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Abstract. The complexity and speed of change in technological systems pose new challenges to tech-
nology management. Particular attention should be given to the issue of modelling the uncertainty 
of assessments and creating rules for determining the weights of the technology assessment criteria. 
The article aims to present a comprehensive hybrid technology prioritisation model based on the 
Data Envelopment Analysis and the concept of Rough Sets. The technology prioritisation process 
that uses the proposed model includes three consecutive stages: (i) the formulation of technology 
assessment matrix, (ii) the removal of the criteria redundancy based on indiscernibility relation 
defined in the Rough Set Theory, (iii) the development of rough variables and prioritisation using 
the DEA super-efficiency model. The combination of DEA and RS is a unique proposal to classify 
and rank objects based on the tabular representation of their conditional attributes under circum-
stances of uncertainty. Application of the developed hybrid model to the real data of the technology 
foresight project “NT FOR Podlaskie 2020” positively verified the assumed effects of its use. The 
obtained results allow a more objective and rational justification of the chosen technology, simplifi-
cation of interpretation and better authentication of results from the perspective of decision-makers.

Keywords: Data Envelopment Analysis (DEA), Rough Sets (RS), hybrid model, technology priori-
tisation, technology management, technology assessment.

JEL Classification: M11, O32, C61.

Introduction 

The development of the research area related to technology assessment was necessitated by 
the growing need to support the currently existing decision-making processes and actively 
shape them as desired for the future while developing a scientifically-based technology strat-
egy. In line with growing attention that is given to sustainability development in policymak-
ing (Zavadskas et al., 2019), great interest is observed in procedures and practices aimed at 
directing the future technical-social change under conditions of uncertainty and complexity 
(Weber et al., 2019). 
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A comprehensive, multidimensional analysis of advanced, interrelated technologies in 
the face of social, economic and environmental challenges such as, for example, increasing 
energy needs, social inequalities, growing global population (Nazarko, 2015), aging (Ejdys 
& Halicka, 2018), is a difficult task, but necessary to successfully manage technologies. The 
importance of the problem and its interdisciplinary nature were reflected in the development 
of very different approaches, methods and tools for technology assessment. In the literature, 
prioritisation is treated as an independent method or an element of complex models used 
for technology assessment. The aim of technology prioritisation is the unequivocal indication 
of key strategic technologies with great potential to contribute to economic development, 
to build a long-term competitive advantage, at the same time satisfying social needs and 
preserving the environment while having in mind limited investment funds and, therefore, 
rationally allocating resources (Chodakowska, 2019).

Technology prioritisation, like technology assessment, is permanently associated with 
uncertainty. The necessity to consider uncertainty particularly concerns the assessment of 
new or emerging technologies due to inaccurate or vague data, the inability to assess all 
consequences arising from the interaction between the technology, the environment and the 
society, the reliance on knowledge and subjective expert opinions. The addressed research 
problem concerned the possibility to use the hybrid model combining the Data Envelop-
ment Analysis (DEA) by Charnes, Cooper and Rhodes (1978) and Rough Set (RS) Theory 
by Pawlak (1982) methods in the process of technology prioritisation. The main issue solved 
was to determine the integration procedure to exploit the potential of methods and increase 
the objectivity of technology assessment under conditions of uncertainty. The originality 
and innovation of the approach is based on the design of integration of RS and DEA in a 
model that hasn’t been reported in the literature so far. It is a new proposal for technology 
assessment that addresses the need for multifaceted and objective assessment modelling the 
vague valuation of criteria by individual experts.

The article consists of a brief background literature review introducing and regarding the 
previous research on the subject. The second part of the article presents the methodological 
framework: DEA and the concept of Rough Sets. Then, the RS-DEA model for technology 
prioritisation is developed and discussed supported with a case study. The article finishes 
with conclusions.

1. Background literature 

1.1. Technology prioritisation in technology assessment

The development of technology assessment is associated with projects carried out in the 
late 1950s on forecasting the development of technology and their consequences. The concept 
of technology assessment itself, attributed to Daddario, was formulated in the late 1960s in 
the United States as the name used by the US Congress for researching and shaping policy 
towards technological innovations as well as supporting technology management and control 
(Porter, 1995; Nazarko, 2015). 

Later, Decker and Ladikas (2004) described technology assessment as a scientific, inter-
active, and communicative process which aims to contribute to the formation of public and po-
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litical opinion on societal aspects of science and technology. Related to technology assessment 
is the concept of science and technology studies (either: science, technology and society 
studies) – STS, which can be defined as a field of interdisciplinary, heterogeneous research 
on the relationship between scientific knowledge, technology systems and society using re-
search methods, primarily sociology, anthropology, philosophy (Roosth & Silbey, 2009). In 
addition to the technology assessment (TA) in the field of future technology management, 
technology foresight (TF) and technology forecasting have been developed, both of which 
are included in the concept of future-oriented technology assessment (FTA) (Cagnin et al., 
2013; Halicka, 2016; Nazarko, 2015). 

Recalling the most popular definitions in short, TF is a process involved in systematically 
attempting to look into the longer-term future of science, technology, the economy and society 
with the aim of identifying the areas of strategic research and the emerging generic technolo-
gies likely to yield the greatest economic and social benefits (Martin, 1995). Łunarski (2009) 
summarised technology forecasting as a formulation of anticipated directions of technology 
development and technological progress. FTA comprises technology forecasting, technology 
foresight, and technology assessment to analyse the future of technologies and their con-
sequences for effective management of technology. FTA allows to assess the current state 
of technology, to identify factors conducive to its development, to examine the impact of 
technology on the environment and the impact of the environment on technology, and also 
to predict the future of the development of implemented and emerging technologies (Porter 
et al., 2004). FTA tools enable systematic assessment of potential challenges, opportunities 
and threats to formulate long-term strategies (Sánchez-Torres & Miles, 2017). Discussions 
of differences between the approaches are subjects of works, by inter alia Halicka (2016), 
Łunarski (2009), Martin (2010), Miles (2008), Nazarko (2017). Indisputable is the acceptance 
of the importance and increasing need within technology assessment for effective technolo-
gy management from the perspective of future in the public services sector (Sokolov et al., 
2019; Sánchez-Torres & Miles, 2017) and private corporations (Pietrobelli & Puppato, 2016; 
Rohrbeck & Gemünden, 2011).

The methods and techniques which fit into the field of TFA have been the subject of many 
scientific typologies and classifications (see: Aaltonen & Sanders, 2006; Cuhls et al., 2002; 
Gordon & Glenn, 2004; J. E. Karlsen & H. Karlsen, 2013; Magruk, 2011; Miles & Keenan, 
2003; Popper, 2008; Popper & Korte, 2004; Porter, 2010; Voros, 2006). The analysed methods 
and concepts are complementary and compensate for their limitations, or duplicate tasks 
through triangulation, ensuring higher quality research. The considered methods are orig-
inal propositions or are only derivatives of other previously developed models. Despite the 
experience of using common methods, it is always worth exploring new methods of using 
information resources and a new approach to complex systems to broaden the perspective 
and authenticate the results (Porter et al., 2004). 

Prioritisation in technology assessment methods can take the form of a sorted list – a 
ranking or classification with grades according to selected criteria — rating. A review of over 
1,000 foresight studies by Popper (2009) has identified 25 methods as the most commonly 
used: morphological analysis, swot analysis, multi-criteria analysis, cross-impact/structur-
al analysis, bibliometrics, brainstorming, relevance trees, trend extrapolation/megatrends, 
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essays, gaming, role-playing, key technologies, stakeholder mapping, technology roadmap-
ping, Delphi, modelling and simulation, experts panels, citizens panels, backcasting, litera-
ture review, scenarios, environmental scanning, questionnaire/survey, workshops, interviews. 
Among them, prioritisation methods of multi-criteria analysis and key technologies can be 
considered.

Multi-criteria analysis (Multiple Criteria Decision Making – MCDM) is a large group 
of decision support methods. According to Greco, Matarazzo, and Słowiński (2001), the 
basic distinction divides methods into: functional, based on multi-attribute utility theory 
developed by Keeney and Raiffa (1976), and relational, represented in the form of an out-
ranking relation by Roy (1991) or a fuzzy relation by Fodor and Roubens (1994). Recent 
developments with an overview of MCDM model taxonomies was by presented Zavadskas 
and Turskis (2011).

The key technologies method used in technology assessment projects is not a specific cal-
culation procedure either. The implementation of the key technology method, which means 
the identification of the most important ones, in the case of multi-faceted assessment involves 
the use of some multi-criteria analysis technique. The typical approach is only two-dimen-
sional assessment with conventional functions of attractiveness – aggregating socioeconomic 
benefits, scientific and technical opportunities generated by technologies and feasibility – i.e. 
the sum of the possibilities of technology implementation, its research and technological 
potential and the potential to absorb socioeconomic benefits (Nazarko & Magruk, 2013). 
Analysed dimensions are attractiveness and the impact on competitive position (Durand, 
2003), significance and feasibility or the impact and feasibility. In general, the determination 
of the role can be done on any two-dimensional surface from the assumed aim perspective, 
e.g. by drawing the influence-dependence chart (Ejdys et al., 2016).

The DEA by Charnes, Cooper, and Rhodes (1978), proposed in the hybrid technolo-
gy prioritisation model, is sometimes indicated as an MCDM technique (Papagapiou et al., 
1997; Doyle & Green, 1993). The relations between DEA & MCDM were discussed, among 
others, by Belton and Vickers (1993), Stewart (1996), Opricovic and Tzeng (2003). DEA is 
included in the group of multi-criteria analysis methods, using a specific utility function with 
a weighted sum of grades defined by empirical reference points. The technology assessment 
using the DEA method is an analysis of its value expressed by the relation of the weighted 
sum of technology functionalities to the weighted sum of costs in relation to the assessment 
of alternative technologies. 

Regardless of the method of technology assessment, it is always associated with uncer-
tainty (Magruk, 2017). Since the basis for technology assessment is expert knowledge, it is 
equivalent to the inclusion of subjective and uncertain information for analysis. The sources 
of uncertainty are inaccurate or incomplete or unreliable data characterising the technology, 
the inability to predict and estimate all the consequences of technology development or even 
the possible lack of impartiality of experts (Chodakowska, 2019).

Many methods established to deal with the information uncertainty postulate the incor-
poration of the quantitative degree of uncertainty that allows the formalisation of reasoning 
and effective management of uncertainty. One of the most popular approaches to modelling 
uncertainty is Zadeh’s (1965) Fuzzy Set Theory and its further developments in the form 



Technological and Economic Development of Economy, 2020, 26(4): 885–906 889

of, for example, Interval-Valued Fuzzy Sets (Sambuc, 1975) and Intuitionistic Fuzzy Sets 
(Atanassov, 1983; Atanassov, 2017). Examples of approaches based on other assumptions are 
Soft Set Theory (Molodtsov, 1999) and Grey Set Theory (Ju-Long, 1982).

Included into the hybrid model Rough Sets were originally developed to deal with incon-
sistency problems of information granulations arising from a vague description of objects. 
In technology prioritisation hybrid model, the techniques of Rough Set Theory were used at 
two stages of analysis: to remove the criteria redundancy and to model uncertainty in expert 
opinions. 

1.2. RS and DEA in technology assessment

A literature review of state of the art in Rough Sets in technology assessment indicates that 
Rough Sets are mainly used as data mining technology tools. The basic applications of RS 
are reducing and eliminating redundancies in data sets, discovering relationships between 
objects, attributes and generating decision rules, assigning weights to attributes based on 
their significance and modelling linguistic uncertainty. 

As a tool to reduce the number of assessment criteria, RS was used by Wu and Lin 
(2012), who identified key factors affecting the quality of e-learning services. Ciflikli and 
Kahya-Ozyirmidokuz (2012) documented the successful reduction in the number of var-
iables considered in the quality control in production. Similarly, to eliminate correlations 
between attributes and increase data precision, RS concepts were used by Wang, Jia, and 
Wang (2015) in assessing the efficiency of coal technologies. Sharma, Dua, Singh, Kumar, 
and Prakash (2018) used Fuzzy Rough Sets in eliminating the problem of data imprecision 
and improving the efficiency of real-time calculations in energy management systems. An 
additional application of RS was the generation of decision rules in the case of unexpected, 
unclear situations.

Only in the function of decision rules induction, the RS theory utilised work by Wang, 
Chin, and Tzeng (2010) to find principles in R&D and innovation activity of high-tech en-
terprises. Jian, Liu, and Liu (2010) extracted rules for decision-makers when selecting key 
regional technologies. The problem solved by Hemert and Nijkamp (2010) with the use of 
RS was the evaluation of the role of support systems and public interventions in stimulating 
innovative initiatives and their impact on industry efficiency and competitiveness. Shiau and 
Chuen-Yu (2016) assessed the impact of a wind farm on a community. Liang and Dijk (2016) 
used RS to analyse technological and non-technological factors in the rainwater collection 
system.

Considering the use of RS in determining weights, C. Lee, H. Lee, Seol, and Park (2012) 
determined the ranges of scores in the AHP method when assessing the concept of new ser-
vices (video games). Luo and Hu (2015) based on the weights of attributes determined via 
the RS theory, proposed a model for assessing the risk of technological innovation in agri-
cultural cooperatives. Lai, Liu, and Georgiev (2016) developed a framework for assessing the 
low-carbon technology integration from a management perspective, using RS to determine 
index weights in the model. Bai and Sarkis (2017) presented a multi-criteria model for the 
assessment and selection of environmentally friendly production technology using the weight 
values of criteria defined by RS and grey statistics. In their work, He, Pang, Zhang, Jiao, and 
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Chen (2018), used the concept of RS to determine the weights in the system of indicators to 
assess the level of development of selected countries in the field of clean energy.

An example of RS in modelling language uncertainty in the field of technology assess-
ment is provided in work by Zeng et al. (2016) concerning the management of a regional 
ecosystem. 

The DEA applications in the technology analysis so far mainly concern the assessment 
of the eco-efficiency of technologies. The concept of environmental DEA is based on the 
inclusion of model variables whose increase in value is undesirable and at the same time 
impossible to eliminate (Chodakowska & Nazarko, 2017a). This advantage was used by, e.g., 
Fan, Zhang, Zhang and Peng (2015) while analysing CO2 utilisation technologies. The lev-
el of CO2 emissions was the subject of interest in research conducted by Kwon, Cho, and 
Sohn (2017) who assessed energy production from renewable sources in European countries. 
Sueyoshi and Goto (2014) analysed the environmental impact of technological innovations in 
the Japanese industrial sector. Other examples are eco-efficiency of water systems in China 
by Liu, Sun, and Xu (2013) or environmentally friendly technologies of cooling towers in 
power plants by Shabani, Saen, and Torabipour (2014).

Other identified areas of DEA applications are technology selection and technology fore-
casting mainly with the TFDEA model introduced by Anderson, Hollingsworth and Inman 
(2001). The examples of the selection between existing technologies can be found in work by 
Amin and Emrouznejad (2013) who described choice-making of robots or research carried 
out by Yu and Lee (2013) on emerging nanotechnologies. One of the recent works using the 
TFDEA model is forecasting changes in smartphones (Srivastava & Misra, 2016) or hybrid 
cars (Lim et al., 2015).

The cited studies emphasised the validity and usefulness of applying both DEA and RS. In 
the literature, the combination of Rough Sets with the DEA method is relatively unpopular 
and rarely used. The integrated approach was applied in forecasting business failures (Shuai 
& Li, 2005), supply chain performance (Xu et al., 2009), and the Japanese banking sector 
(Shiraz et al., 2016). The assessment of new technologies in the context of FTA by DEA and 
RS methods is still underexploited in relation to their capabilities.

2. Methodological framework

2.1. Data envelopment analysis

The idea of DEA came from Farrell’s (1959) concept of efficiency. He proposed a measure 
of efficiency by referencing a unit’s performance (described by inputs and outputs) to the 
production frontier or cost frontier of fully efficient, best-performing units. DEA to calculate 
the efficiency involves the linear programming to build the piecewise surface frontier over 
the data (Figure 1). 

DEA accounts for multiple inputs and outputs using the available panel data. It means 
that DEA evaluates technologies regarding potential benefits in relation to expenditure of 
implementation/development based on a weighted sum of criteria. The weights are optimally 
selected for each technology being assessed to maximise its score using linear programming 
algorithms. The final scores, specified in equation (1) as q, range from 0 to 1.
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The linear programming problem for object j, cost criteria vector: Xj = (xj1, xj2, …, xjm, 
…, xjM) and benefit criteria vector: Yj = (yj1, yj2, …, yjs,… , yjS) is defined as follows:

                                                min q,  (1)

      
1

, 1, ,
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n

j jm j m
j

x x m M
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The symbol lj represents the vector of weights specifying the intensity of the use of ref-
erence technologies characteristics in the optimal solution for technology. 

Since its introduction, the basic DEA (1) model, called CCR (Charnes et al., 1978), has 
been supplemented and modified for non-constant return to scale analysis (BCC, hybrid 
return-to-scale models) or to include the peer-evaluation (cross-efficiency models, cross-effi-
ciency profiling). An interesting extension is network DEA models that allow the assessment 
of multi-stage processes (Chodakowska & Nazarko, 2017b). From the point of view of the 
use of DEA for technology prioritisation, it seems justified to use super-efficiency models 
(SE-DEA) that provide discrimination among efficient technologies because they do not limit 
the maximum result to 1. 

From DEA features and analytical capacities, the RS-DEA hybrid approach employed SE-
DEA linear programming task to determine the weight of criteria and the DEA definition of 
efficiency to create the synthetic assessment.

Figure 1. DEA concept
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2.2. Rough sets

The Rough Set Theory, introduced by Pawlak (1982), is a mathematical approach to vague-
ness and uncertainty. The RS approach hinges on the concept of lower and upper approxima-
tions of a set (Figure 2). 

The Rough Set Theory is founded on the assumption that each object t in non-empty, 
finite set U is associated with some information – attributes a(t). An object characterised 
by the same values of attributes is indiscernible, given the available information (Pawlak & 
Skowron, 2007). The indiscernibility relation allows identifying objects with the same prop-
erties that can be treated as identical or similar. This relation on the set of technology U, and 
the subset of attributes (criteria) B, for B ⊆ A, is defined as:

 ( ) ( ) ( ) ( ){ }2, :  .
a B

IND B t t U a t a t
∈

= =′ ′∧  (2)

The attribute a is dispensable (dependent) in C ⊆ 𝐴, and a ⊆ C is true: 

 IND(C) = IND(C – {a}). (3)

A set of attributes 𝐵 is indispensable (independent) if, for each a ⊆ B, a is indispensable. 
The set B ⊆ A is called the reduct – RED(B), if B is independent in A and IND(B) = IND(A). 
The CORE is the set that consists of those attributes which are members of all reducts (in-
tersection of reducts): 
 CORE(B) = ∩RED(B). (4) 

The hybrid RS-DEA model uses the idea of reducts to limit the number of criteria and 
the approximation of the set to deal with uncertain values characterising technology.

The hybrid model adopts the concept of rough variable ξ (Liu, 2004) to include uncer-
tainty:
 ( ), , ,a b c dξ =        , for c a b d≤ < ≤ . (5)

Figure 2. Rough set
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For the given rough variable ξ and (0,1α∈  , the α-optimistic value and α-pessimistic 
value could be defined as (Tohidi & Valizadeh, 2011):
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Using the dependencies is the possibility of converting the approximate variable into the 
range: ( ) ( ),sup inf ξ α ξ α   for 0.5 1≤ α ≤  and ( ) ( ),inf sup ξ α ξ α   for 0 0.5< α ≤ . 

The presented relationships are used in the construction of the hybrid model to consider 
inconsistencies and contradictions of expert assessments.

3. Development of an RS-DEA model for technology assessment

Using the hybrid model, the technology prioritisation process assumes the implementation 
of standard first stages of technology assessment projects: the definition of study objectives 
and the definition of a list of assessment criteria and technologies.

The hybrid model of technology prioritisation is applied to a filled matrix of data on 
technologies, the rows containing the values of individual technology assessment in terms 
of criteria defined in the columns:
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where: *1 2j j jm jMx x x x … …
 

 – the input vector of criteria describing the cost of 

technology development/application; *1 2j j jm jSy y y y … …
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– the output vector 
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criteria describing the benefits of technology development/application; n – the number of 
technologies considered, j = 1, 2, …, n; M* – the original number of input criteria; S* – the 
original number of output criteria. 

The matrix is a Rough Set system { }  ,  SI U A= , where U  – a universe, non-empty set 
of objects (technologies): { }1 2, ,  , nU t t t= … , A  – a non-empty set of attributes (criteria):

{ }* *1 2 1 2  ,,, ,  ,  , ,M SA a a a a a a= … … .

In the hybrid model, it is proposed to employ indiscernibility relation defined in the 
Rough Set Theory and the concept of reducts to limit the number of considered criteria and 
eliminate redundancy. That way, keeping the distinction between technologies in the set, the 
interpretation of the final assessment is simplified. 

The reduced matrix has a reduced number of inputs M, M ≤ M* and the reduced num-
ber of outputs S, S ≤ S*. The reduced matrix is the basis for modelling vague linguistic 
terms and/or inconsistencies in assessments via rough variables of inputs and outputs: 
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( ) ( ),sup inf

jm jmx xα α 
  

, ( ) ( ),sup inf
js jsy yα α 

  
. The following (9)–(12) formulas based on (6)–(7) are 

employed:

( ) ( )
( ) ( ) ( )

( ) ( ) ( )( )
( ) ( )

( )

1 2 2 ,         if 0
2

2
2 1 2 1 , if   1

2

2
, ot

;

herwise

d b
mj mjd c

mj mj d c
mj mj

a c
mj mjd c

mj mj d c
mj mj

d b a b d c b a d c
mj mj mj mj mj mj mj mj mj mj

b a d c
m m

sup
j

j

m

j mj mj

x

x x
x x

x x
d x x

x x
x x

x x x x x x x x x x

x x x x

α

−
− α + α ≤ α ≤

−

− −
−α + α − ≤ α ≤

−

− + −

+






−



−




−



−

−





α

    (9)

( ) ( )
( ) ( ) ( )

( ) ( ) ( )( )
( ) ( )

( )

1 2 2 ,          if 0
2

2
2 1 2 1 , if 1

2

2
, otherwise

a c
mj mjc d

mj mj d c
mj mj

b d c
mj mj mjc d

mj mj d c
mj mj

c b a a d c b a d c
mj mj mj mj mj mj mj mj mj mj

b a d c
mj mj mj mj

inf
jmx

x x
x x

x x
x x x

x x
x x

x x x x x x x x x x

x x x x

α













−
− α + α ≤ α ≤

−

+ −
−α + α − ≤ α ≤

−

α



− + − − − −

− + −

;

   

(10)



Technological and Economic Development of Economy, 2020, 26(4): 885–906 895

( ) ( )
( ) ( ) ( )
( ) ( ) ( )( )

( ) ( )

( )

1 2 2 ,            if  0  
2

2
2 1 2 1 ,   if   1

2

2
,  otherwise

d b
sj sjd c

sj sj d c
sj sj

d a c
sj sj sjd c

sj sj d c
sj sj

a b d c b a d c
sj sj sj sj sj sj sj sj

b a d c
sj sj s

sup

sj

j

j

m
y

x

y y
y y

y y
y y

y y
y y

d b y y y y y y y y

y y y y

α










−
− α + α ≤ α ≤

−

− −
−α + α − ≤ α ≤

−

− + − − α − −

− + −

;





                 

(11)

( ) ( )
( ) ( ) ( )
( ) ( ) ( )( )

( ) ( )

( )

1 2 2 ,          if 0
2     

2
2 1 2 1 , if 1

2

2
,  otherwise

a c
sj sjc d

sj sj d c
sj sj

b d c
sj sj sjc d

sj sj d c
sj sj

c b a a d c b a d c
sj sj sj sj sj sj sj sj sj sj

b a
s

inf

d c
sj sj j j

js

s

x

y y
y y

y y
y y y

y y
y y

y y y y y y y y y y

y y y y

α

−
− α + α ≤ α ≤

−

+ −
−



α + α − ≤ α ≤
−

− + − − −








α −

− + −

.






            

(12)

To prioritise technology, the linear programming problem of the super-efficiency DEA 
(SE-DEA) model is solved:
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The use of the model results in the range of efficiency indicators for the assumed level of 

α: ( ) ( ),sup infα α q q
 

for each technology.
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To sum up, the assessment process using a hybrid model includes three consecutive 
stages: (i) the formulation of technology assessment matrix, (ii) the removal of the criteria 
redundancy based on indiscernibility relation defined in the Rough Set theory, (iii) the de-
velopment of rough variables and prioritisation using the DEA super-efficiency model. The 
result of the model application is the ranges of assessment for each technology: the maxi-
mal – optimistic and minimal – pessimistic. The scheme of technology prioritisation process 
using a hybrid model is presented in Figure 3.

Figure 3. Diagram of the technology prioritisation process using a hybrid model
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4. Case study

The model was tested on data from a foresight project “NT FOR Podlaskie 2020” Regional 
Strategy of Nanotechnology Development. The project was implemented in 2009–2013, in an 
attempt to construct a scenario of the desired socio-economic development of the Podlaskie 
Voivodeship by identifying key priority nanotechnologies, among other things. The selection 
of nanotechnology was made in seven areas, fundamental for the Voivodeship, namely, wood 
industry, medicine, clothing industry, construction, agriculture and food industry, machine 
industry and transport, environmental protection, and others. The research methodology 
assumed the creation of a priority nanotechnology catalogue form originally 57 considered, 
using the key technologies method based on average values of attractiveness and feasibility 
criteria (Nazarko & Magruk, 2013). The lists of criteria are presented in Tables 1 and 2.

Table 1. Attractiveness criteria considered in ‘NT FOR Podlaskie 2020’

Criteria

A1 The impact of technology development on the region’s investment attractiveness
A2 The impact of technology development on the increase in private investments in R&D
A3 The impact of technology development on the level of R&D in the region
A4 Easy commercialisation capability
A5 The opportunity to use the scientific, equipment and industrial potentials of the region
A6 Competitiveness of technologies in relation to available solutions (patents)
A7 The impact of technology development on the possibility of creating a strong competitive 

position of regional enterprises
A8 The impact of technology development on the creation of new jobs
A9 Economic efficiency

A10 Boosting entrepreneurship, including SMEs, spin-offs or start-ups
A11 The probability of technology absorption by the existing industry in Podlaskie
A12 The possibility of wide dissemination and the use of results
A13 The probability of technology absorption by newly created industries

Table 2. Feasibility criteria considered in ‘NT FOR Podlaskie 2020’

Criteria

F1 Access to funds to facilitate the implementation of technology
F2 Financial feasibility of technology implementation
F3 Technical and implementation feasibility
F4 The quality of human resources in the industry
F5 Availability of qualified staff
F6 The necessary research and development infrastructure
F7 Financial feasibility of technology implementation
F8 The ability to manufacture/purchase the required technical and technological equipment
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The implementation of the hybrid RS-DEA model began with the reduction of technology 
data matrix determined by expert responses weighted by their declared knowledge. The pro-
cess was carried out in sub-sets of feasibility (inputs) and attractiveness (outputs) with the aid 
of ROSE 2 – a program written at the Poznan University of Technology (Predki et al., 1998). 

The results of three methods of discretisation were analysed (Table 3) and the most lim-
ited sets of attributes consisting of the cores of the original sets and at the same time con-
sisting of the most frequently repeating attributes in reducts were selected. This led to the 
following sets of criteria for attractiveness and feasibility: ( ) { }1 2 3 9, , ,CORE B A A A A=  and 

( ) { }1 2 3 7, , ,CORE B F F F F= . 

Table 3. Core identification

Local discretisation Local discretisation to the set {0,1,2} Global discretisation

Attractiveness
CORE {A2} — {A1, A2, A3, A9}
RED 14 different reducts 104 different reducts {A1, A2, A3, A9}

Feasibility
CORE {F1, F2, F5, F7} {F1, F3, F5, F6, F7} {F1, F2, F3, F7}
RED {F1, F2, F5, F7, F8}

{F1, F2, F3, F5, F7}
{F1, F3, F5, F6, F7} {F1, F2, F3, F7}

Next, rough variables that account for expert assessments inconsistencies using the nom-
inal dispersion index h were formulated. Arbitrary ±20%h and ±10%h were assumed to de-
sign the lower and upper approximations of each criteria values. The technology scores were 
calculated using the SE-DEA model for and α = 0.6 and α = 0.8 and the results obtained are 
shown in Figure 4.

The application positively verified the assumed effects of the use of the RS-DEA model. 
The hybrid model allowed to make the number of considered criteria much smaller. The 
original set of 21 attributes regarding attractiveness and feasibility was reduced to 8. Thus, 
the interpretation of the final technology assessment was simplified to analyse the values of 
only several variables. The application of the DEA method gave objective weight to the tech-
nology assessment criteria and eliminated arbitrariness of the criteria weights. The individual 
adjustment of the weights emphasised the specific features of the technology. The inclusion 
of the rough variables into the DEA method allowed for the possible contradiction between 
expert opinions. The result of the technology assessment in the form of ranges shows discrep-
ancies in technology assessments. This can be the basis for formulating alternative balanced 
recommendations and creating complementary scenarios.

5. Discussion

Technology assessment is necessary to respond to and successfully manage technological 
changes. The hybrid model can be treated as a reference for complex problems of multi-
criteria comparative assessment made on a large set of technologies that can be characterised 



Technological and Economic Development of Economy, 2020, 26(4): 885–906 899

using a defined set of attributes that describe the technology or their interrelations as well 
as interactions. The obtained results regarding the use of the model documented a more 
objective and rational justification of the chosen technology, simplification of interpretation 
and better authentication of results from the perspective of decision-makers. The proposed 
model may facilitate the prioritisation of technologies under conditions of uncertainty, and, 
as a result, increase the efficiency of the use of private and public funds for research and 
development related to the implementation of future production solutions in line with the 
Industry 4.0. 

The presented studies have not exhausted the further extensive research topic. The de-
veloped model should be treated as part of a wider methodology of assessment and the 

Figure 4. Technologies assessment by the hybrid model
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prioritisation of technology focused on prospective macro-management of technology. The 
authors assume the continuation of research both in the development of the methodology as 
well as model adaptation for specific project needs. The development of the model is related 
to the additional analytical capabilities of DEA, which allow determining the most important 
attributes for the assessed technology that affect the results achieved and simulate the impact 
of changes in attribute values. In addition, it is possible to identify groups of competitive 
technologies. The model can be adjusted through innovative approximations of rough vari-
ables and considering local and regional conditions as well as formulated needs in the tasks 
of developing and shaping the vision of the technological development strategy.

In the opinion of the authors, Rough Sets can be a valuable alternative to the representa-
tion of incomplete/inaccurate knowledge in relation to Fuzzy Sets, because they do not re-
quire assumptions as to the form of the membership function.

Conclusions

The paper presents an original approach to technology prioritisation based on a combina-
tion of Rough Sets and Data Envelopment Analysis. The article documented the following 
research task: (i) a literature review in the field of state of the art in relation to Rough Sets and 
DEA methods in technology assessment; (ii) a synthetic presentation of Rough Sets Theory 
and DEA methods, i.e. terms and models to prepare the basis for deriving the structure of 
the hybrid model of technology prioritisation; (iii) the development of an innovative hybrid 
RS-DEA model of technology prioritisation; (iv) the design of the technology assessment 
process using the proposed model; an example of the implementation and verification of the 
hybrid model of technology prioritisation.

The hybrid RS-DEA model uses: (i) the concept of reducts from the Rough Set Theory to 
limit the number of criteria; (ii) the approximation of the sets to model uncertainty; (iii) line-
ar optimisation algorithms from the DEA method to objectively determine criterion weights; 
(iv) the relation of the efficiency from the DEA concept to build the synthetic assessment 
score. It is a new proposal for technology assessment that addresses the need for multifacet-
ed and objective assessment modelling the vague valuation of criteria by individual experts. 
It allows to broaden the assessment and ensures a more reliable analysis of the technology 
rankings. Moreover, the integration into the proposed algorithm for technology assessment 
ensures high transparency of prioritisation procedures.

The case described in the paper demonstrated the high usefulness of the developed mod-
el in the task of technology prioritisation based on uncertain expert assessments. The ob-
tained results allowed a more objective and rational justification of the chosen technology, 
simplification of interpretation and better authentication of results from the perspective of 
decision-makers. 

In the opinion of the authors, the approach demonstrated in the paper can be extended 
to many other tasks related to incomplete/inaccurate knowledge about the examined objects 
and their attributes.
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