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Abstract. In this study, we introduce a sentiment construction method based on the evolution of 
survey-based indicators. We make use of genetic algorithms to evolve qualitative expectations in 
order to generate country-specific empirical economic sentiment indicators in the three Baltic re-
publics and the European Union. First, for each country we search for the non-linear combination 
of firms’ and households’ expectations that minimises a fitness function. Second, we compute the 
frequency with which each survey expectation appears in the evolved indicators and examine the 
lag structure per variable selected by the algorithm. The industry survey indicator with the highest 
predictive performance are production expectations, while in the case of the consumer survey the 
distribution between variables is multi-modal. Third, we evaluate the out-of-sample predictive 
performance of the generated indicators, obtaining more accurate estimates of year-on-year GDP 
growth rates than with the scaled industrial and consumer confidence indicators. Finally, we use 
non-linear constrained optimisation to combine the evolved expectations of firms and consumers 
and generate aggregate expectations of of year-on-year GDP growth. We find that, in most cases, 
aggregate expectations outperform recursive autoregressive predictions of economic growth.

Keywords: genetic algorithms, sentiment indicators, qualitative expectations, forecasting, eco-
nomic growth.
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Introduction

Agents’ actions tend to depend on their expectations (Doronina Koltan et al., 2013). In a 
context of high uncertainty like the current one, agents’ expectations become crucial for 
economic analysis. As expectations are not directly observable, they are usually obtained 
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through surveys. The fact that survey expectations capture the beliefs and intentions of eco-
nomic agents prior to the publication of GDP growth figures, makes them especially useful 
for economic forecasting.

Since 1961, the European Commission (EC) has conducted surveys of businesses and 
consumers in the member states of the European Union (EU). These surveys ask respond-
ents if they expect an increase or decrease in their economic expectations, thus facilitating 
comparability between countries’ economic conditions. From the difference between the re-
sponse percentages of the extreme categories, a diffusion index called balance is calculated 
and published regularly at the end of each month.

Soft computing, as opposed to traditional computing, deals with approximate models 
and gives solutions to complex real-life problems (Ibrahim, 2016). Soft computing is based 
on techniques such as artificial neural networks (Petković et al., 2017; Safa et al., 2020), sup-
port vector regression (Jović et al., 2016; Shamshirband et al., 2014) and genetic algorithms 
(Petković et al., 2016; Shariati et al., 2020). The main motivation of the study is to propose a 
methodology for the construction of indicators of economic sentiment based on the model-
ling of agents’ expectations through genetic algorithms.

The main advantage of the proposed approach is that it does not require knowledge of 
the underlying interconnections between different expectations as a precondition for its ap-
plication. As a result, it allows evolving a wide range of business and consumer expectations 
without any required knowledge regarding their interactions in order to generate non-line-
ar country-specific economic sentiment indicators. Therefore, the proposed data-based ap-
proach is especially suitable in this case, in which there is no a priori functional relationship 
between the survey balances and the year-on-year growth rate of GDP.

The aim of the paper is three-fold. First, we propose an alternative approach for economic 
sentiment construction based on symbolic regression (SR) and genetic programming (GP). 
This procedure is based on a heuristic search of the optimal functional form that combines 
qualitative survey data in order to estimate economic growth. The main motivation to use 
this approach lies in its flexibility, given that the search algorithm not only selects those sur-
vey indicators that best describe economic growth dynamics, but also combines the selected 
variables without imposing any type of restriction on the models or the parameters. With 
this aim, we use all survey variables from the industry and consumer surveys in the three 
Baltic States (Estonia, Latvia and Lithuania) and the EU to evolve country-specific non-lin-
ear economic sentiment indicators for firms and households. We design two alternative SR 
experiments for each country: one for the industry survey in order to produce an evolved in-
dustry confidence indicator and another one for the consumer survey to generate an evolved 
consumer confidence indicator.

Second, we use the obtained evolved expressions to compute the frequency distribution 
and the lag structure of the different survey variables selected by the genetic algorithms to 
track economic growth in each of the Baltic countries and the EU. The proposed empirical 
approach searches among the space of all models and, expresses the potential solutions in the 
form of computer programs, which are represented as tree structures where every tree node 
has an operator function and every terminal node an operand. This general representation 
scheme makes mathematical expressions easy to evolve and evaluate.

https://www.worldscientific.com/doi/abs/10.1142/S0218001416590199
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Third, with the aim of evaluating the performance of the evolved indicators, we analyse 
their out-of-sample predictive capacity, comparing it with that obtained using the EC confi-
dence indicators. On the other hand, we use Granger causality tests to evaluate the predictive 
power of firms and consumer expectations of economic growth. Finally, we combine firms’ 
and consumers’ expectations by means of a generalized reduced gradient non-linear algo-
rithm that yields the optimal weights in order to generate aggregate expectations of economic 
growth that we compare with recursive autoregressive forecasts used as a benchmark.

As a result, we provide researchers and practitioners with three outcomes: (i) evolved 
sentiment indicators that yield estimates of year-on-year GDP growth rates using survey 
expectations as the sole input; (ii) insight into the relative importance of the indicators of the 
industry and the consumer surveys of each country, as well as the lag structure of the selected 
variables determined by the algorithm; and (iii) the relative weight of the expectations of both 
firms and consumers in order to improve the forecast accuracy of predictions of economic 
growth in each country. These results are intended to highlight the value of the information 
coming from tendency surveys for the economic analysis, and also to provide researchers 
with an alternative way of generating agents’ expectations through empirical methods.

GP has been applied in robotics (Petković et al., 2016), image processing (Cuevas et al., 
2016) and medical diagnosis (de Carvalho Filho et al., 2014). However, its use for economic 
modelling and forecasting is still recent (Álvarez-Díaz, 2020; Claveria et al., 2019, 2020; Sorić 
et al., 2019). 

In order to cover this deficit, in this study we apply GP to construct indicators of econom-
ic sentiment in the Baltic countries and the EU. With this aim, we use the survey expectations 
collected in the balances to generate non-linear confidence indicators through an evolution-
ary process in which no assumptions are made about agents’ expectations.

The paper is divided into three sections. Next, the applied methodology and the design 
of the experiments are described. Section 2 presents the dataset and assesses the evolved ex-
pressions. Results of the forecasting comparison are provided in Section 3. Finally, the main 
conclusions and future lines of research are presented.

1. Experimental setup

As stated by Petković et al. (2016), soft computing techniques have shown to be proficient 
in numerical mapping between data and variables of nonlinear frameworks. Among them, 
hybrid intelligent systems such as adaptive neuro-fuzzy inference systems, which enhance the 
ability to automatically learn and adapt, are increasingly being used by researchers in various 
fields (Nikolić et al., 2017; Toghroli et al., 2014). Other techniques of soft computing that are 
increasingly being used due to their flexibility for analysing unknown relationships between 
variables are genetic algorithms.

GP is a heuristic search technique for evolving programs that can be regarded as a gen-
eralisation of genetic algorithms (see Katebi et al. (2020) for comparative analysis of meta-
heuristic optimization algorithms). This optimization approach is based on the represen-
tation of programs in tree structures. SR, as opposed to conventional regression analysis, 
which is based on a certain ex-ante model specification, uses GP to search for relationships 

https://www-sciencedirect-com.sire.ub.edu/science/article/pii/S0957415816300940?via%3Dihub#!
https://www-sciencedirect-com.sire.ub.edu/science/article/pii/S0142061516302691?via%3Dihub#!
https://link-springer-com.sire.ub.edu/article/10.1007/s10115-016-1006-0#auth-1
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between a given set of variables and evolves the functions until reaching a solution that can 
be described as the functional form that best approximates the interactions between the 
variables of the system.

This function allows not only to visualise relevant links but also makes it possible to de-
tect unknown relationships. Given the suitability of genetic algorithms for detecting patterns 
in large data sets and for the automatic resolution of optimisation problems, GP is increas-
ingly being applied in more areas (Alexandridis et al., 2017; Eliiyi et al., 2009; Fernández 
et al., 2019; Pan et al., 2019). Most of its applications in economics have been made in finance 
(Acosta-González & Fernández, 2014; Larkin & Ryan, 2008; Vasilakis et al., 2013). Applica-
tions of GP in macroeconomics have been scarce (Álvarez-Díaz & Álvarez, 2003, 2005; Chen 
et al., 2012; Duda & Szydło, 2011; Kotanchek et al., 2010; Koza, 1992; Kronberger et al., 2011; 
Marković et al., 2017). See Claveria et al. (2017) for a review of recent applications of GP in 
economics.

GP can be regarded as a generalization of genetic algorithms, which are the most popular 
type of evolutionary algorithm. This type of algorithm selects the fittest programs for repro-
duction to produce new and fitter offspring that become part of the new generation. GP ap-
plies operations analogous to natural genetic processes to an initial population of programs: 
reproduction, crossover and mutation. Operations are applied recursively, generation after 
generation. The termination criterion can be set, either when a specific program reaches a 
desired fitness level, or when a predefined number of generations is reached.

In this study, we use GP to find the relationship between a wide spectrum of expectations 
and year-on-year GDP growth rates. This approach allows deriving algebraic expressions that 
optimally combine survey expectations to monitor economic outcomes. See Figure 1 for a 
visual description of the experiment.

To implement the GP experiments, the following items must be predetermined:
1. Initial population – A random population of 70000 functions is generated, from which 

the best 10000 individuals are selected.
2. Fitness function – The mean square error (MSE) is used to assess the fitness of each 

individual.
3. Strategy for the selection of parents – The tournament method is used to guarantee 

the diversity in the population. As a result, the best two of three randomly selected 
individuals are mated.

4. Probability of a new generation – The mutation probability is set at 0.20 and the cross-
over probability at 0.75.

5. Termination criterion – A maximum of 100 generations is set.
On the assumption of having established a minimum fitness as a stopping criterion, if 

no individual reached it, the process would be repeated using the new generation as the 
population, so that the fitness of the population would improve in successive generations. 
Macias-Escobar et  al. (2019) showed the effectiveness of population evolvability to solve 
dynamic optimization problems.

During the evolutionary process there is a trade-off between the level of precision sought 
and the complexity of the structure of the resulting models. In order to achieve simple and 
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easy-to-apply functional forms: (i) we limit the arithmetic operators to elementary functions 
(addition, subtraction, product and division), and (ii) we introduce regularisation terms in 
the slope, the curvature, and the complexity of the inferred functions. See Ardia et al. (2019) 
and Hastie et al. (2017) for a justification of the need to regularise. We use the Distributed 
Evolutionary Algorithms in Python (DEAP) package developed by Fortin et al. (2012).

For each country, we compare two sources of information: annual GDP growth rates and 
responses from businesses and consumers about the expected direction of change for a wide 
variety of economic variables. First, we run the experiment for the industry survey and then 
we repeat the experiment for the consumer survey indicators. As a result, we infer two an-
alytical expressions per country: one that combines firms’ expectations to economic growth 
and, another one that combines consumers’ expectations to economic outcomes.

2. Evolved economic sentiment indicators

In this section we present the output of the GP experiments undertaken, in which the genetic 
algorithms searched the space of mathematical expressions to find patterns across survey 
variables that best tracked economic growth dynamics. We used year-on-year growth rates 
of seasonally adjusted GDP provided by Eurostat (2019) and all monthly and quarterly data 
from the EC industry and consumer surveys (see Table 1).

Figure 1. Experimental setup – Design of the GP experiment
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Table 1. Survey indicators

Industry survey indicators Consumer survey indicators

X1 Production trend observed in recent months X1 Financial situation over last 12 months

X2 Assessment of order-book levels X2 Financial situation over next 12 months

X3 Assessment of export order-book levels X3 General economic situation over last 12 months

X4 Assessment of stocks of finished products X4 General economic situation over next 12 months

X5 Production expectations for the months ahead X5 Price trends over last 12 months

X6 Price expectations for the months ahead X6 Price trends over next 12 months

X7 Employment expectations for the months ahead X7 Unemployment expectations over next 12 months

X8 Assessment of current production capacity X8 Major purchases at present

X9 New orders in recent months X9 Major purchases over next 12 months

X10 Export expectations for the months ahead X10 Savings at present

X11 Current level of capacity utilization (%) X11 Savings over next 12 months

X12 Competitive position domestic market X12 Statement on financial situation of household

X13 Competitive position inside EU X13 Intention to buy a car within the next 12 months

X14 Competitive position outside EU X14 Purchase or build a home within the next 12 
months

X15 Home improvements over the next 12 months

In both surveys, results are aggregated in balances. For the present study, all survey data 
were aggregated quarterly. The sample period goes from 2003.Q1 to 2019.Q2, but as the last 
fourteen quarters are used as the out-of-sample period to evaluate forecast accuracy, we 
estimate the SRs in the period 2003.Q1-2015.Q4.

We ran two different SR experiments for each country. In the first, we regressed GDP 
growth on the industry survey indicators to generate evolved industrial confidence indica-
tors that give estimates of firms’ expectations regarding the evolution of economic activity 
(Exp.IND). While in the second, we do the same with consumer survey indicators to infer 
evolved consumer confidence indicators that provide quantitative estimations of households’ 
economic growth expectations (Exp.CONS). The obtained evolved indicators for firms and 
consumers are displayed in Table 2.

With respect to the obtained evolved economic indicators presented in Table 2, we ob-
serve differences between the industrial and consumer confidence indicators, showing the 
former more complex structures, mostly non-linear, including ratios between the survey 
variables. Regarding the number of lags of the selected variables, these appear indistinctly 
with and without lags.

We also find that variable X5 from the industry survey (“production expectations for 
the months ahead”) is the most frequent in the evolved industry indicators, followed by the 
quarterly variable X14 (“competitive position outside EU”). Regarding consumer expecta-
tions, variables X3 (“assessment of the general economic situation over the last 12 months”), 
X4 (“expectation about the general economic situation over the next 12 months”), X7 (“un-
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employment expectations over the next 12 months”) and X9 (“major purchases over the next 
12 months”) are the variables with the highest predictive power.

Next, we compute the relative frequency with which each survey variable appears in the 
evolved indicators. Results are summarised in Figure 2. It can be seen that the frequency 
distribution of the consumer survey variables is multi-modal.

Table 2. Evolved industry and consumer confidence indicators
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Figure 2. Bar chart – Relative frequency for survey variables

Consumer survey variables
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14

0

0.1

0.2

0.3

Re
la

tiv
e 

fr
eq

ue
nc

y

0

0.1

0.2

0.3

Re
la

tiv
e 

fr
eq

ue
nc

y

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X15X14

Industry survey variables



Technological and Economic Development of Economy, 2021, 27(1): 262–279 269

3. Empirical results

In this section we assess the performance of the evolved indicators in four respects. First, we 
compare the evolution over time of the expectations generated with the proposed indicators 
with those obtained with the indicators constructed by the EC. Next, we run Granger cau-
sality tests to evaluate whether the evolved expectations are useful for forecasting economic 
growth. Third, we use a non-linear algorithm to compute the weights that optimally com-
bine the evolved expectations of firms and consumers to generate aggregate expectations of 
economic growth. Fourth, we evaluate the out-of-sample performance of the evolved agents’ 
expectations for several forecast horizons by comparing them to recursive AR forecasts used 
as a benchmark. Finally, we discuss the obtained results.

3.1. Assessment of the performance of the evolved indicators

First, in Figure 3 we graph the evolution over time of the obtained expectations about eco-
nomic growth of manufacturing firms and of consumers. Both expectations are generated 
with the evolved confidence indicators and are denoted respectively as Exp.IND and Exp.
CONS. We compare them with those obtained with the EC confidence indicators conve-
niently rescaled (Cof.IND and Cof.CONS).

Since the result of the evolved confidence indicators is expressed as expected annual GDP 
growth rates, we have regressed the GDP growth of each country on the different variables of 
the survey that are part of the EC confidence indicators during the in-sample period (2003.
Q1 to 2015.Q4). The OLS estimates of the weights of the components of the respective con-
fidence indicators of each country allow us scaling the EC confidence indicators so that they 
are directly comparable with the evolved confidence indicators. The last fourteen quarters 
of the sample (2016.Q1 to 2019.Q2) are used as the out-of-sample period. The vertical line 
in Figure 3 marks the beginning of the out-of-sample period (2016:Q1). We can observe 
that both indicators move closely together with GDP over the sample period, with the only 
exception of the scaled consumer confidence in the EU, which shows a poor out-of-sample 
performance.

Next, we compute the out-of-sample root mean square forecasting error (RMSFE) ob-
tained with the different confidence indicators. To test whether the reduction in accuracy is 
statistically significant, we additionally compute the Diebold-Mariano (DM) statistic of pre-
dictive accuracy (Diebold & Mariano, 1995), applying the modification proposed by Harvey 
et al. (1997). Results in Table 3 show differences between the results obtained for the industry 
and for consumers comparing predictions of two models: evolved confidence and scaled 
confidence. For the industry confidence indicators, only in Lithuania the evolved indicator 
generates significantly lower forecast errors than the scaled confidence indicators. For the 
consumer confidence indicators, evolved indicators significantly outperform the scaled con-
fidence indicators in all countries except Estonia.

By means of Granger causality, Dubinskas and Stungurienė (2010) showed that the im-
pact of the financial crisis was greater in Latvia and Estonia than in Lithuania. To comple-
ment the previous analysis, we use a Granger causality framework to measure the incremen-
tal predictive power of the evolved expectations with respect to the past values of the series 
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Figure 3. Evolution of GDP, evolved expectations and scaled confidence indicators
Notes: The black line represents the evolution of year-on-year GDP growth rates for each country, the 
grey dotted line that of firms’ and consumers’ expectations obtained with the evolved indicators (Exp.
IND and Exp.CONS), and the dashed black line that of the scaled EC confidence indicators (Cof.IND 
and Cof.CONS). The vertical line in 2016:Q1 marks the beginning of the out-of-sample period.
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to be predicted. We want to note that the use of year-on-year growth rates of GDP may 
generate autocorrelated error terms that could bias the results of the Granger causality tests. 
In Table 4 we present the F-test results for four different forecast horizons (h = 1, 2, 3 and 4 
quarters). Again, we observe notable differences between firms’ and consumers’ expectations. 
In the case of consumers’ expectations, for all forecast horizons expectations Granger-cause 
GDP growth for Lithuania and the EU, which implies that including past values of expecta-
tions improves predictions of the reference series based only on their own past values. For 
Latvia and Estonia, this is only the case for h = 2. On the contrary, consumers’ expectations 
are informed by economic growth in Estonia and Latvia, but not in Lithuania and the EU. 
Regarding firms’ expectations, we find bidirectional causality in all countries for h = 3. For 
the rest of forecast horizons we find that GDP growth informs firms’ expectations in all cases, 
but not the other way around. These results corroborate the ones obtained in the previous 
out-of-sample comparison.

Table 3. Forecast accuracy – RMSFE and DM test

Industry expectations Consumer expectations

RMSFE
DM

RMSFE
DM

Exp.IND Cof.IND Exp.CONS Cof.CONS

Estonia 1.496 1.668 0.209 Estonia 2.931 2.133 1.278
Latvia 1.193 1.117 0.077 Latvia 2.860 3.974 –3.235
Lithuania 1.570 3.303 –6.102 Lithuania 1.223 1.237 –0.218
EU 0.855 0.761 0.505 EU 0.503 3.968 –5.513

Notes: Diebold-Mariano (DM) test statistic with Newey-West estimator. Null hypothesis: the difference 
between the two competing series is non-significant. A negative sign of the statistic implies that the 
second model has bigger forecasting errors. Critical value at the 5% level: 2.145.

Table 4. Granger causality tests

Industry expectations

Exp → GDP GDP → Exp

h 1 2 3 4 1 2 3 4
Estonia 0.843 0.011 0.004 0.143 0.000 0.002 0.009 0.043
Latvia 0.324 0.009 0.033 0.045 0.002 0.000 0.000 0.001
Lithuania 0.362 0.119 0.047 0.136 0.046 0.013 0.019 0.005
EU 0.362 0.002 0.001 0.005 0.007 0.001 0.008 0.016

Consumer expectations

Estonia 0.172 0.004 0.008 0.056 0.047 0.005 0.006 0.172
Latvia 0.384 0.029 0.091 0.450 0.021 0.016 0.102 0.088
Lithuania 0.052 0.000 0.000 0.000 0.263 0.270 0.275 0.455
EU 0.002 0.000 0.000 0.000 0.285 0.246 0.214 0.192

Note: p-values of the Granger causality test for h = 1, 2, 3 and 4 quarters.



272 O. Claveria et al. A genetic programming approach for estimating economic sentiment in the Baltic ...

Finally, we combine the forecasts obtained by averaging the evolved expectations of firms 
and consumers. Gelper and Croux (2010) have shown that the ad hoc calculation of the ag-
gregation weights of the components of the European Economic Sentiment Indicator (ESI) 
constructed by the EC allows improving its predictive capacity. In order to find the relative 
weights of firms’ and consumers’ evolved expectations, we use non-linear constrained opti-
misation (Kwiatkowski, 1992). Specifically, we apply a generalised reduced gradient algorithm 
that minimises the sum of the squared forecast errors. We impose two restrictions with re-
spect to the weights: that they are not negative and that the sum of both is equal to one. The 
obtained weights are reported in Table 5. It can be seen that while for Estonia and the EU 
the weights obtained for industry expectations are higher than for consumption, in Latvia 
and Lithuania they are quite similar.

We combine evolved firms’ and consumers’ expectations by applying the relative weights 
displayed in Table 5 and generate aggregate expectations of economic growth (Exp.Agg). We 
compare the obtained expectations to recursive AR forecasts used as a benchmark for several 
forecast horizons (h = 2, 4 and 8 quarters). We use the Akaike Information Criterion (AIC) 
for model selection, considering up to a maximum of 8 lags.

We perform a recursive forecasting exercise to evaluate the predictive performance of 
the evolved expectations across agents for different time horizons. In Table 6 we present the 
results. Given that the official GDP data is usually published with a delay of around 70 days, 
expectations are compared with two-quarter ahead forecast (h = 2). As the evolved sentiment 
indicators are not re-estimated after the last in-sample period (2015.Q4), we also include 
one- and two-year ahead forecasts (h = 4 and h = 8).

Table 6. Forecast accuracy – Evolved aggregate expectations vs. AR recursive forecasts

Forecast horizon h = 2 h = 4 h = 8

RMSFE RMSFE
DM

RMSFE
DM

RMSFE
DM

Exp.Agg AR(p) AR(p) AR(p)

Estonia 1.356 1.970 –1.089 3.449 –2.352 4.285 –2.412
Latvia 1.535 1.965 –1.159 3.205 –1.713 4.158 –2.820
Lithuania 1.234 1.069 0.313 1.600 –0.711 1.825 –0.930
EU 0.568 0.448 0.901 0.728 –0.451 1.023 –0.858

Notes: Exp.Agg denote the linear combination of firms’ and consumers’ evolved expectations applying 
index tracking. Diebold-Mariano (DM) test statistic with Newey-West estimator. Null hypothesis: the 
difference between the two competing series is non-significant. A negative sign of the statistic implies 
that the second model has bigger forecasting errors. Critical value at the 5% level: 2.145.

 Table 5. Relative weights of evolved expectations

Industry expectations Consumer expectations

Estonia 0.792 0.208
Latvia 0.442 0.558
Lithuania 0.421 0.579
EU 0.631 0.369
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While for shorter horizons the evolved indicators only outperform the AR forecasts used 
as a benchmark in half of the countries, as h increases the evolved aggregate expectations 
yield lower forecast errors in all countries. These results are in line with those obtained by 
Gelper and Croux (2010), who found that alternative aggregation schemes of survey varia-
bles improved their relative forecasting performance at longer forecast horizons. Our results 
provide mixed evidence about the predictive power of survey expectations, and are in line 
with recent research. While some authors such as Lacová and Král (2015) and Breitung 
and Schmeling (2013) did not find sufficient evidence regarding the informative content of 
survey expectations, most studies offer evidence to the contrary, both for consumption in 
Chile (Acuña et al., 2020) and Indonesia (Juhro & Iyke, 2020), such as for inflation in Brazil 
and Turkey (Altug & Çakmakli, 2016) and for GDP in the EA (Claveria et al., 2007; Girardi 
et al., 2015).

3.2. Discussion

In this study, the informative content of survey expectations is analysed. On the one hand, 
we evaluate their predictive capacity, both for companies and consumers. On the other, we 
examine the role that machine learning techniques can play to generate more sophisticated 
aggregation schemes, allowing the construction of sentiment indicators with greater pre-
dictive capacity. The main contribution of the present study is threefold. First, we provide 
researchers with country-specific evolved confidence indicators that generate quantitative 
estimates of economic growth. Second, we give insight regarding the relative importance of 
the variables of the industry and the consumer surveys in the Baltic economies. Additionally, 
we provide information on the lag structure of the variables selected by the algorithm to form 
part of the evolved indicators. Finally, we evaluate the relative importance of the expectations 
of both firms and households to mirror economic growth dynamics in each country.

Some of these issues are of great importance when using qualitative survey expectations 
for economic analysis, and have been previously addressed by Gelper and Croux (2010). The 
authors used dynamic factor analysis and partial least squares to aggregate the information 
coming from the survey indicators that are used by the EC to construct the ESI. When com-
paring the alternative aggregation schemes to the ESI, the authors found that the predictive 
performance of the ESI was comparable to the both alternatives, especially for short forecast 
horizons.

In this study, we focus on the construction of country-specific data-driven sentiment 
indicators making use of all available information from the industry and the consumer sur-
veys. In spite of the different approach and the different methods used for the construction 
of sentiment indicators, we also obtain mixed evidence regarding the explanatory power 
of qualitative survey data on expectations, and observe differences across countries. When 
aggregating firms’ and consumers’ expectations, we obtain similar results in Estonia and 
Latvia for short forecast horizons, while in Lithuania the obtained results are closer to those 
obtained for the EU. Estonia and Latvia are also the countries in which aggregate expecta-
tions show a major incremental predictive power when compared to autoregressive forecasts 
of economic growth.
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Furthermore, we show the ability of GP to solve optimisation problems for economic 
analysis. This research links with previous works by Claveria et al. (2018), Duda and Szydło 
(2011) and Kotanchek et al. (2010), who made use of GP for the generation of empirical 
models used for the monitoring of the economic activity.

Regarding the implications for economic policy, we provide researchers and practition-
ers with a set of country-specific confidence indicators. The proposed indicators are very 
easily implementable, and allow transforming the qualitative expectations of companies and 
consumers into estimates of interannual GDP growth rates. Additionally, the proposed da-
ta-driven approach does not make any assumption regarding economic agents’ behaviour. 
The fact that the confidence indicators have been generated independently for businesses 
and consumers allows policy makers to obtain information on both the demand and supply 
sides of the economy.

Conclusions

The main objective of the paper is three-fold. First, we aim to provide researchers with an 
empirical modelling approach that allows generating economic sentiment indicators, which 
transform qualitative survey expectations into estimates of annual GDP growth. Second, we 
assess the predictive performance of the obtained evolved indicators, providing new evidence 
regarding the predictive capacity and the lag structure of each of the variables contained in 
the industry and the consumer surveys conducted by the European Commission (2009). 
Third, we evaluate the out-of-sample forecasting performance of agents’ expectations by 
comparing them to the official confidence indicators and to autoregressive forecasts used as 
a benchmark.

Firms’ and consumers’ expectations about the expected direction of change of a wide 
range of variables are independently evolved to derive country-specific empirical confidence 
indicators for the industry and consumers. The analysis is done for the three Baltic econo-
mies and the European Union. The methodology is based on the application of evolutionary 
algorithms that search for the optimal non-linear combination of survey expectations that 
best tracks the evolution of economic outcomes in each economy.

In order to evaluate the information content of the different variables contained in the 
surveys and their optimal lag structure, we examine the relative frequency with which they 
are selected by the algorithm for the generation of the evolved mathematical expressions. We 
find that firms’ production expectations is the variable from the industry survey most fre-
quently selected, both contemporaneously and lagged. We also observe that most questions 
of the consumer survey appear in the indicators, presenting a multi-modal distribution. The 
assessments and expectations about the general economic situation and the expectations of 
unemployment and major purchases are the variables that show the highest predictive power.

Then, we compare the out-of-sample forecast accuracy of firms’ and consumers’ evolved 
expectations to the scaled industry and consumer confidence indicators constructed by the 
European Commission. We also observe differences across countries and between industry 
and consumer expectations. For the former, only in Lithuania evolved industry confidence 
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indicators produce significantly lower forecast errors than the scaled confidence indicator, 
while for the consumer survey that is the case in Latvia and the European Union.

We evaluate the ability of the empirical confidence indicators to predict economic growth 
in each country. With this aim, we apply Granger causality tests and find that economic 
growth informs firms’ expectations in all cases, but not the other way around. Regarding con-
sumers’ expectations, for all forecast horizons, expectations Granger-cause GDP growth in 
Lithuania and the European Union, which implies that including past values of expectations 
improves predictions of the reference series based only on their own past values.

Finally, we combine firms’ and consumers’ evolved expectations to generate aggregate 
expectations using a generalised reduced gradient nonlinear algorithm that computes the 
optimal weight in each country. We assess the out-of-sample forecasting performance of 
aggregate expectations by comparing their accuracy to that of recursive autoregressive fore-
casts used as a benchmark. We find that the relative performance of aggregate expectations 
improves as the forecast horizon increases.

These findings aim to improve the forecasting potential of business and consumer survey 
data in the Baltic countries and the European Union and, provide new tools to construct in-
dicators that anticipate future demand growth for planning purposes. While we have shown 
the usefulness of genetic programming for solving optimisation problems, we want to stress 
the empirical nature of the obtained evolved expressions. Another issue derived from the 
flexibility of the data-driven approach lies in the fact that there may be multicollinearity 
between the variables of the expressions generated by the algorithms. Accordingly, an issue 
left for further research is the the design and implementation of recursive experiments to 
check the robustness of the evolved expressions.
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