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Abstract. Air pollution control is crucial for promoting the modernization of governance sys-
tems and efficiency. To address the subjective contrived factors and errors in the gross domestic 
product (GDP) data in traditional statistical almanacs, our study aims to construct a panel data 
model of 287 prefecture-level cities for the period from 1998–2016 (using objective nighttime 
light data). We also used government work report words related to environmental regulation to 
characterize the constraints of government environmental regulations. For this purpose, we used 
instrumental variables (to explore the relationship and interaction between air pollution and eco-
nomic growth) and a model setting, with which we carried out regression analysis and robustness 
tests; the findings were validated using a transmission mechanism hypothesis. We found that that 
economic growth and air pollution positively influence each other and government environmen-
tal regulations significantly reduce air pollution. We also found that to achieve high economic 
development, environmental pollution must be controlled to avoid further damage to human 
and material capital. Furthermore, government environmental regulations can help improve the 
environmental comfort level and economic development quality. 

Keywords: economic growth, PM2.5, air pollution, environmental governance, nighttime light 
data.

JEL Classification: Q53, Q56, R11, H83.

Introduction 

Economic growth is a major driving force for national development and social progress, 
and no topic related to human livelihood can be discussed without the theme of economic 
growth. This is why the leaders of China and the U.S.A., as well as representatives of the 
world’s largest developing and developed countries, have coincidentally proposed the idea 
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of boosting their economies in the process of fighting the COVID-19 pandemic. However, 
the direct consequence of economic growth brought about by large-scale industrialization is 
air pollution (Shi et al., 2020; Fan & Xu, 2020), which affects the health and life expectancy 
of the population and also decreases their emotional wellbeing (He et al., 2020; Song et al., 
2019; Maji et al., 2018; Xu et al., 2017).

As living standards improve, there are increasingly higher demands on the surrounding 
natural environment. On September 10, 2013, to meet people’s growing desire for a better life, 
China proposed that the Ministry of Environmental Protection of the P.R.C. (MEP) would re-
formulate environmental protection standards in 2013. China issued announcements for six 
national environmental protection standards, including specifications and test procedures for 
an ambient air quality continuous automated monitoring system for PM10 and PM2.5 while 
the State Council issued and promulgated the Air Pollution Prevention and Control Action 
Plan (hereinafter referred to as “Air Ten Terms”). The goal was to decrease the inhalable 
particle concentration in cities at the prefecture-level (and above) by more than 10% (of the 
concentration recorded for 2012) by the end of 2017. At the same time, revisions to the new 
Environmental Protection Law in 2014 forced the government to discontinue its previous 
assessment that had the gross domestic product (GDP) as its only criterion; indicators, such 
as the environmental index, were later included in the assessment to improve its accuracy. 
In view of this, the national government has proposed that environmental governance is an 
indispensable component of the modernization of the national governance system and its 
efficiency, such that it is crucial to expand environmental governance. This paper focuses on 
the dual impact of government environmental regulations on air pollution and economic 
development with respect to the national development strategy previously implemented to 
add value to lucid waters and lush mountains.

In terms of existing references on economic growth and environmental pollution, most 
studies focus on the provincial level (Xu et al., 2016, 2019; Wang et al., 2017; Wu et al., 2020); 
these studies smooth out the heterogeneity at the local city level, thereby preventing the need 
for a heterogeneity analysis. In this study, a comprehensive meteorological (satellite) city 
database is constructed by collating the China City Statistical Yearbook using nighttime light 
data matched at the local city level.

Nighttime light data has been widely used as an appropriate proxy variable for mea-
surements of economic activity (Henderson et al., 2012). Instead of using the GDP, we can 
more accurately measure the domestic economic activity in China using nighttime light 
data (Henderson et al., 2012; Ma et al., 2012, Ji et al., 2019b). First, GDP measurements are 
systematically biased because there are many smaller components not included in the GDP, 
excluding components from governmental or statistical departments, which partially reduces 
the output of the GDP (Zhang & Seto, 2011). Second, the “tournament of promotion” caused 
by the GDP forces local governments to inflate their GDP figures through various forms of 
misreporting, concealing, and omissions to accelerate their promotions. Existing GDP sta-
tistics are likely to exclude the contribution of the areas that cannot be counted due to their 
small GDP values. In contrast, changes in administrative divisions may lead to substantial 
fluctuations in the GDP of the same region, thereby causing biases in the data. Fourth, a com-
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parison of world economic activities among the “basket of currencies” is the most common 
method to evaluate economic performance. While these types of comparisons are prone to 
bias or a loss of purchasing power, the use of nighttime lighting as an objective data source 
can be a good solution to difficult classification standards across countries and the use of 
uniform standards for fitting. At the same time, nighttime light data can be used to accurately 
locate cities and counties by image cutting; this can be used to perform heterogeneity analysis 
(Zhao et al., 2019; Kacprzyk & Kuchta, 2020). However, the use of nighttime light data is 
predominantly limited to the period from 1992–2013 (Wang et al., 2014; Zhao et al., 2019; Ji 
et al., 2019a) Most existing studies use Defense Meteorological Satellite Program/Operational 
Linescan System (DMSP/OLS) satellite data to compile the nighttime light data. However, 
studies using DMSP/OLS satellite data are only available up to 2013. Studies using National 
Polar-Orbiting Partnership/Visible and Infrared Imager/Radiometer Suite (NPP/VIIRS) data 
(Yue et al., 2020) have proven to be useful; however, using the two datasets separately leads 
to a time break and isolation, such that several studies have integrated the two datasets. The 
simulation and processing of the data has been previously carried out in a disjointed manner 
with large samples obtained over a long period. In particular, policy effects from the new 
environmental standards and the “Air Ten Terms” promulgated in 2013 cannot be estimated 
using the DMSP/OLS and NPP/VIIRS satellite data alone.

Based on the innovative use of the method for processing and integrating the DMSP/
OLS and NPP/VIIRS datasets (Chen et al., 2020a) in this study, we obtained the annual total 
nighttime light intensity averages from the nighttime light data for 287 prefecture-level cities 
in China. Due to the missing values in the main control variables before 1998, such as the 
population density and road person ratio, data for 1992–1998 were excluded. The compre-
hensive database constructed in this study has a longer span and a larger sample size, which 
can better reflect the underlying statistical patterns.

The main research innovations and possible contributions of this study are as follows: 
1) most research and development studies using satellite data have focused on the provincial 
level. In this paper, for the first time, satellite data are used to extend analyses to prefecture-
level cities from 1998 to 2016, which can better reflect the heterogeneity between regions. 
2) Objective satellite data and PM2.5 data were used for regression, as well as the use of the 
objective air flow coefficient and word frequencies in government work reports as instrumen-
tal variables to alleviate the endogeneity problem and reduce data errors caused by statistics. 
3) Based on the physical capital and human capital two channels mechanism analysis, we 
found that for a Chinese urban population between 1 and 5 million, the urban development 
will be more dependent on its physical capital input elements; with a population of more 
than 5 million, the demand for human capital will increase dramatically. These results on 
urban development in developing countries provides a new train of thought and direction.

The remainder of this paper is structured as follows. Section 1 provides a literature review. 
Section 2 presents the methodology and model construction. Section 3 details the econo-
metric regression and analyzes the results. Finally, last Section summarizes this study and 
provides targeted policy recommendations.
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1. Literature review

In terms of the existing literature on the relationship between economic development and 
air pollution, studies have focused on the impact that economic development has on the en-
vironment (Ouyang et al., 2019; Liu et al., 2019) and the negative effects that environmental 
pollution has on economic development (Wolde-Rufael & Idowu, 2017; Jiang et al., 2018; 
Masiol et al., 2017).

To explore the impact that environmental pollution has on economic growth, Grossman 
and Krueger (1991, 1995) proposed multiple innovations; however, there are divergent and 
varying perspectives on whether the Kuznets effect is an inverted U- or N-type (Stern & Zha, 
2016; Egbetokun et al., 2020; Hao et al., 2018; Wang & Komonpipat, 2020). This disagreement 
may be due to inconsistent data (with respect to inconsistent years) used by previous studies, 
as well as statistical bias and a lack of regional heterogeneity inclusion. Therefore, this study 
uses purely objective nighttime light data to verify the environmental Kuznets effect.

When discussing the negative effects of economic development on the environment, pre-
vious studies (Wang et al., 2018; Yan et al., 2020; Jiang et al., 2018) indicates that the use of 
nature’s self-regulating function mainly reflects the impact of unconstrained pollution emis-
sions on economic growth; this reduces the cost of emissions and increases the factor inputs 
to enhance the economic output. The effect on economic growth is positive within the limits 
of natural tolerance; however, once the threshold of natural tolerance is exceeded, pollution 
emissions will have a negative impact on economic growth. These negative effects mainly 
include two aspects: for material capital, pollution emissions will lead to the consumption 
or destruction of part of the material capital, thus increasing the cost of production and 
operation; for labor capital, pollution emissions will reduce people’s sense of happiness and 
satisfaction, destroy the accumulation of human capital, and reduce a city’s clustering ef-
fect, thus limiting incremental returns to scale in cities. Furthermore, the input–output ratio 
of the labor-capital factor declines, thereby slowing the pace of economic development. In 
general, the ultimate effect of unconstrained pollution emissions on economic development 
depends on the sum of all affected factors. The ultimate impact of such uncontrolled pol-
lution emissions on economic development depends on the relative changes in the positive 
and negative effects. Therefore, we analyzed the specific transmission mechanism within the 
impact that smog pollution has on China’s economic development in terms of both material 
and human capital.

To characterize air pollution, previous studies have used conventional pollutants, such as 
SO2, CO2, CO, total suspended particles (TSP), air pollution index (API), air quality index 
(AQI), PM10 (Zhang & Chen, 2020; Ren & Matsumoto, 2020; Dubey et al., 2019; Iacobuta 
et  al., 2019), and PM2.5 (Hao et  al., 2018; Zheng & Xu, 2020). However, compared with 
conventional pollutants, PM2.5 accounts for a larger share of air pollution and is also an 
important indicator of residential well-being and health (Song et al., 2017, 2019). Therefore, 
PM2.5 was also selected as characterization data for air pollution in the air quality validation 
and analysis.

Many studies have focused on the topic of government environmental regulations based 
on the implementation effects of policies enacted by the government (Lin, 2017; Lin & Jia, 
2019; Wang & Zhu, 2020). Empirical studies on air pollution have been conducted at macro- 
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and meso-level scales using provincial- or municipal-level data (Wu et al., 2020; Liu et al., 
2019; Tan et al., 2018). Furthermore, previous studies have mainly proposed theoretical pol-
icy hypotheses on how the government can address air pollution; these include hypotheses 
on certain issues, such as carbon taxes, carbon emissions trading rights, emissions rights, and 
carbon trading markets (Han & Li, 2020; Liu et al., 2019; Tan et al., 2018; Zhang et al., 2020; 
Hanaoka & Masui, 2020; Liu & Lu, 2015). However, textual analyses of environmental gover-
nance in government work reports have seldom investigated the reasons for the selection of a 
certain starting year for environmental governance. In this study, we used the word frequency 
of environmental governance in government work reports as an instrumental variable (and to 
derive the air flow coefficient) to investigate the reasons for selecting a certain starting year 
for environmental governance with respect to the government work report.

2. Methodology and model construction

2.1. Instrumental variables

Instrumental variables are widely used in empirical research and analyses as a basic and nec-
essary tool in econometrics (Gong et al., 2020; Lin, 2017). The endogeneity of air pollution 
variables is an issue that must be discussed when developing an econometric empirical model 
to analyze the impact of air pollution on economic development. Specifically, environmental 
pollution may slow down economic development by decelerating urbanization and damag-
ing human and material capital accumulation channels. In contrast, economic development 
itself may affect environmental pollution through scale, technology, and structural effects. 
The endogeneity problem can be eliminated by selecting instrumental variables for supple-
mentary regression. Therefore, we selected the air flow coefficient as an instrumental variable 
and used text mining to extract the corresponding environment-related words (including 
environment, pollution, emissions reduction, environmental protection, pollution, energy 
consumption, emissions reduction, sewage, ecological, green, low-carbon, air, chemical oxy-
gen demand, and SO2 emissions, among others) in the provincial government work reports 
of each prefecture-level city based on Hering and Poncet (2014) (CO2, PM10, PM2.5, API, 
and AQI). Then, we calculated the proportion of the total words in the report and multiplied 
it by the share of secondary industries at the city-level as the instrumental variables. The air 
flow coefficient can be used as an instrumental variable for haze pollution because larger 
values indicate increased air mobility, which is negatively correlated with haze pollution and 
satisfies the correlation assumption for valid instrumental variables (Hering & Poncet, 2014). 
In contrast, boundary layer heights are determined by complex meteorological systems and 
geographic conditions, thus satisfying the assumption of exogeneity in the effective instru-
mental variables (Broner et al., 2012).

2.2. Data sources and description

To accurately assess the effects of government environmental regulations and their influence 
mechanisms, we synthesized several statistical datasets to ultimately construct a comprehen-
sive database combining satellite remote sensing data, meteorological and pollution data, and 
basic data at city and industry levels with the following data indicators and sources.
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First, we obtained satellite remote sensing data from the DMSP/OLS and NPP/VIIRS 
total nighttime light intensity data from the National Geophysical Data Center (NGDC) and 
the National Oceanic and Atmospheric Administration (NOAA, U.S.A.), which contains a 
30-arc-second grid spanning the entire region between –180° and 180° longitude and be-
tween –65° and 75° latitude. The data were processed to provide a complete picture of the 
total nighttime light intensity. This calculation eliminates interference from daylight and 
moonlight intensity and refers to the method reported in Chen et al. (2020a) for the selection 
of cities in Jixi and Hegang by adopting the invariant area method for lighting calibration. 
Finally, the total nighttime light intensity data for 287 prefecture-level cities (from 1998 to 
2016) were compiled using ArcGIS. The calculation index was the total annual nighttime 
light intensity.

Second, we compiled meteorological and pollution data. Air pollution data were derived 
from Columbia University’s publicly available data on PM2.5 at the local city level. As the new 
Ambient Air Quality Standard was officially implemented in 2012, China has only recently 
included PM2.5 as a statistical indicator, such that all prefecture-level cities are not covered 
until 2015. Therefore, we adopted PM2.5 data for the period from 1998–2016 published by 
Columbia University as the main parameter. In addition, 2015 was taken as an example for 
a comparison with data published by the Ministry of Environmental Protection. In addition, 
we compared the observations for 2015 with the data published by the Ministry of Envi-
ronmental Protection, finding that they are similar, which indicates that the data are more 
robust. The calculation index was the annual average PM2.5 data.

According to Hering and Poncet (2014), the ventilation coefficient is equal to the wind 
speed multiplied by the height of the boundary layer. We used the ERA-Interim database 
from the European Centre for medium-range weather forecasts (ECMWF) to calculate the 
ventilation coefficient for the corresponding years at a 0.75°×0.75° global grid of wind speed 
and boundary height data that span a distance of 10 m using ArcGIS to match the data to 
each city level.

Third, we constructed basic data at the city and industry levels obtained from the Sta-
tistical Almanac of Cities, State Intellectual Property Office, and provincial and municipal 
governments. The period spans from 1998–2016, and a series of control variables were se-
lected, including the registered unemployed population, total population, paved road area 
per citizen, and number of operating buses at the end of the year. In addition, technological 
progress and innovation were also taken into account. Missing values in the data were inter-
polated via multiple interpolation to fill in the gaps with strong and stable data. For the above 
data, Table 1 lists the basic information and descriptive statistics of the calculated indicators 
while Table 2 lists the references and selection of variables.
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Table 1. Basic data and descriptive statistics
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PM2.5

Average 
concentration 
of PM2.5

µG/M³

China 
Environment 
Statistics 
Yearbook & 
Ministry of 
Environmental 
Protection

5,453 33.42 16.07 2.02 90.86

Economic 
Development

Annual sum 
of nighttime 
light levels

1,000 NGDC Satellite 
Data 5,453 79.22 70.13 3.11 49.3

Population 
Density

Number of 
people per 
unit area 
(log)

Person/
Km²

Statistical 
Yearbook of 
Chinese Cities

5,453 6.38 1.05 3.72 8.38

Road area 
per capita Person/M²

Statistical 
Yearbook of 
Chinese Cities

5,453 16.95 37.73 0.9 250.46

Infrastructure

Number of 
operating 
buses at the 
end of the 
year (log)

Vehicle
Statistical 
Yearbook of 
Chinese Cities

5,453 6.00 1.52 2.08 10.41

Number of 
Hospitals 
(log)

Individual
Statistical 
Yearbook of 
Chinese Cities

5,453 5.14 0.75 1.61 8.02

Public Services

Number of 
Doctors (log) Individual

Statistical 
Yearbook of 
Chinese Cities

5,453 8.60 0.77 6.89 10.69

Number of 
universities, 
elementary, 
and 
secondary 
schools 

Individual
Statistical 
Yearbook of 
Chinese Cities

5,453 1307.84 997.33 76 4,999

Human 
Capital

Sum of 
years of 
education of 
the number 
of students 
enrolled in 
the region

Ten 
Thousand 
Years

Statistical 
Yearbook of 
Chinese Cities

5,453 586.22 473.8 14.31 5,245.94

Physical 
Capital

Number of 
industrial 
enterprises 
above scale

Individual 
(100)

Statistical 
Yearbook of 
Chinese Cities

5,453 10.24 15.04 0.19 187.92

Acreage Km²
Statistical 
Yearbook of 
Chinese Cities

5,453 191.03 226.23 2.26 1,197
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Industrializa-
tion

Percentage 
of GDP of 
secondary 
industry

%
Statistical 
Yearbook of 
Chinese Cities

5,453 46.48 13.64 11.55 77

Urbanization

Non-
agricultural 
population as 
a percentage 
of total 
population

%
Statistical 
Yearbook of 
Chinese Cities

5,453 31.96 16.9 10.37 85.76

Environmental 
Governance

Government 
reports en-
vironmental 
governance 
glossary

1 Government 
Work Report 5,453 9.50 1.79 1 14

Technological 
Advances

Number 
of patent 
applications 
in prefecture-
level cities 
(log)

Individual
State 
Intellectual 
Property Office

5,453 5.89 1.94 1.79 10.71

Air Flow 
Coefficient

Air flow 
coefficient 1

ERA-Interim 
database of 
the European 
Centre for 
Medium-
Range Weather 
Forecasts 
(ECMWF)

5,453 2035.59 929.51 72.63 8,974.98

Table 2. Variable selection reference

Selected Variable Indicators Bibliography

Population density Yan et al., 2020; Xu et al., 2019; Zhao & Yuan, 2020 
Road area per capita Liu et al., 2019; Wang et al., 2019
Number of bus operations Yan et al., 2020; Chen et al., 2020b
Secondary industry ratio Yan et al., 2020; Xu et al., 2019
Non-agricultural population ratio Ouyang et al., 2019; Wu et al., 2020
Government reports, environmental 
governance word frequency

Chen et al., 2018

Number of industrial enterprises above scale Peng, 2020; Hao, 2018
Number of patent applications Ouyang, 2019; Wang & Komonpipat, 2020
Human capital Wosiek, 2020
Air flow coefficient Broner et al., 2012

End of Table 1
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2.3. Model setting

This study empirically analyzed the impact that air pollution has on economic development 
using data from 287 cities at prefecture-level and above in China from 1998 to 2016; we then 
examined government environmental regulations to further evaluate implementations of gov-
ernmental sustainable development strategies and their impact on economic development. 
To investigate the impact that air pollution has on China’s economic development, the fol-
lowing benchmark regression model was built based on the model of Zhao and Yuan (2020):

 0 1 2DMSP PM2.5 CITY .it it it c t it= a +a +a +h + d + e   (1)

The average PM2.5 concentration of city I in year T was used to measure the air pollution. 
The coefficient indicates the impact that air pollution has on the economic development of 
the city and is therefore the core parameter of interest in this study. CITYit represents the 
characteristic variables of city I in year T. If a1 remains significantly negative after control-
ling a series of city characteristics, this indicates that air pollution will reduce economic 
development. In addition, there are individual and time point fixed effects, which further 
mitigate omitted variable bias by controlling the individual (hc) and time point effects (dt) 
as on overlay of the base model. Finally, we obtained the error term (eit). Unlike Zhao and 
Yuan (2020), the proxies selected in this study (for economic development) are nighttime 
light data, which further eliminate possible bias due to data collection statistics and yields a 
more convincing model.

Similar to previous studies (Yan et al., 2020; Ouyang et al., 2019; Liu et al., 2019; Xu et al., 
2019; Wang & Komonpipat, 2020), this study also compensated for a set of urban fixed ef-
fects variables in the benchmark regression model to minimize bias caused by the omitted 
variables. Specifically, the population density variable was measured by the number of people 
per unit area; the infrastructure variable was measured by the number of paved roads per 
capita, the number of operating buses at the end of the year, and the number of hospitals; the 
local STI (science, technology, and innovation) development variable was measured by the 
number of patent applications; and the urbanization variable was measured by the propor-
tion of the urban population.

To verify the environmental Kuznets effect, we added the quadratic term for PM2.5 into 
Eq. (1) as follows:

 
2

0 1 2 3DMSP PM2.5 PM2.5 CITY .it it it it c t it= a +a +a +a +h + d + e   (2)

When analyzing the impact that air pollution has on economic development based on 
the above benchmark model, the endogeneity of the air pollution variables becomes an is-
sue that must be discussed. Specifically, environmental pollution may slow down economic 
development by decelerating urbanization and damaging human and physical capital ac-
cumulation channels. In contrast, economic development itself may affect environmental 
pollution through scale, technology, and structure effects. Based on the method of Hering 
and Poncet (2014), we selected air flow coefficient as an instrumental variable for regression.

In summary, to quantitatively investigate the impact that government environmental 
regulations have on smog reduction in China and its economic development, the two-stage 
least squares regression model (2SLS) was set up as follows:
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 0 1 2 1PM2.5 AIR CITY GR ;it it it it c t it= a +a +a +β + h + g + x   (3)

                   0 1 2DMSP PM2.5 CITY ,it it it c t it= β +β +β + h + g + e                                 (4)

where air represents the air flow coefficient, PM2.5it represents the air pollution, DMSPit 
represents the economic growth, hc and gt are an individual fixed effect and point-in-time 
fixed effect, respectively, city is an urban control variable, GRit is a government work report 
environment-related word frequency instrumental variable, and xit is a residual.

3. Results and analysis

3.1. Baseline regression results

Table 3 lists the baseline regression results. Columns 1–3 are the regressions of the night-
time light data using PM2.5 after controlling for the control variables and fixed effects while 
columns 1 and 2 consider the impact that the environment has on the economy arising 
from public services and technological progress, respectively. Columns 4–6 account for the 
Kuznets effect that air pollution has on the economy, which add the squared term of PM2.5 to 
the basic regression. Similarly, columns 4 and 5 consider the impact that the environment has 
on the economy from public services and technological progress perspectives, respectively, 
and column 6 combines the two to consider the impact of air pollution on the economy.

Based on the results of columns 1–3 in Table 3, the effect that PM2.5 has on the economic 
development of a city is significantly positive, controlling for individual fixed effects and 
point-in-time fixed effects. According to Goodness and Prosper (2017), this may be because 
air pollution itself is caused by the use of natural material capital, which leads to environ-
mental destruction. This refers to improving the economy at the expense of the environment. 
This result is consistent with Xie et al. (2019). With the addition of the quadratic term, the 
results of columns 4–6 in Table 3 show that the quadratic term is significantly negative at the 
10% level, which is consistent with the Kuznets inverted U-shaped hypothesis, confirming 
the findings of Zhao and Yuan (2020), Zeng et al. (2019), and other studies.

Based on a combination of columns 1 and 4 in Table 3, the effect of the impact coefficient 
of public services on economic development is significantly positive, and the positive effect 
is further strengthened after the addition of the PM2.5 quadratic term, indicating that public 
services can promote economic development, especially for developing countries, which is 
also mentioned in Ouyang et al. (2019). Based on the results of columns 2 and 5 in Table 3, 
the effect of the coefficient of technological progress on economic development is signifi-
cantly positive, indicating that technological progress has a substantial promoting effect on 
economic development, which is consistent with the findings of Xu et al. (2020). Based on the 
results of columns 3 and 6 in Table 3, after adding the two variables for technological prog-
ress and public service, the positive effects are enhanced, indicating that these variables have 
mutual promoting effects on economic development. The comprehensive results in columns 
1–6 in Table 3 show that the impact that the infrastructure has on economic development is 
significantly positive, but the significance declines slightly after the addition of the techno-
logical progress factor. This may be because technological progress will promote the renewal 
of infrastructure, and new infrastructure has a certain lag effect on economic development. 
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The effect that population density has on economic development is significantly positive and 
decreases after considering the quadratic term. According to Yan et al. (2020), an increase in 
the population density will have a positive impact on PM2.5, such that the effect of population 
density will decrease after considering the PM2.5 quadratic term.

3.2. Instrumental variable regression results

To alleviate the endogeneity problem in the previous benchmark regressions and enable an 
evaluation of the effect that government environmental regulations and their impact have 
on economic development, we used a 2SLS method to further estimate the effect that gov-
ernment environmental regulations have on air pollution reduction and their impact on 
economic development based on the air flow coefficient data obtained from the government 
work report word frequency. Table 4 lists the regression results. Hypothesis tests, including 
autocorrelation, cross-sectional correlation, and unit root test, were also conducted for the 
instrumental variable (IV) and TSLS, yielding significant results.

As China adopted a strong environmental regulatory policy in 2013, we presume that the 
Chinese government has realized that the stimulative effect of environmental pollution on 
economic development has reached a peak and will cross the inflection point to subsequently 

Table 3. Baseline regression results for air pollution and its effect on economic development

Core explained variable: average nighttime light intensity for prefecture-level cities

1 2 3 4 5 6

PM2.5 0.331*** 
[0.0605]

0.213*** 
[0.0453]

0.187*** 
[0.0490]

0.483*** 
[0.0014]

0.255*** 
[0.1194]

0.205* 
[0.1221]

PM2.5² –0.0994*** 
[0.0295]

–0.0856*** 
[0.0300]

–0.0969*** 
[0.0279]

Public services 4.719***
[0.6355]

1.728*** 
[0.6240]

4.673*** 
[0.6370]

1.724*** 
[0.6236]

Technological 
advances

5.58*** 
[0.5031]

5.013*** 
[0.5062]

5.569*** 
[0.5063]

5.009*** 
[0.5090]

Infrastructure 0.937***
[0.1674]

0.701*** 
[0.1728]

0.701*** 
[0.1733]

0.939*** 
[0.1677]

0.702*** 
[0.1726]

0.701*** 
[0.1731]

Population 
density

–2.741*** 
[0.5564]

–0.695
[0.5240]

–0.857 
[0.5250]

–2.707*** 
[0.5589]

–0.690 
[0.5253]

–0.855 
[0.5262]

Constant term Yes Yes Yes Yes Yes Yes
Individual 
fixed effects

Yes Yes Yes Yes Yes Yes

Time-point 
fixed effects

Yes Yes Yes Yes Yes Yes

Observed 
values

5,453 5,453 5,453 5,453 5,453 5,453

Robust R² 0.4914  0.5738 0.5795 0.4919 0.5737 0.5794

Note: * indicates that the value is significant at the 10% level, ** indicates that the value is significant 
at the 5% level, and *** indicates that the value is significant at the 1% level. Numbers in parentheses 
indicate standard deviation.
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have a restraining effect. In view of this prediction, 2013 was selected as the cut-off point 
for verification, and we assumed that environmental pollution had an inhibiting effect on 
economic development after 2013, which is consistent with the hypothesis. We can observe 
that the government’s environmental policies all reduce smog pollution at the 1% significance 
level. At the same time, to address the possible endogeneity problem in the “two-way causal-
ity”, we performed an instrumental regression with a lag in the PM2.5 by 1–2 periods; we can 
observe that the results are consistently robust. The results listed in Table 4 are similar to the 
baseline regressions reported in Table 3, proving that air pollution has a positive impact on 
economic development, as observed for the period from 1998–2016. However, the positive 
impact is gradually weakening because the main cause of air pollution is the use of envi-
ronmental resources for development. Columns 3–4 indicate that since 2013, air pollution 
has had a negative impact on the economy, which shows that China has already crossed the 
inflection point in the inverted U-shaped Kuznets curve, rendering air pollution to have an 
inhibiting effect on the economy. At the same time, if not controlled, environmental pollu-
tion in China will have an impact on the economy after a certain period. The recession has 
reached its peak and has begun to accelerate. Furthermore, we selected representative cities 
in the Beijing-Tianjin-Hebei, Yangtze River Delta, and Pearl River Delta regions for visual-
ization according to the “Ten Articles of the Atmosphere”, as shown in Figure 1. Based on 
Figure 1, the overall PM2.5 value has been fluctuating and decreasing since 2005, especially 
since the promulgation of the “Ten Articles of the Atmosphere” in 2013, with a significant 
decrease in the PM2.5 concentration in 2014.

Table 4. Two-stage least squares (2SLS) instrumental variable method regression results

Phase One 
Regression PM2.5

Time 1998–2016 1998–2016 2013–2016 2013–2016
Air flow coefficient –0.001308***

[0.000196]
–0.001302***
[0.0001988]

–0.0009005***
[0.0002848]

–0.0009977***
[0.0002862]

GRit –0.001752** 
[0.0007144]

–1.82***
[0.5234]

F-value 44.54 22.83 10.00 10.77
Two-stage regression Nightlight The average nightlight intensity of a local city
PM2.5 0.937***  

[0.2686]
0.979***
[0.2469]

–0.577***
[0.2123]

–0.458***
[0.1445]

Constant term Yes Yes Yes Yes
Control variables Yes Yes Yes Yes
Individual fixed 
effects

Yes Yes Yes Yes

Time-point fixed 
effects

Yes Yes Yes Yes

Observed Values 5,388 5,388 1,136 1,136
Robust (R²) 0.4362 0.4224 0.5950 0.6077

Note: * indicates that the value is significant at the 10% level, ** indicates that the value is significant 
at the 5% level, and *** indicates that the value is significant at the 1% level. Numbers in parentheses 
indicate standard deviation.
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Figure 1. PM2.5 trends in representative cities of Beijing-Tianjin-Hebei, Yangtze River Delta,  
and Pearl River Delta Region
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Based on the above results, we can observe that air pollution in the sample period has 
significantly increased China’s economic development, but the effect is gradually decreasing. 
The government has an irreplaceable role in the process of air pollution control. In other 
words, the government can take proactive and effective measures to simultaneously mitigate 
air pollution and promote economic development.

3.3. Robustness test

To ensure the validity of the instrumental variables in Table  4 and the reliability of our 
conclusions, we performed a series of robustness checks on the regressions in Table 5 using 
the GDP.

As nighttime lighting is highly correlated with the GDP, the results are robust if the re-
gressions with alternative indicators yield similar results. To yield more convincing results, we 
excluded four municipalities (Beijing, Tianjin, Shanghai, and Chongqing) and three groups 
of less developed regions (Tongren, Bijie, and Haidong) from the regressions. The results are 
reported in Table 5.

Table 5. Results of two-stage least squares (2SLS) instrumental variable method robustness tests

Phase One 
Regression PM2.5

Sample Full Sample Robust 
Sample Full Sample Robust 

Sample
Time 1998–2016 1998–2016 1998–2016 2013–2016 2013–2016 2013–2016

Air flow 
coefficient

–0.001282***
[0.0002125]

–0.001229***
[0.0001989]

-0.001133***
[0.0001848]

–0.001612***
[0.0003061]

–0.001711***
[0.0003071]

–0.001663***
[0.0003144]

GRit –3.579** 
[0.4509]

–2.693*** 
[0.4568]

–1.481**
[0.6083]

–2.48**
[0.6405]

F-value 36.42 42.39 31.37 27.73 17.08 19.2
Two-stage 
regression GDP

PM2.5 40.38**
 [19.72]

79.09***
[11.08]

74.69***
[13.71]

–66.61***
[17.93]

–48.78***
[12.42]

–41.64***
[12.76]

Constant 
term

Yes Yes Yes Yes Yes Yes

Control 
variables

Yes Yes Yes Yes Yes Yes

Individual 
fixed effects

Yes Yes Yes Yes Yes Yes

Time-point 
fixed effects

Yes Yes Yes Yes Yes Yes

Observed 
values

5,388 5,388 5,312 1,136 1,136 1,120

Robust (R²) 0.7857 0.7104 0.6432 0.3182 0.3326 0.2550

Note: * indicates that the value is significant at the 10% level, ** indicates that the value is significant 
at the 5% level, and *** indicates that the value is significant at the 1% level. Numbers in parentheses 
indicate standard deviation.
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3.4. Transmission mechanism hypothesis

Furthermore, to investigate the specific transmission mechanism of air pollution with respect 
to economic development, we proposed two hypotheses to investigate both human capital 
and physical capital.

Hypothesis 1: The impact that air pollution has on the economy through physical capital 
requires a comprehensive consideration of both the positive and negative effects. 

Air pollution can reduce the quality of economic development by destroying the urban-
ization process and slowing down the rate of physical capital accumulation. In contrast, most 
causes of air pollution occur through the use of natural physical capital for industrial scale 
production, which increases the access to and utilization of natural physical capital, thus 
partially promoting economic development. The impact on physical capital is mainly due to 
the combined positive and negative impacts of these two factors.

Hypothesis 2: Air pollution affects the economy through human capital, which mainly af-
fects the economic development by influencing human capital accumulation and personal 
health.

In terms of human capital, air pollution reduces the accumulation of urban talent by 
decreasing the livability of the city and decelerating the urbanization process, which in turn 
reduces human capital. At the same time, air pollution may affect the accumulation of hu-
man capital by affecting individual and lifespans and health, thus reducing human capital.

Based on these hypotheses, the total number of years of education in the city was selected 
as a proxy for human capital, the number of industrial enterprises and the area of cultivated 
land were selected as proxies for physical capital accumulation, and the percentage of the 
non-farm population was selected as a proxy for the urbanization process. Tables 6 and 7 
lists the regression results.

Table 6. Regression results for physical capital

Impact of physical capital on economic 
development

Impact of PM2.5 on physical capital 
accumulation

Nightlight Physical Capital

Physical capital 0.253***
[0.0891]

PM2.5 –0.730***
[0.0717]

Control variables Yes Control variables Yes
Constant term Yes Constant term Yes
Individual fixed effects Yes Individual fixed effects Yes
Time-point fixed effects Yes Time-point fixed effects Yes
Observed values 5,396 Observed Values 5,396
Robust (R²) 0.5367 Robust R² 0.1920

Note: * indicates that the value is significant at the 10% level, ** indicates that the value is significant 
at the 5% level, and *** indicates that the value is significant at the 1% level. Numbers in parentheses 
indicate standard deviation.
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Table 7. Regression results for human capital

Impact of human capital on economic 
development

Impact of PM2.5 on human  
capital accumulation

Nightlight Human Capital

Human Capital 0.0247***
[0.0028]

PM2.5 –12.51***
[2.9099]

Control variables Yes Control variables Yes
Constant term Yes Constant term Yes
Individual fixed effects Yes Individual fixed effects Yes
Time-point fixed effects Yes Time-point fixed effects Yes
Observed values 5,453 Observed Values 5,453
Robust (R²) 0.6101 Robust R² 0.4573

Note: * indicates that the value is significant at the 10% level, ** indicates that the value is significant 
at the 5% level, and *** indicates that the value is significant at the 1% level. Numbers in parentheses 
indicate standard deviation.

3.5. Validation of regression results with transmission mechanism hypothesis

Based on the regression results in Tables 6 and 7, the transmission mechanisms of physical 
capital and human capital are sufficiently verified. The signs of the coefficients are consis-
tent with expectations and are significant at the 1% confidence level. However, according to 
Hypothesis 1, under the hedge of the positive and negative effects of physical capital on the 
economy, air pollution will eventually have a negative effect on physical capital. The negative 
effect of air pollution on human capital in Hypothesis 2 has also been confirmed, which is 
also consistent with people’s intuitive perception of facts.

3.6. Heterogeneity analysis

The regressions of the instrumental variables in the preceding sections show that the over-
all impact of air pollution on economic growth is positive; however, the sub regressions in  
Table 3 (columns 13–16) show that the impact of air pollution on economic growth is nega-
tive when the endogenous driving force of China’s economic growth shifts from natural re-
source extraction to R&D and technological innovation. This is one of the main reasons why 
China must combat air pollution if it wishes to achieve high-quality economic development. 
To explore the key nodes of China’s economic transition, we conducted a regression on time 
heterogeneity, whose results are listed in Table 8. To investigate the impact that air pollution 
has on cities of different sizes, we used the resident population to classify cities according 
to the 2014 version of the city size standard and performed a heterogeneity analysis, whose 
results are listed in Table 9.

Based on Table 8, at the 1% significance level, 2011 was significantly positive and 2012 
was significantly negative; therefore, the transformation of China’s economic endogenous 
power should have occurred between 2011 and 2012. In 2010, China’s frequent extreme high 
temperature, heavy rain events caused air pollution had a negative effect on economic growth.  
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Table 8. Results of the time heterogeneity of air pollution and economic growth

Phase One 
Regression PM2.5

Start time 2010 2011 2012 2013
Air flow coefficient –0.001204***

[0.0001836]
–0.001202***

[0.000212]
–0.001936***
[0.0003161]

–0.001244***
[0.0002966]

F-value 42.99 32.11 37.49 17.58
Two-stage regression Nightlight The average nightlight intensity of a local city.
PM2.5 –0.07506 

 [0.7768]
0.05515
[1.014]

–0.1164*
[0.6641]

–0.5070***
[0.1418]

Constant term Yes Yes Yes Yes
Control variables Yes Yes Yes Yes
Individual fixed 
effects

Yes Yes Yes Yes

Time-point fixed 
effects

Yes Yes Yes Yes

Observed values 1,988 1,704 1,420 1,136
Robust (R²) 0.2467 0.2275 0.0923 0.5937

Note: * indicates that the value is significant at the 10% level, ** indicates that the value is significant 
at the 5% level, and *** indicates that the value is significant at the 1% level. Numbers in parentheses 
indicate standard deviation.

Table 9. Individual heterogeneity results for air pollution and economic growth

Phase One Regression PM2.5

City features Full Sample Jumbo and Mega 
Cities Big Cities Small and 

Medium Cities
Air flow Coefficient –0.001243***

[0.0002035]
–0.002247***
[0.0004002]

–0.0009413***
[0.0002304]

0.002007 
[0.0006173]

F-value 37.35 31.53 16.69 0.11
Two-stage regression Nightlight The average nightlight intensity of a local city.
PM2.5 0.8904***

[0.3054]
0.4539

[0.3322]
 1.097***
[0.4045]

 –2.663
[0.9247]

Constant term Yes Yes Yes Yes
Control variables Yes Yes Yes Yes
Individual fixed effects Yes Yes Yes Yes
Time-point fixed effects Yes Yes Yes Yes

Observed values 5,388 1,683 3,469 236
Robust (R²) 0.5189 0.6127  0.2496  –3.6607

Note: * indicates that the value is significant at the 10% level, ** indicates that the value is significant 
at the 5% level, and *** indicates that the value is significant at the 1% level. Numbers in parentheses 
indicate standard deviation.
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Therefore, the overall regression results for 2010–2016 had no significant negative effect. 
Eliminating the effect after 2010, for 2011–2016, a significant positive return and significant 
negative abnormal return from 2012–2016 suggest that China’s Kuznets turning point was 
between 2011–2012. At the same time, the regression results in 2013–2016 and results in 
Table 3 support each other. The policies and programs that have been introduced are also 
relevant to this hypothesis. Based on Table 9, the explanation of the full sample is more de-
pendent on large cities. Owing to the large number of individuals, as well as to the initiation 
of the development of large cities, the marginal effect of large cities is significantly greater 
than that of megacities and small- and medium-sized cities. For megacities, their insignificant 
coefficients may be due to the fact that most existing megacities are municipalities directly 
under the central government or provincial capitals. Apart from the influence of air pol-
lution, political choice is a highly important factor in their economic growth. As the cen-
tral government and local government jointly promote the growth of cities, the explanatory 
power of air pollution is weak, such that the coefficient is not significant. Although Table 9 
is based on the results of the entire sample, we can observe that for super-large cities, the ef-
fect that air pollution has on economic growth is significantly lower than the overall sample, 
which also confirms the hypothesis of the two conduction mechanism. Megacities have more 
of a dependence on advanced talents than big cities and small- and medium-sized cities. For 
small- and medium-sized cities, the sample is too small and does not pass the significance 
test, such that we cannot make this assertion.

Conclusions and suggestions

Air pollution and environmental crises are serious external challenges facing humanity amidst 
the unprecedented changes that have occurred in the past century, especially as China’s de-
velopment enters a new normal. We therefore face multiple questions, such as “how can we 
sustain high-quality economic development while safeguarding the environment?”, “how can 
we mitigate the negative effects of air pollution and climate change through environmental 
management?”, and “how can we achieve high-speed economic and social development with 
simultaneous environmental sustainability?”. 

To achieve a win-win bi-directional symbiosis between the environment and economy, 
it is not only necessary to understand the government’s macro-environmental policies, but 
also to evaluate and revise the government’s public policies in a precise and scientific manner.

Based on this study, the impact that air pollution has on the economy follows the Kuznets 
environmental curve; according to the existing sample data, air pollution still plays a role in 
promoting the economy. However, since 2012, China’s economy has entered a new normal; as 
air pollution has an inhibiting effect on the economy, the country has increased environmen-
tal regulations since 2013 to achieve high-quality economic development. The impact of air 
pollution on the economy is based on both physical and human capital while technological 
progress is a catalyst for environmental management. Based on our findings and the validated 
hypothesis, the government can implement the following measures: 1) reduce air pollution 
by increasing technological investment and promoting industrial upgrades and transforma-
tion; and 2) increase the green area in cities through afforestation and reduce urban core area 
pollution to attract talent, enhance human capital, and promote innovation. 
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Through data research, we can observe that the consequence of economic development 
at all costs (after reform) is that environmental pressures and air pollution are increasing 
continuously and will have a negative impact on economic development, leading to a gradual 
decline in the level and speed of economic development. The only path to manage such a 
dilemma is to break the air pollution cycle. Only through scientific and reasonable public 
environmental policies can we change the nature of this situation. Implementing sustain-
able development, practicing “green, open, and sharing”, optimizing and adjusting industrial 
structures through supply-side reform, improving governance capacity and efficiency, and 
building a community of human destiny will ultimately lead to the harmonious coexistence 
of humans and nature.
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