
*Corresponding author. E-mail: guoyanfeng@swufe.edu.cn

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.
org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author 
and source are credited.

Copyright © 2021 The Author(s). Published by Vilnius Gediminas Technical University

Technological and Economic Development of Economy
ISSN: 2029-4913 / eISSN: 2029-4921

2021 Volume 27 Issue 2: 353–368

https://doi.org/10.3846/tede.2021.14057

AN EXTENDED COPRAS MODEL FOR MULTIPLE ATTRIBUTE 
GROUP DECISION MAKING BASED ON SINGLE-VALUED 
NEUTROSOPHIC 2-TUPLE LINGUISTIC ENVIRONMENT

Guiwu WEI1, Jiang WU2, Yanfeng GUO3*, Jie WANG4, Cun WEI5

1School of Business, Sichuan Normal University – Chenglong Campus, Chengdu, Sichuan, China
2, 5School of Statistic, Southwestern University of Finance and Economics, Chengdu, Sichuan, China

3Southwestern University of Finance and Economics, Chengdu, Sichuan, China
4School of Management and Economics, University of Electronic Science and Technology of China, 

Chengdu, Sichuan, China

Received 30 June 2019; accepted 02 November 2020

Abstract. In this article, we develop the COPRAS model to solve the multiple attribute group de-
cision making (MAGDM) under single-valued neutrosophic 2-tuple linguistic sets (SVN2TLSs). 
Firstly, we introduce the relevant knowledge about SVN2TLSs in a nutshell, such as the definition, 
the operation laws, a few of fused operators and so on. Then, combine the traditional COPRAS 
model with SVN2TLNs, and structure as well as elucidate the computing steps of the SVN2TLN-
COPRAS pattern. Furthermore, in this article, we propose a method for determining attribute 
weights in different situations relying on the maximizing deviation method with SVN2TLNs. Last 
but not least, a numerical example about assessing the safety of construction project has been 
designed. And for further demonstrating the advantage of the new designed method, we also 
select a number of existed methods to have comparisons.

Keywords: multiple attribute group decision making (MAGDM), single-valued neutrosophic 
2-tuple linguistic sets (SVN2TLSs), COPRAS model, construction project.

JEL Classification: C43, C61, D81.

Introduction

Social development has driven changes in the construction industry. In the increasingly fierce 
market competition, the construction progress is largely affect the construction cycle. Taking 
all kinds of factors in the process of construction has a crucial significance for managers of 
construction progress to effective control of the project from the beginning to the end. Thus, 
choosing the right construction scheme becomes a common multi-attribute decision mak-
ing (MADM) issue. There is no doubt that the proposition of fuzzy set theory proposed by 
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Zadeh (1965) in 1965 is groundbreaking. Afterwards, more and more evaluation tools, such 
as intuitionistic fuzzy set (IFS) (Atanassov, 1986; Wu et al., 2019, 2020), Pythagorean fuzzy 
set (PFS) (Garg, 2016; He et al., 2019; Zhang & Xu, 2014), Neutrosophic set (NS) (Wang 
et al., 2010; Wang et al., 2019a; Wei et al., 2019b), Spherical fuzzy set (SFS) (Gundogdu & 
Kahraman, 2019; Wei et al., 2019a) and 2-tuple linguistic set (2TLS) (Herrera & Martinez, 
2000; Wang et al., 2019b) have been proposed and applied in MAGDM problems. The NS 
theory proposed by Smarandache (1999) considers three dimensions: truth-membership, in-
determinacy-membership and false-membership. Ye (2014) studied the cross-entropy under 
single-valued neutrosophic sets (SVNSs) to solve MADM. Sahin and Liu (2016) proposed 
the maximizing deviation method under SVNSs. Chen and Ye (2017) combined the Dombi 
operation with SVNSs to present some Dombi weighted aggregating operators. Fan, Fan, 
and Ye (2018) presented the cosine measure and weighted cosine measure of SVNSs to 
handle actual problems. Wang, Zhang, Wang, and Li (2018c) defined some dual generalized 
SVN number Bonferroni mean (DGSVNNBM) operator. To get more scientific evaluation 
results, some scholars and researchers combine the SVNSs and 2TLS to define some new 
aggregation operator to solve MADM. Wang, Wei, and Wei (2018b) defined the 2-tuple 
linguistic neutrosophic set (2TLNSs) and presented some Bonferroni mean operators. Garg 
and Nancy (2018) explored the prioritized weighted operators under 2TLNSs. Wang, Wei, 
and Lu (2018a) built the TODIM model for MADM problems with 2TLNSs. Wu, Wu, Zhou, 
Chen, and Guan (2018) proposed the SVN2TLSs and developed some Hamacher aggregation 
operators. Ju, Ju, and Wang (2018) defined some MSM operators under SVN2TLS. 

In order to make decisions based on the evaluation information more conveniently, Za-
vadskas, Kaklauskas, and Sarka (1994) built the COPRAS method for MADM. Zavadskas, 
Kaklauskas, and Kvederyte (2001) applied the COPRAS method to multiple criteria analysis. 
Podvezko (2011) made a comparison between SAW method and COPRAS method. Bekar, 
Cakmakci, and Kahraman (2016) adopted the fuzzy COPRAS method. Liou, Tamosaitiene, 
Zavadskas, and Tzeng (2016) defined the new hybrid COPRAS-G MADM. Mahdiraji, Arza-
ghi, Stauskis, and Zavadskas (2018) designed the hybrid fuzzy BWM-COPRAS method. Roy, 
Sharma, Kar, Zavadskas, and Saparauskas (2019) proposed the COPRAS method for MADM 
problems. At the same time, some other researches also investigated the COPRAS method 
(Mahdiraji et al., 2018; Matic et al., 2019; Roy et al., 2019). 

From above review and analysis, we could find that the SVN2TLSs can consider both 
quantitative and qualitative evaluation information to describe the decision environment 
more objectively, at the same time, as a simple and effective decision-making tool, the 
COPRAS model can be more easily applied to deal with MAGDM problems. Thus, it’s of 
great significance to study the single-valued neutrosophic 2-tuple linguistic number COPRAS 
(SVN2TLN-COPRAS) model. The innovation of such work is to set up an extended CO-
PRAS model for MAGDM under the SVN2TLSs more effectively. 

Our article includes the following contents. Firstly, elementary knowledge about 
SVN2TLSs is briefly introduced in Section 1. Secondly, the computing steps of SVN2TLN-
COPRAS are presented in Section 23. To determine the attribute’s weight, the maximizing 
deviation methods with incompletely weight and completely unknown weight are simply 
designed in Section 3. What’s more, the new MAGDM method combining the COPRAS 
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model and the maximizing deviation method is testified by taking advantage of a numeri-
cal example about assessing the safety of construction project in Section 4. And for further 
demonstrating the advantage of the new designed method, we also select a number of existed 
methods in this Section. Ultimately, we summarize this article in last section.

1. Preliminaries

1.1. Single-valued neutrosophic 2-tuple linguistic sets

On the basis of single-valued neutrosophic and 2-tuple linguistic knowledge, Wu et al. (2018) 
originally developed the single-valued neutrosophic 2-tuple linguistic sets (SVN2TLSs) 
which means we are capable to analyze uncertainty more conveniently. The basic definition 
of SVN2TLSs can be described as: 

Definition 1 (Wu et al., 2018). Suppose there is a linguistic term collection { }1 2, , , kz z z  . 
Every element zi ( )1,2, ,i k=   in this collection represents a possible linguistic scale, and 

{ 0 1 2 3exceedingly terrible, very terrible, terrible, medium,z = z = z = z = z =  }4 5 6well, very well, exceedingly wellz = z = z =
 }4 5 6well, very well, exceedingly wellz = z = z = , then the SVN2TLSs could be defined:

 
( ) ( ), , , ,xφz = ϕ η τ λ , (1)

where xφ ∈z , ( ),xφ ϕ  means the 2-tuple linguistic variables which meets the condition 
( )10 , .x k−

φ≤ ∆ ϕ ≤ ( ), , 0,1 η τ λ ∈   means the truth-membership (TM), the indetermi-
nacy membership (IM) and the falsity membership (FM) which satisfies the condition 
0 3≤ η+ τ + λ ≤ .

Definition 2 (Wu et al., 2018). Let ( ) ( )
11 1 1 1 1, , , ,xφz = ϕ η τ λ

 
and ( ) ( )

22 2 2 2 2, , , ,xφz = ϕ η τ λ
 be two SVN2TLNs, then the operation rules of them can be presented as:

(1) ( ) ( )( ) ( ){ }1 2
1 1

1 2 1 2 1 2 1 2 1 2 1 2= , , , , , ;x x− −
φ φz ⊕z ∆ ∆ ϕ + ∆ ϕ η +η −η η τ τ λ λ

(2) ( ) ( )( ) ( ){ }1 2
1 1

1 2 1 2 1 2 1 2 1 2 1 2 1 2= , , , , , ;x x− −
φ φz ⊗z ∆ ∆ ϕ ×∆ ϕ η η τ + τ − τ τ λ + λ −λ λ

(3) ( )( ) ( ) ( ) ( )( ){ }1
1

1 1 1 1 1= , , 1 1 , , 0;x δ δ δ−
φδz ∆ δ∆ ϕ − −η τ λ δ >

(4) ( ) ( )( ) ( ) ( ) ( )( )1
1

1 1 1 1 1= , , ,1 1 ,1 1 0.x
δδ δ δ δ−

φ
 

z ∆ ∆ ϕ η − − τ − −λ δ > 
 

Definition 3 (Wu et al., 2018). Let ( ) ( )
11 1 1 1 1, , , ,xφz = ϕ η τ λ

 
and ( ) ( )

22 2 2 2 2, , , ,xφz = ϕ η τ λ
 

be two SVN2TLNs, then the score function ( ) ( ),1 2e ez z  and accuracy function ( ) ( ),1 2h hz z  
can be depicted as:

( ) ( ) ( ) ( ) ( ) ( )
1 2

1 1 1 2 2 21 1
1 1 2 2

2 2
= , , = ,

3 3
e x e x− −

φ φ
+ η − τ − λ + η − τ −λ

z ∆ ϕ ⋅ z ∆ ϕ ⋅ ;         (2)

( ) ( ) ( ) ( ) ( ) ( )
1 2

1 1
1 1 1 1 2 2 2 2= , , = ,h x h x− −

φ φz ∆ ϕ ⋅ η −λ z ∆ ϕ ⋅ η −λ .                           (3)

Then according to score and accuracy function of z1 and z2, if ( ) ( )1 2 1 2, ;e ez ≥ z z ≥ z
 
if 

( ) ( )1 2e ez = z
 
then: (1) if ( ) ( )1 2 1 2, ;h hz ≥ z z ≥ z  (2) if ( ) ( )1 2 1 2= , .h hz z z = z
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1.2. The normalized Hamming distance 

Definition 4. Both ( ) ( )
11 1 1 1 1, , , ,xφz = ϕ η τ λ  and ( ) ( )

22 2 2 2 2, , , ,xφz = ϕ η τ λ  are SVN2TLNs,
  

then the single-valued neutrosophic 2-tuple linguistic normalized Hamming distance 
(SVN2TLNHD) could be presented:

( ) ( ) ( ) ( ) ( )1 2
1 1

1 2 1 1 1 1 2SVN2TLN 2H 2 2D
1, 2 , 2 , .

3
d x x

k
− −

φ φ
 z z = + η − τ −λ ⋅∆ ϕ − + η − τ −λ ⋅∆ ϕ  

 

(4)
1.3. The aggregation operators 

Definition  5 (Wu et  al., 2018). Let ( ) ( ) ( ), , , , 1,2, ,
qq q q q qx q pφz = ϕ η τ λ =   be a set of 

SVN2TLNs, the single-valued neutrosophic 2-tuple linguistic weighted average (SVN2TLWA)  
operator and the single-valued neutrosophic 2-tuple linguistic weighted geometric (SVN2TL-
WG) operator are defined:

 
1 1 2 21

SVN2TLWA
p

q q p pq=
= ⊕ k z = k z ⊕ k z ⊕ ⊕ k z  (5)

and

 
( ) ( ) ( ) ( )1 2

1 21
SVN2TLWG q p

p

q pq

k kk k

=
= ⊗ z = z ⊗ z ⊗ ⊗ z , (6)

where

 

( )( )
( ) ( ) ( )

1

1

1 1 1

, ,

SVN2TLWA

1 1 , ,

q

q q q

p

q q
q

p p p

q q q
q q q

x−
φ

=

k k k

= = =

 
 ∆ k ∆ ϕ
 
 =

  − −η τ λ 
  

∑

∏ ∏ ∏
 (7)

and

 

( )( )
( ) ( ) ( )

1

1

1 1 1

, ,

SVN2TLWG

,1 1 ,1 1

q

q

q q q

p

q
q

p p p

q q q
q q q

x
k

−
φ

=

k k k

= = =

 
 ∆ ∆ ϕ
 
 =

  η − − τ − −λ 
  

∏

∏ ∏ ∏
. (8)

2. The SVN2TLN-COPRAS model for MAGDM

In such section, the SVN2TLN-COPRAS model is designed for MAGDM. We define that 
the set of alternatives is { }1 2, , gH H H , the set of attributes is { }1 2, , sT T T  and the set of 
decision makers is { }1 2, , pW W W . Simultaneously, we assume that the weighting vector of 

these s attributes is ( )1 2, , , ,  0T
s zw= w w … w w ≥ , 

1

 1
s

z
z=

w =∑  and the weighting vector of 

these p decision-makers is ( )1 2, , , ,  0
T

p qk = k k … k k ≥ , 
1

 1
p

l
q=

k =∑ .
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Step 1. Based on the information of p decision makers, establish the SVN2TLN evaluation 
matrix ( )1,2, , , 1,2, ,q

fz g s
R a f g z s

×
 = = =    . Moreover, according to Eq.  (7) and DM’s 

weight, we can obtain the fused matrix ( )1,2, , , 1,2, ,fz g s
R a f g z s

×
 = = … = … 

 . All of these 
matrices just like the following shows.

 

1 2

11 12 11
2 21 22 2

1 2

  s
q q q

s
q q q

q s
fz g s

q q qg g g gs

T T T
a a aH

H a a aR a

H a a a
×

…
 …
 

…  = =   
 

…  



   

; (9)

 

1 2

1 11 12 1
2 21 22 2

1 2

   s

s
s

fz g s

g g g gs

T T T
H a a a
H a a a

R a

H a a a
×

…
… 

 … = =     
…  



    

; (10)

                                      
1 2

1 2
p

fz pfz fz fza = k φ ⊕ k φ ⊕ ⊕ k φ . (11)

Step 2. Based on the results of formula (11), we can obtain the normalized matrix fz g s
B b

×
 =    

by following formula:

 

1 2

1 11 12 1
2 21 22 2

1 2

   s

s
s

fz g s

g g g gs

T T T
H b b b
H b b b

B b

H b b b
×

…
… 

 … = =     
…  

    

; (12)

       1

= , 1,2, , , 1,2, ,
g

fz fz fz
f

b a a f g z s
=

= =∑   . (13)

Step 3. The Eq.  (14) is useful in acquiring the corresponding weighted normalized ma-
trix = fz g s

C c
×

 
   by making use of the information deriving from the normalized matrix 

fz g s
B b

×
 =    and weight ( )1,2, ,z z sw =  .

 ( )1,2, , , 1,2, ,fz z fzc b f g z s= w ⊗ = =  . (14)

Step 4. According to each alternative’s type, we can respectively calculate the sum value of 
benefit attributes Ff(b) and the sum value of cost attributes Ff(c), just as Eq. (15) and Eq. (16):

 
( )

1

, 1,2, ,
k

fzf b
z

c f g
=

F = =∑  ; (15)

 
( )

1

, 1,2, ,
s

fzf c
z k

c f g
= +

F = =∑  , (16)

where k is the number of the benefit attributes. Obviously, the best alternatives with bigger 
values of Ff(b) and smaller values of Ff(c).
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Step 5. Figure up the relative significance Qf of every alternative with the Eq. (17):

    

( )

( ) ( )

( )
( )

( )

( )

( )

( )
( )

1 1

1 1

min( )

+ + , 1,2, ,
min( ) 1

g g

f c f c f c
f f

f f b f bg g
f c

f c f c
f c f cf f

Q f g
= =

= =

 
 F × F F
 
 = F =F =
   F
   F × F ×
   F F
   

∑ ∑

∑ ∑
 , (17)

where the optimal alternatives with bigger values of Qf .

Step 6. Compute the values of utility degree Uf based on each alternative’s Qf by following 
equation:

 ( )
100%, 1,2, ,

max
f

f
f

Q
U f g

Q
= × =  . (18)

Step 7. The value of Uf as a ranking criterion, the closer it is to 100%, the better the corre-
sponding alternative is. It’s clear that the utility degree of best alternative is 100%.

3. Determine the attribute’s weights

It is almost impossible for decision makers to gather full information, which especially sticks 
out in the intricate decision making problems. To deal with such cases with incomplete 
attribute’s weights, Wang (1998) proposed the maximizing deviation method which has 
been studied by a large amount of scholars (Wang et al., 2020; Yin et al., 2016) to handle 
MADM problems. Suppose the set of alternatives is { }1 2, , gH H H , the set of attributes is 
{ }1 2, , sT T T  and the set of decision makers is { }1 2, , pW W W . Simultaneously, we assume 
that the weighting vector of these s attributes is ( )1 2, , , ,  0T

s zw= w w … w w ≥ , 
1

 1
s

z
z=

w =∑  and 

the weighting vector of these p decision-makers is ( )1 2, , , ,  0
T

p qk = k k … k k ≥ , 
1

 1
p

l
q=

k =∑ . 

Based on the above conditions, we can calculate difference degree between any two alterna-
tives in line with the maximizing deviation method just as the Eq. (19) shows:

 

( ) ( ) ( ) ( )

1

, , 1,2, , , 1,2, ,
g

q q q
yz zfz fz

y

D d a a f g z s
=

 w = w = = 
 ∑   , (19)

where ( ) ( ),q q
yzfzd a a  

 
 expresses the distance between ( )q

fza  and ( )q
yza , and ( )q

fza  includes all evalu-
ation information of Hf with respect to Tz deriving from the expert Wq.

Furthermore, the combined deviation of all alternatives ( ) ( )q
zD w  under attribute Tz is 

calculated from different experts. 

 

( ) ( ) ( ) ( ) ( ) ( )

1 1 1

, , 1,2, ,
g g g

q q q q
z yz zfz fz

f f y

D D d a a z s
= = =

 w = w = w = 
 ∑ ∑∑  . (20)

3.1. The maximizing deviation method with SVN2TLNs

In this section, the following nonlinear programming model is used to compute attribute’s 
weight based on the maximizing deviation method.
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Case 1. The following non-linear programming model is for cases where the partial attribute 
weights are accessible. 

 

( )
( ) ( ) ( ) ( ) ( )

1 1 1 1 1 1

1

max ,
1

subject to 0, 1 1,2, ,

g q g gs s
q q q

q yz zfz fz
z f m z f y

s

z z
z

D D d a a
M

z s

= = = = = =

=

   w = w = k w 
 

− 
 w ≥ w = =


∑∑ ∑ ∑∑∑

∑ 

, (21)

where kq depicts the weights of Wq and

 

( ) ( )
( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

1

1

2 ,1, =
3 2 ,

qq q q
fz fz fzq q fz

yzfz qq q q
yz yz yz yz

x
d a a

k x

−
φ

−
φ

  + η − τ − λ ⋅∆ ϕ            − + η − τ −λ ⋅∆ ϕ    

. (22)

By solving the above equations, we can get the first-rank attribute weighting vector 
( )1 2, , , T

sw= w w w .

Case 2. For the cases where the entire attribute weights are unreachable, the following non-
linear programming model comes into play.

( )
( )

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

1

11 1 1 1

2

1

2 ,

1max
3 2 ,2 .

subject to 0, 1 1,2, ,

qq q q
fz fz fz fzq g gs

q zqq q q
m z f y yz yz yz yz

s

z z
z

x

kD
xM

k

z s

−
φ

−= = = = φ

=

   + η − τ − λ ⋅∆ ϕ      
  w = k w
    + η − τ −λ ⋅∆ ϕ −    −  

 


w ≥ w = =


∑ ∑∑∑

∑ 

.

 

(.23)

The Lagrange function is necessary to build for solving this model, as follows:

 

( )
( ) ( ) ( ) ( )( )1

1 1 1 1

2 ,1,
3

qq q q
q g gs fz fz fz fz

q
m z f y

x
L

k

−
φ

= = = =

  + η − τ − λ ⋅∆ ϕ   w p = k −



∑ ∑∑∑

               

( ) ( ) ( ) ( )( )1

2

1

2 ,
+ 1 ,

6

qq q q
syz yz yz yz

z z
z

x

k

−
φ

=

 + η − τ − λ ⋅∆ ϕ    p    w w −
   

∑
 

(24)

where p is the Lagrange multiplier.
Next, take the partial derivatives of wz and p in Eq. (24) respectively, and set the results 

equal to zero that we can get the following simultaneous equations.
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( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

1

11 1 1

2

1

2 ,

0
2 , .

1 0

qq q q
fz fz fz fzq g g

q zqq q qz m f y yz yz yz yz

s

z
z

x

L k
x

k
L

−
φ

−= = = φ

=

   + η − τ − λ ⋅∆ ϕ      ∂  = k + pw =
   ∂w + η − τ −λ ⋅∆ ϕ    −  
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∑
Finally, the weighting of attributes is worked out shown in Eq.  (25) according to the 

partial derivatives and Eq. (24).
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by normalizing the formula (25), the normalized results are listed as:
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  + η − τ − λ ⋅∆ ϕ   k  
  − + η − τ −λ ⋅∆ ϕ    w =

  + η − τ − λ ⋅∆ ϕ   k  
  − + η − τ −λ ⋅∆ ϕ    

∑ ∑∑

∑∑ ∑∑

. (26)

3.2. The decision-making model

To sum up, the SVN2TLN-COPRAS method for MAGDM issues for incompletely attribute’s 
weights includes the following steps:

Step 1. Establish the SVN2TLN evaluation matrix q
fz g s

R a
×

 =    where q
fza

 
demonstrates the 

SVN2TLN of alternatives ( )1,2, ,fH f g=   in line with ( )1,2, ,zT z s=   from expert Wq. 

Step 2. Integrate all SVN2TLN decision matrices into the overall decision matrix 

fz g s
R a

×
 =  

  with respect to Eq. (11).

Step 3. Take advantage of Eq. (21) or Eq. (26) respectively facing different cases to acquire 
the weighting of attributes.
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Step 4. Compute the corresponding weighted normalized matrix = fz g s
C c

×
 
   

by using 
Eq. (14).

Step 5. According to = fz g s
C c

×
 
   and the types of attributes, the sum of benefit attributes 

Ff(b) and the sum of cost attributes Ff(c) are computed by Eq. (15) and Eq. (16).

Step 6. Figure up the relative significance Qf of every alternative with the Eq. (17).

Step 7. Compute the utility degree Uf based on every alternative’s Qf by Eq. (18).

Step 8. The value of Uf as a ranking criterion, the closer it is to 100%, the better the cor-
responding alternative is.

4. Numerical example and comparative analysis

4.1. Numerical example

The ultimate goal of the construction project is to complete the construction task with high 
quality and low consumption within the time limit specified in the contract, and to put it 
into production or deliver it for use on schedule. Any construction project, objectively there 
are a variety of technically feasible construction plans. The construction plan is to determine 
the construction sequence, construction method and selection of construction machinery ac-
cording to the established construction deployment, so that the project can achieve the best 
effect of short duration, good quality and low cost. Therefore, there must be the problem of 
optimal selection of construction scheme. In most construction schemes, the quality of con-
struction depends mainly on the following factors: ① T1 is the factor of management level 
of construction project construction unit; ② T2 is the construction of machinery, materials 
and other resource factors; ③ T3 is a natural and social environmental factor; ④ T4 is the 
influencing factor of relevant construction units; ⑤ T5 is a variety of accident risk factors in 
the construction process; ⑥ T6 is the technical level factor of the construction unit.

In order to consider both quantitative and qualitative evaluation information, in this sec-
tion, a numerical example is provided to select best construction projects by COPRAS model 
with SVN2TLNs. The five possible construction projects ( )1,2,3,4,5fH f =  are to be assessed 
with SVN2TLNs under six criteria. In order to give reasonable evaluation information, we 
invite two practitioners ( )1 2,W W  with senior construction experience and one university 
professor W3 with certain academic attainments in the field of construction to form an ex-
pert group to assess these construction projects. Moreover, according to the expert’s age and 
authority in their field, through internal discussion, the expert’s weight is ( )0.35,0.25,0.40 .

Step 1. Based on the information of p decision makers, establish the SVN2TLN evaluation 

matrix 
5 6

q
fzR a

×
 =   (See Tables 1–3).
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Table 1. Evaluation matrix by W1

T1 T2 T3

H1 {(x2,0),(0.7,0.4,0.5)} {(x1,0),(0.6,0.4,0.3)} {(x3,0),(0.2,0.4,0.5)}
H2 {(x1,0),(0.6,0.5,0.1)} {(x4,0),(0.4,0.5,0.2)} {(x1,0),(0.5,0.1,0.4)}
H3 {(x3,0),(0.3,0.4,0.5)} {(x2,0),(0.5,0.4,0.6)} {(x4,0),(0.6,0.4,0.7)}
H4 {(x4,0),(0.8,0.1,0.2)} {(x5,0),(0.7,0.4,0.1)} {(x4,0),(0.6,0.2,0.3)}
H5 {(x5,0),(0.6,0.4,0.7)} {(x1,0),(0.5,0.1,0.3)} {(x4,0),(0.4,0.7,0.2)}

T4 T5 T6

H1 {(x1,0),(0.8,0.6,0.9)} {(x3,0),(0.5,0.1,0.4)} {(x4,0),(0.6,0.2,0.4)}
H2 {(x4,0),(0.5,0.1,0.4)} {(x1,0),(0.3,0.1,0.5)} {(x2,0),(0.5,0.3,0.6)}
H3 {(x5,0),(0.7,0.3,0.2)} {(x4,0),(0.6,0.1,0.4)} {(x3,0),(0.7,0.8,0.5)}
H4 {(x3,0),(0.5,0.3,0.1)} {(x5,0),(0.7,0.5,0.4)} {(x4,0),(0.4,0.1,0.2)}
H5 {(x4,0),(0.6,0.7,0.4)} {(x1,0),(0.4,0.6,0.5)} {(x1,0),(0.5,0.1,0.4)}

Table 2. Evaluation matrix by W2 

T1 T2 T3

H1 {(x3,0),(0.3,0.4,0.1)} {(x4,0),(0.5,0.7,0.2)} {(x1,0),(0.5,0.1,0.4)}
H2 {(x3,0),(0.2,0.4,0.5)} {(x1,0),(0.6,0.1,0.3)} {(x4,0),(0.3,0.1,0.2)}
H3 {(x1,0),(0.1,0.4,0.6)} {(x4,0),(0.6,0.4,0.1)} {(x3,0),(0.6,0.5,0.5)}
H4 {(x4,0),(0.3,0.1,0.2)} {(x3,0),(0.8,0.1,0.4)} {(x4,0),(0.7,0.1,0.3)}
H5 {(x3,0),(0.4,0.5,0.3)} {(x3,0),(0.3,0.1,0.2)} {(x3,0),(0.4,0.5,0.6)}

T4 T5 T6

H1 {(x4,0),(0.6,0.5,0.9)} {(x2,0),(0.5,0.1,0.7)} {(x4,0),(0.5,0.7,0.3)}
H2 {(x3,0),(0.4,0.3,0.2)} {(x3,0),(0.1,0.4,0.2)} {(x1,0),(0.6,0.4,0.1)}
H3 {(x1,0),(0.6,0.1,0.3)} {(x1,0),(0.4,0.5,0.3)} {(x3,0),(0.3,0.1,0.2)}
H4 {(x4,0),(0.5,0.1,0.2)} {(x4,0),(0.6,0.1,0.3)} {(x5,0),(0.6,0.2,0.3)}
H5 {(x5,0),(0.8,0.7,0.6)} {(x5,0),(0.2,0.3,0.4)} {(x1,0),(0.8,0.4,0.1)}

Table 3. Evaluation matrix by W3

T1 T2 T3

H1 {(x3,0),(0.3,0.4,0.5)} {(x4,0),(0.6,0.4,0.3)} {(x1,0),(0.8,0.7,0.6)}
H2 {(x1,0),(0.1,0.5,0.6)} {(x1,0),(0.5,0.3,0.4)} {(x4,0),(0.5,0.6,0.2)}
H3 {(x4,0),(0.4,0.3,0.4)} {(x3,0),(0.6,0.2,0.1)} {(x2,0),(0.3,0.5,0.1)}
H4 {(x4,0),(0.8,0.3,0.4)} {(x3,0),(0.5,0.1,0.2)} {(x4,0),(0.6,0.1,0.4)}
H5 {(x3,0),(0.1,0.5,0.3)} {(x4,0),(0.3,0.5,0.3)} {(x1,0),(0.2,0.4,0.5)}

T4 T5 T6

H1 {(x3,0),(0.5,0.6,0.7)} {(x4,0),(0.3,0.4,0.7)} {(x3,0),(0.3,0.1,0.4)}
H2 {(x1,0),(0.3,0.2,0.4)} {(x3,0),(0.3,0.5,0.2)} {(x1,0),(0.6,0.3,0.7)}
H3 {(x4,0),(0.2,0.5,0.1)} {(x1,0),(0.1,0.4,0.2)} {(x4,0),(0.3,0.1,0.5)}
H4 {(x5,0),(0.3,0.4,0.2)} {(x4,0),(0.8,0.1,0.3)} {(x5,0),(0.6,0.3,0.5)}
H5 {(x3,0),(0.5,0.1,0.6)} {(x4,0),(0.2,0.5,0.7)} {(x3,0),(0.1,0.4,0.2)}
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Step 2. Take advantage of Eq. (21) or Eq. (26) respectively facing different cases to acquire 
the weighting of attributes.

Case 1. When the partial attribute weights are accessible:

1 2 3
4 5 6

6

1

0.14 0.16,0.15 0.20,0.10 0.30,
0.10 0.15,0.10 0.35,0.12 0.18,

.
0, 1,2, , 6, 1z z

z

z
=

≤ w ≤ ≤ w ≤ ≤ w ≤ 
 ≤ w ≤ ≤ w ≤ ≤ w ≤ 
 
 w ≥ = w =
  

∑

The following non-linear programming model could be obtained according to (M – 1):

( ) 1 2 3 4 5 6
6

1

max 3.8689 3.4178 4.0000 3.8833 4.1778 4.0922
.

subject to 0, 1, 1, 2, , 6z z
z

D

z
=

 w = w + w + w + w + w + w

 w ≥ w = = …


∑

Deal with such model; the weight of attributes is obtained as:

( )0.1400,0.1500,0.1000,0.1000,0.3500,0.1600 .w=

Case 2. When the entire attribute weights are unreachable, the weighting of attributes could 
be obtained through Eq. (11):

( )0.1651,0.1458,0.1706,0.1657,0.1782,0.1746 .w=

Step 3. According to Eq.  (7) and expert’s weight, we can fuse overall q
fza  ( )1,2,3,4,5; 1,2,3,4,5,6f z= =

 ( )1,2,3,4,5; 1,2,3,4,5,6f z= =  into afz, the fused results are shown in Table 4.

Table 4. The fused results by SVN2TLWA operator

T1 T2 T3

H1 {(x3,–0.25),(0.4336,0.4000,0.2847)} {(x3, 0.25),(0.5675,0.4865,0.2603)} {(x2,–0.50),(0.6102,0.3080,0.4974)}

H2 {(x2,–0.30),(0.2948,0.4624,0.3597)} {(x2,–0.25),(0.5160,0.2321,0.3041)} {(x3, 0.25),(0.4375,0.2048,0.2378)}

H3 {(x3,–0.30),(0.2813,0.3565,0.4874)} {(x3, 0.10),(0.5771,0.3031,0.1565)} {(x3,–0.15),(0.4996,0.4729,0.2857)}

H4 {(x4, 0.00),(0.6899,0.1552,0.2639)} {(x4,–0.50),(0.6807,0.1414,0.2144)} {(x4, 0.00),(0.6383,0.1189,0.3366)}

H5 {(x4,–0.50),(0.3624,0.4729,0.3708)} {(x3,–0.10),(0.3565,0.1904,0.2603)} {(x2, 0.45),(0.3268,0.4974,0.4238)}

T4 T5 T6

H1 {(x3,–0.15),(0.6322,0.5629,0.8139)} {(x3, 0.05),(0.4280,0.1741,0.6086)} {(x4,–0.40),(0.4590,0.2350,0.3617)}

H2 {(x2, 0.45),(0.3903,0.1938,0.3138)} {(x3,–0.50),(0.2356,0.3092,0.2515)} {(x1, 0.25),(0.5771,0.3318,0.3409)}

H3 {(x3, 0.20),(0.5088,0.2505,0.1747)} {(x2,–0.25),(0.3624,0.3058,0.2741)} {(x3, 0.40),(0.4336,0.1682,0.3628)}

H4 {(x4, 0.15),(0.4280,0.2291,0.1682)} {(x4, 0.25),(0.7179,0.1495,0.3224)} {(x5,–0.25),(0.5573,0.1978,0.3325)}

H5 {(x4,–0.05),(0.6569,0.3214,0.5422)} {(x4,–0.40),(0.2555,0.4376,0.5291)} {(x2,–0.20),(0.5410,0.2828,0.1866)}

Step 4. If the entire attribute weights are unreachable, therefore, according to step 2, the 
attributes’ weighting vector is ( )0.1651,0.1458,0.1706,0.1657,0.1782,0.1746 .w=  Then the 
weighted matrix = fz g s

C c
×

 
   can be obtained in Table 5.
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Table 5. The weighted decision-making matrix C 

T1 T2 T3

H1 {(x0, 0.45),(0.0896,0.8596,0.8127)} {(x0, 0.47),(0.1150,0.9003,0.8218)} {(x0, 0.26),(0.1485,0.8179,0.8877)}

H2 {(x0, 0.28),(0.0560,0.8805,0.8447)} {(x0, 0.26),(0.1004,0.8082,0.8407)} {(x1,–0.45),(0.0935,0.7629,0.7826)}

H3 {(x0, 0.45),(0.0531,0.8435,0.8882)} {(x0, 0.45),(0.1179,0.8403,0.7631)} {(x0, 0.49),(0.1115,0.8800,0.8075)}

H4 {(x1,–0.34),(0.1757,0.7353,0.8026)} {(x1,–0.49),(0.1533,0.7519,0.7989)} {(x1,–0.32),(0.1593,0.6953,0.8304)}

H5 {(x1,–0.42),(0.0716,0.8837,0.8489)} {(x0, 0.42),(0.0622,0.7852,0.8218)} {(x0, 0.42),(0.0653,0.8877,0.8637)}

T4 T5 T6

H1 {(x0, 0.47),(0.1527,0.9092,0.9665)} {(x1,–0.46),(0.0948,0.7323,0.9153)} {(x1,–0.37),(0.1017,0.7766,0.8373)}

H2 {(x0, 0.41),(0.0787,0.7620,0.8253)} {(x0, 0.45),(0.0468,0.8113,0.7819)} {(x0, 0.22),(0.1395,0.8248,0.8287)}

H3 {(x1,–0.47),(0.1111,0.7951,0.7490)} {(x0, 0.31),(0.0771,0.8096,0.7940)} {(x1,–0.41),(0.0945,0.7325,0.8378)}

H4 {(x1,–0.31),(0.0884,0.7834,0.7443)} {(x1,–0.24),(0.2019,0.7127,0.8173)} {(x1,–0.17),(0.1326,0.7536,0.8251)}

H5 {(x1,–0.35),(0.1624,0.8286,0.9036)} {(x1,–0.36),(0.0512,0.8630,0.8927)} {(x0, 0.31),(0.1271,0.8021,0.7460)}

Step 5. According to the weighted matrix 
5 6

= fzC c
×

 
   and the types of attributes, the sum 

of benefit attributes Ff(b) 
and the sum of cost attributes Ff(c) 

are computed by Eq. (15) and 
(16) which listed in Table 6. (Suppose T1, T3, T4 and T6 are benefit attributes and T2 as well 
as T5 are cost attributes.) 

Table 6. The calculated results of Ff(b) and Ff(c)

Ff(b) Ff(c)

H1 {(x2,–0.19),(0.4100,0.4965,0.5838)} {(x1, 0.02),(0.1989,0.6593,0.7522)}
H2 {(x1, 0.46),(0.3216,0.4222,0.4521)} {(x1,–0.30),(0.1425,0.6556,0.6573)}
H3 {(x2, 0.06),(0.3228,0.4323,0.4500)} {(x1,–0.24),(0.1859,0.6803,0.6059)}
H4 {(x3,–0.14),(0.4521,0.3018,0.4093)} {(x1, 0.27),(0.3243,0.5359,0.6529)}
H5 {(x2,–0.04),(0.3655,0.5214,0.4942)} {(x1, 0.06),(0.1103,0.6776,0.7337)}

The score results of Ff(b) and Ff(c) are listed as:

( )
( )( ) ( )( ) ( )( )
( )( ) ( )( )

( )
( )( ) ( )( ) ( )( )
( )( ) ( )( )

1 2 3

4 5

1 2 3

4 5

0.1337, 0.1173, 0.1645,
;

0.2766, 0.1473.

0.0445, 0.0323, 0.0382,
.

0.0800, 0.0413.

b b b
f b

b b

b b b
f c

b b

e e e

e e

e e e

e e

 F = F = F = F =  
F = F = 

 
 F = F = F = F =  

F = F = 
 

Step 6. Figure up the Qf ( )1,2,3,4,5f =  of each alternative with Eq. (17);

1 2 3 4 50.1794, 0.1802, 0.2177, 0.3020, 0.1965.Q Q Q Q Q= = = = =

Step 7. Compute the values of utility degree Uf ( )1,2,3,4,5f =  based on each alternative’s Qf 
( )1,2,3,4,5f =  by Eq. (18);

1 2 3 4 559.41%, , 72.09%, 100.00%, 65.09%.59.69%U U U U U= = = = =
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Step 8. In terms of the magnitude of Uf, the ordering of alternatives is: H4 > H3 > H5 >  
H2 > H1 and H4 is second to none.

4.2. Compare SVN2TLN-COPRAS method with aggregation operators

In this section, we compare our proposed SVN2TLN-COPRAS method with SVN2TLWA 
operator, SVN2TLWG operator, SVN2TLHWA operator and SVN2TLHWG operator (Wu 
et al., 2018). Based on the attribute’s weight and Table 4, the fused values by SVN2TLWA, 
SVN2TLWG, SVN2TLHWA and SVN2TLHWG operators are shown in Table 7.

Table 7. The fused values by using some existing operator

SVN2TLWA SVN2TLWG
H1 {(x3,–0.26),(0.5330,0.4354,0.4727)} {(x3,–0.35),(0.5190,0.5265,0.5571)}
H2 {(x3,–0.30),(0.5239,0.3803,0.4073)} {(x2, 0.49),(0.4732,0.4882,0.4907)}
H3 {(x3, 0.24),(0.4784,0.3843,0.4146)} {(x3, 0.20),(0.4533,0.4765,0.5413)}
H4 {(x4,–0.46),(0.5117,0.2868,0.3687)} {(x3, 0.34),(0.4618,0.5300,0.4769)}
H5 {(x3,–0.16),(0.5720,0.4563,0.4136)} {(x3,–0.25),(0.5209,0.5203,0.4757)}

SVN2TLHWA SVN2TLHWG
H1 {(x3,–0.24),(0.5296,0.4538,0.4909)} {(x3,–0.32),(0.5225,0.5031,0.5363)}
H2 {(x3,–0.22),(0.5110,0.4019,0.4241)} {(x3,–0.43),(0.4844,0.4605,0.4682)}
H3 {(x3, 0.27),(0.4722,0.4036,0.4405)} {(x3, 0.22),(0.4593,0.4536,0.5104)}
H4 {(x4,–0.34),(0.4996,0.3220,0.3891)} {(x3, 0.45),(0.4738,0.4638,0.4478)}
H5 {(x3,–0.11),(0.5607,0.4697,0.4271)} {(x3,–0.21),(0.5341,0.5037,0.4605)}

According to the score of SVN2TLNs, we could derive the score results (Table 8).

Table 8. Score results of alternatives Hf

SVN2TLWA SVN2TLWG SVN2TLHWA SVN2TLHWG
e(H1) 0.2471 0.2111 0.2431 0.2211
e(H2) 0.2607 0.2063 0.2600 0.2223
e(H3) 0.3019 0.2550 0.2959 0.2675
e(H4) 0.3646 0.2701 0.3642 0.2997
e(H5) 0.2690 0.2328 0.2669 0.2435

The rankings of alternatives are collected in Table 9. 

Table 9. The rankings of alternatives deriving from different methods

Order
SVN2TLWA H4 > H3 > H5 > H2 > H1

SVN2TLWG H4 > H3 > H5 > H1 > H2

SVN2TLHWA H4 > H3 > H5 > H2 > H1

SVN2TLHWG H4 > H3 > H5 > H2 > H1

SVN2TLN-COPRAS model H4 > H3 > H5 > H2 > H1
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From the above calculation process and the final result summary Table 9, it’s easy for us 
to conclude that the optimal scheme is consistent, but in a slightly different order. 

According to the operational formulas of these operators, we can find that the SVN2TLWA 
operator and SVN2TLWG operator are incapable of taking the relationship between being 
fused variables into account so that the integration results in practical decision problems are 
too rough and imprecise. Moreover, the SVN2TLHWA operator and SVN2TLHWG operator 
adopt parameter control to consider the relationship between integrated variables, but their 
operation formula is extremely complex, which will lead to excessive workload in the actual 
decision making, so it is difficult to be applied.

Compared our proposed model with the above mentioned operators, although the 
decision results are slightly different, the SVN2TLN-COPRAS model has the precious merits 
in settling the inconsistent attributes by computing the utility degree shown as the percentage 
which depicts the alternative is better or worse than others, and the decision steps of this 
new model are very simple and more in line with the actual decision situation for consider 
the conflicting attributes. 

Conclusions

In this paper, we develop the SVN2TLN-COPRAS model to solve the MAGDM and some ba-
sically concepts of SVN2TLSs. Firstly, we introduce the relevant knowledge about SVN2TLSs 
in a nutshell, such as the definition, the operation laws, a few of fused operators and so 
on. Then, combine the traditional COPRAS model with SVN2TLNs, and structure as well 
as elucidate the computing steps of the SVN2TLN-COPRAS pattern. Furthermore, in this 
article, we propose a method for determining attribute weights in different situations relying 
on the maximizing deviation method with SVN2TLNs. Last but not least, a numerical ex-
ample about assessing the safety of construction project has been designed. And for further 
demonstrating the advantage of the new designed method, we also select a number of existed 
methods to have comparisons. In future research, we are committed to apply the SVN2TLN-
COPRAS model to other fields so as to resolve more MAGDM problems.
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