited storage capacity, and partially backlogged. As we 
stated previously, these practical conditions are closely interrelated and impact each other.  
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Table 1. A brief comparison between earlier published literature and our paper

References Trade credit 
policy Shortages

Limited 
storage
capacity

Objective 
function

Solution
Non-closed 

form Closed-form

Huang (2006) Two-level No × Convex √
Huang (2007) Conditional No × Convex √
Ouyang et al. 
(2008)

Order-size 
dependent No × Concave √

Banerjee and 
Agrawal (2008) No Fully 

backordering √ Convex √

Ouyang et al. 
(2009b)

Order-size 
dependent No × Concave √

Liao et al. (2012) Conditional No √ Convex √
Teng et al. (2012) Fixed No × Concave √
Taleizadeh et al. 
(2013) Fixed Partial 

backordering × No-convex √

Agrawal et al. 
(2013) No Partial 

backordering √ Convex √

Chen et al. (2014) Conditional No × Convex √
Zia and 
Taleizadeh (2015) Conditional Full 

backordering × No-concave √

Chang et al. 
(2015)

Order-size 
dependent No × Concave √

Taleizadeh (2016) Fixed Partial 
backordering × No-convex √

Xu et al. (2017) No No √ Convex √
Khanna et al. 
(2017) Fixed Full 

backordering × No-concave √

Diabat et al. 
(2017) Fixed

Full & 
Partial 

backordering
× No-convex √

Jaggi et al. (2017) Fixed Full 
backordering √ Concave √

Tiwari et al. 
(2018) No Full 

backordering √ No-concave √

Lashgari et al. 
(2018) Fixed Partial 

backordering × No-convex √

Jonas (2019) Fixed Full 
backordering √ Concave √

Feng and Chan 
(2019) Two-level No × Concave √

Ghiami and 
Beullens (2020) No Partial 

backordering √ Concave √

Gupta et al. 
(2020) Fixed Partial 

backordering √ Convex √

Tiwari et al. 
(2020) Conditional Full 

backordering × Convex √

Li et al. (2021) Two-level No × Concave √

This paper Order-size 
dependent

Partial 
backordering √ No-

Concave √
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At the same time, introducing these conditions can serve the need of the current business 
environment and provide practitioners a more pragmatic inventory model which can be ap-
plied to many industries (e.g., retail, wholesale trade, construction, etc.). In addition, another 
prominent advantage of our model is that it can generate various models with no trade credit, 
fixed trade credit, conditional trade credit, single warehouse, no shortage, full backordering, 
partial backordering, and so on. And even any combination of all states has made the method 
flexible enough to capture various real-life cases. Second, regarding solution methodology, 
our model involves two decision variables and objective functions are no-concave. Therefore, 
setting two first-order partial derivatives to zero is evidently not feasible to derive the global 
optimal solution. To effectively prove global optimality and derive the closed-form solu-
tion, we develop an effective methodology to establish the condition under which objective 
functions have interior optimal values, thereby closed-form optimal solutions can be found. 
Moreover, we also design an effective solution procedure to find the global optimal solutions 
in an integrated manner.

2. Notations and assumptions

For simplicity, the below notations and assumptions are introduced to formulate the inven-
tory model.

2.1. Notations

Parameter Description
A Fixed ordering cost per order
c Retailers’ purchase cost per unit
p Retailers’ selling price per unit
D Demand rate per year
cb Backordering cost per unit backordered items per unit time
cg Cost of goodwill loss per unit lost sale
p Lost sales cost per unit, including the lost profit and the goodwill loss
hr Inventory holding cost per unit per year (excluding interest charged) in RW
ho Inventory holding cost per unit per year (excluding interest charged) in OW
W Maximum storage space of OW
M The length of trade credit period provided by suppliers
Ie Interest rate earned per dollar per year
Ic Interest rate charged per dollar in stocks per year
b Fraction of shortage that will be backlogged (0 ≤ b ≤ 1)

Tw Length of depletion time for the maximum warehouse capacity of OW, that is, Tw = W/D
Q Retailers’ order quantity (decision variable)
F Fraction of the duration of time with inventory level is positive, 0 ≤ F ≤ 1 (decision variable)
T Retailers’ replenishment cycle (decision variable)

ATP(F, T) Retailers’ annual profit
ATC(F, T) Retailers’ annual cost
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2.2. Assumptions

(1) The inventory system involves only one product, the lead time is zero, and the re-
plenishment rate is infinite.

(2) The demand rate is known and keeps constant over time.
(3) Shortages are allowed and partial backordering, and the backordering rate b is con-

stant.
(4) OW has a limited storage capacity of W units. When Q > W, retailers have to rent 

an additional warehouse to stock the excess items. We assume that RW has an un-
limited capacity. Moreover, in practice, RW usually offers better preserving facilities 
than OW. Thus, this study uses the relationship hr ≥ ho to reflect this real situation. 
Given that the inventory holding cost in OW is less than that in RW, consuming RW 
first is cost-effective.

(5) Suppliers offer credit period Mj, j = 1, 2, …, k, which is related to retailers’ order 
quantity, and the relationship can be expressed as

 +

≤ <
 ≤ <= 


≤ <

1 1 2

2 2 3

1k k k

M q Q q
M q Q q

M

M q Q q
 

,

where += < < < < = ∞1 2 11 k kq q q q , each of which is a boundary value at which a 
specific credit period is granted. Mj represents the credit period applicable to orders 
whose order quantity Q falls in the interval qj to qj+1 with < < <1 2 kM M M .

(6) During the credit period, retailers can accumulate sales revenue and earn interest at a 
rate of Ie. However, retailers need to settle the account at the end of the credit period 
and pay for the interest charged on the items remaining in stock with the rate Ic.

3. Model formulation

Based on the above notations and assumptions, we know that retailers’ replenishment cycle 
time is T, and the duration of the positive stock level is FT; unsatisfied demand is partially 
backordered at a rate b. At the time t = 0, retailers receive Q units to meet the total accumu-
lated backlogged demand and consumer demand during the time interval   0,FT . Without 
loss of generality, we assume that retailers’ order quantity satisfies +≤ < 1j jq Q q , and they 
obtain trade credit period is Mj.

Retailers’ annual profit comprises sales revenue, fixed ordering cost, purchasing cost, 
inventory holding cost, backordering cost, opportunity cost, interest earned, and interest 
charged. These elements are computed as follows: 

(i) Annual sales revenue: ( ) + − b 1pD F F .
(ii) Annual fixed ordering cost: A T . 
(iii) Annual purchasing cost: ( ) + − b 1cD F F .
(iv) Annual inventory holding cost: if ≤ wFT T , then an RW is no longer necessary. 
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Otherwise, retailers need an extra RW to stock excess units. Therefore, the annual 
inventory holding cost, excluding the interest charged, can be calculated as follows:

 

( )

( ) ( ) ( )


≤




− − + ≥

2

2

1a
2

2
1b

2 2

o
w

r o
w

h DF T
FT T

h FDT W h DFT W W
FT T

DT DT

. (1)

(v) Annual backordering cost: 
( )b − 21
2

bc D F T
. 

(vi) Annual opportunity cost caused by lost sales: ( )( )− −b1 1gc D F .
(vii) Annual interest earned and interest charged: two situations, which are depicted in 

Figure 1, are possible based on FT and Mj values. Both situations are separately 
discussed.

Situation 1: ( )≤ =1,2,jFT M j k

As shown in Figure 1(a), retailers’ trade credit period Mj is longer than or equal to positive 
inventory level length FT. It indicates that retailers have sold all stocks at the time Mj. There-
fore, no interest is charged. Meanwhile, retailers’ interest earned per cycle can be divided 
into two parts: (1) during the period from 0 to FT, retailers gain the interest earned on the 
sales revenue received (including sales revenue from backlogged), and (2) during the period 
 
 , jFT M , retailers earn interest on full sales revenue. Therefore, in this situation, the annual 
total interest earned is 

( ) ( ) ( )    + − + − b = − + − b   
    ∫0 1 1

2

FT
e e j e j e j j

FTpI Dtdt pI DFT M FT pI F DTM T pI D F M F M

                     
( ) ( ) ( )    + − + − b = − + − b   

    ∫0 1 1
2

FT
e e j e j e j j

FTpI Dtdt pI DFT M FT pI F DTM T pI D F M F M . (2)

Figure 1. The interest earned and charged for two situations

T

Q

Inventory level

t

T

Q

Inventory level

t

Interest earned

Interest charged

FT FT
MjMj

Ma) FT ≤ j Mb) FT ≥ j
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Situation 2: ( )≥ =1,2,jFT M j k

In this situation, retailers’ trade credit period Mj is less than or equal to positive inventory 
level length FT (see Figure 1(b)), indicating that retailers have some inventory available after 
the due date Mj. Thus, during the period  

 ,jM FT , retailers must pay the interest charged 
on unsold items. The annual total interest charged is 

 
( )

( )− 
− = 

  
∫

2

2j

FT c j
c M

cI D FT M
cI D FT t dt T

T
. (3)

During the period  
 0, jM , retailers employ the sales revenue to earn interest. Hence the 

annual interest earned is

 
( ) ( )

    + − b = + − b      
∫

2

0
1 1

2
jM j

e e j e j
M

pI Dtdt pI F DTM T pI D F M
T

. (4)

Combining the above results, given that Mj, j = 1, 2, …, k and based on FT and Tw lengths, 
retailers’ annual profit function under various situations can be expressed as: 

( ) ( )( )=, 1,2j
iATP F T i  = annual sales revenue − annual fixed ordering cost − annual pur-

chasing cost − annual inventory holding cost − annual backordering cost − annual opportu-
nity cost − annual interest charged + annual interest earned.

Specifically,

 

( ) ( )
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( ) ( )
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( ) ( )
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21
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22

,
,

,

j
j w j j w

j
w j

ATP F T T M FT or M T FT
ATP F T

ATP F T T FT M
, (6)

where
( ) ( ) ( ) ( ) ( ) ( )( )

( )
( )

b −
   = + − b − − + − b − − − −b   
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c je jo
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T T

; (7)

 
( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( )
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; (8)

( ) ( ) ( ) ( ) ( ) ( )( )
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( ) ( ) ( ) ( ) ( ) ( )( )
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Here, Eq. (5) represents retailers’ annual profit function when they do not need to rent an 
additional warehouse (i.e., FT ≤ Tw). More specifically, Mj ≤ FT ≤ Tw indicates that retailers 
must use Eqs. (3) and (4) to calculate interest charged and earned, and the inventory holding 
cost is referred to Eq. (1a). In this case, retailers’ annual profit function can be described as 
Eq. (7). Meanwhile, 0 < FT ≤ Tw ≤ Mj or 0 < FT ≤ Mj ≤ Tw suggests that no interest is charged, 
retailers must use Eq. (2) to calculate interest earned, and the inventory holding cost is re-
ferred to Eq. (1a). In this case, retailers’ annual profit function can be described as Eq. (8). 

Similarly, Eq. (6) represents retailers’ annual profit function when they need to rent an 
additional warehouse (i.e., FT ≥ Tw). Note that Tw ≤ Mj ≤ FT or Mj ≤ Tw ≤ FT indicates that 
retailers should use Eqs (3) and (4) to calculate interest paid and earned, and the holding 
cost is referred to Eq.  (1b). In this case, retailers’ annual profit function can be described 
as Eq. (9). Moreover, Tw ≤ FT ≤ Mj indicates that no interest is charged, retailers must use 
Eq. (2) to calculate interest earned, and the holding cost is referred to Eq. (1b). In this case, 
retailers’ annual profit function can be described as Eq. (10).

4. Solution methodology

4.1. Deriving closed-form optimal solution

The purpose of this study is to find the optimal solutions of F** and T**, such that retail-
ers’ annual profit function ATP(F, T) is maximized. Due to our objective functions are not 
concave, resulting in it is not feasible to find optimal solutions by employing the common 
methodology of setting two first-order partial derivatives to zero. To effectively solve the 
proposed model, this section adopts an effective approach to prove global optimality and 
derive the closed-form solution. we present this approach for all cases to derive the closed-
form optimal solution as follows:

4.1.1. Case 1-1: Mj ≤ FT ≤ Tw

In this case, retailers don’t need to rent an additional warehouse. As illustrated in Supple-
ment A, Eqs. (A1)–(A3), maximizing Eq. (7) is equivalent to minimizing the following func-
tion: 

 
( ) ( ) y

= y −y −y +y + +y1152
11 111 112 113 114 116,jATC F T F T FT F T

T
, (11)

where

( )y = b+ +111 2 b o c
D c h cI ;  (12)

y = b112 bc D ;  (13)

( ) ( )y = π −b + −b113 1 c e jD cI pI M D ; (14)
by =114 2

bc D ;  (15)

( )y = + − 2
115 2c e jA cI pI DM ;  (16)

( )y = + π −b − b116 1 e jcD D pI DM . (17)
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First, for fixed F, calculating the derivatives of ( ) ( )11 ,jATC F T  with respect to T, leading 
to Eqs (18) and (19), respectively.

 

( ) ( ) y
′ = y −y +y − 1152
11 111 112 114 2

,jATC F T F F
T

; (18)

                           

( ) ( ) y
′′ = 115
11 3

2
,jATC F T

T
.                                                   (19)

From Eq.  (19), if y >115 0  (If not, then see the solution methodology given in Sup-

plement B), then ( ) ( )′′ >11 , 0jATC F T , that is, ( ) ( )11 ,jATC F T  is strictly convex in T. Setting 
( ) ( )′ =11 , 0jATC F T  yields

 ( )
y

=
θ

115

11
T

F
, (20)

where ( )θ = y −y +y2
11 111 112 114F F F .

The discriminant of ( )θ11 F , ( )∆ = y − y y = − + b <2 2
112 111 1144 0o c bh cI c D , is always neg-

ative. Thus, ( )θ11 F  has no roots. Moreover, given that ( ) bθ = >11 0 02
bc D , we can conclude 

that ( )θ11 F is strictly positive in   0,1 . Therefore, Eq. (20) is feasible, and for ∀ ∈  0,1F , a 

unique 
( )

y
=

θ
115

11
T

F
 always exists, such that ( ) ( )11 ,jATC F T  is minimized.

Substituting Eq. (20) into Eq. (11) (that is, 
( )

y
=

θ
115

11
T

F
 into ( ) ( )11 ,jATC F T ) leads to

 
( ) ( ) ( )= y θ −y +y11 115 11 113 1162jATC F F F . (21)

From Eq. (21), the derivatives of ( ) ( )11
jATC F  with respect to F are 

             

( ) ( ) ( )
( )

 ′θ ′ = y −y
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11 115 113
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j
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F F F
ATC F
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F F F

F

c D h cI

F F

. (23)

From Eq. (23), ( ) ( )11
jATC F  is a strictly convex function of F. We check

 

( ) ( ) y
′ = −y −y

y
115

11 112 113
114

0jATC . (24)
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Note that if ( ) ( )′ ≥11 0 0jATC , then ( ) ( )11
jATC F  is increasing in   0,1 , that is, ( ) ( )11

jATC F  
reaches the global minimum at F = 0; it indicates that the best choice is that retailers do not 
build inventory. Therefore, we only need to consider the situation of ( ) ( )′ <11 0 0jATC . We 
further investigate

    

( ) ( )

( ) ( ) ( ) ( )

 y −y ′ = y −y
 y −y +y 

−
= + + − π −b − −b

111 112
11 115 113

111 112 114

2

2
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2 1
2

j

c e j
o c c e j

ATC

cI pI DM
A D h cI D cI pI M D

. (25)

From Eq. (25), ( ) ( )′ >11 1 0jATC  holds if and only if 

 

( ) ( )π + − + − +
b > = b

π +

2

11

2c c e j o c

e j

D cI DM A cI pI DM D h cI

D pI DM
. (26)

Thus, if the inequality in Eq. (26) is established, then ( ) ( )11
jATC F  has a unique minimizer 

in (0, 1); and the optimal solutions of T11 and F11 can be derived by employing Eqs (27) and 
(28), respectively (see Supplement C, Eqs. (C3) and (C4)). Otherwise, the optimal solutions 
lie on the boundary point F11 = 1 (see Supplement D).

                                     

y y −y
=

y y −y

2
111 115 113

11 2
111 114 112

4
4

T ; (27)

 

yy y y −y
= +

y y y y −y

2
113112 111 114 112

11 2
111 111 111 115 113

4
2 2 4

F . (28)

Here, for the discriminant term b11, note that: (1) if 0 ≤ b11 ≤ b, then the optimal is that 
retailers use partial backordering; and the optimal solutions of T11 and F11 can be derived 
using Eqs (27) and (28). (2) If 0 ≤ b ≤ b11, then the optimal is that retailers employ inven-
tory policy without shortages (e.g., F11 = 1). (3) If b11 < 0, then retailers must compare the 
cases of no stocking (e.g., F11 = 0) and partial backlogging to determine which is optimal.

For the solutions T11 and F11 found using Eqs (27) and (28), if the condition Mj ≤ F11T11 ≤  

Tw is not satisfied, then ( ) ( )11 ,jATC F T  obtains the optimal solution at the boundary. A logical 

solution is to set =
11

wT
T

F
 or =

11

jM
T

F
 (refer to the detailed solution process given in Supple-

ment E and optimal solutions are summarized in Table 2).
To sum up, given the analysis above, the order quantity based on trade credit period Mj 

and purchase cost cj can be computed using Eq. (29), that is,

 ( ) = − b+ 1jQ DT F F . (29)

From Eq.  (29), if the optimal order quantity (Qj) satisfies +≤ < 1j j jq Q q , the solution 
obtained from the analysis above is feasible. Otherwise, we must use the solution procedure 
described in Supplement F to derive the optimal solutions of T and F.
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4.1.2. Case 1-2: FT ≤ Mj ≤ Tw or FT ≤ Tw ≤ Mj

In this case, an additional RW is not necessary, and credit period length Mj is longer than 
or equal to the positive inventory level length FT. Analogously, as shown in Supplement A, 
Eqs (A4)–(A5), maximizing Eq. (8) is equivalent to minimizing the following function: 

 
( ) ( ) y

= y −y −y +y + +y1252
12 121 122 123 124 126,jATC F T F T FT F T

T
, (30)

where
( )y = b+ +121 2 b o e

D c h pI ;  (31)

y = b122 bc D ;  (32)

( ) ( )y = π −b + −b123 1 1 e jD pI M D; (33)

by =124 2
bc D ;  (34)

y =125 A;  (35)

( )y = + π −b − b126 1 e jcD D pI DM . (36)

Note that Eqs (30) and (11) have similar function structures (i.e., y121 through y126 in-
stead of y111 through y116). Therefore, the analysis and discussion provided for Eqs (18)–(24) 
of Case 1-1 are also developed for those of Case 1-2. As a result, the equivalent analysis for 
Eq. (25) of Cases 1-2 and 1-1 is 
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( ) ( ) ( )
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. (37)

From Eq. (37), ( ) ( )′ >12 1 0jATC  holds if and only if 

 

( )π + − +
b > = b

π + 12
2e j o e

e j

D pI DM A D h pI

D pI DM
. (38)

Consequently, if the inequality in Eq. (38) is established, then ( ) ( )12
jATC F  has a unique 

minimizer in (0, 1), and the optimum solutions of T12 and F12 can be found using Eqs (39) 
and (40) (see Supplement C). Otherwise, we set F12 = 1 (see Supplement D).
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12 2
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4
2 2 4

F . (40)

Similar to Case 1-1, we still need to perform the following two steps to ensure the fea-
sibility of the solution: (1) For solutions F12 and T12 found using Eqs (39) and (40), check 
whether they satisfy { }≤12 12 min ,j wF T M T ; if not, then refer to Supplement E to derive the 
optimal values of T and F. (2) Check whether order quantity Qj satisfies +≤ < 1j j jq Q q ; if not, 
then refer to Supplement F to find the optimal values of T and F.
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4.1.3. Case 2-1: Tw ≤ Mj ≤ FT or Mj ≤ Tw ≤ FT

In this case, retailers must rent an additional warehouse. Similarly, as presented in Supple-
ment A, Eqs (A6) and (A7), maximizing Eq. (9) is equivalent to minimizing the following 
function: 

 
( ) ( ) y

= y −y −y +y + +y2152
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T
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( )y = + π −b − b216 1 e jcD D pI DM . (47)

Similar to previous cases, 
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From Eq. (48), ( ) ( )′ >21 1 0jATC  holds if and only if 

( ) ( ) ( ) ( )π + − + − + − + − +
b > = b

π +

2 2

21

2r o c j r o c e j r c

e j

D h h W cI M D A h h W D cI pI DM D h cI

D pI M D
. 

(49)

Consequently, if the inequality in Eq. (49) is established, then ( ) ( )21
jATC F  has a unique 

minimizer in (0, 1), and the optimum solutions of T21 and F21 can be determined by employ-
ing Eqs (50) and (51) (see Supplement C). Otherwise, we set F21 = 1 (see Supplement D).

                                     

y y −y
=

y y −y

2
211 215 213

21 2
211 214 212

4
4

T ; (50)

 

yy y y −y
= +

y y y y −y

2
213212 211 214 212

21 2
211 211 211 215 213

4
2 2 4

F . (51)

Again, similar to previous cases, the feasibility of the solution obtained must be checked. 
If the solution is not feasible, then refer to the detailed solution process given in Supple-
ment E and F.
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4.1.4. Case 2-2: Tw ≤ FT ≤ Mj

Similarly, as presented in Supplement A, Eqs (A8)–(A9), maximizing Eq. (10) is equivalent 
to minimizing the following function: 
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Similarly, 
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From Eq. (59), ( ) ( )′ >22 1 0jATC  holds if and only if
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π +

2

22
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Consequently, if the inequality in Eq. (60) is established, then ( ) ( )22
jATC F  has a unique 

minimizer in (0, 1), and the optimum solutions of T22 and F22 can be obtained using Eqs (61) 
and (62) (see Supplement C). Otherwise, the optimal solution lies on the boundary point 
F21 = 1 (see Supplement D).
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In the same way, Appendices E and F are used to derive the optimal solutions of T and 
F if the solution is not feasible.
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Table 2. The optimal solution if T and F don’t meet the condition
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4.2. Solution procedure

Summarizing the results above, we provide the following solution procedure to determine 
the global optimal solution of the problem.

Step 1: For each j, j = 1, 2, …, k – 1, k, perform Steps 2–4.

Step 2: Compare Mj and Tw, if Mj < Tw, then proceed to Step 3; if not, then proceed to Step 4.

Step 3: Execute Steps 3.1–3.4 and determine ( ) ( )( )∗∗ ∗∗,j jF T  and ( )
( ) ( )( )∗∗ ∗∗,j

j jATP F T .

Step 3.1: Determine ( )∗∗ ∗∗
11 11,F T  and ( ) ( )∗∗ ∗∗

11 11 11,jATP F T  by using sub-procedure A, and then proceed to Step 3.2.

Step 3.2: Determine ( )∗∗ ∗∗
12 12,F T  and ( ) ( )∗∗ ∗∗

12 12 12,jATP F T  by using sub-procedure B, and then proceed to Step 3.3.

Step 3.3: Determine ( )∗∗ ∗∗
21 21,F T  and ( ) ( )∗∗ ∗∗

21 21 21,jATP F T  by using sub-procedure C, and then proceed to Step 3.4.

Step 3.4: Set ( )
( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ){ }∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗= 11 11 11 12 12 12 21 21 21, max , , , , ,j j j j

j jATP F T ATP F T ATP F T ATP F T .

Step 4: Execute Steps 4.1–4.4 and determine ( ) ( )( )∗∗ ∗∗,j jF T  and ( )
( ) ( )( )∗∗ ∗∗,j

j jATP F T .

Step 4.1: Determine ( )∗∗ ∗∗
12 12,F T  and ( ) ( )∗∗ ∗∗

12 12 12,jATP F T  by using sub-procedure B, and then proceed to Step 4.2.

Step 4.2: Determine ( )∗∗ ∗∗
21 21,F T  and ( ) ( )∗∗ ∗∗

21 21 21,jATP F T  by using sub-procedure C, and then proceed to Step 4.3.

Step 4.3: Determine ( )∗∗ ∗∗
22 22,F T  and ( ) ( )∗∗ ∗∗

22 22 22,jATP F T  by using sub-procedure D, and then proceed to Step 4.4.

Step 4.4: Set ( )
( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ){ }∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗= 12 12 12 21 21 21 22 22 22, max , , , , ,j j j j

j jATP F T ATP F T ATP F T ATP F T .

Step 5: Set ( ) ( )
( ) ( )( ){ }∗∗ ∗∗ ∗∗ ∗∗

=
=

1,2, ,
, max ,j

j jj k
ATP F T ATP F T



 and ( ) ( )∗∗ ∗∗ ∗∗ ∗∗=, ,d dF T F T .

Step 6: Using the optimal solutions F** and T**, determine the optimal order quantity ( )∗∗ ∗∗ ∗∗ ∗∗ = − b+ 1Q DT F F .

Note: The specific steps of sub-procedures A, B, C, and D can be found in Supplement G.
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5. Numerical examples and sensitivity analysis

This section presents several examples to illustrate the applicability of the model and also 
the solution procedure proposed in this study. We also perform sensitivity analysis of major 
parameters to derive additional managerial insights.

Example 1. In this example, we shed light on the validity of the proposed solution pro-
cedure. We assume the following numerical data: A  = $100/order, D  = 300 units/year, 
W = 100 units, p = $15/unit, c = $10/unit, cb = $4/unit/year, cg = $2/unit, hr = $2/unit/
year, ho = $1.6/unit/year, Ic = 0.15/$/year, Ie = 0.12/$/year, and b = 0.85. In addition, the 
trade credit schedule offered by suppliers is ( ) ( )= =1 2 3, , 0.20,0.40,0.60M M M M  years and 

( ) ( )= =1 2 3, , 1,350,500q q q q  units. 
Employing the solution procedure proposed in section 5,2, we present the specific solu-

tion process as follows:
__________________________________________________________________________

Set =1,2,3j , = = 0.3333wT W D , ( ) ( )= =1 2 3, , 1,150,350q q q q units, 
and ( ) ( )= =1 2 3, , 0.20,0.40,0.60M M M M years.

__________________________________________________________________________
For j = 1, given that = < =1 0.20 0.3333 wM T , we proceed to Step 3 in the presented solu-
tion procedure. Then, we execute Steps 3.1–3.3 to determine the solutions of ( )∗∗ ∗∗

11 11,F T , 
( )∗∗ ∗∗

12 12,F T , and ( )∗∗ ∗∗
21 21,F T

 
as below:

 – Execute sub-procedure A to determine ( )∗∗ ∗∗
11 11,F T and ( ) ( )∗∗ ∗∗1

11 11 11,ATP F T , then we 

obtain ( ) ( )∗∗ ∗∗ =11 11, 0.7449,0.4475F T  and ( ) ( )∗∗ ∗∗ =1
11 11 11, 1160.34ATP F T ;

 – Execute sub-procedure B to determine ( )∗∗ ∗∗
12 12,F T and ( ) ( )∗∗ ∗∗1

12 12 12,ATP F T , then we 

obtain ( ) ( )∗∗ ∗∗ =12 12, 0.2929,0.6829F T  and ( ) ( )∗∗ ∗∗ =1
12 12 12, 1023.38ATP F T ;

 – Execute sub-procedure C to determine ( )∗∗ ∗∗
21 21,F T and ( ) ( )∗∗ ∗∗1

21 21 21,ATP F T , then we 

obtain ( ) ( )∗∗ ∗∗ =21 21, 0.8102,0.5375F T  and ( ) ( )∗∗ ∗∗ =1
21 21 21, 1172.75ATP F T ;

Set ( )
( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ){ }∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗= 1 1 11

11 11 11 12 12 12 21 21 211 1, max , , , , ,ATP F T ATP F T ATP F T ATP F T  

which yields ( ) ( )( ) ( )∗∗ ∗∗ =1 1, 0.8102,0.5375F T  and ( )
( ) ( )( )∗∗ ∗∗ =1
1 1, 1172.75ATP F T .

__________________________________________________________________________
For j = 2, given that = > =2 0.40 0.3333 wM T , we proceed to Step 4 in the presented solution 
procedure. Subsequently, we execute Steps 4.1–4.3 to determine the solutions of ( )∗∗ ∗∗

12 12,F T
 
, 

( )∗∗ ∗∗
21 21,F T , and ( )∗∗ ∗∗

22 22,F T  as below:

 – Execute sub-procedure B to determine ( )∗∗ ∗∗
12 12,F T and ( ) ( )∗∗ ∗∗2

12 12 12,ATP F T , then we 

obtain ( )∗∗ ∗∗
12 12,F T , which is not a feasible solution, and ( ) ( )∗∗ ∗∗ = −2

12 12 12, infATP F T ;

 – Execute sub-procedure C to determine ( )∗∗ ∗∗
21 21,F T and ( ) ( )∗∗ ∗∗2

21 21 21,ATP F T , then we 

obtain ( ) ( )∗∗ ∗∗ =21 21, 0.6472,1.2319F T  and ( ) ( )∗∗ ∗∗ =2
21 21 21, 1166.19ATP F T ;

 – Execute sub-procedure D to determine ( )∗∗ ∗∗
22 22,F T and ( ) ( )∗∗ ∗∗2

22 22 22,ATP F T , then we 

obtain ( )∗∗ ∗∗
21 21,F T , which is not a feasible solution, and ( ) ( )∗∗ ∗∗ = −2

21 21 21, infATP F T .
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Set ( )
( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ){ }∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗= 2 2 22

12 12 12 21 21 21 22 22 222 2, max , , , , ,ATP F T ATP F T ATP F T ATP F T  

which yields ( ) ( )( ) ( )∗∗ ∗∗ =2 2, 0.6472,1.2319F T  and ( )
( ) ( )( )∗∗ ∗∗ =2
2 2, 1166.19ATP F T .

__________________________________________________________________________
For j = 3, given that = > =3 0.60 0.3333 wM T , we proceed to Step 4 in the presented solu-
tion procedure. Then, we execute Steps 4.1–4.3 to determine the solutions of ( )∗∗ ∗∗

12 12,F T
 
,

( )∗∗ ∗∗
21 21,F T , and ( )∗∗ ∗∗

22 22,F T as below:

 – Execute sub-procedure B to determine ( )∗∗ ∗∗
12 12,F T and ( ) ( )∗∗ ∗∗3

12 12 12,ATP F T , then we 

obtain ( )∗∗ ∗∗
12 12,F T , which is not a feasible solution, and ( ) ( )∗∗ ∗∗ = −3

12 12 12, infATP F T ;

 – Execute sub-procedure C to determine ( )∗∗ ∗∗
21 21,F T and ( ) ( )∗∗ ∗∗3

21 21 21,ATP F T , then we 

obtain ( ) ( )∗∗ ∗∗ =21 21, 0.6068,1.7711F T  and ( ) ( )∗∗ ∗∗ =3
21 21 21, 1139.43ATP F T ;

 – Execute sub-procedure D to determine ( )∗∗ ∗∗
22 22,F T and ( ) ( )∗∗ ∗∗3

22 22 22,ATP F T , then we 

obtain ( )∗∗ ∗∗
21 21,F T , which is not a feasible solution, and ( ) ( )∗∗ ∗∗ = −3

21 21 21, infATP F T .

Set ( )
( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ){ }∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗= 3 3 33

12 12 12 21 21 21 22 22 223 3, max , , , , ,ATP F T ATP F T ATP F T ATP F T  

which yields to ( ) ( )( ) ( )∗∗ ∗∗ =3 3, 0.6068,1.7711F T  and ( )
( ) ( )( )∗∗ ∗∗ =3
3 3, 1139.43ATP F T .

Set ( ) ( )
( ) ( )( ){ }∗∗ ∗∗ ∗∗ ∗∗

=
=

1,2,3
, max ,j

j jj
ATP F T ATP F T  which yields ( ) ( )∗∗ ∗∗ =, 0.8102,0.5375F T  

and ( )∗∗ ∗∗ =, 1172.75ATP F T , ∗∗ =156.65Q .
__________________________________________________________________________

The above results are summarized in Table 3. When j = 1, retailers’ annual profit is the 
largest, that is, ( )= =1

21 $1172.75ATP ATP . Moreover, retailers’ optimal inventory policies 
are ∗∗ = =21 0.8102F F  and ∗∗ = =21 0.5375T T  years, and the optimal order quantity is 
∗∗ = =21 156.65Q Q  units. Meanwhile, the trade credit chosen by retailers is M1 = 0.2. We 

also notice that ∗∗ ∗∗= < = × × =100 130.64 0.8102 0.5375 300W F T D , which means OW ca-
pacity is insufficient to stock the purchased items. Therefore, an additional RW is necessary.

Table 3. Solution procedure of Example 1

j Case F* T* Q* ATP*

1

Case 1-1 =11 0.7449F =11 0.4475T =11 129.11Q ( ) =1
11 1160.34ATP

Case 1-2 =12 0.2929F =21 0.5375T =12 183.11Q ( ) =1
12 1023.38ATP

Case 2-1 =21 0.8102F =21 0.5375T =21 156.65Q ( ) = ←2
21 1172.75 aATP

2
Case 1-2 × × × ×

Case 2-1 =21 0.6472F =21 1.2319T =21 350Q ( ) = ←3
21 1166.19ATP

Case 2-2 × × × ×

3
Case 1-2 × × × ×

Case 2-1 =21 0.6068F =21 1.7711T =21 500Q ( ) = ←3
21 1139.43ATP

Case 2-2 × × × ×
Note: “×” represents the problem is not feasible in this case. “¬” represents the optimal solution for 
given j. “¬a” represents the global optimal solution.
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Example 2. In this example, we study the influence of the trade credit period and OW storage 
space on the retailers’ optimal decisions. All parameter values keep the same as those in Ex-
ample 1, apart from W and (M1, M2, M3). Table 4 presents the optimal solutions for each value 
of { }∈ 100,200,300,400,500W  units and  ( ) ( ){ ( ) ( )}∈1 2 3, , 0.15,0.30,0.45 , 0.20,0.40,0.60 , 0.30,0.55,0.80M M M

 ( ) ( ){ ( ) ( )}∈1 2 3, , 0.15,0.30,0.45 , 0.20,0.40,0.60 , 0.30,0.55,0.80M M M
 
years.

As presented in Table 4, for a fixed trade credit value (M1, M2, M3), retailers’ optimal prof-
it and order quantity first increase, and then remain unchanged as OW capacity enlarges. At 
the same time, when retailers’ OW storage space raise, the decision of renting the additional 
warehouse changes from “Yes” to “No.” This observation is consistent with our intuition. 
Since when retailers’ OW capacity is relatively small, they have clear motivations to rent an 
additional warehouse and store enough goods to satisfy the market demand. As retailers’ 
OW capacity increases and exceeds the optimal order quantity under that of without capacity 
constraint, the further increases of order quantity is unprofitable for retailers, as it may bring 
large inventory costs caused by an additional RW. In this situation, retailers neither increase 
their order quantity nor rent an additional warehouse, that is, retailers’ ordering behavior as 
that without capacity constraint. Compared with the case in which retailers’ OW capacity is 
unlimited (i.e., W = 500 units in this example), the storage space-constrained retailers tend 
to order less because a small OW capacity forces retailers to reduce order quantity such that 
avoiding paying additional inventory holding costs caused by an extra RW. 

Moreover, for a fixed OW capacity W, we observe that when the credit period is relatively 
long (i.e., ( ) ( )=1 2 3, , 0.20,0.40,0.60M M M  years or ( )0.30,0.55,0.80 years ), retailers always 
order more goods to benefit from a longer credit period. An RW is thus necessary. Clearly, 
a longer trade credit period helps retailers prolong payments to suppliers without any pen-
alty, indirectly reducing retailer’s inventory costs that can fully offset the increased expenses 
incurred by renting a warehouse.

Table 4. Result of sensitivity analysis on W and (M1, M2, M3) 

(M1, M2, M3) W T** F** Q** ATP** Rented warehouse? Credit period

(0.15, 0.30, 0.45)

100 0.5400 0.8091 157.37 1148.70 Yes M1
200 0.5507 0.8152 160.63 1150.22 No M1
300 0.5507 0.8152 160.63 1150.22 No M1
400 0.5507 0.8152 160.63 1150.22 No M1
500 0.5507 0.8152 160.63 1150.22 No M1

(0.20, 0.40, 0.60)

100 0.5375 0.8102 156.65 1172.75 Yes M1
200 1.2288 0.6626 350.00 1176.12 Yes M2
300 1.2275 0.6696 350.00 1177.25 No M2
400 1.2275 0.6696 350.00 1177.25 No M2
500 1.2275 0.6696 350.00 1177.25 No M2

(0.30, 0.55, 0.80)

100 1.2319 0.6470 350.00 1239.37 Yes M2
200 1.7681 0.6174 500.00 1250.43 Yes M3
300 1.7651 0.6279 500.00 1256.47 Yes M3
400 1.7642 0.6314 500.00 1256.89 No M3
500 1.7642 0.6314 500.00 1256.89 No M3
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Finally, along with the above results, we also find that if retailers’ OW capacity is rela-
tively small, the strategy in which suppliers prolong trade credit length to motivate retailers 
to order additional goods is beneficial for both members, as retailers will place huge orders 
to suppliers, and such orders are favorable for their business. On the contrary, if retailers’ 
OW capacity is larger enough, the further extension of the credit period is only in favor of 
retailers. Because such an extension does not enlarge retailers’ order quantity but increases 
suppliers’ capital costs.

Example 3. In this example, we aim to investigate the value of order-size dependent trade 
credit policy. To this end, we consider two benchmark cases, namely, fixed credit period 
policy (i.e, retailers always obtain a constant trade credit period independent of the order 
quantity) and conditional trade credit policy (i.e., retailers obtain a constant trade credit 
period only when their order quantities above a specific threshold). We assume the input 
parameters of three trade credit policies as follows: (a) under the fixed credit period policy, 
we set the credit period as M = 0.3 years; (b) under the conditional trade credit policy, the 
credit period is M = 0.3 years and the order quantity threshold is 350 units; and (c) under 
the order-size dependent trade credit policy, we set ( ) ( )=1 2 3, , 0.30,0.55,0.80M M M years 
and ( ) ( )= =1 2 3, , 1,350,500q q q q units. Other parameters adopted are identical to example 
1 and the computational results as presented in Table 5.

As shown in Table 5, we find that under the fixed credit period policy, retailers’ ordering 
behavior is extremely conservative. In this situation, retailers always receive a certain grace 
period to pay off their purchase costs, thereby having no motivation to enlarge the order quan-
tity, especially when the OW capacity space is relatively small. However, under the condition-
al trade credit policy, retailers are forced to order more such that obtaining a grace period.  

Table 5. The value of order-size dependent trade credit policy

Trade credit policy W T** F** Q** ATP** Rented warehouse? Credit period

Fixed credit period 

100 0.5299 0.8139 154.53 1222.14 Yes –
200 0.5400 0.8196 157.64 1223.34 No –
300 0.5400 0.8196 157.64 1223.34 No –
400 0.5400 0.8196 157.64 1223.34 No –
500 0.5400 0.8196 157.64 1223.34 No –

Conditional trade 
credit

100 1.2318 0.6474 350.00 1118.32 Yes –
200 1.2288 0.6628 350.00 1128.27 No –
300 1.2274 0.6698 350.00 1129.39 No –
400 1.2274 0.6698 350.00 1129.39 No –
500 1.2274 0.6698 350.00 1129.39 No –

Order-size 
dependent trade 
credit

100 1.2319 0.6470 350.00 1239.37 Yes M2

200 1.7681 0.6174 500.00 1250.43 Yes M3

300 1.7651 0.6279 500.00 1256.47 Yes M3

400 1.7642 0.6314 500.00 1256.89 No M3

500 1.7642 0.6314 500.00 1256.89 No M3
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Under this policy, a rational retailer usually chooses the order quantity equal to the prede-
termined quantity threshold, independent of the OW capacity space. Compared with the 
fixed credit period policy, although retailers actively increase the order quantity under the 
conditional trade credit policy, this policy seriously restricts the retailer’s choice of order 
quantity. Especially, if the order quantity threshold is set as 500 units, then we easily show 
that retailers always pay for the full purchase amount immediately. Obviously, the conditional 
trade credit policy often forces retailers to make two extreme choices as we have emphasized 
in the introduction.

By comparison, under the order-size dependent trade credit policy, we observe that retail-
ers’ order decisions become more flexible. At the same time, retailers will further enlarge the 
order quantity and earn more profit under this policy, thereby achieving a win-win situation 
for both supply parties. Moreover, from the perspective of suppliers, it is normally easier to 
select several appropriate order quantity thresholds than to select an accurate one. Therefore, 
we strongly believe that the order-size dependent trade credit has notable applicable value 
in reducing the difficulty of suppliers’ decision-making and increasing the order quantity 
choice of retailers.

Example 4. Using the same data set in Example 1, except for W = 200 unit, this example 
outlines the impact of the changes of major parameters A, D, hr, ho, cb, cg, p, b, Ie, Ic, and c 
on the optimal solution. The results are summarized in Table 6.

The below conclusions can be observed from Table 6:
(1) Retailers’ annual profit ATP** increases as the value of D, p, b, or Ie increases, whereas 

it decreases as the value of A, hr, ho, cb, cg, Ic, or c increases. An increases in D, p, b, or 
Ie can bring additional market demand or interest earned, which results in additional 
profits for retailers. Note that A, hr, ho, cb, cg, Ic, or c are all cost structure parameters 
of the inventory system and have negative effects on retailers’ profits. Therefore, the 
increase in their values must reduce retailers’ profits. We also observe that annual 
profit ATP** is highly sensitive to the changes in D, p, or c.

(2) Optimal order quantity Q** increases if we increase the value of A, D, b, Ie, or c, but 
it decreases as the value of hr, ho, cb, cg, Ic, or p increases. This result suggests that if 
ordering cost (A) increases, then retailers reduce order frequency by increasing order 
quantity. Moreover, if the demand rate (D) or the backlogged rate (b) increases, the 
market demand also increases. Therefore, retailers should place a larger order. In ad-
dition, the increase of Ie or c motivates retailers to order additional goods to enjoy a 
longer credit period. If inventory holding costs (hr / ho) or the interest rate charged 
(Ic) increases, retailers reduce order quantity to maintain a low average inventory 
level. If the backlogging cost (cb), lost sale cost (cg), or unit selling price (p) increases, 
then retailers shorten the replenishment cycle and shortage period to reduce the 
shortage cost and lost sales cost. As a result, retailers’ order quantity decreases.

(3) The optimal fraction of no shortage F** increases as the value of cb, cg, or p increases, 
whereas it decreases as the value of A, b, Ie, or c increases. An increase in cb, cg, or p 
implies that retailers must pay more costs for shortages. Therefore, retailers shorten 
the shortage period by increasing the fraction of no shortage. However, if A, b, Ie, or 
c increases, then retailers are encouraged to place huge orders. They also lengthen 
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the shortage period (i.e., reduce the fraction of no shortage) to avoid paying excessive 
inventory holding costs. In addition, we observe that when retailers face order-size 
dependent trade credit policy, no specific monotonic relationship exists between F** 
and the value of D, hr, ho, or Ic.

(4) The optimal replenishment cycle length T** increases if we increase the value of A, 
Ie, or c, but it decreases if we increase the value of cb, cg, or p. Obviously, if A, Ie, or 
c increases, retailers place large orders, thereby T** increases. However, if cb, cg, or p 
increases, retailers reduce their order quantity and T** eventually decreases. Similarly, 
no specific monotonic relationship exists between T** and the value of D, hr, ho, b, or 
Ic. Moreover, the optimal replenishment cycle T** is very sensitive to the changes in 
A, D, ho, cb, cg, p, b, Ie, or c.

(5) As the value of A, D, b, Ie, or c increases, retailers benefit from renting an extra 
warehouse. By contrast, as the value of hr, ho, cb, cg, p, or Ic increases, retailers tend 
to choose not to rent an extra warehouse. In reality, when retailers encounter attrac-
tive trade credit terms, high product demands, or relatively high ordering costs, they 
usually order more items. Therefore, an additional RW is necessary.

Table 6. Result of sensitivity analysis on major parameters

T** F** Q** ATP* Rented warehouse? Credit period

A

80 0.4670 0.8670 137.31 1213.45 No M1

90 0.5091 0.8385 149.04 1192.96 No M1

100 1.2289 0.6626 350.00 1176.13 Yes M2

110 1.2289 0.6621 350.00 1167.99 Yes M2

120 1.2290 0.6615 350.00 1159.86 Yes M2

D

100 1.0595 0.6747 100.78 308.40 No M1

200 0.7112 0.7489 136.89 729.75 No M1

300 1.2289 0.6626 350.00 1176.13 Yes M2

400 1.3200 0.6464 500.00 1692.89 Yes M3

500 1.0511 0.6758 500.00 2238.15 Yes M3

hr

2.0 1.2289 0.6626 350.00 1176.13 Yes M2

2.2 1.2295 0.6594 350.00 1175.61 Yes M2

2.4 1.2301 0.6563 350.00 1175.12 Yes M2

2.6 1.2306 0.6533 350.00 1174.65 Yes M2

2.8 0.5480 0.8161 159.87 1174.04 No M1

ho

1.5 1.2273 0.6705 350.00 1184.03 Yes M2

1.6 1.2289 0.6626 350.00 1176.13 Yes M2

1.7 0.5449 0.8054 158.71 1168.65 No M1

1.8 0.5420 0.7949 157.61 1163.43 No M1

1.9 0.5393 0.7847 156.56 1158.37 No M1
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T** F** Q** ATP* Rented warehouse? Credit period

cb

2.0 1.8072 0.4814 500.00 1243.00 Yes M3

3.0 1.2390 0.6110 350.00 1238.96 Yes M2

4.0 1.2289 0.6626 350.00 1176.13 Yes M2

5.0 0.5315 0.8455 155.75 1172.08 No M1

6.0 0.5202 0.8667 152.94 1170.70 No M1

cg

1.0 1.2325 0.6441 350.00 1191.73 Yes M2

2.0 1.2289 0.6626 350.00 1176.13 Yes M2

3.0 0.5181 0.8776 152.59 1167.11 No M1

4.0 0.4820 0.9520 143.57 1163.22 No M1

5.0 0.4595 1.0000 137.86 1162.62 No M1

p

14 1.2315 0.6490 350.00 885.07 Yes M2

15 1.2289 0.6626 350.00 1176.13 Yes M2

16 0.5197 0.8705 152.88 1469.27 No M1

17 0.4865 0.9352 144.53 1766.88 No M1

18 0.4545 1.0000 136.34 2067.34 No M1

b

0.75 0.4595 1.0000 137.86 1162.62 No M1

0.80 0.4634 0.9915 138.80 1162.64 No M1

0.85 1.2289 0.6626 350.00 1176.13 Yes M2

0.90 1.2123 0.6235 350.00 1217.47 Yes M2

0.95 1.1913 0.5863 350.00 1262.40 Yes M2

Ie

0.08 0.5421 0.8483 158.94 1162.30 No M1

0.10 0.5453 0.8320 159.47 1168.05 No M1

0.12 1.2289 0.6626 350.00 1176.13 Yes M2

0.14 1.2312 0.6504 350.00 1192.50 Yes M2

0.16 1.2336 0.6383 350.00 1209.22 Yes M2

Ic 

0.10 1.2240 0.6879 350.00 1187.33 Yes M2

0.12 1.2260 0.6774 350.00 1182.67 Yes M2

0.14 1.2279 0.6674 350.00 1178.26 Yes M2

0.16 1.2297 0.6579 350.00 1174.06 Yes M2

0.18 0.5281 0.7952 153.57 1166.46 No M1

c

9 0.5250 0.8846 154.76 1470.01 No M1

9.5 0.5372 0.8490 157.51 1321.58 No M1

10 1.2289 0.6626 350.00 1176.13 Yes M2

10.5 1.2313 0.6499 350.00 1032.35 Yes M2

11 1.2337 0.6376 350.00 888.95 Yes M2

End of Table 6
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6. Managerial insights

In this section, we present significant managerial insights that can help decision-makers in 
the industry to make the best action under a certain situation.

 – When retailers’ OW capacity is relatively small, they should increase the order quanti-
ty and rent an extra warehouse. At the same time, suppliers are advised to prolong the 
trade credit period to motivate retailers to order more because a large order quantity 
brings additional revenue for suppliers.

 – When retailers’ OW capacity is large enough, we advise suppliers not to prolong the 
trade credit period because the further extension of the credit period does not en-
large retailers’ order quantity. Such an extension only increases suppliers’ capital costs. 
Moreover, selecting a replenishment policy equal to that without capacity constraint 
is profitable for retailers.

 – Compared with the fixed credit period policy and the conditional trade credit policy, 
the order-size dependent trade credit policy has various advantages (e.g., encourage 
retailers to order more, reduce the difficulty of suppliers’ decision-making, and in-
crease the choice of retailers), thus we strongly suggest suppliers adopt this policy in 
the specific business environment.

 – Trade credit and OW capacity have significant effects on retailers’ profit. We thus 
recommend retailers to persuade suppliers to provide a longer credit period or to 
choose suppliers with a long credit period. Retailers may also increase their profits 
by appropriately expanding OW capacity.

 – With the raises of shortage cost (cb) or opportunity cost (cg), the annual profit and 
the optimal replenishment cycle length decrease, whereas the optimal fraction of no 
shortage increases, suggesting to order less but more frequently to pay less for short-
ages.

 – As the backlogging rate (b) or interest rate earned (Ie) increases, the annual profit and 
the order quantity increase. Thus, retailers must order more goods to meet increased 
backlogged demand. At the same time, a larger order quantity leads to a longer trade 
credit period. As a result, retailers can obtain additional interest revenue.

 – High holding costs in RW and OW or the interest rate charged (Ic) leads to low annual 
profit and order quantity. Therefore, reducing the order quantity when these param-
eters’ values are high is profitable for retailers.

 – When the shortage cost (cb), opportunity cost (cg), or selling price (p) increases (or 
backordering rate (b) decreases), operating an inventory system without shortages (or 
with shortages) is profitable for retailers.

 – As the fixed ordering cost (A), the demand rate (D), the backordering rate (b), the 
interest rate earned (Ie), or the purchase cost (c) increases, renting an additional ware-
house is favorable to retailers.

All these insights are essential in the decision process and provide significant managerial 
guidelines for decision-makers in the industry.



Technological and Economic Development of Economy, 2022, 28(1): 131–162 157

Conclusions and future research directions

Conclusions

In this study, we investigate a deterministic inventory model with limited warehouse storage 
space under an order-size dependent trade credit policy. Shortages are allowed and partially 
backlogged. The purpose of this study is to find optimal ordering and backlogging policies for 
retailers who seek to maximize their annual profit. We also discuss how retailers determine 
whether to rent an extra warehouse to stock more goods and thus gain a longer credit period. 
First, four possible inventory models are formulated based on different parameter values. 
Then, the condition of the objective function to have an interior optimal value is established, 
and the closed-form solution is derived. Meanwhile, an efficient solution procedure is pro-
posed to find the global optimal solution in an integrated manner. Finally, several numerical 
examples are provided to shed light on the applicability of the presented model and solution 
procedure. Sensitivity analysis of major parameters is performed and meaningful managerial 
insights are obtained. 

The results show that if retailers’ OW capacity is relatively small, then they have a clear 
motivation to place huge orders and rent an extra warehouse to obtain good credit terms. 
Importantly, under this situation, the strategy in which suppliers prolong trade credit length 
to motivate retailers to order additional goods is beneficial for both members, as retailers 
place huge orders to suppliers that are favorable for their business. If retailers’ OW capacity 
exceeds the optimal order quantity under that without capacity constraint, then retailers 
neither increase their order quantity nor rent an additional warehouse, that is, retailers’ or-
dering behavior as that without capacity constraint. In this situation, the further extension 
of the credit period only in favor of retailers. Because such an extension does not enlarge 
retailers’ order quantity but increases suppliers’ capital costs. We also demonstrate that the 
order-size dependent trade credit has obvious advantages in enlarging retailers’ order quan-
tity, increasing retailers’ decisions on order quantity choice, and reducing the difficulty of 
suppliers’ decision-making.

Moreover, by further sensitive analysis concerning major parameters, we find that: (1) 
a high backordering rate (b) or interest rate earned (Ie) increases retailers’ annual profit, 
optimal order quantity, and replenishment cycle length, but decreases the optimal fraction 
of no shortages; (2) if the shortage cost (cb) or opportunity cost (cg) increases, then retail-
ers’ annual profit, optimal order quantity, and replenishment cycle length decrease, but the 
optimal fraction of no shortage increases; (3) high inventory holding costs in OW and RW 
or interest rate charged (Ic) leads to a low annual profit and optimal order quantity; (4) when 
the shortage cost (cb), opportunity cost (cg), or selling price (p) increases (or the backordering 
rate (b) decreases), retailers benefit from operating an inventory system without shortages (or 
with shortages), and (5) as the fixed ordering cost (A), demand rate (D), backordering rate 
(b), interest earned (Ie), or purchase cost (c) increases, retailers prefer to rent an additional 
warehouse.
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Future research directions

There are many opportunities for future research. First, the current study only involves a 
single player (i.e., the retailer) to optimize the replenishment schedule. Thus, we can extend 
our model to consider a general supply chain setting and find the integrated cooperative solu-
tion for multiple participants (i.e., the supplier and the retailer), as considered by Tiwari et al. 
(2018) and Jonas (2019). Second, in our study, we assume that the demand rate is constant. 
As stated by Feng et al. (2021) and Li et al. (2021), the market demand rate may be influenced 
by various factors in practice, such as the selling price, stock level, time, credit period, etc. By 
capturing these factors to extend our current model is a meaningful topic. Finally, our model 
can be extended to consider the deteriorating items or imperfect imperfect quality items, as 
described by Jaggi et al. (2017), Khanna et al. (2017), and Gupta et al. (2020).
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