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Abstract. Components procurement is a crucial process in supply chain management of the 
automobile industry. The problem is further complicated by imprecise information and discount 
policies provided by suppliers. This paper aims to develop a computational approach for assisting 
automobile components procurement with all-unit quantity discount policy and fuzzy factors, 
from potential suppliers offering different product portfolios. We propose a two-stage approach 
consisting of a DEA-TOPSIS (data envelopment analysis procedures followed with a technique 
for order preference by similarity to an ideal solution) approach for screening suppliers, and 
subsequentially a fuzzy mixed integer programming (FMIP) model with multiple objectives for 
optimizing order allocations. The DEA-TOPSIS approach integrates suppliers’ comparative per-
formance and diversity performance into an overall index that improves the ranking of potential 
suppliers, while the FMIP model features a soft time-window in delivery punctuality and an 
all-unit quantity discount function in cost. By applying it in a case of automobile components 
procurement, we show that this two-stage approach effectively supports decision makers in yield-
ing procurement plans for various components offered by many potential suppliers. This paper 
contributes to integrating multi-attribute decision analysis approach in the form of DEA cross-
evaluation with TOPSIS and FMIP model for supporting components procurement decisions. 
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Introduction

Influenced by the global financial crisis occurring in 2008, the automobile industry is facing 
unprecedented challenges (Sturgeon et al., 2013). Automobile manufacturers are confronted 
with various threats such as profit shrink, increasing risk, growth of cost and uncertain 
environments. In order to reduce the procurement risk and cut down the total cost of the 
supply chain, a large number of automobile manufacturers have begun to downscale their 
supplier base. As one of the world’s largest automobile manufacturers, Ford steadily reduced 
suppliers from 2004 to 2011, and its global production suppliers had reduced from 3300 to 
1500 (Stein, 2011). Chongqing SOKON Industry Group Stock Corporation Ltd, which is 
one of the biggest automobile manufacturers in Southwest China, has also begun to reduce 
its core suppliers recently. Most automobile manufacturing enterprises are aiming to own 
high-quality supplier base that consists of top performance suppliers. Removing the inferior 
suppliers and developing an advanced procurement approach have become the common goal 
of automobile companies (Ghadimi et al., 2017).

When automobile companies make procurement decisions, supplier screening and order 
allocation are two crucial processes to be deliberated (Ghadimi et al., 2017; Trautrims et al., 
2017). This is especially the case when there are a great number of potential suppliers. Due 
to fierce competition, automobile enterprises need to reduce their potential suppliers and 
seek high-quality candidates to form their supplier base (Stein, 2011). The performance of an 
automobile supplier at a time is usually reflected by various criteria which include product 
quality, cost, delivery, service and manufacturing technology, etc. These criteria often provide 
valuable information and reflect supplier’s performance from various perspectives (Homfeldt 
et al., 2017; Tian et al., 2017). For automotive procurement, different types of components 
apply various evaluation criteria. Engine component and sensor component, consisting of 
several sub-components, are two most important types in the supply market. The former 
contains “crankshaft”, “connecting rod”, “piston” and “oil injection nozzle”, etc., and the latter 
consists of “intake air pressure sensor”, “air flow sensor”, “oxygen sensor”, “detonation sensor”, 
etc. Suppliers at stake may offer different portfolios of components. Therefore, it is quite 
demanding for the sourcing department to conduct supplier evaluation with effectiveness 
in such cases. 

The first thing to do for automobile components procurement is supplier screening. With 
the evaluation criteria provided by automobile manufacturers, the sourcing department 
needs to apply an appropriate approach to determine which suppliers are to be selected for 
order allocation; which should be required for improvement and with reduced awards; which 
should rectify quality accordingly and their quality manager should explain the problems to 
the buyer; which should be removed from the supplier base. Drawing upon the DEA cross-
evaluation model proposed by Doyle and Green (1994), Talluri, Decampos and Hult (2013) 
utilized the DEA cross-efficiency scores as the comparative performance, and defined the 
other dimension of cross-efficiency evaluation as the diversity performance index in the con-
text of supplier base establishment. These two performance indexes were used to categorize 
suppliers into groups for supplier rationalization, but a question remains that how to rank 
the potential suppliers by the two performance indexes simultaneously.
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On top of that, order allocation among the best suppliers follows as the second task. The 
objectives are usually multiple when allocating orders, for instance, minimizing total cost, 
delivery in time, best product quality and environmental qualifications, etc. At this step, two 
facts may be encountered. Firstly, there are several uncertain factors in the procurement such 
as fuzzy demand, imprecise delivery time and inexact production capacity etc.; these uncer-
tainties are often expressed by fuzzy variables in imprecise terms, e.g. “pessimistic”, “most 
likely” and “optimistic” (Riedl et al., 2013; Zhang & Chen, 2013; Jin et al., 2014; Shadkam 
& Bijari, 2017; Niroomand et al., 2019). For converting the fuzzy information into accurate 
values to enable computational procedures, this paper integrates the fuzzy theory (Zadeh, 
1965; Bellman & Zadeh, 1970; Tiwari et al., 1987; Sakawa, 1993; Kumar et al., 2004) into the 
optimization procedures and adopts triangular fuzzy values for the uncertain variables. Sec-
ondly, the delivery objective is usually defined by a time window. In order to align delivery 
time incentive, a time-window mechanism to link delivery time with penalty was proposed 
by Ioannou, Kritikos and Prastacos (2003), and further developed by Yu and Lin (2012). The 
time-window based on a mechanism that the products will be returned when delivery time 
exceeds a certain threshold is not suitable for the automobile industry, in which rejecting 
components may interrupt production and further cause economic losses.

Discount policy is often practiced when procurement quantities are large, which requires 
optimization models to be inclusive in this regard (Jahangoshai Rezaee et al., 2017; Pascual  
et al., 2017; Ucal Sari, 2018). The discount policies include quantity discount, business vol-
ume discount and price discount. Quantity discount is the most frequently-used strategy 
which consists of all-unit quantity discount and incremental quantity discount (Corbett, 
2000; Tsai & Wang, 2010; Zhang & Chen, 2013; Ghaniabadi & Mazinani, 2017; Bohner & 
Minner, 2017; Manerba & Perboli, 2019). All-unit quantity discount involves multiple quan-
tity breaks, and buyers get a discount for every unit when the purchase quantity equals or ex-
ceeds each threshold (Wang et al., 2019), while incremental quantity discount allows buyers 
to get a discount only for extra units above predetermined thresholds (Mirzaee et al., 2018). 
Discount policy is often an important characteristic in the realistic problems of procurement 
(Cheraghalipour & Farsad, 2018; Sabouhi et at., 2018). 

This paper intends to develop an approach for components-oriented procurement of the 
automobile industry with uncertain factors and discount policy. Driven by a practical prob-
lem of automobile components procurement for Chongqing SOKON Industry Group Stock 
Corporation Ltd in China, this paper proposes a DEA-TOPSIS-FMIP approach that includes: 
(a) Supplier screening with DEA-TOPSIS procedures, where the comparative performance 
and diversity performance yielded from DEA cross-evaluation procedures are integrated with 
TOPSIS procedures into an overall performance for each supplier; (b) Allocating orders 
with FMIP optimization procedures, where fuzzy variables and all-unit discount policy are 
involved. The nature of contributions may be summarized as follows:

1) By utilizing suppliers’ comparative performance and diversity performance obtained 
from DEA cross-evaluation, and integrating them into an overall performance with 
subsequent TOPSIS procedures, the DEA-TOPSIS approach proposed in this paper 
reduces the information loss of diversity performance which is usually overlooked in 
DEA cross-evaluation, and therefore improves the evaluation of suppliers. 
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2) By introducing a piecewise function of all-unit quantity discount policy as a part of 
cost objective, the model proposed in this paper enhances the usability of the FMIP 
model in the realistic conditions, as discount policies are commonly applied due to 
market competitions. 

3) By aligning reasonable penalty in the time-window for punctuality, instead of sending 
back products when delivery is beyond time limits, this paper improves the time-
window mechanism, and makes it realistic to implement in practical settings.

The rest of this paper is organized as follows: Section 1 reviews the related literature. 
Section 2 elaborates the procedures to rank suppliers with the DEA-TOPSIS approach. Sub-
sequently, Section 3 solves the order allocation problem with all-unit quantity discount policy 
and imprecise information both in objectives and constraints, which altogether form a DEA-
TOPSIS-FMIP approach for the problem at hand. In Section 4, we apply this approach in 
an automobile procurement case of Chongqing SOKON Industry Group Stock Corporation 
Ltd in China. In Section 5, we discuss the validity of the proposed approach and the related 
sensitivity analysis. Finally, we draw our conclusions in last Section.

1. Literature review

In components procurement, supplier screening and order allocation are two important 
procedures and have attracted much attention in the literature. There are three streams of 
related studies in these regards. The first focuses on evaluating suppliers by using multicri-
teria decision analysis approaches such as DEA (Data Envelopment Analysis) and TOPSIS 
(Technique for Order Preference by Similarity to Ideal Solutions); the second relates to the 
multi-objective optimization model for order allocation with fuzzy factors, both in objectives 
and constraints; and the third deals with procurement optimization with discount policies.

As a data analysis approach, DEA was proposed by Charnes, Cooper and Rhodes (1978) 
to measure the efficiency of decision-making units where multiple input and output variables 
are involved. Doyle and Green (1994) proposed a cross-evaluation model to evaluate the 
cross-efficiency score of decision-making units for ranking alternatives. Further, Talluri, De-
campos, and Hult (2013) suggested that besides the cross-efficiency scores yielded from the 
DEA cross-evaluation, which is commonly taken as a measure for ranking alternatives, the 
diversity measure yielded from a cross-evaluation matrix shall also be useful. By using both 
the cross-efficiency scores and the diversity measure, and assuming that the optimization of 
cross-efficiency score is to be maximized while that of the diversity measure is to be mini-
mized, they classified a company’s supplier base into four categories which include superior 
performers for long-term partnerships, good overall performers for supplier development, 
niche performers for supplier development and inferior performers for pruning. Recently, 
DEA models have been quite often integrated with other methods for selecting suppliers un-
der various circumstances (Zhou et al., 2016; Jauhar & Pant, 2017; Zarbakhshnia & Jaghdani, 
2018; Park et al., 2018). 

TOPSIS is relevant because it is an effective approach for multi-attribute decision analy-
sis, since the previous steps of DEA cross-efficiency evaluation yielded two dimensions of 
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information. TOPSIS ranks a finite set of evaluation alternatives by means of their distance 
to ideal solutions (Hwang & Yoon, 1981) and has been widely applied to rank suppliers and 
remains active in recent literature (Arabzad et al., 2015; Freeman & Chen, 2015; Wu, 2015; 
Saradhi et al., 2016; Stević et al., 2016; Yang et al., 2017; Bai & Sarkis, 2018).

For order allocation, Amid et al. (2006) adopted a fuzzy multiple objectives program-
ming (FMOP) model and further constructed a model considering price breaks in Amid 
et al. (2009). Later, this FMOP model was extended and applied to more sophisticated pro-
curements. For instance, Yu and Lin (2012) introduced a soft time window mechanism in 
the delivery function of the model; Nazari-Shirkouhi et al. (2013) proposed an interactive 
two-phase fuzzy multi-objective linear programming (FMOLP) model to solve the sourcing 
problem under multi-products and multi-prices; Keshavarz Ghorabaee et al. (2017) proposed 
a new multi-criteria model with environmental considerations for supplier evaluation and 
order allocation; and Bodaghi et al. (2018) further developed the FMOP model considering 
customer order scheduling for order-oriented manufacturing supply chain. 

The literature on sellers’ discount policies is further related to our study. To adapt to the 
realistic circumstances, Tsai and Wang (2010) assumed that each supplier offers discount 
policies, and solved the order allocation problem with incremental discount policy as well 
as all-unit discount policy by using mixed integer linear programming (MILP) formulations. 
Zhang and Chen (2013) formulated the model with uncertain demand, quantity discounts 
and fixed selection costs, by using a mixed integer programming (MIP) model. As in all-unit 
discount policy setting, the MILP model can only solve small-sized instances with effective-
ness, Ghaniabadi and Mazinani (2017) proposed a recursive formulation of the MILP model 
with much improved computational efficiency, even if all candidate suppliers offer discount 
policies.

We may define the gap that this paper aims to fill by acknowledging that the existing 
researches in the literature have not properly solved procurement problems when diversity 
measure, discount policy and fuzzy factors are at hand simultaneously. Given the fact that 
the procurer evaluates the performance of suppliers completely based on component objects, 
instead of supply companies, a multiple products procurement plan is indeed calling for a 
parallel solution for multiple items but with single item models. The benefits of the proposed 
DEA-TOPSIS-FMIP approach are that it picks up the lost information of diversity perfor-
mance besides DEA cross-efficiency scores, which improves suppliers ranking practice; as 
a subsequent process, it improves the usability of order allocation model with realistically 
aligned time-window mechanism and solves order optimization with piece-wise functions 
for discount policies and imprecise information, especially for the case of automobile compo-
nents procurement. Table 1 summarizes the literature and positions this paper by comparing 
it with available papers. 

It is worthy to be reiterated that the proposed model is a single-item mathematical model, 
but applied for multiple items independently, due to the nature of the procurement decision 
at hand is component-based or item-to-item. The SI/MI criterion for the other papers in 
Table 1 are all based on their mathematical formulation.

Therefore, the added values of the proposed approach are that: (1) The DEA-TOPSIS ap-
proach successfully integrates the comparative performance and diversity performance of the 
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potential suppliers into an overall performance, which contains more complete information 
and further represents more valuable supplier rankings and categories for decision makers; 
(2) Integrating the all-unit quantity discount policy and fuzzy factors into the FMIP model 
enables the usability of the model in practical circumstances; (3) By mixing the DEA-TOPSIS 
approach and the FMIP model, the procurement problem is appropriately solved with the 
coexistence of various components, enormous potential suppliers, all-unit quantity discount, 
fuzzy information and complex evaluation criteria. 

Table 1. Relevant literature and contributions on procurements

Authors Objectives Techniques Discount
Model 

Specifications CS/NE
SE SOA Item

Tsai and 
Wang (2010)

Total cost, 
Quality, Late 
deliveries

MILP Price discount 
* MI NE

Razmi and 
Maghool 
(2010)

Purchasing cost, 
Total value of 
purchasing

Fuzzy bi-
objective model, 
e-constraint 
and Tchebycheff 
method

All-unit 
quantity
Discount,
Incremental 
quantity 
discount,
Total business 
volume discount

* MI NE

Yu and Lin 
(2012)

Total product 
cost,
Product quality,
Delivery penalty

FMOP, Time 
window * MI NE

Zhang and 
Chen (2013)

Total cost MIP All-unit 
quantity
discount

* SI NE

Nazari-
Shirkouhi 
(2013)

Total purchasing 
and ordering 
costs, Rejected 
items, Late 
delivered items

FMOLP Quantity 
discount

* MI NE

Memon et al. 
(2015)

Total cost, Lead 
time, Quality 
level, Logistics 
system quality, 
Delivery level, 
Sustainability level

Chance-
constrained goal 
programming * * SI NE

Mazdeh et al. 
(2015)

Total cost Mixed-integer 
non-linear 
model

All-unit 
quantity 
discount,
Incremental 
quantity 
discount

* SI NE
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Authors Objectives Techniques Discount
Model 

Specifications CS/NE
SE SOA Item

Arabzad et al. 
(2015)

Aggregated 
weighted value 
from SWOT 
analysis

Fuzzy TOPSIS, 
MILP * * MI CS

Ayhan and 
Kilic (2015)

Total supplier 
score

Fuzzy AHP, 
MILP 

All-unit 
quantity 
discount

* * MI CS

Jadidi et al.
(2015)

Purchasing cost, 
Rejects, Late 
deliveries

Multi-
choice goal 
programming 

* SI NE

Taleizadeh 
et al.
(2015)

Cost, Profit Extended EOQ 
model

Incremental 
quantity 
discount

* SI NE

Aktin and 
Gergin (2016)

Cost, Total 
weighted triple-
bottom-line score, 
Effects of order 
splitting

Analytic 
network process 
(AHP), MILP * * MI CS

Gupta et al. 
(2016)

Cost, Quality, 
Delivery, 
Comprehensive 
vendor
performance score

Analytic 
network 
process (AHP), 
FMOILP

All-unit 
quantity
discount * * MI CS

Hamdan and 
Cheaitou 
(2017a)

Total cost of 
purchasing, 
Total value of 
purchasing

Fuzzy TOPSIS 
and AHP, 
Bi-objective 
integer linear 
programming 

All-unit 
quantity 
discount * * SI NE

Hamdan and 
Cheaitou 
(2017b)

Total green value 
of purchasing, 
Total cost of 
purchasing

Fuzzy TOPSIS, 
Bi-objective 
optimization 
model

Incremental 
quantity 
discount * * SI NE

Bohner and 
Minner 
(2017)

Total expected 
costs

MILP All-unit 
quantity
discount, 
Incremental 
quantity 
discount,
Business volume 
discount

* MI NE

Keshavarz 
Ghorabaee 
et al. (2017)

Total positive 
score of suppliers, 
Total negative 
score of suppliers, 
Total purchasing 
cost

Type-2 fuzzy 
sets,
EDAS, FMOP * * SI NE

Continue of Table 1
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Authors Objectives Techniques Discount
Model 

Specifications CS/NE
SE SOA Item

Cheragh-
alipour and 
Farsad (2018)

Total cost, Total 
weighted scores of 
suppliers

Best worst 
method, 
MILP, Revised 
multi-
choice goal 
programming 

All-unit 
quantity
discount, 
Incremental 
quantity 
discount

* * MI CS

Mirzaee et al. 
(2018)

Total cost, Value
of purchasing

MILP, 
Preemptive 
fuzzy goal 
programming 
model

Incremental 
quantity 
discount * MI NE

Moheb-
Alizadeh and 
Handfield 
(2019)

Cost, CO2 
emission, Social 
responsibility

DEA, MILP, 
e- constraint 
method

Price discount

* * MI CS

This paper Total purchasing 
cost, Unqualified 
auto-parts,
Delivery penalty

DEA-TOPSIS-
FMIP, 
Improved time 
window 

All-unit 
quantity
discounts * * SI CS

Note: S – Suppliers evaluation; SOA – Supplier selection and order allocation; CS – Case study; NE – 
Numerical example; MI – Multiple items; SI – Single item; SWOT – Strengths, weaknesses, opportu-
nities and threats; EDAS – Evaluation based on distance from average solution.

2. Supplier screening with the DEA-TOPSIS approach

We adopt the DEA-TOPSIS approach to screen suppliers. Considering that potential sup-
pliers provide different portfolios of components, each with heterogenous qualifications, we 
therefore group them by components, so as to evaluate the suppliers in a product-oriented 
setting, i.e., the proposed model will be applied for each component separately. The evalua-
tion criteria include quality, service, technology and cost, and their scoring are determined 
by expert panels. Experts are selected from several departments of a company. For quality 
evaluation, experts are from the quality department. For service and cost evaluation, experts 
are from the procurement department. For technology evaluation, experts are from the tech-
nical department. Scoring is based on a predefined evaluation template.

The procedures of the approach are as follows:

Step 1. Define the input and output criteria for DEA cross-efficiency evaluation. The input 
criteria represent supplier capabilities and the output criteria represent supplier perfor-
mance. The criteria of sensor components and engine components for the DEA approach 
are shown in Table 2 and Table 3 respectively.

End of Table 1
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Table 2. Input and output criteria of suppliers for sensor components

Inputs (supplier capabilities) Outputs (supplier performance)

Ability to complete production plan (S1)
Timely response in the supply chain (S2)

Product development schedule (T2) 
Technological advance (T3)

Quality certification system (Q1) On-time delivery and service (S3)
Cost control ability (C1) Price superiority (C2)
Ability to exploit new products (T1) Random inspection of products (Q3)
Product rectification capability (Q2)

Note: Q – quality; S – service; T – technology; C – cost.

Table 3. Input and output criteria of suppliers for engine components

Inputs (supplier capabilities) Outputs (supplier performance)

Ability to complete production plan (S1*) 
Capacity flexibility (S2*) 
Ability to reach the ISO standards (Q1*)

After-sales claim in three months 
(Q3*) 
On-time delivery and service (S3*)

Cost control ability (C1*) Price superiority (C2*)
Ability to optimize products (T1*) 
Security and information system (Q2*)

Guarantee for after-sales (S4*)
Contract execution cost (C3*)

Note: Q – quality; S – service; T – technology; C – cost.

Step 2. Expert evaluation. Decision makers give the weights for all the criteria. Assume 
that Yi, 1,2,...,6i =  are the weights for the input criteria, dj, 1,2,...,5j =  are the weights for 
the output criteria. Experts score each of the criteria, and produce evaluation data at first. 
These include evaluations on the input variables ki, and that on the output variables kj, 

 [0, ]i ik ∈ Y , [0, ] j jk ∈ d .

Step 3. Transform original evaluation scores. To adapt the data for the DEA model formu-
lations, we transform the evaluation data of input variables by using:

 '   ( 1,2,...,6)i i i ik = Y − k = . (1)

In Eq. (1), ' , 1,2,...,6i ik =  stand for the transformed data for inputs. In order to avoid 
zero value in the dominator of the DEA model, we set the data range as [1, 2]. The input and 
output data are normalized by 

 

'

' '

' min

max min
1    ( 1,2,...,6)i i

i
i i

i
k − k

α = + =
k − k

; (2)

 

min

max min
1    ( 1,2,...,5) j j

j
j j

j
k − k

β = + =
k − k

. (3)

In Eq. (2) and Eq. (3), 'min
ik  and 'max

ik  represent the minimum and maximum values for 
the transformed input data, min

jk  and max
jk  represent the minimum and maximum values 

accordingly for the original output data,  ( 1,2,...,6)i iα =  stand for the normalized values of 
the input criteria,  ( 1,2,...,5)j jβ =  stand for the normalized values of the output criteria.



320 J. Chen et al. Automobile components procurement using a DEA-TOPSIS-FMIP approach ...

Step 4. Calculate the self-assessment efficiency value for each supplier (Charnes et al., 
1978). The optimal self-assessment efficiency *

kkE  can be obtained by:
 

 

Maximize 

1 

. . 1  Supplier ,

      

, 0

     kk ky ky
y

kx kx
x

sy kyy

sx kxx
ky kx

E O v

I u

O v
s t s

I u
v u

=

 =


 ≤ ∀

 ≥


∑
∑
∑
∑

  (4)

where Ekk represents the relative productivity measure of the supplier k from itself, Oky stands 
for the output y of the supplier k, Osy stands for the output y of the supplier s, Isx represents 
the input x of the supplier s, Ikx represents the input x of the supplier k, vky stands for the 
weight of the supplier k for the output y, ukx stands for the weight of the supplier k for the 
input x. 

Step 5. Conduct cross-efficiency evaluation by using the model of Doyle and Green (1994), 
where *

kkE  denotes the optimal self-assessment efficiency, * kyv  and *
kxu  represent the op-

timal weights:

 

*

Minimize

1

0
. . .

1  Supplier

,

 

0

ky sy
y s k

kx sx
x s k

ky ky kk kx kx
y x

sy kyy

sx k

ky

x

kx
x

v O

u I

O v E I u
s t

O v
s k

I u
v u

≠

≠

 
 
 
 

  
   =

   
− =




 ≤ ∀

 ≥

≠



∑ ∑

∑ ∑
∑ ∑
∑
∑

  (5)

Based on * kyv  and *
kxu  obtained by the model (5), the cross-efficiency Eks can be calcu-

lated by Eq. (6). The productivity measure of DEA (Doyle & Green, 1994) is represented as 
follows:

 
sy kyy

ks
sx kxx

O v
E

I u
=
∑
∑

 , (6)

where Eks represents the relative productivity measure of the supplier s from the supplier k.

Step 6. Obtain the cross-efficiency matrix (CEM) by using *  ( 1,2,..., )kkE k n=  as the diago-
nal elements and  ( , 1,2,..., )ksE k s n=  as the other elements. Thus, we calculate the diversity 
performance  ( 1,2,..., )ka k n=  and the comparative performance  ( 1,2,..., )ke k n=  of CEM: 
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1  ( , 1,2,..., )
1k ks

s k

a E k s n
n ≠

= =
− ∑ ; (7)

 

1  ( , 1,2,..., )
1k sk

s k

e E k s n
n ≠

= =
− ∑ , (8)

where ak represents the average efficiency values of the supplier k rating the other suppliers; 
ek represents the average efficiency values of the supplier k rated from the other suppliers.

Step 7. Assign weights for the two attributes ek and ak by decision makers. We set w1 as 
the weight of ek, w2 as the weight of ak, h as a parameter controlling the component type. 
The values of w1 and w2 can be calculated by the following equations. Here, r1 and r2 are 
the weights for ek obtained from the decision makers.

 

1
1

2

,  if  1 ;,   2
rw r E

h ==  h =
  (9)

                                                      2 11w w= − . (10)

In Eq. (9) and Eq. (10), if the component belongs to sensor, then h is equal to 1; if the 
component belongs to engine, then h is equal to 2. 

Step 8. Construct the weighted matrix v. To prepare the two-dimensional data yielded from 
the previous steps, and integrate them for ranking suppliers with the TOPSIS method, we 
build and normalize the weighted matrix v as below:

 

1 1
1 2

2 2

1 1

2 2
1 2

2 2

1 1

1 2

2 2

1 1

       

       

         ...                     ...           

       

n n

k k
k k

n n

k k
k k

n n
n n

k k
k k

e a
w w

e a

e a
w w

v e a

e a
w w

e a

= =

= =

= =

 
 
 
 
 
 
 
 =  
 
 
 
 
 
 
  

∑ ∑

∑ ∑

∑ ∑

. (11)

Step 9. Construct ideal solutions. According to Talluri, Decampos, and Hult (2013), ek is a 
benefit attribute and ak is a cost attribute. Therefore, we adopt the following equations to 
construct the optimal ideal solution jv+  and the negative ideal solution jv−  regarding the 
two performance dimensions:

 
{ } { }max (1 )minj ij ijii

v v v+ = l + −l ; (12)

 
{ } { }min (1 )maxj ij iji i

v v v− = l + −l , (13)

where l is used to control the type of the attribute, we set l to 1 for the attribute ek and set 
l to 0 for the attribute ak.
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Step 10. Calculate the overall performance for each supplier according to their relative 
distances to the ideal solutions. The larger the overall performance is, the better the sup-
plier is preferred: 

 

2
2

1*
2 2

2 2

1 1

(  )  

    ( 1,2,..., ).

( )  ( )  

ij j
j

i

ij j ij j
j j

v v

c i n

v v v v

−

=

+ −

= =

−

= =

− + −

∑

∑ ∑
 (14)

3. Allocating orders by a FMIP model with multiple  
objectives under all-unit quantity discount

According to the evaluation result obtained in Section 3, we select the top M suppliers as can-
didates for each automobile component. The subsequent procedures are designed to search 
for optimal order allocations among these screened candidate suppliers for each compo-
nent respectively. Total cost, quality and delivery are selected as the optimized objectives 
for establishing the model, and demand constraints, capacity constraints and delivery time 
constraints are considered in the model. Decision makers define the upper limit number of 
selected suppliers for the order allocations and the weights for the objectives and constraints 
for each component. As the discount policy and delivery penalty are involved, we build a 
fuzzy mixed integer programming (FMIP) model with multiple objectives, all-unit quantity 
discount piecewise function as well as an improved soft time-window to find optimal order 
allocations. The decision variables and parameters of the model are given as follows:

Decision variables:
Xj – Orders distributed to supplier j.
Yj – 0–1 variable determined by whether a component is supplied by supplier j (j = 1 if sup-
plied; j = 0 if not supplied).

Parameters:
Aj – All-unit quantity discount coefficient provided by supplier j.
Cj – Unit variable cost of a component provided by supplier j.
Acj – Variable cost of a component provided by supplier j under all-unit quantity discount.
Fj – Fixed cost if purchased from supplier j.
qj – Defect rate of the component provided by supplier j.
pj – Unit penalty if a component provided by supplier j is not delivered on time.
lj – Lead time for a component delivered by supplier j.
V – Earliest delivery date (EDD).
L – Latest delivery date (LDD).
LV – Lower bound for the EDD.
UL – Upper bound for the LDD.
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PV – Penalty rate if delivery time is between LV and V.
PL – Penalty rate if delivery time is between L and UL.
Pl – Penalty rate if delivery time is before LV.
Ph – Penalty rate if delivery time is after UL.
Caj – Capacity of supplier j.
Minj The minimum order quantities if purchased from supplier j.
D – Demand of the component.
m – Number of candidate suppliers.
W – Upper limit of selected suppliers.

Firstly, we formulate a segmented all-unit quantity discount function shown as follows: 

 

          
          

        
0           

j j j

j j j j
j

j j j j

j j

U if X J
T if J X H

A M if H X G
if G X

≥
 ≥ ≥=  ≥ ≥

≥

 , (15)

where 1,2, ,j m= … . In the all-unit quantity discount, buyers get a discount for every com-
ponent when purchase quantity equals or exceeds the thresholds Gj, Hj, Jj predefined in the 
discount policy. In the definition, the closer Aj is to zero, the smaller the discount is. Thus, a 
component gets the discounted price ( )1 j jA C− ×  where Aj varies with the purchase quantity 
intervals [Hj, Gj], [Jj, Hj], [Jj, +∞]. With the incremental quantity discount policy, buyers get 
a discount for extra components only for the purchase quantity that exceeds the thresholds, 
the coefficient Aj under this policy doesn’t vary with excess quantity or quantity range.

 Here we define four discount segments: (i) If purchase quantity is lower than Gj, then 
there is no discount provided; (ii) If purchase quantity is greater than Jj, then the discount 
coefficient is equal to Uj; (iii) If purchase quantity is between Jj and Hj, then the discount 
coefficient is Tj; (iv) If purchase quantity is between Hj and Gj, then the discount coefficient 
is Mj. Here, Uj, Tj and Mj vary from zero to one.

Given the all-unit discount policy enacted, let Acj be the discounted cost of a component 
provided by supplier j, which can be expressed as below:

 ( )1j j j jAc A C X= − × × , (16)

where, Acj will be eventually applied in the computation of total cost for component.
As cost, delivery time, demand and production capacity may be uncertain, a fuzzy mixed 

integer programming model (FMIP) for each component with multiple objectives is formu-
lated, where f1 represents the total cost, and f2 represents the unqualified items in terms of 
product quality, f3 denotes the penalty caused by the delivery schedule violation; they each 
are the summation on all selected suppliers. Thus, the FMIP model is formulated as follows:

 
( )1

1 1

Min ,
m m

j j j
j j

f X Y Ac F Y
= =

≅ +∑ ∑ ;   (17)

                                            
( )2

1

Min 
m

j j
j

f X X q
=

≅∑ ; (18)
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( )3

1

Min 
m

j j
j

f X X p
=

≅∑  (19)

                                       s.t. 

( )
=

− ≥∑ 

1

1 ;
m

j j
j

X q D  (20)

, j j jX Y Ca j≤ ∀ ;  (21)

Min , j j jX Y j≥ ∀ ; (22)

1

m

j
j

Y W
=

≤∑ ;   (23)

{ } , jY j∈ 0,1 ∀ ;  (24)

, jX j≥ 0 ∀ ,   (25)

where Eq. (17) defines the cost objective function, and the item 
1

m

j
j

Ac
=
∑  describes the total 

variable cost under all-unit discount policy, while 
1

m

j j
j

F Y
=
∑  stands for the total fixed cost. Eq. 

(18) defines the quality objective function that minimizes the total defect items and Eq. (19) 
defines the delivery objective function that minimizes the total unpunctual delivery penalty. 

For the constraints in the model, constraint (20) requires that the quantity of qualified 
components purchased from selected suppliers should meet the demand. Constraint (21) 
restricts the allocated quantity of components for supplier j not to exceed its capacity. Con-
straint (22) provides the minimum order quantity of components if purchased from the sup-
plier j. Constraint (23) enforces the upper limit number of selected suppliers. Constraint (24) 
defines the binary characteristic of the decision variables. Constraint (25) sets the purchasing 
quantity as a positive integer.

As the suppliers of automotive components are inherently heterogenous, not only in the 
aspects to be evaluated, but also in their offering of product portfolios. Yu and Lin (2012) 
have developed a model that computes the procurement proposal once for all products, by 
assuming the suppliers provide the same product portfolio, but this is the not case with our 
automotive component procurement. In such an application scene, we design the model set-
ting as such, that the model is implemented in parallel independently for each component 
using the idiosyncratic product-oriented information, which is well in match with the actual 
data generating process of a company. The procurer assumes product-oriented procurement 
decision making, no bundling sales are allowed. The optimization model runs for each item 
independently for the multiple components procurement case, as procurer evaluates the sup-
ply performance of component-item independently.

If the automobile components are delivered beyond permitted time, the supplier should 
pay penalties. Here we improve the soft time-window mechanism defined by Ioannou, Kri-
tikos, and Prastacos (2003) as follows:
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  (26)

In Eq. (26), pj represents unit penalty for non-on-time delivery for component. With the 
penalty rate given by buyers, we build up a linear relationship between the unit penalty and 
the unit variable cost. In order to avoid interruption of product line caused by non-on-time 
delivery, we use high penalty instead of rejecting components (Yu & Lin, 2012) when deliv-
ery time is before the lower bound for the EDD or after the upper bound for the LDD. The 
improved soft time-window mechanism is shown in Figure 1. If the component is delivered 
in the time period of LV and V or the time period of L and UL, suppliers should pay low pen-
alties. The suppliers will pay no penalty only if the component is delivered within V and L.

Drawing upon the algorithm of Yu and Lin (2012), we propose an interactive algorithm 
to solve the FMIP model (See Figure 2). Assume that there are P objectives and Q demand 
constraints. The steps of the algorithm are as follows:

Step 1. Use the triangular membership functions and the centroid method to defuzzicate 
the fuzzy capacity, fuzzy delivery time and fuzzy demand.

Step 2. For each of the objective functions  ( 1,2,..., )lf l P= , calculate the lower bound 
 ( 1,2,..., )lf l P− =  and the upper bound  ( 1,2,..., )lf l P+ =  separately by using the max-min 

approach (Zimmermann, 1978). Then obtain the pessimistic value  ( 1,2,..., )kD k Q− = , the 
probable value  ( 1,2,..., )kD k Q=  and the optimistic value  ( 1,2,..., )kD k Q+ =  from decision 
makers for the demand.

Step 3. Build membership functions respectively for all objective functions and fuzzy de-
mand constraints. The membership function ( ( )) ( 1,2,..., )lR f x l P=  for fuzzy objective 
functions and the membership function ( ( )) ( 1,2,..., )kR D x k Q=  for fuzzy demand con-
straints are given below: 

Due to that the three objectives are all minimization goals, the linear membership func-
tion for the fuzzy objectives is given as follows:
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 Figure 1. Soft time-window with non-on-time delivery penalties
Note: LV – Lower bound for the earliest delivery date; V – Earliest delivery date;  

L – Latest delivery date; UL – Upper bound for latest delivery date.
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The linear membership function for the fuzzy demand constraint is given as follows:
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 (28)

Step 4. Assign weight  ( 1,2,..., )l l Pρ =  for the objectives and weight  ( 1,2,..., )k k Qθ =  for the 
demand constraints from decision makers.

Step 5. Reformulate the model as a single objective model by aggregating the weighted 
achievement level (Amid et al., 2006). In formula (29),  ( 1,2, , )l l Pτ = …  stands for the 
achievement level for the objective and  ( 1,2, , )k k Qe = …  stands for the achievement level 
for the demand constraint.

                                                1 1

Max 
k Ql P

l l k k
l k

==

= =

ρ τ + θ e∑ ∑   (29)

                                            s.t.

 ( ( )),  1,2,...,l lR f x l Pτ ≤ = ; (30)

                                                ( ( )),  1,2, ,k kR D x k Qe ≤ = … ;  (31)

 Figure 2. Interactive algorithm of the FMIP model
Note: ,  1,2,...,l l Pτ = : the achievement levels for objective functions;

        ,  1,2,...,k k Qe = : the achievement levels for constraints.
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 , 0,1 ,  1,2, , ;  1,2, ,l k l P k Qτ e ∈ = … = …   ; (32)

1 1

1,  , 0
QP

l k l k
l k= =

ρ + θ = ρ θ ≥∑ ∑ . (33)

Step 6. Find the optimal solution for the single objective model.

Step 7. Judge whether the solution is acceptable for decision makers or not. If not accept-
able, go to step 4; If acceptable, then a proposed solution is obtained.

4. Case study: multiple automobile components procurement  
using an iterative single-item FMIP model

In this section, we apply the approach in the case of Chongqing SOKON Industry Group 
Stock Corporation Ltd in China. The purchasing department needs to purchase four com-
ponents including “intake air pressure sensor”, “oil injection nozzle”, “oxygen sensor” and 
“crankshaft” from plenty of potential suppliers. Oil injection nozzle and crankshaft are engine 
components, intake air pressure sensor and oxygen sensor are sensor components. There are 
thirty potential suppliers in the current supplier base providing the above four automobile 
components. The potential suppliers and the components they produce are listed in Table 4. 
Decision makers of the company want to select candidates from the company’s supplier base 
and find optimal order allocations for each of the four components.

Table 4. Potential suppliers and produced components 

Supplier Component Supplier Component

1 A B D 16 A D
2 A C 17 B C
3 A D 18 A C D
4 A B C 19 A B
5 B D 20 B D
6 A C 21 A B C
7 A B C D 22 B D
8 B C 23 A C D
9 A C D 24 A B

10 B D 25 B C D
11 A B C 26 A C
12 B C D 27 B D
13 A 28 A B C
14 B C D 29 B C D
15 B C 30 A C

Note: A – intake air pressure sensor; B – oil injection nozzle; C – oxygen sensor; D – crankshaft.
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In the rapidly-changing market, the demand for each component is hard to be precisely 
determined in some circumstances. In this case, the fuzzy demand is expressed as “pessimis-
tic”, “most likely” or “optimistic”. The purchasing manager forecasts the demand for the four 
components A to D, and assigns the values of triangular demand for them that are A (1800, 
2100, 2350), B (2250, 2450, 2600), C (1700, 2050, 2000), and D (2400, 2550, 2750) respec-
tively. The demand for each component should be satisfied and the actual purchase quantity 
should be in principle greater than the demand. 

In this case, the purchase manager wishes to select no more than two suppliers from 
candidates to allocate orders for each component. If buyers choose a supplier, the orders 
should be greater than the threshold value Minj and less than the capacity Caj. The company’s 
decision makers choose three objectives including total cost, quality and delivery time and 
also consider uncertainty factors. In order to reduce total cost and realize sales promotion, all 
the suppliers provide all-unit quantity discount. The components are required to be delivered 
in a permitted time range. If delivery time is out of the range, suppliers should pay delay 
penalties. Table 5 gives the best delivery time, time window and penalty rate. Considering 
that engine components play a more important role in automobile manufacturing, its penalty 
rate are accordingly higher than that of sensor components.

Table 5. Lead time, time window and penalty rate

Best delivery 
time (day)

Time window(day) Penalty rate

 VL V L UL PV PL Pl Ph

Sensor component 6 3 5 7 10 10% 20% 30% 40%

Engine component 6.5 4 6 7 8 20% 30% 35% 45%

4.1. Supplier screening and ranking

Potential suppliers are divided into four groups for each component. Then, the criteria 
weights are obtained for the engine components and sensor components respectively. Table 6  
and Table 7 show the weights and evaluation standards of sub-criterion for the two types of 
components. Based on these evaluation standards, experts give the original evaluation scores 
that are shown in the Appendix (Tables 22–25). Potential suppliers will be evaluated for each 
month, thus, the evaluation scores in this paper are valid only for current month. 

Table 6. Weights and evaluation criteria for sensor components

Criteria Sub-criteria Weights Details of evaluation

Quality

Quality certification 
system (Q1)

15

1. Percentage of qualified sensor components in previous 
month 
2. Whether TS16949 passed
3. Whether ISO9001 passed
4. The quality can meet the production line requirements 
5. Avoid on-line selection or returning for renovation



Technological and Economic Development of Economy, 2021, 27(2): 311–352 329

Criteria Sub-criteria Weights Details of evaluation

Quality

Component 
rectification 
capability (Q2) 10

1.The same quality problem recurred less than twice in 
previous month
2. The rectification is carried out within allowable time
3. Solve quality problems within allowable time
4. Avoid being required to stop supply

Components random 
inspection (Q3) 15

1. Percentage of qualified components from random 
inspection
2. Variation of percentage of qualified components from 
random inspection compared with previous month

Service

Ability to complete 
production plan (S1) 10

1. Arrival rate of components
2. Variation of arrival rate of components compared with 
last month

Timely response in 
the supply chain (S2) 5 1. Give a reply on time

2. Whether the reply meets requirements
On-time delivery and 
service (S3) 5 1.Return unqualified components in time

2.Deliver components within allowable time 

Tech-
nology

Ability to exploit new 
components (T1) 10

1. Quality of samples of new components 
2. Whether new components are accompanied by 
technical documents

Component 
development 
schedule (T2)

10
1. Avoid delay of component development 
2. Avoid delay of component modification 

Technological 
advance (T3)

5

1. Whether a quality technology promotion plan is put 
forward
2. Whether a cost reduction and technology upgrading 
plan is put forward
3. Implementation of technical plans

Cost

Cost control ability 
(C1) 10 1. Variation of cost control rate

2. Cost control rate less than 70%
Price superiority 
(C2) 5 1. Differential price of the same sensor components

Table 7. Weights and evaluation criteria for engine components

Criteria Sub-criteria Weights Details of evaluation

Quality

Ability to reach the 
ISO standards (Q1*) 10

1. Whether TS16949 passed
2. Whether ISO9001 passed
3. Percentage of qualified engine components in previous 
month

Security and 
information system 
(Q2*) 15

1. Avoid unqualified products caused by quality defects 
of engine components
2. Avoid production line interruption caused by quality 
defects 
3. Avoid security incidents

After-sales claim in 
three months (Q3*) 15

1. Quality assurance within three months
2. Unqualified components in three months is less than 
the quantity allowed

End of Table 6
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Criteria Sub-criteria Weights Details of evaluation

Service

Ability to complete 
production plan 
(S1*)

10
1. Arrival rate of components
2. Variation of arrival rate of components compared with 
previous month

Capacity flexibility 
(S2*) 5 1. Delivery capacity more is than 100 units at one time

Deliver and serve on 
time (S3*) 5 1. Deliver components within allowable time

2. Give a reply on time
Guarantee for after-
sales (S4*) 5 Warranty for components in three months

Tech-
nology

Ability for product 
optimization (T1*) 15 1. Carry out technical optimization programs

2. Implement technical programs

Cost

Cost control ability 
(C1*) 10 1. Variation of cost control rate

2. Cost control rate less than 65%
Price superiority 
(C2) 5 1. Differential price of the same engine components

Contract execution 
cost (C3*) 5 1.Whether procurement contracts are implemented

2. Whether there is any breach of procurement contracts

Next, we transform input scores and normalize these transformed data by using formulas 
(1)–(3) mentioned in Section 3, and then we obtain processed data for the four components 
that are shown in Table 8 to Table 11.

Table 8. Processed data of intake air pressure sensor for the DEA approach

Supplier
Input Output

S1 S2 Q1 C1 T1 Q2 T3 T2 S3 C2 Q3
1 1.5 1.1 1.0 1.9 1.0 1.2 1.8 1.7 2.0 2.0 2.0
2 1.4 1.3 1.4 1.8 1.3 1.0 1.9 1.7 1.9 1.5 1.3
3 2.0 1.7 1.1 1.9 1.5 1.9 1.3 1.4 2.0 1.7 1.6
4 1.0 2.0 1.3 1.0 1.3 1.1 1.5 2.0 2.0 2.0 1.8
6 1.5 1.0 1.2 1.8 1.6 1.1 1.0 1.3 1.2 1.3 1.2
7 1.0 1.1 1.1 1.2 1.2 1.3 1.8 1.2 1.5 1.6 1.9
9 1.4 1.3 1.3 1.9 1.7 1.9 1.3 1.7 2.0 1.9 1.0

11 1.2 1.0 1.4 1.8 1.2 1.1 2.0 2.0 1.8 1.0 1.7
13 1.4 1.2 1.1 2.0 1.1 1.3 1.7 1.4 1.0 1.6 1.4
16 1.6 1.0 1.4 1.7 2.0 2.0 1.9 1.2 1.1 1.5 1.4
18 1.9 1.1 1.0 1.8 1.1 1.1 1.8 1.6 1.4 1.4 2.0
19 1.3 1.7 1.0 1.7 1.0 1.9 1.1 1.8 1.2 1.3 1.4
21 1.6 1.0 1.3 1.5 2.0 1.1 1.8 1.1 1.4 2.0 1.5
23 1.8 1.8 1.0 1.8 1.0 1.6 1.5 1.4 1.8 1.6 1.8
24 1.4 1.0 1.1 1.8 1.4 1.7 1.9 1.0 1.4 1.7 1.2
26 1.2 1.7 1.2 1.9 1.2 1.3 1.7 1.4 2.0 1.8 1.2
28 1.1 1.3 1.1 1.5 1.2 1.4 1.6 1.3 1.7 1.8 1.5
30 1.0 1.8 2.0 1.3 1.6 1.6 1.2 1.3 1.6 1.8 1.9

End of Table 6
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Table 9. Processed data of oil injection nozzle for the DEA approach

Supplier
Input Output

S1* S2* Q1* C1* T1* Q2* Q3* S3* C2* S4* C3*
1 1.5 1.1 1.2 1.7 1.5 1.1 1.5 1.9 1.9 1.8 1.9 
4 1.0 1.3 1.5 1.0 2.0 1.1 1.6 2.0 2.0 1.7 1.8 
5 1.5 1.7 1.4 1.7 1.6 1.1 2.0 1.4 1.9 1.8 1.3 
7 1.1 1.2 1.2 1.1 1.5 1.0 1.6 1.4 1.7 1.5 1.9 
8 2.0 1.0 1.5 1.6 1.3 2.0 1.1 1.5 1.8 1.7 1.4 

10 1.4 1.1 1.7 1.5 1.2 1.0 2.0 1.1 1.6 1.5 2.0 
11 1.2 1.6 1.5 1.5 1.5 1.0 1.0 1.8 1.0 1.0 1.6 
12 1.5 1.9 1.6 1.8 1.9 1.4 1.5 1.3 1.4 1.9 1.7 
14 1.6 1.1 1.3 1.2 1.4 1.4 1.4 1.1 1.3 1.8 1.4 
15 1.4 1.5 1.3 1.6 1.7 1.2 1.7 1.5 1.8 1.5 1.3 
17 1.8 2.0 1.5 1.7 1.8 1.7 1.5 1.1 1.3 1.4 1.4 
19 1.3 1.7 1.0 1.5 1.5 1.0 1.9 1.1 1.3 1.6 1.8 
20 1.4 1.1 1.0 1.5 1.0 1.1 1.9 1.7 1.3 1.7 1.1 
21 1.6 1.1 1.8 1.4 1.3 1.2 1.8 1.3 2.0 1.7 1.2 
22 1.6 1.3 1.5 1.7 1.8 1.1 2.0 1.4 1.6 1.3 1.0 
24 1.4 1.1 1.1 1.7 1.5 1.7 1.1 1.3 1.7 1.6 1.8 
25 1.7 1.2 1.1 1.6 1.2 2.0 1.9 1.0 1.1 1.2 1.2 
27 1.1 1.6 2.0 1.5 1.7 1.1 1.8 1.1 1.8 1.5 1.5 
28 1.1 1.1 1.6 1.4 1.7 1.1 1.5 1.6 1.8 1.6 1.3 
29 1.1 1.1 1.5 2.0 1.6 1.4 2.0 1.1 1.3 2.0 1.4 

Table 10. Processed data of oxygen sensor for the DEA approach

Supplier
Input Output

S1 S2 Q1 C1 T1 Q2 T3 T2 S3 C2 Q3
2 1.5 1.3 1.3 1.8 1.3 1.0 1.9 1.7 1.8 1.3 1.8 
4 1.1 1.9 1.2 1.0 1.2 1.0 1.8 2.0 2.0 2.0 1.9 
6 1.5 1.1 1.2 1.8 1.4 1.1 1.3 1.2 1.0 1.1 1.8 
7 1.0 1.2 1.1 1.1 1.1 1.1 2.0 1.2 1.5 1.7 2.0 
8 2.0 1.0 2.0 1.6 1.7 2.0 1.0 1.3 1.5 1.7 1.9 
9 1.4 1.3 1.2 1.8 1.4 1.5 1.7 1.8 2.0 1.8 1.7 

11 1.2 1.1 1.3 1.6 1.1 1.0 2.0 2.0 1.9 1.0 1.9 
12 1.4 1.8 1.4 1.8 1.3 1.4 1.7 1.3 1.3 1.3 1.0 
14 1.5 1.0 1.5 1.3 2.0 1.5 2.0 1.7 1.1 1.2 1.9 
15 1.4 1.0 1.3 1.6 1.3 1.2 1.0 1.8 1.5 1.7 1.9 
17 1.8 2.0 1.4 1.8 1.3 1.8 1.1 1.5 1.1 1.2 1.8 
18 1.9 1.1 1.0 1.7 1.0 1.0 2.0 1.6 1.2 1.4 2.0 
21 1.6 1.1 1.2 1.3 1.6 1.1 2.0 1.1 1.4 1.8 1.8 
23 1.9 1.9 1.0 1.8 1.0 1.4 1.6 1.3 1.7 1.4 1.9 
25 1.8 1.6 1.4 1.6 2.0 2.0 1.9 1.3 1.0 1.0 1.9 
26 1.2 1.6 1.2 1.7 1.1 1.1 1.8 1.4 2.0 1.8 1.8 
28 1.0 1.3 1.0 1.4 1.1 1.3 1.9 1.3 1.8 1.8 1.8 
29 1.2 1.0 1.8 2.0 2.0 1.4 1.4 1.0 1.1 1.2 1.8 
30 1.0 1.9 1.8 1.2 1.4 1.4 1.6 1.2 1.5 1.8 2.0 
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Table 11. Processed data of crankshaft for the DEA approach

Supplier
Input Output

S1* S2* Q1* C1* T1* Q2* Q3* S3* C2* S4* C3*

1 1.5 1.0 1.2 1.7 1.6 1.1 1.5 2.0 2.0 2.0 1.8 
3 2.0 1.8 1.1 1.7 1.7 1.6 1.8 2.0 1.6 2.0 1.5 
5 1.4 2.0 1.5 1.7 1.7 1.1 2.0 1.5 2.0 1.9 1.2 
7 1.0 1.0 1.2 1.0 1.6 1.0 1.6 1.5 1.7 1.7 1.9 
9 1.3 1.5 1.3 1.7 1.6 1.3 1.0 2.0 1.9 1.6 1.4 

10 1.3 1.1 1.8 1.4 1.3 1.0 2.0 1.1 1.5 1.6 2.0 
12 1.4 2.0 1.6 1.8 2.0 1.4 1.5 1.3 1.5 2.0 1.7 
14 1.5 1.1 1.3 1.1 1.5 1.4 1.4 1.3 1.1 1.9 1.5 
16 1.6 1.1 1.7 1.6 1.6 1.0 1.0 1.0 1.5 1.6 1.0 
18 1.8 1.2 1.1 1.7 1.5 1.1 2.0 1.3 1.4 1.0 1.2 
20 1.3 1.0 1.0 1.5 1.0 1.1 1.9 1.8 1.2 1.8 1.2 
22 1.6 1.3 1.6 1.7 2.0 1.1 1.9 1.5 1.5 1.4 1.1 
23 1.8 1.7 1.1 1.7 1.3 1.4 1.8 1.7 1.5 1.7 1.6 
25 1.7 1.3 1.2 1.6 1.3 2.0 1.8 1.1 1.0 1.2 1.2 
27 1.0 1.6 2.0 1.4 1.8 1.2 1.8 1.1 1.8 1.5 1.5 
29 1.0 1.0 1.5 2.0 1.8 1.5 2.0 1.3 1.1 1.9 1.5 

We use the models (4), (5) and the formula (6) mentioned in Section 3 to obtain the cross-
efficiency matrix (CEM), and then calculate the column means and the row means of the 
CEM with the formulas (7) and (8) for each component. Here, the column means of the CEM 
represent suppliers’ comparative performance; the row means of the CEM represent suppli-
ers’ diversity performance. In the view of the company’s decision makers, candidate suppliers 
should certainly own high comparative performance and low diversity performance. The 
graphical representation for comparative performance and diversity performance of potential 
suppliers is illustrated in Figure 3 and the numerical values are given in Tables 26 to 29 in 
the Appendix. In order to screen potential suppliers, buyers wish to obtain a comprehensive 
overall performance for each supplier which simultaneously contains the two dimensions of 
performance. The weights assigned for comparative performance and diversity performance 
of sensor components and engine components are (0.4, 0.6) and (0.7, 0.3) accordingly.

Then, we build the weight matrix for the four components and use Eq. (12) and (13) in 
Section 3 to get the ideal solutions for comparative performance and diversity performance, 
the results are shown in Table 12.

Table 12. Ideal solutions for comparative performance and diversity performance

Ideal solution
Component

A B C D

jv+ (0.13,0.09) (0.20,0.04) (0.12,0.09) (0.24,0.05)

jv− (0.07,0.17) (0.11,0.08) (0.06,0.17) (0.13,0.09)

Note: A – intake air pressure sensor; B – oil injection nozzle; C – oxygen sensor; D – crankshaft.
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On top of that, we calculate the overall performance of potential suppliers for compo-
nents A to D which are shown in Table 13. According to the results, potential suppliers will 
be classified into four categories. Suppliers in the top quartile are excellent performers and 
they are considered as long-term partners; suppliers in the second quartile are qualified for 
developing similar new products but still need improvement; suppliers in the third quartile 
are suggested for delaying development of new product in the next quarter and they are 
required to make rectifications; suppliers in the bottom quartile are the worst performers 
which should be weeded out from the company’s supplier base.

In this case, the suppliers are classified into grades M1 to M4. Strategies include “encour-
agement”, “improvement”, “rectification” and “elimination” which will be carried out for the 
four grades. The management requirements and performance implications for the four grades 
are shown in Table 14.

 Figure 3. Comparative and diversity performance for the four components
Note: A – intake air pressure sensor; B – oil injection nozzle; C – oxygen sensor; D – crankshaft.
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 Table 13. Overall performance for components A to D of all potential suppliers

Suppliers
Component

A B C D

1 0.646(I) 0.834(I) – 0.789(I)

2 0.483(II) – 0.369(III) –
3 0.130(IV) – – 0.475(II)

4 0.891(I) 1(I) 1(I) –
5 – 0.477(II) – 0.488(II)

6 0.119(IV) – 0.150(IV) –
7 0.649(I) 0.860(I) 0.756(I) 1(I)

8 – 0.340(III) 0.394(III) –
9 0.073(IV) – 0.493(III) 0.430(II)

10 – 0.700(I) – 0.490(II)

11 0.708(I) 0.203(IV) 0.791(I) –
12 – 0.193(IV) 0.185(IV) 0.178(IV)

13 0.212(IV) – – –
14 – 0.381(III) 0.541(II) 0.371(III)

15 – 0.416(III) 0.603(II) –
16 0.213(III) – – 0.010(IV)

17 – 0.002(IV) 0.109(IV) –
18 0.521(II) – 0.619(II) 0.271(III)

19 0.375(II) 0.601(II) – –
20 – 0.831(I) – 0.876(I)

21 0.424(II) 0.546(II) 0.472(III) –
22 – 0.297(IV) – 0.225(IV)

23 0.301(III) – 0.424(III) 0.510(I)

24 0.298(III) 0.443(II) – –
25 – 0.158(IV) 0.010(IV) 0.037(IV)

26 0.276(III) – 0.624(II) –
27 – 0.339(III) – 0.359(III)

28 0.352(III) 0.537(II) 0.693(I) –
29 – 0.425(III) 0.130(IV) 0.371(III)

30 0.416(II) – 0.506(II) –

Note: I – Grade M1; II – Grade M2; III – Grade M3; IV – Grade M4.
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Table 14. Management requirements and performance implications for the four grades

Grade Level of 
requirements Performance implications

M1 Encouragement 1. Obtain opportunity for supply increase, and have preferential access to 
new component development 
2. Obtain opportunity for order allocations
3. Obtain opportunity for being selected as an excellent supplier in 
current year 

M2 Improvement 1. Be qualified for developing similar new products
2. Reduce awards if failing to meet the standards of grade M2 for two 
consecutive months
3. Submit a rectification report if the quality evaluation score is less than 
forty

M3 Rectification 1. Fall to M4 if the evaluation remains at M3 for three months
2. Explain the problems to the sourcing company
3.Be suggested for delaying development of new product in the next 
quarter

M4 Elimination 1. Pay evaluation management fees and explain the problems to the 
sourcing company
2. Be suggested for delaying development of new product in the next six 
months
3. Be removed if evaluation remains at M4 for three months

Table 15. Rank of potential suppliers for the components A–D

A 4 11 7 1 18 2 21 30 19 28 23 24 26 16 13 3 6 9S S S S S S S S S S S S S S S S S S> > > > > > > > > > > > > > > >>

B 4 7 1 20 10 19 21 28 5 24 29 15 14 8 27 22 11 12 25 17S S S S S S S S S S S S S S S S S S S S> > > > > > > > > > > > > > > > > > >

C 4 11 7 28 26 18 15 14 30 9 21 23 8 2 12 6 29 17 25S S S S S S S S S S S S S S S S S S S> > > > > > > > > > > > > > > > > >

D 7 20 1 23 10 5 3 9 29 14 27 18 22 12 25 16S S S S S S S S S S S S S S S S� � � � � � � � � � � � � � �

Note: A – intake air pressure sensor; B – oil injection nozzle; C – oxygen sensor; D – crankshaft.

Thus, we rank suppliers for the four components in Table 15. Decision makers decide to 
choose top four suppliers as candidates to allocate orders for each component. Then, we se-
lect suppliers 4,11,1,7 for intake air pressure sensor; suppliers 4,7,20,1 for oil injection nozzle; 
suppliers 4,11,7,28 for oxygen sensor; and suppliers 7,20,1,23 for crankshaft. 

4.2. Order allocations for candidate suppliers

In this case, decision makers wish to choose no more than two suppliers among the four 
candidates to allocate orders. The candidate suppliers give important parameters that are 
triangular fuzzy capacity for components, defect rate for the components, fixed and variable 
cost, triangular fuzzy lead times as well as all-unit quantity discounts. The values for these 
parameters are shown in Tables 30 to 34 in the Appendix.
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Then, we build the FMIP model with multiple objectives, and the steps of the algorithm 
to solve the model for each component are as follows:

Step 1. Defuzzy the triangular fuzzy values of demand, capacity and lead times. The val-
ues of defuzzification of demand for the components A to D are (2083.3, 2433.3, 1983.3, 
2567.7). The defuzzification results of lead times and capacity are shown in Table 16 and 
Table 17.

Table 16. Defuzzification of fuzzy lead times

Supplier
Delivery time

A C B D

1 7.7 – 7.7 9.3
4 8 6.3 7 –
7 6 8 6.3 8.3

11 6.7 5.7 – –
20 – – 7.7 6.7
23 – – – 6.3
28 – 7.3 – –

Table 17. Defuzzification of fuzzy capacity

Supplier
Capacity

A C B D
1 1483.3 – 1633.3 1516.7
4 1750 1516.7 1583.3 –
7 1500 1633.3 1716.7 1383.3

11 1666.7 1716.7 1783.3 –
20 – – – 1716.7
23 – – – 1933.3
28 – 1416.7 – –

Step 2. Solve a single objective function model by using the max-min approach (Zimmer-
mann, 1978) for each objective function of the model for each component. The results are 
listed in Table 18.

Table 18. Max-min objective values for the components A–D

Component
f1 f2 f3

Max Min Max Min Max Min
A 334475.4 286727.8 55.0 22.9 50705 0

B 85088.1 78470.5 13.1 10.5 6350.4 0
C 444476.6 420613.7 58.6 43.6 48256.7 7954.3
D 110494.2 100753.8 15.5 6.2 45907.6 0

Note: f1 – cost; f2 – unqualified items; f3 – delivery penalty. 
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Step 3. Build the membership functions for the fuzzy objectives and fuzzy demand con-
straints on the basis of the max-min objective values obtained in Step 2, and the graphical 
membership functions for each component are shown in Figures 4 and 5.

Step 4. Collect weights for the objectives and the constraints from the decision makers, and 
the weight values for each component are (0.15, 0.3, 0.4, 0.15).

Step 5. Reformulate the modified FMIP model as a crisp single objective model and find 
the optimal solution for each component. 

 Figure 4. Membership functions of the three objectives: (A.1–A.3): f1 to f3 for component A;  
(B.1–B.3): f1 to f3 for component B; (C.1–C.3): f1 to f3 for component C;  

(D.1–D.3): f1 to f3 for component D
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The single objective model has been solved on a Pentium (2.9 GHz) personal computer. 
The results are obtained by the branch and bound approach (Land & Doig, 1960) in LINGO 
15.0 and the order allocations for the four components are shown in Table 19 and Table 20.

Table 19. Results of the extended FMIP model for order allocations

Component
 Orders for suppliers

f values
1 2 4 7 10 11 20 28

A 0 0 447 – – 1666 – – f1 = 324115.4, f2 = 29.5, f3 = 12963.0
B 0 – 1583 862 – – 0 – f1 = 82198.5, f2 = 11.4, f3 = 0
C – – 1515 0 – 0 – 525 f1 = 425787.9, f2 = 55.9, f3 = 7969.5
D 0 – – 863 0 – 1716 – f1 = 100753.8, f2 = 11.2, f3 = 4893.2

Note: f1 – cost; f2 – unqualified items; f3 – delivery penalty. 

Table 20. Achievement levels for objectives and demand constraint

Component Cost Quality Delivery Demand Overall 

A 21.7% 79.4% 74.5% 94.5% 71.0%
B 30.4% 66.9% 100% 91.8% 78.4%
C 73.4% 17.8% 100% 81.2% 70.0%
D 100% 46.7% 89.3% 91.1% 78.4%

Figure 5. Membership functions for demand: (A) Demand for component A;  
(B) Demand for component B; (C) Demand for component C; (D) Demand for component D
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Accordingly, decision makers will select suppliers 4, 11 for component A; suppliers 4, 7 
for component B; suppliers 28, 4 for component C; suppliers 7, 20 for component D to al-
locate the orders. According to the total purchase quantities, decision makers will allocate the 
most orders to the supplier 4, the fewest orders to the supplier 28. The actual purchase quan-
tities of components A to D are (2108, 2445, 2040, 2579). We conclude that the proportion 
of purchase quantity exceeding demand for components A to D are all less than 3%, so the 
purchase quantity should not only meet the demand but also have a certain quantity surplus 
for the uncertain market. It is clear that the achievement levels for the three objectives and 
the demand constraints cannot simultaneously exceed 81% which proves that the achieve-
ment of certain objectives is at the expense of deterioration in others. Take component B for 
example, the excellent achievement of delivery is at the expense of deterioration in cost and 
quality. Meanwhile, the overall achievement levels for components A to D are all higher than 
70% which indicates that the results are certainly satisfied for the decision makers. 

5. Discussions

To validify the DEA-TOPSIS-FMIP approach, we compare the rankings and categories of 
potential suppliers for components A to D by using the DEA-TOPSIS approach with those 
by using the DEA approach only. We also conduct sensitivity analysis to examine how ob-
jective values may vary with the objective weights in the FMIP model. These are detailed in 
the following.

5.1. Comparison of the DEA-TOPSIS approach and the DEA approach alone

The purpose of this analysis is to prove that the DEA-TOPSIS approach improves the DEA 
approach alone for supplier ranking. We illustrate potential suppliers’ rankings and categories 
by these two approaches for components A to D in Figure 6, where we find that overall rank-
ings of suppliers by these two approaches are different for each component. Take suppliers 
rankings in category M1 as an example, the rankings are the same for components B and D 
but different for components A and C. As shown in Table 26, the comparative performance 
and diversity performance for suppliers 4, 11, 7, 1 of component A are (0.80, 0.82, 0.81, 
0.88) and (0.42, 0.55, 0.58, 0.60); and the rankings of suppliers for component A by the DEA 
approach and the DEA-TOPSIS approach are S1 > S11 > S7 > S4 and S4 > S11 > S7 > S1 respec-
tively. The ranking orders for supplier 1 and supplier 4 are opposite by the two approaches. 

We argue that the results by the DEA-TOPSIS approach are better informed and there-
fore more valuable than those by the DEA approach alone, because the supplier rankings by 
the DEA approach is solely based on suppliers’ comparative performance, while the DEA-
TOPSIS approach is based on the overall performances that integrate the comparative per-
formance and the diversity performance of suppliers. Figure 6 shows that the variation range 
of suppliers’ overall performance by the DEA-TOPSIS approach is much wider than by the 
DEA approach alone. This reflects that the DEA-TOPSIS approach utilizes more information 
that has effects on the results, and therefore leads to more accurate rankings and categories 
of suppliers than the DEA approach.
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Figure 6. Supplier rankings and categories for components A-D under DEA-TOPSIS  
and DEA approaches

Note: A – intake air pressure sensor; B – oil injection nozzle; C – oxygen sensor; D – crankshaft.
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5.2. Sensitivity of weights in the FMIP model

To assure the robustness of the model, we examine the effects of changing weights on the 
objective values, the analyses are made for each component separately. In order to analyze the 
influence of the different priorities of cost, quality, delivery and demand on procurement, we 
utilize four cases reflecting different priorities, i.e. weight values as in Table 21 for sensitivity 
analysis. The solutions for components A to D in these four cases are shown in Figure 7, and 
the achievement levels for demand fulfillment are shown in Figure 8. 

Figure 7. Solutions of the four cases – for the three objectives of cost, quality and delivery
Note: A – intake air pressure sensor; B – oil injection nozzle; C – oxygen sensor; D – crankshaft;  

f1 – cost; f2 – unqualified items; f3 – delivery penalty.

Table 21. Weights of objectives and demand constraints for the four cases

Case Cost Quality Delivery Demand

1 0.18 0.3 0.37 0.15
2 0.15 0.23 0.25 0.37
3 0.24 0.41 0.16 0.19
4 0.38 0.16 0.2 0.26
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Since the highest priority of delivery is assigned in Case 1, we get the lowest delivery 
delay penalties for components A to D that are 12963, 0, 7969.5 and 4893.2 (RMB) as seen 
in Figure 7. Due to the highest priority of demand obtained in Case 2, we obtain the highest 
demand achievement levels in Case 2 for components A to D that are 94.8%, 99.8%, 81.2%, 
and 91.1% as seen in Figure 8. Likewise, the best qualities are achieved in Case 3 that are 
25.5, 11.3, 55.7 and 10.2, given that the highest priority on quality is assigned in this case; 
and the lowest costs are obtained in Case 4 which are 324115.4, 82198.5, 425787.9, and 
100753.8 (RMB) for the procurement of each component accordingly. Therefore, the changes 
in objective weights priorities do not necessarily lead to the changes in the objective values 
or its achievement level.

It is worth noting that a variation in priorities of the objectives will not always result in 
a variation in the optimal solutions. For example, Case 3 and Case 4 share the same optimal 
solutions for the components A and B; meanwhile, Case 1, Case 2 and Case 4 share the same 
optimal solutions for the components C and D. 

Conclusions

This paper proposes an improved solution for automobile components procurement deci-
sion-making with fuzzy variables and all-unit quantity discount policy, posed by the case 
of Chongqing SOKON Industry Group Stock Corporation Ltd in China. It contains DEA-
TOPSIS procedures for ranking suppliers, and a subsequent FMIP approach for optimizing 
order allocations with imprecise information and piecewise functions for discount policies in 
one toolbox. The former enables the “lost” information of diversity performance yielded from 
DEA cross-evaluation to be useful, besides the commonly adopted cross-efficiency scores, 
while the latter enhances the usability of the order allocation model in realistic conditions, by 
introducing a piecewise function of all-unit quantity discount policy as a part of cost objec-
tive, as discount policies are often applied in China due to market competitions; besides, the 

Figure 8. Demand achievement levels of components A-D for four cases of priorities
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FMIP module also improves the time window mechanism, and makes it implementable in 
practice by aligning reasonable penalty in the time-window for punctuality objective. 

Thus, the DEA-TOPSIS-FMIP approach architect results in more diversified but also more 
accurate ranking for potential suppliers than the DEA approach alone, and an enhanced us-
ability for components procurement decision making in cases where discount policies and 
imprecise information in the form of fuzzy variables are related. This paper has overcome 
three limitations:

(1) Information loss of diversity performance is avoided, which improves the model. 
(2) The problem of non-computability of a time-window mechanism to send back 

products when delivery is beyond time limit, is resolved by aligning realistic penalty 
linked with cost. 

(3) The integrated architect of the model enables its usability starting from evaluation 
data for the suppliers till order allocation plans are made. 

As an outlook for future research, the presented model can be investigated or extended in 
the following directions: (1) The weights of comparative performance and diversity perfor-
mance and their influences on different types of products may be investigated, assuming that 
classical products may require more priorities on comparative performance, while innovative 
products may require more priorities on diversity performance; these may be worthy to be 
tested; (2) The prices of each component have been set fixed in this study, mechanisms on 
reaching price equilibrium between the components suppliers and automobile manufacturers 
may also add value to procurement decision-making; (3) What if inventory constraints, and 
financial dynamics are included as a part of the problem.
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APPENDIX

Data of the case

Table 22. Original inputs and outputs data for intake air pressure sensor

Supplier
Input Output

S1 S2 Q1 C1 T1 Q2 T3 T2 S3 C2 Q3
1 8.1 4.8 14.6 7.8 9.8 9.6 4.8 9.2 5 4.8 14.8
2 8.3 4.5 12.9 7.9 9.2 9.9 4.9 9 4.8 4.2 12.5
3 6.3 4.1 14.3 7.8 8.9 8.6 4.3 8.2 5 4.4 13.4
4 9.8 3.7 13.3 9.9 9.3 9.7 4.5 10 5 4.8 14.3
6 8 4.9 13.5 7.9 8.7 9.8 4 7.8 3.7 3.9 12.1
7 9.9 4.8 14 9.5 9.5 9.5 4.8 7.5 4.2 4.3 14.5
9 8.4 4.5 13.4 7.7 8.5 8.6 4.3 9.1 5 4.7 11.5

11 9.3 4.9 12.5 8.1 9.5 9.8 5 10 4.7 3.6 13.8
13 8.4 4.7 13.9 7.5 9.7 9.5 4.7 8.2 3.3 4.3 13
16 7.6 4.9 12.6 8.2 8 8.5 4.9 7.7 3.5 4.2 12.8
18 6.7 4.8 14.4 7.9 9.7 9.7 4.8 8.9 4 4.1 14.9
19 8.7 4.1 14.5 8.2 9.8 8.7 4.1 9.5 3.7 4 12.8
21 7.9 4.9 13 8.8 8 9.7 4.8 7.2 4 4.8 13.2
23 7.1 3.9 14.6 7.9 9.8 9.1 4.5 8.1 4.6 4.3 14.3
24 8.3 4.9 14.3 7.9 9.1 8.9 4.9 7 4 4.4 12.3
26 9.1 4.1 13.5 7.8 9.5 9.5 4.7 8.3 5 4.6 12.2
28 9.7 4.5 14.2 8.7 9.5 9.3 4.6 8 4.5 4.6 13.1
30 9.8 3.9 9.9 9.3 8.7 9 4.2 7.8 4.3 4.5 14.6

Table 23. Original inputs and outputs data for oil injection nozzle

Supplier
Input Output

S1* S2* Q1* C1* T1* Q2* Q3* S3* C2* S4* C3*
1 8.2 4.7 9.2 7.9 13.7 14.4 13.5 4.9 4.7 4.7 4.7
4 9.9 4.5 8.3 9.8 12.5 14.6 13.9 5 4.8 4.6 4.5
5 8.3 3.9 8.4 7.9 13.3 14.5 14.7 4.1 4.7 4.7 3.9
7 9.7 4.6 9.3 9.4 13.5 14.7 13.7 4.2 4.4 4.4 4.7
8 6.5 4.9 8.1 8 14.1 11.3 12.6 4.3 4.5 4.6 4.1

10 8.4 4.7 7.5 8.5 14.2 14.8 14.8 3.8 4.3 4.4 4.8
11 9.2 4.1 8.3 8.3 13.6 14.7 12.3 4.7 3.6 3.9 4.3
12 8.3 3.7 7.9 7.5 12.7 13.3 13.5 4 4.1 4.8 4.4
14 8 4.7 8.7 9.2 13.8 13.5 13.3 3.8 3.9 4.7 4.1
15 8.5 4.2 8.9 8.1 13.2 14.1 14.1 4.3 4.5 4.4 3.9
17 7.3 3.5 8.1 7.9 12.9 12.2 13.6 3.7 3.9 4.3 4.1
19 8.8 3.9 9.7 8.3 13.5 14.8 14.5 3.7 4 4.5 4.5
20 8.6 4.8 9.8 8.3 14.7 14.6 14.6 4.6 4 4.6 3.7
21 7.7 4.7 7.1 8.8 14.1 14.2 14.2 4 4.8 4.6 3.8
22 7.9 4.5 8.1 7.9 12.9 14.5 14.7 4.2 4.3 4.2 3.6
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Supplier
Input Output

S1* S2* Q1* C1* T1* Q2* Q3* S3* C2* S4* C3*
24 8.4 4.7 9.5 7.8 13.5 12.5 12.5 4 4.4 4.5 4.5
25 7.4 4.6 9.4 8.2 14.3 11.4 14.5 3.6 3.7 4.1 3.8
27 9.4 4.1 6.5 8.5 13.1 14.3 14.3 3.7 4.6 4.4 4.2
28 9.6 4.7 7.7 8.7 13.2 14.5 13.5 4.5 4.6 4.5 3.9
29 9.4 4.8 8.2 7 13.3 13.4 14.8 3.8 3.9 4.9 4.1

Table 24. Original inputs and outputs data for oxygen sensor

Supplier
Input Output

S1 S2 Q1 C1 T1 Q2 T3 T2 S3 C2 Q3
2 8.2 4.6 12.8 7.8 9.1 9.8 4.8 9.1 4.7 4.1 12.6
4 9.7 3.8 13.4 9.8 9.4 9.8 4.6 9.9 4.9 4.9 14.2
6 8.1 4.8 13.6 7.8 8.6 9.7 3.9 7.7 3.6 3.8 12.2
7 9.8 4.7 14.1 9.6 9.6 9.6 4.9 7.6 4.3 4.5 14.6
8 6.6 5 8.7 8.2 8 7.5 3.5 8 4.3 4.5 13.5
9 8.5 4.6 13.5 7.8 8.6 8.7 4.5 9.2 4.9 4.6 11.6

11 9.4 4.8 12.6 8.2 9.6 9.9 4.9 9.9 4.8 3.7 13.9
12 8.5 3.9 11.9 7.7 9 8.9 4.5 8 4 4.1 4.3
14 8.2 5 11.8 9.1 7 8.8 4.9 9 3.7 3.9 13.3
15 8.6 5 12.8 8.2 9 9.4 3.5 9.2 4.3 4.5 13.5
17 7.4 3.6 12.1 7.8 9 8 3.6 8.5 3.7 3.9 13
18 6.8 4.9 14.5 8 9.8 9.8 4.9 8.8 3.9 4.2 14.8
21 7.8 4.8 13.1 8.9 8.1 9.6 4.9 7.3 4.1 4.7 13.1
23 7 3.8 14.5 7.8 9.9 9 4.4 8 4.5 4.2 14.2
25 7.4 4.1 11.9 8.2 7 7.6 4.7 7.9 3.6 3.7 13.8
26 9.2 4.2 13.6 7.9 9.6 9.6 4.6 8.2 4.9 4.7 12.3
28 9.8 4.6 14.3 8.8 9.6 9.2 4.7 7.9 4.6 4.7 13.2
29 9.3 5 9.8 7.2 7 8.9 4 7 3.7 3.9 13
30 9.9 3.8 9.8 9.4 8.8 8.9 4.3 7.7 4.2 4.6 14.7

Table 25. Original inputs and outputs data for crankshaft

Supplier
Input Output

S1* S2* Q1* C1* T1* Q2* Q3* S3* C2* S4* C3*
1 8 4.9 9.1 7.8 13.6 14.5 13.6 5 4.8 4.9 4.6
3 6.4 4 9.5 7.8 13.5 12.9 14.3 5 4.4 4.9 4.2
5 8.4 3.8 8.3 7.8 13.4 14.6 14.8 4.2 4.8 4.8 3.8
7 9.6 4.9 9.4 9.6 13.6 14.8 13.8 4.3 4.5 4.6 4.8
9 8.5 4.4 8.9 7.9 13.6 13.9 12.3 5 4.7 4.5 4

10 8.5 4.8 7.4 8.6 14.3 14.9 14.9 3.7 4.2 4.5 4.9
12 8.4 3.8 7.8 7.6 12.8 13.4 13.6 3.9 4.2 4.9 4.5
14 8.1 4.8 8.9 9.3 13.9 13.6 13.4 3.9 3.8 4.8 4.2

End of Table 23
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Supplier
Input Output

S1* S2* Q1* C1* T1* Q2* Q3* S3* C2* S4* C3*

16 7.6 4.8 7.7 8.2 13.7 14.8 12.3 3.5 4.2 4.5 3.5
18 6.9 4.7 9.7 7.8 13.9 14.6 14.9 4 4.1 3.9 3.8
20 8.7 4.9 9.9 8.4 14.8 14.7 14.7 4.7 3.9 4.7 3.8
22 7.8 4.6 8 7.8 12.8 14.6 14.6 4.3 4.2 4.3 3.7
23 7.2 4.1 9.7 7.9 14.3 13.6 14.5 4.6 4.3 4.6 4.3
25 7.4 4.6 9.4 8.2 14.3 11.4 14.5 3.6 3.7 4.1 3.8
27 9.5 4.2 6.6 8.6 13.2 14.2 14.3 3.7 4.6 4.4 4.2
29 9.5 4.9 8.3 7.1 13.2 13.3 14.9 3.9 3.8 4.8 4.2

Table 26. Comparative and diversity performance for intake air pressure sensor

Supplier CP DP Supplier CP DP

1 0.88 0.60 16 0.51 0.69 
2 0.67 0.61 18 0.73 0.62 
3 0.50 0.73 19 0.55 0.62 
4 0.80 0.42 21 0.62 0.62 
6 0.49 0.73 23 0.61 0.68 
7 0.81 0.58 24 0.59 0.67 
9 0.54 0.79 26 0.64 0.71 

11 0.82 0.55 28 0.71 0.71 
13 0.63 0.76 30 0.59 0.61 

Note: CP – Comparative performance; DP – diversity performance.

Table 27. Comparative and diversity performance for oil injection nozzle

Supplier CP DP Supplier CP DP

1 0.86 0.60 17 0.48 0.81 
4 0.89 0.44 19 0.73 0.62 
5 0.69 0.73 20 0.82 0.52 
7 0.86 0.57 21 0.71 0.64 
8 0.62 0.68 22 0.61 0.77 

10 0.77 0.59 24 0.66 0.67 
11 0.56 0.73 25 0.55 0.80 
12 0.56 0.81 27 0.63 0.80 
14 0.64 0.71 28 0.72 0.73 
15 0.67 0.79 29 0.65 0.65 

Note: CP – Comparative performance; DP – diversity performance.

End of Table 25
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Table 28. Comparative and diversity performance for oxygen sensor

Supplier CP DP Supplier CP DP

2 0.73 0.78 17 0.45 0.77 
4 0.86 0.46 18 0.79 0.64 
6 0.55 0.80 21 0.70 0.68 
7 0.86 0.58 23 0.63 0.68 
8 0.57 0.66 25 0.45 0.82 
9 0.71 0.68 26 0.76 0.62 

11 0.84 0.56 28 0.83 0.61 
12 0.48 0.74 29 0.52 0.79 
14 0.65 0.62 30 0.63 0.63 
15 0.74 0.62 

Note: CP – Comparative performance; DP – diversity performance.

Table 29. Comparative and diversity performance for crankshaft

Supplier CP DP Supplier CP DP

1 0.81 0.55 16 0.48 0.79
3 0.67 0.62 18 0.59 0.70
5 0.69 0.66 20 0.85 0.51
7 0.90 0.47 22 0.58 0.80
9 0.66 0.68 23 0.70 0.70

10 0.69 0.67 25 0.48 0.76
12 0.55 0.78 27 0.61 0.59
14 0.62 0.62 29 0.62 0.60

Table 30. Triangular fuzzy capacity of suppliers for components A–D

Supplier
A C B D

P M O P M O P M O P M O

1 1350 1400 1700 – – – 1450 1600 1850 1350 1500 1700
4 1500 1750 2000 1300 1500 1750 1350 1650 1750 – – –
7 1250 1500 1750 1450 1650 1800 1500 1750 1900 1250 1400 1500

10 – – – – – – – – – – – –
11 1500 1700 1800 1550 1700 1900 – – – – – –
20 – – – – – – 1550 1800 2000 1550 1700 1900
23 – – – – – – – – – 1750 1950 2100
28 – – – 1250 1400 1600 – – – – – –

Note: P – Pessimistic; M – Most likely; O – Optimistic.



352 J. Chen et al. Automobile components procurement using a DEA-TOPSIS-FMIP approach ...

Table 31. Defect rate for the components A–D

Supplier
Defect rate for components

A C B D
1 0.05 – 0.006 0.002
4 0.01 0.03 0.005 –
7 0.039 0.025 0.004 0.003

11 0.015 0.045 – –
20 – – 0.007 0.005
23 – – – 0.008
28 – 0.02 – –

Table 32. Fixed and variable costs of components A–D

Supplier
Unit variable cost of each component (RMB)

Minj Fixed cost (RMB)
A C B D

1 173 – 35 45 45 1200
4 145 213 31 – 65 1000
7 149 219 39 42 50 1550

11 176 220 – – 55 1150
20 – – 37 40 60 1450
23 – – – 48 40 1250
28 – 230 – – 70 1350

Note: Minj – The minimum order quantities for component if purchasing from supplier j.

Table 33. Triangular fuzzy lead times for components A–D

Supplier
Delivery time

A C B D
1 (5 8 10) – (5 7 11) (6 9 13)
4 (5 7 12) (4 6 9) (4 7 10) –
7 (2 6 10) (5 7 12) (4 6 9) (4 8 13)

11 (4 6 10) (2 6 9) – –
20 – – (3 7 13) (3 7 10)
23 – – – (4 6 9)
28 – (5 6 11) – –

Table 34. All-unit quantity discounts provided by candidate suppliers

Supplier  Quantity Discounts
1 [0,1100); [1100,2200); [2200,3000); [3000,+∞) 0.0%; 7.2%; 11.5% ; 15.6%
4 [0,650); [650,1650); [1650,2600); [2600,+∞) 0.0%; 6.2%; 9.5% ; 12.2%
7 [0,1230); [1230,2230); [2230,3200); [3200,+∞) 0.0%; 8.3%; 11.4%; 15.7%

11 [0,580); [580,1580); [1580,2750) ; [2750,+∞) 0.0%; 9.0%; 12.3% ; 17.3%
20 [0,780); [780,1780); [1780,2800) ; [2800,+∞) 0.0%; 6.8%; 9.9% ; 13.3%
23 [0,728); [728,1725); [1725,2755); [2755,+∞) 0.0%; 5.6%; 7.6% ; 11.1%
28 [0,850); [850,1850); [1850,2800); [2800,+∞) 0.0%; 5.5%; 9.3%; 12.7%


