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Abstract. In this paper, we propose two-stage prioritization procedure (TSPP) for multiplicative 
Analytic Hierarchy Process-group decision making (AHP-GDM), which involves determining the 
group priority vector based on the individual pair-wise comparison matrices (PCMs), simultane-
ously considering the consensus and consistency of the individual PCMs. The first stage of the 
TSPP involves checking and revising the individual PCMs for reaching the acceptable consensus 
and consistency. The second stage of the TSPP involves estimating the group priority vector using 
Bayesian approach. The main characteristics of the proposed TSPP are as follows: 1) It makes full 
use of the prior information as well as the sample information during the Bayesian revision of the 
individual PCMs and the Bayesian estimation of the group priority vector; 2) It ensures that the 
revised individual PCMs reach the acceptable consensus and consistency; 3) It enriches the ag-
gregation methods for the collective preference in multiplicative AHP-GDM. Finally, two numeri-
cal examples are used to evaluate the applicability and effectiveness of the proposed TSPP by the 
comparisons with several other methods. 

Keywords: group decision making, pair-wise comparison matrix, consensus, consistency, group 
priority vector. 
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Introduction

Group decision making (GDM) has been extensively studied and used in various areas such 
as society, economy, management, etc (Altuzarra et al., 2010; Dong et al., 2010; Wu & Xu, 
2012; Wu & Kou, 2016; Jin et al., 2016, 2019; Li et al., 2018; Zhang, et al., 2019; Schotten & 
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Morais, 2019). Generally, GDM aims to determine the collective preference by aggregating 
the individual preferences, and then select the available alternative among alternatives. In 
GDM, decision makers often need to provide their preferences over a set of alternatives or 
criteria by pair-wise comparison matrices (PCMs). The PCMs provided by decision makers 
are expressed by different preference structures such as multiplicative preference relation, 
intuitionistic fuzzy preference relation and hesitant fuzzy linguistic preference relation (Li 
et al., 2017; Liu et al., 2019; Wu et al., 2019). 

Analytic Hierarchy Process (AHP) (Saaty, 1977) is converted to the multiplicative struc-
ture that is referred to as multiplicative AHP (Barzilai et al., 1987; Honert, 1998). Multiplica-
tive AHP-GDM is one of the most important multi-criteria decision making (MCDM) (Kou 
et  al., 2012, 2014, 2016, 2019) methods solving GDM-related problems. In multiplicative 
AHP-GDM, there are two traditional aggregation methods to determine the group prior-
ity vector: aggregation of the individual judgments (AIJ) and aggregation of the individual 
priorities (AIP) (Ramanathan & Ganesh, 1994; Forman & Peniwati, 1998). However, AIJ 
and AIP are sometimes less reliable during multiplicative AHP-GDM when some individual 
PCMs have not the acceptable consensus or consistency. Thus, it is necessary that the indi-
vidual PCMs have the acceptable consensus and consistency in multiplicative AHP-GDM. 
In fact, consensus means the unanimous and complete agreements regarding the collective 
preference while consistency avoids the self-contradictions in the preference relationships. 
Recently, some developments have been reported recently regarding the consensus and con-
sistency of the individual PCMs in multiplicative AHP-GDM (Altuzarra et al., 2010; B. Srd-
jevic & Z. Srdjevic, 2013; Lin & Kou, 2015; Li et al., 2017). However, lots of previous studies 
have tended to focus on either the consistency or the consensus for the individual PCMs. 
For example, Altuzarra et al. (2007) assumed that the group consensus exists among decision 
makers and then investigated the consistency of the individual PCMs and the group priority 
vector. Some researchers have investigated ways of measuring the consensus as well as the 
consensus-reaching process (Dong et al., 2010; Altuzarra et al., 2010; Wu & Xu, 2012; Dong 
& Saaty, 2014). Nevertheless, few researchers simultaneously considered the consensus and 
the consistency for the individual PCMs. In this study, we attempt to take into account the 
consensus as well as the consistency for the individual PCMs. 

In multiplicative AHP, the judgments in the individual PCMs structured on one to nine 
scales are not almost precise owing to the complexity and the uncertainty involved in real-
world decision making (Jong, 1984; Hahn, 2003; Dong et al., 2016). Thus, the judgments in 
the PCM may be assumed to be random variables with continuous distributions (Honert, 
1998; Basak, 1998, 2001; Altuzarra et al., 2007; Barfod et al., 2016), such as Uniform distribu-
tion (Hauser & Tadikamalla, 1996), Gamma distribution (Vargas, 1982), Lognormal distribu-
tion (Basak, 1990; Escobar & Moreno-Jimenez, 2000), Normal distribution (Abdullah et al., 
2017), Cauchy distribution (Lipovetsky & Tishler, 1999) and Beta distribution (Jalao et al., 
2014), etc. Decision makers have prior opinions concerning the judgments in the individual 
PCMs. From a Bayesian statistics viewpoint, the final opinions of decision makers may be 
synthesized from the posterior distribution updating their prior opinions. In multiplicative 
AHP, Bayesian approach provides a natural framework for both parameter inference and 
model selection (Bernardo & Smith, 1994). For example, Basak (1998) calculated the poste-
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rior distributions of the judgments in the individual PCMs; Gargallo et al. (2007) proposed 
a Bayesian procedure for the group priorities; Altuzarra et al. (2007) developed a Bayesian 
prioritization procedure (BPP) for the group priorities; Hughes (2009) revised the consistent 
probabilities using Bayesian method in AHP; Altuzarra et al. (2010) determined the consen-
sus of the individual PCMs using Bayesian approach in multiplicative AHP-GDM; Lin & 
Kou (2015) revised the individual PCMs by Bayesian approach in multiplicative AHP-GDM. 

As mentioned above, the individual PCMs should reach the acceptable consensus and 
consistency before determining the group priority vector. The judgments in the individual 
PCMs can be treated effectively using Bayesian approach. We propose two-stage prioritiza-
tion procedure (TSPP) for determining the group priority vector, simultaneously consider-
ing the consensus and the consistency of the individual PCMs in multiplicative AHP-GDM. 
The first stage of the TSPP is to check the consensus and the consistency for the individual 
PCMs and subsequently revise the individual PCMs without the acceptable consensus and 
consistency. The second stage of the TSPP is to estimate the group priority vector using 
Bayesian approach. 

The rest of this paper is structured as follows. Section 1 provides a review of the prelimi-
nary information, including prioritization methods, measure indices and criteria, definitions, 
and theorems used. Section 2 describes the TSPP for determining the group priority vector. 
In Section 3, the applicability and effectiveness of the TSPP are evaluated using two numeri-
cal examples, and its performance is compared with those of several other methods. Last 
Section lists the conclusions of the study along with the future research trends. 

1. Preliminary 

1.1. Prioritization methods

In multiplicative AHP, there exist two popular prioritization methods to derive the prior-
ity vector from a PCM: Eigenvector method (EM) and Logarithmic least squares method 
(LLSM), which are described below: 

Suppose that ( )ij n nA a ×=  is a PCM, and that 1 2( , , , )nv v v v ′=   is the priority vector 
derived from the PCM by certain prioritization method.

Eigenvector method (EM) (Saaty, 1980) 
The desired priority vector 1 2( , , , )nv v v v ′=   is obtained by solving the linear system: 

Av v= l , where l is the principal eigenvalue of A.

Logarithmic least squares method (LLSM) (Crawford & Williams, 1985) 
The desired priority vector 1 2( , , , )nv v v v ′=   is formulated as a multiplicative, normal-

izing, and constrained optimization problem: 

 
( )21 1
ln ln ln

n n
ij i ji j

Min a v v
= =

− +∑ ∑ .

Note that the effects of EM and LSSM with respect to multiplicative AHP are very similar 
(Dong et al., 2008). 



528 C. Lin et al. Two-stage prioritization procedure for multiplicative AHP-group decision making

1.2. Measure indices and criteria

In order to check whether a PCM has the acceptable consensus and consistency, several 
measure indices and criteria (Consistency ratio (CR), Opening coefficient (OC), Geometric 
cardinal consensus index (GCCI) and Geometric ordinal consensus index (GOCI)) are in-
troduced below: 

Consistency ratio (CR) (Saaty, 1980)
CR measures the consistency level of a PCM, which is denoted by 

 ( ) / ( 1)CR n RI n= l − − , 

where l and n are the principal eigenvalue and the order of the PCM, respectively, and RI is 
the random consistency index (see Saaty, 1980). The threshold of CR is 0.1 (Saaty, 1980). If 
CR = 0, the PCM has the perfect consistency; If 0 < CR < 0.1, the PCM has the acceptable 
consistency; Otherwise, the PCM should be revised until CR < 0.1. 

Opening coefficient (OC) (Altuzarra et al., 2007)
The OC is used to find the judgments that disagree with the preference structure pre-

ferred by the other decision makers, which is denoted by 

 { } { }

( ) ( )

1,2, , 1,2, ,

{ } { }k k
ij ij ij

k r k r

OC Max a Min a
∈ ∈

=
 

( , 1,2, , )i j n=  ,

where ( )( )=( )kk
n nijA a ×  is the kth individual PCM. We employ OC as a consensus tool to 

find the judgments breaking the consensus in the individual PCMs. These found judgments 
should be revised for reaching the acceptable consensus. 

Geometric cardinal consensus index (GCCI) (Dong et al., 2010)
The consensus degree is measured based on the distance between the individual prefer-

ence values and the collective preference values (Ben-Arieh & Easton, 2007). Dong et al. 
(2010) defined GCCI to measures the cardinal consensus degree of the individual PCMs in 
multiplicative AHP-GDM. GCCI is denoted by

 

( )( ) 22( ) [ln( ) ln( )+ln( )]
( 1)

kk G G
i jij

i j

GCCI A a v v
n n <

= −
− ∑ ( 1,2, , )k r=  ,

where ( )( )=( )kk
n nijA a ×  are the individual PCMs, and 1 2( , , , )G G G G

nv v v v ′=   is the group prior-
ity vector.

Geometric ordinal consensus index (GOCI) (Dong et al., 2010)
The consensus degree is measured by comparing the positions of the alternatives between 

two preference vectors (Herrera-Viedma et al., 2002). Dong et al. (2010) defined GOCI mea-
sures the ordinal consensus degree of the individual PCMs in multiplicative AHP-GDM. 
GOCI is denoted by

 

( )( )

1

1( )  
n

kk G
i i

i

GOCI A v v
n =

= −∑ ( 1,2, , )k r=  , 

where ( )k
iv  and G

iv  are the positions of the ith alternative in ( )kv  and Gv , respectively. 
Here, ( ) ( )( ) ( )

1 2( , , , )k kk k
nv v v v ′=   is the priority vector derived from the individual PCMs 

( )( )=( )kk
n nijA a × , and 1 2( , , , )G G G G

nv v v v ′=   is the group priority vector.
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If ( )( ) 0kGCCI A = ( ( )( ) 0kGOCI A = ), then ( )kA  is of fully cardinal (ordinal) consensus. 
If ( )( )kGCCI A ( ( )( )kGOCI A ) is less than the established threshold according to the actual 
situation, then ( )kA  is of the acceptable cardinal (ordinal) consensus; Otherwise, we revise 

( )kA  until it reaches the acceptable cardinal (ordinal) consensus. 
Note that the smaller the value of GCCI (GOCI) is, the better is the cardinal (ordinal) 

consensus. In actual situations, the GCCI and GOCI values of the individual PCMs should 
be as small as possible. Without loss of generality, we set the threshold of GCCI as 0.5 and 
the desired value of GOCI as zero in this study. In other words, an individual PCM has the 
acceptable consensus when GCCI < 0.5 and GCCI = 0. 

Moreover, two criteria developed by Xu & Wei (1999) to evaluate the revision effective-
ness of the PCMs are introduced. Suppose that ˆ ˆ( )ij n nA a ×=  is the revision PCM obtained 
from the original PCM ( )ij n nA a ×= . Let 

 
{ }ˆmax , , 1,2, ,ij ija a i j nd = − =   and 

2
1 1

ˆ( )
n n

ij ijj i
a a

s
n

= =
−

=
∑ ∑

.

Both d and s express the departures of Â  from A. For a PCM structured on one to nine 
scale, if d < 2 and s < 1, the revision PCM is regarded as acceptable, as it preserves the most 
information of the original PCM (Xu & Wei, 1999). 

In order to assess the performance of the proposed TSPP, two compatibility indicators 
(Geometric compatibility index (GCI) and Priority violation number (PVN)) are introduced 
as below:

Geometric compatibility index (GCI) (Moreno-Jiménez, 2011)
GCI is the cardinal compatibility index between the group priority vector and the indi-

vidual PCMs, which is defined as

 

( )2

1

2 ln ( )
( 1)

r
k G G

k j iij
k i j

GCI a v v
n n= <

 
 = l
 −
 

∑ ∑ ,

where 1 2, , , rl l l  with 
1

1
r

kk=
l =∑  and 0kl > ( 1,2, , )k r=   are the weights of r decision 

makers, ( )( )=( )kk
n nijA a × ( 1,2, , )k r=   are the individual PCMs, and 1 2( , , , )G G G G

nv v v v ′=   is 
the group priority vector.

Priority violation number (PVN) (Golany & Kress, 1993)
PVN is the ordinal compatibility index denoting the number of violations in the priorities 

for the individual PCMs, which is defined as
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where ( )kA ( 1,2, , )k r=   are the individual PCMs, and 1 2( , , , )G G G G
nv v v v ′=   is the group 

priority vector.
Both GCI and PVN are employed to evaluate the compatibility between the group prior-

ity vector and the individual PCMs. The smaller the GCI and PVN values of the individual 
PCM are, the better is the compatibility between the judgments in the individual PCM and 
the group priority vector.
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1.3. Definitions and theorems

Definition 1 (Saaty, 1980). Matrix ( )ij n nA a ×=  is called positive reciprocal matrix (PRM), if 
0ija > , 1/ij jia a=  and 1iia =  for all ,i j {1,2, , }n∈  . 

Definition 2 (Escobar & Moreno-Jimenez, 2000). A random variable ( 0)X X >  is recipro-
cal, if X and 1/X are identically distributed, that is, ( ) (1 )P X x P X x≤ = ≤ x R+∀ ∈ , where 

( )P ⋅  is the probability function of X. 

Theorem 1 (Bernardo & Smith, 1994). If a random variable ( 0)Y Y >  follows Lognormal 
distribution 2( , )LN m s , then Ln( )Y  follows Normal distribution 2( , )N m s .

Theorem 2 (Press, 1989). Suppose that a random variable X follows Normal distribution 
2( , )N q s (q is an unknown parameter and s2 is known). Let the prior distribution ( )π q  

of q be Normal distribution 2( , )N m t (m and t2 are known), then the posterior distribu-

tion ( )xπ q  of q given x is Normal distribution 2( ( ), )N x ′m s , where 
2 2

2 2
( ) xx t + s m

m =
t + s

 and 
2 2

2
2 2
t s′s =
t + s

.

Remark 1. As ( )xm  is the expectation of q under the posterior distribution ( )xπ q , we 
consider ( )xm  as the Bayesian estimator of q, that is, ˆ ( )B xq = m . 

Theorem 3 (Lin et al., 2013). Suppose that ija (1 )i j n≤ < ≤  in a PCM ( )ij n nA a ×=  are mu-
tually independent, and follow Lognormal distribution 2( , )i jLN v v s . Then, the maximum 
likelihood estimators (MLEs) of vi and s2 are 

 

1

1
ˆ ( )

n
ni ijj

v a
=

= ∏ ( 1,2, , )i n=   and 2 21ˆ ˆ ˆ[ln( ) ln( )]
( 1)

n
ij i ji j

a v v
n n ≠

s = −
− ∑ .

Theorem 4 (Fichtner, 1983). A random variable ( 0)X X >  is reciprocal, if and only if Xa

( 0)a ≠  is reciprocal. 

Theorem 5 (Escobar & Moreno-Jimenez, 2000). Suppose that 1 2, , , pX X X  are mutually 
independent random variables, and that 

1

p
ii

Y X
=

=∏ . If Xi ( 1, , )i p=  is a reciprocal dis-

tribution with respect to a point ci (ci > 0), then Y is reciprocal distribution with respect 

to the point 
1

p
ii

c
=∏ .

Theorem 6 (Press, 1989). Suppose that 1 2( , , , )mX X X X=   is a simple sample taken from 
Normal distribution 2( , )N q s (q is an unknown parameter and s2 is known), and that the 
prior distribution ( )π q  of q is Normal distribution 2( , )N m t  (m and t2 are known), then 
the posterior distribution ( )Xπ q  of q given 1 2( , , , )mX x x x=   is Normal distribution 

2( ( ), )m mN Xm s , where

 

2 2

2 2
( )m

m xX
m
t + s m

m =
t + s 1

( )
m

ii
x x m

=
=∑  and 

2 2
2

2 2m m
t s

s =
t + s

.

Remark 2. As ( )m Xm  is the expectation of q under the posterior distribution ( )Xπ q , we 
consider ( )m Xm  as the Bayesian estimator of q, that is, ˆ ( )B m Xq = m . 
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2. Two-stage prioritization procedure

2.1. Group decision making 

In multiplicative AHP-GDM, AIJ and AIP based on the individual PCMs are the traditional 
aggregation methods to determine the group priority vector. 

For AIJ, first aggregate the individual judgments using weighted geometric mean method 
(WGMM) to obtain the group PRM ( )G G

ij n nA a ×= , where ( )
1
( ) k

r kG
ij ijk

a a l
=

=∏ , and then 

derive the group priority vector 1 2( , , , )G G G G
nv v v v ′=   from AG using certain prioritization 

method. 
For AIP, first derive the individual priority vectors ( ) ( )( ) ( )

1 2( , , , )k kk k
nv v v v ′=   from ( )kA

( 1,2, , )k r=   using certain prioritization method, and then determine the group priority 
vector 1 2( , , , )G G G G

nv v v v ′=   using WGMM, where ( )
1
( ) k

r kG
i ik

v v l
=

=∏  ( 1,2, , )i n=  . 
Note that AIJ and AIP are equivalent and do not violate the Pareto principle of social 

choice theory (Arrow, 1963) when LSSM is selected as the prioritization method (Barzilai & 
Golany, 1994). However, both AIJ and AIP demand the judgments in the individual PCMs 
are precise and complete. In this study, the judgments in the individual PCM are not precise 
and are considered as random variables. Here, AIJ and AIP are not directly used to determine 
the group priority vector. Thus, we try to estimate the group priority vector by Bayesian ap-
proach under the condition of the acceptable consensus and consistency. 

We only consider a local context with r decision makers for single criterion in mul-
tiplicative AHP-GDM. Let ( )( )=( )kk

n nijA a × ( 1,2, , )k r=  be the individual PCM provid-
ed by the kth decision maker for n alternatives with regards to the considered criterion, 

( ) ( )( ) ( )
1 2( , , , )k kk k

nv v v v ′=  ( 1,2, , )k r=   be the individual priority vector derived from ( )kA  
using certain prioritization method, and 1 2( , , , )G G G G

nv v v v ′=   be the group priority vector 
obtained by certain aggregation method. 

In multiplicative AHP-GDM, the individual PCMs are PRMs, according to Definition 1, 
it follows that 

 
( ) 0k
ija > , ( ) ( )1/k k

ij jia a=  and ( ) 1k
iia = , , {1,2, , }i j n∈  ( 1,2, , )k r=  .

The judgments in the PCM were assumed to follow Lognormal distribution that is in 
keeping with the reciprocity axiom of AHP theory (Escobar & Moreno-Jimenez, 2000). 
Moreover, ( )k

ija (1 i j n≤ < ≤ ) in the individual PCM ( )kA  can be assumed to be mutually 
independent (Rosenbloom, 1996; Barzilai, 1997). Based on these conclusions, we assume 
that ( )k

ija (1 )i j n≤ < ≤  follow Lognormal distribution. According to Theorem 1, it follows 
that ( )ln( )k

ija (1 )i j n≤ < ≤  are mutually independent and follow Normal distribution. We 
assume that each ( )ln( )k

ija  (1 )i j n≤ < ≤  follows the corresponding Normal distribution 
( )( ) ( ) 2,( )k k

ij ijN q s , where ( )k
ijq  and ( ) 2( )k

ijs  are the expectation and variance of ( )ln( )k
ija , re-

spectively. Note that a smaller variance means greater confidence in decision makers, as the 
variance represents the consistency level of an individual PCM. Based on Bayesian theory, 
we further assume that the prior distribution ( )( )k

ijπ q  of ( )k
ijq (1 )i j n≤ < ≤  is Normal dis-

tribution ( ) ( ) 2( ,( ) )k k
ijN m t , where ( )k

ijm  and ( ) 2( )kt  are known (Press, 1989). For the sake of 
simplicity, the variances of ( )ln( )k

ija (1 )i j n≤ < ≤  in the kth individual PCM are assumed to 
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be the same, that is, ( ) 2 ( ) 2( ) =( )k k
ijs s (1 )i j n≤ < ≤ , and the variances of ( )k

ijq  are assumed 
to be the same, that is, ( ) 2 2( ) 0.5kt = t = ( 1,2, , )k r=  . According to Theorem 2, the pos-
terior distribution ( ) ( )( )k k

ij ijaπ q  of ( )k
ijq (1 )i j n≤ < ≤ given ( )k

ijx a=  is Normal distribution 
( ) ( ) ( ) 2( ( ),( ) )k k k

ij ij ijN a′ ′m s , where 
( ) ( )2 ( ) 2

( ) ( )
2 ( ) 2

ln( ) ( )
( )

( )
ij

k kk
ijk k

ij ij k

a
a

t + s m
′m =

t + s
(1 )i j n≤ < ≤  and 

2 ( ) 2
( ) 2

2 ( ) 2
( )( )
( )

k
k

ij k
t s′s =
t + s

. 

Note that ( ) 2( )ks  and ( )k
ijm  are determined by the corresponding MLEs derived from 

( )( ) 1,2, ,kA k r=   by Theorem 3, that is

 

( ) ( ) ( )( ) 2 21ˆ ˆ ˆ( ) [ln( ) ln( )]
( 1)

n
k k kk

iij j
i j

a v v
n n ≠

s = −
− ∑ , ( ) ( ) ( )ˆ ˆ ˆln( ) ln( )k k k

iij jv vm = − (1 )i j n≤ < ≤ ,

where 
1

( ) ( )
1

ˆ n nk k
i ijj

v a
=

 =  
 ∏ ( 1,2, , )i n=  .

From Remark 1, ( ) ( )( )k k
ij ija′m  is the Bayesian estimator of ( )k

ijq  under the posterior distri-
bution ( ) ( )( )k k

ij ijaπ q . Thus, ( )ln( )k
ija  can be estimated by ( ) ( )( )k k

ij ija′m  based on the properties 
of Normal distribution, that is, 

( ) ( )2 ( ) 2
( ) ( ) ( )

2 ( ) 2

ˆ ˆln( ) ( )
ˆln( ) ( )

ˆ( )
ij

k kk
ijk k k

ij ij ij k

a
a a

t + s m
′= m =

t + s
(1 )i j n≤ < ≤ .

2.2. First stage 

In the first stage, the aim is to revise the individual PCMs without the acceptable consensus 
and consistency during multiplicative AHP-GDM. We first find out the individual PCMs 
without the acceptable consensus according to GCCI and GOCI, and then revise them till 
they reach the acceptable consensus. The revised individual PCMs are called individual revi-
sion PRMs. We next find out the individual PCMs and individual revision PRMs without 
the acceptable consistency according to CR, and then revise them by Bayesian approach till 
they reach the acceptable consistency. The obtained PRMs with the acceptable consistency are 
called individual Bayesian revision PRMs. Finally, we obtained the revised individual PCMs 
with the acceptable consensus and consistency, which are called individual revision PRMs. 

In order to obtain the individual revision PRMs during multiplicative AHP-GDM, Algo-
rithm I is briefly described as follows:

Step 1. Find out the individual PCMs without the acceptable consensus according to 
GCCI and GOCI from the individual PCMs, and write ( )( ) ( )yy

n nijA a ×= ( 1,2, , )y c=   (Note 
that the individual PCMs with the acceptable consensus are denoted by ( )( ) ( )xx

n nijA a ×=
( 1,2, , )x r c= − );

Step 2. Revise ( )( ) ( )yy
n nijA a ×= ( 1,2, , )y c=   according to OC (The revised individual PCM 

is called individual revision PRM), and denote the individual revision PRMs with the ac-
ceptable consensus by ( )( ) ( )yy

n nijA a ×′ ′= ( 1,2, , )y c=  ;
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Step 3. Find out the individual PCMs and the individual revision PRMs without the 
acceptable consistency according to CR from ( )( ) ( )xx

n nijA a ×= ( 1,2, , )x r c= − and 
( )( ) ( )yy

n nijA a ×′ ′= ( 1,2, , )y c=  , and write ( )( ) ( )ll
n nijA a ×= ( 1,2, , )l r ′=  (Note that the rest 

individual PRMs have the acceptable consensus and consistency and are denoted by 
( )( ) ( )pp

n nijA a ×= , ( 1,2, , )p r r ′= − ;

Step 4. Calculate the MLEs ( ) ( ) ( )( ) 2 21ˆ ˆ ˆ( ) [ln ln( )]
( 1)

n l l ll
iij ji j

a v v
n n ≠

s = −
− ∑  and 

1
( ) ( )

1
ˆ ( )

ij

nl l ni j
v a

=
= ∏ 1

( ) ( )
1

ˆ ( )
ij

nl l ni j
v a

=
= ∏  from ( )( ) 1,2, ,lA l r ′=   according to Theorem 3, and calculate

( ) ( ) ( )ln( ) ln( )l l l
iij jv vm = − (1 )i j n≤ < ≤ ;

Step 5. Calculate the Bayesian estimators 
( )( )2 ( ) 2

( )
2 ( ) 2

ˆln( ) ( )
ˆ

ˆ( )
ij

ll l
ijl

ij l

at + s m
q =

t + s
 ( 1,2, , )l r ′=  , 

1 i j n≤ < ≤  according to Theorem 2;

Step 6. Construct the transition matrices ( )( ) ( )ll
n nijC c ×= ( 1,2, , )l r ′=  , where ( ) ( ) ( )ˆ ˆl l l

ij ij ijc = q = m

( )i j< ; ( ) 0l
ijc = ( )i j= ; ( ) ( ) ( )ˆ ˆl l l

ij ji jic = −q = −m ( )i j> ;

Step 7. Calculate the individual Bayesian revision PRMs ( )( ) ( )B lB l
n nijA a ×=  ( 1,2, , )l r ′=  , 

where ( ) ( )exp( )B l l
ij ija c= . 

Note that if an individual Bayesian revision PRM has not the acceptable consistency, 
which should be revised again by Steps 4-7 of Algorithm I until it reaches the acceptable 
consistency. After the first stage, we obtain the individual revision PRMs with the acceptable 
consensus and consistency. 

2.3. Second stage

In the second stage, the aim is to estimate the group priority vector from the new set of the 
individual PRMs, which consists of the individual revision PRMs and the original individual 
PCMs with the acceptable consensus and consistency.

The set of the individual PRMs is denoted by { },( )( ) ( ) 1,2, ,KK
n nijA a K r×= =  . The 

weights of r decision makers are assumed to be 1 2, , , rl l l  with 
1

1
r

kk=
l =∑  and 0kl >

( 1,2, , )k r=  . Suppose that the group PRM ( )G G
ij n nA a ×=  is obtained using AIJ. That is, 

( )
1
( ) k

r kG
ij ijk

a a l
=

=∏ ( , {1,2, , })i j n∈  . Next, assume that ( )k
ija  ( 1,2, , )k r=   are mutually in-

dependent. Then, ( )ln( )k
ija ( 1,2, , )k r=   are mutually independent. Further, assume that ( )k

ija
( 1,2, , )k r=   follow Lognormal distribution, then ( )k

ija ( 1,2, , )k r=   are reciprocal random 
variables as Lognormal distribution is also reciprocal (Escobar & Moreno-Jimenez, 2000). 
According to Theorem 4, ( )( ) kk

ija l ( 0kl ≠ ) is a reciprocal random variable as ( )k
ija  is a recip-

rocal random variable. According to Theorem 5, ( )
1
( ) k

r kG
ij ijk

a a l
=

=∏  is a reciprocal random 
variable as ( )( ) kk

ija l ( 1,2, , )k r=   are mutually independent and reciprocal random variables. 
Based on the above facts, it is concluded that ( )

1
( ) k

r kG
ij ijk

a a l
=

=∏ (1 )i j n≤ < ≤  in AG 
follow Lognormal distribution. Thus, ln( )G

ija (1 )i j n≤ < ≤  follow Normal distribution ac-
cording to Theorem 1. Without loss of generality, we assume that each ln( )G

ija (1 )i j n≤ < ≤  
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follows Normal distribution 2( , )G
ijN q s , where s2 is the variance of the group PRM, and 

each G
ijq  is an unknown parameter. We further assume that the prior distribution ( )G

ijπ q  
of G

ijq (1 )i j n≤ < ≤  is Normal distribution 2( , )G
ijN m t , where G

ijm  and t2 are known. Ac-
cording to Theorem 6, the posterior distribution ( )G

ij Xπ q  of (1 )G
ij i j nq ≤ < ≤  given 

(1) (2) ( )( , , , )r
ij ij ijX a a a=   is Normal distribution 2

1( ( ), ( ))G
ijN X X′m s , where

2 2

2 2
( )

G
ij ijG

ij
r x

X
r

t + s m
′m =

t + s
(1 )i j n≤ < ≤ , 

2 2
2
1 2 2

( )X
r
t s

s =
t + s

( )
1

1= ln( )
r k

ij ijk
x a

r =

 
 
 

∑ . 

Note that s2 and G
ijm  are determined by the MLEs derived from AG according to Theo-

rem 3, that is,

( ) ( ) ( ) 21ˆ ˆ ˆ[ln( ) ln( )]
( 1)

n G G GG
iij ji j

a v v
n n ≠

s = −
− ∑ , ( ) ( )ˆ ˆ ˆln( ) ln( )G GG

ij i jv vm = − (1 )i j n≤ < ≤ ,

where 
1

( ) ( )
1

ˆ ( )
nG G ni ijj

v a
=

= ∏ ( 1,2, , )i n=  . 

From Remark 2, ( )G
ij X′m  is the Bayesian estimation of G

ijq  under the posterior distri-
bution ( )G

ij Xπ q . Thus, ln( )G
ija  is estimated by ( )G

ij X′m  based on the properties of Normal 
distribution, that is,

2 2

2 2
ˆln( ) ( )

G
ij ijG G

ij ij
r x

a X
r

t + s m
′= m =

t + s
, ( )

1
1 ln( )

r k
ij ijk

x a
r =

= ∑ (1 )i j n≤ < ≤ . 

We obtain ˆG
ija (1 )i j n≤ < ≤ using Logarithmic inverse operation, and then set ˆ ˆ1G G

ij jia a=
(1 )i j n≤ < ≤  and ˆ 0G

ija = (1 )i j n≤ < ≤ . Here, the PRM ˆ( )BG G
ij n nA a ×=  is called Bayesian 

group PRM. The priority vector derived from the Bayesian group PRM is called Bayesian 
group priority vector. 

In order to estimate the Bayesian group priority vector in multiplicative AHP-GDM, 
Algorithm II is described below:

Step 1. Calculate the group PRM ( )G G
ij n nA a ×=  from the new set of the individual PRMs 

( )KA ( 1,2, , )K r=   using AIJ, where ( )
1
( ) K

r KG
ij ijK

a a l
=

=∏ ;

Step 2. Calculate the MLEs ( ) ( ) ( )2 21ˆ ˆ ˆ( ) [ln( ) ln( )]
( 1)

n G G GG
iij ji j

a v v
n n ≠

s = −
− ∑  and 

1
( ) ( )

1
ˆ ( )

nG G ni ijj
v a

=
= ∏ ( 1,2, , )i n=   from AG according to Theorem 3; 

Step 3. Set ˆ ˆln( ) ln( )G G G
ij i jv vm = −  and ( )

1
1 ln( )

r KG
ij ijK

x a
r =

= ∑ (1 )i j n≤ < ≤ ;

Step 4. Calculate the Bayesian estimators 
2 2

2 2

ˆ( )ˆ ( ) ( )
ˆ( )

G G
ij ijG G

ij ij G

r x
x X

r

t + s m
′q = m =

t + s
(1 )i j n≤ < ≤  according to Theorem 6;

Step 5. Construct the transition matrix ( )G G
ij n nC c ×= , where ˆ ( ) ( )G G G

ij ij ijc X X′= q = m  
(1 )i j n≤ < ≤ ; 0G

ijc = (1 )i j n≤ = ≤ ; ˆ ( ) ( )G G G
ij ji jic X X′= −q = −m (1 )j i n≤ < ≤ ;

Step 6. Calculate the Bayesian group PRM ˆ( )BG G
ij n nA a ×= , where ˆ exp( )G G

ij ija c=  for all 
, {1,2, , }i j n∈  ;

Step 7. Derive the Bayesian group priority vector 1 2( , , , )BG BG BG BG
nv v v v ′=   from ABG using 

certain prioritization method (Suggest LLSM).
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After the second stage, we obtain the Bayesian group priority vector from the Bayesian 
group PRM. The Bayesian group priority vector is more reliable and effective since the in-
dividual revision PCMs have the acceptable consensus and consistency as well as the most 
original information of the individual PCMs. 

3. Numerical examples

In this section, we evaluate the applicability and effectiveness of the TSPP using two numeri-
cal examples and compare its performance with those of several other methods. The consen-
sus rule is that GCCI < 0.5 and GOCI = 0, while Saaty rule is that CR < 0.1. For the sake of 
simplicity and reliability, we can assume that the weights of decision makers are equal since 
the individual PRMs have the acceptable consensus.

Example 1

Let us consider the group decision problem with five decisions makers taken from the refer-
ence (Dong at al., 2010). The five individual PCMs ( )kA ( 1,2, ,5)k =   are listed below: 

(1)

1 4 6 7
1 4 1 3 4
1 6 1 3 1 2
1 7 1 4 1 2 1

A

 
 

=  
 
  

, (2)

1 5 7 9
1 5 1 4 6
1 7 1 4 1 2
1 9 1 6 1 2 1

A

 
 

=  
 
  

, (3)

1 3 5 8
1 3 1 4 5
1 5 1 4 1 2
1 8 1 5 1 2 1

A

 
 

=  
 
  

, 

(4)

1 4 5 6
1 4 1 3 3
1 5 1 3 1 2
1 6 1 3 1 2 1

A

 
 

=  
 
  

, (5)

1 1 2 1 2
2 1 1 2 3
1 2 1 4

1 2 1 3 1 4 1

A

 
 

=  
 
  

. 

We first investigate the consensus and consistency of the five individual PCMs. The GCCI, 
GOCI, and CR values of the five individual PCMs are listed in Table 1. The priority vectors 
and ranking orders derived from the five individual PCMs by LLSM are listed in Table 2 (The 
numbers within the parentheses are the ranking orders). 

Table 1. GCCI, GOCI, and CR values of seven PRMs 

PRM (1)A (2)A (3)A (4)A (5)A (5)A′ (5)BA
GCCI 0.139 0.320 0.135 0.134 1.334 0.253 0.188
GOCI 0 0 0 0 1 0 0

CR 0.038 0.068 0.034 0.047 0.064 0.111 0.073

Table 2. Priority vectors and ranking orders of seven PRMs under LLSM

PRM (1)A (2)A (3)A (4)A (5)A (5)A′ (5)BA
( )
1
kν

( )
2
kν

( )
3
kν

( )
4
kν

0.6145(1)
0.2246(2)
0.0985(3)
0.0624(4)

0.6461(1)
0.2270(2)
0.0793(3)
0.0476(4)

0.5693(1)
0.2764(2)
0.0967(3)
0.0575(4)

0.5967(1)
0.2208(2)
0.1089(3)
0.0736(4)

0.2247(3)
0.2958(2)
0.3780(1)
0.1015(4)

0.6131(1)
0.2169(2)
0.1144(3)
0.0555(4)

0.6131(1)
0.2169(2)
0.1144(3)
0.0555(4)
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From Table 1, we have
( )C ( ) 0.5kG CI A < , ( )( ) 0kGOCI A = , ( )( ) 0.1kCR A < ( 1,2,3,4)k = ;
(5)C ( ) 0.5G CI A > , (5)( ) 0GOCI A > , (5)( ) 0.1CR A < .

It is concluded that (1)A , (2)A , (3)A  and (4)A  have the acceptable consensus and consistency, 
and that (5)A  does not have the acceptable consensus even though it has the acceptable con-
sistency. Further, it can be seen from the preference structure that (5)A  does not have the fully 
ordinal consensus. More specifically, the preference structure (3214) of (5)A  is different from 
the preference structure (1234) supported by the other four individual PCMs (see Table 2).  
Thus, (5)A  should be adjusted till it reaches the acceptable consensus. Here, we adopt OC 
as the consensus tool to adjust (5)A  for reaching the acceptable consensus. According to 
OC, the judgments with the highest levels of variability are 12a , 13a , 14a  and 23a  since 

12 10OC =  , 13 7OC = , and 23 8OC = . The individual judgments ( (5)
12a , (5)

13a , (5)
14a  and (5)

23a  ) 
in (5)A  disagree the most with the preference structure (1234) and should be adjusted to 

reach the acceptable consensus. We replace (5)
ija  with 

1
(5) ( ) 1

5

=( )l rij ij
l

a a −

≠

′ ∏ , so that (5)
12a , (5)

13a , 

(5)
14a  and (5)

23a . We get (5)
12 =3.936a′ , (5)

13 =5.692a′ , (5)
14 7.416a′ = , and (5)

23 =3.464a′ . Accordingly, 
(5)

21 =0.254a′ , (5)
31 =0.176a′ , (5)

41 0.135a′ = , and (5)
32 =0.289a′ . As a result, the individual revision 

PRM (5)A′  is listed below. Moreover, as mentioned previously, the GCCI, GOCI and CR 
values of (5)A′  are listed in Table 1. The priority vector and the ranking order derived from 

(5)A′  using LLSM are shown in Table 2.

(5)

1 3.963 5.692 7.416
0.254 1 3.464 3
0.176 0.289 1 4
0.135 1 3 1 4 1

A

 
 

′ =  
 
  

, (5)

1.000 3.720 5.628 7.989
0.269 1.000 3.095 3.152
0.178 0.323 1.000 3.534
0.125 0.317 0.283 1.000

BA

 
 

=  
 
  

.

From Table 1, we have
(5)( ) 0.5GCCI A′ < , (5)( )=0GOCI A′ , (5)( ) 0.1CR A′ > . 

It is concluded that the individual revision matrix (5)A′  has not the acceptable consis-
tency even though it reaches the acceptable consensus. Thus, we next revise (5)A′  using 
Steps 4–7 of Algorithm I until it reaches the acceptable consistency. The individual Bayesian 
revision PRM (5)BA  is listed above. Moreover, the GCCI, GOCI, and CR values of (5)BA  
are listed in Table 1. Finally, the priority vector and the ranking order derived from (5)BA  
using LLSM are shown in Table 2. 

From Table 1, we have
(5)( ) 0.5BGCCI A < , (5)( )=0BGOCI A , (5)( ) 0.1BCR A < .

That is, the individual Bayesian revision PRM (5)BA  is have the acceptable consensus 
and consistency.

The new set of the individual PRMs consists of four original individual PCMs ( (1)A  , (2)A
, (3)A  and (4)A ) and one individual Bayesian revision PRM ( (5)BA ), which have the accept-
able consensus and consistency (GCCI < 0.5, GOCI = 0, CR < 0.1). 
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We next estimate the Bayesian group priority vector using Algorithm II for the new set 
of the individual PRMs. The Bayesian group PRM (ABG) and the Bayesian group priority 
vector derived from ABG by LLSM are given as follow:

1.000 3.844 5.694 7.602
0.260 1.000 3.349 4.079
0.176 0.299 1.000 2.221
0.132 0.245 0.450 1.000

BGA

 
 

=  
 
  

, (0.6092,0.2329,0.0991,0589)BGv ′= .

Moreover, the group PRM (AG) obtained from the original individual PCMs using AIJ 
and the group priority vector derived from AG by LLSM are as follow:

1.000 2.605 4.020 5.706
0.384 1.000 2.352 4.043
0.249 0.425 1.000 2.297
0.175 0.247 0.435 1.000

GA

 
 

=  
 
  

, (0.5311,0.2640,0.1341,0708)Gv ′= .

From the viewpoint of revision effectiveness, we have

( , ) 1.896 2BG GA Ad = < , ( , )=0.749 1BG Gs A A < .

Thus, the Bayesian group PRM (ABG) is acceptable as it preserves the most original in-
formation of the group PRM (AG) obtained from the individual PCMs. 

Finally, we compare TSPP with AIP, AIJ and row geometric mean method (RGMM) 
(Dong et  al., 2010) based on the compatibility indicators (GCI and PVN). Note that we 
take EM as the prioritization method in AIJ and AIP since AIJ and AIP is equivalent when 
selecting LSSM as prioritization method (Barzilai & Golany, 1994). The group priority vec-
tors and ranking orders obtained by AIJ, AIP, RGMM and TSPP are listed in Table 3. The 
compatibility indicators (GCI and PVN) between the individual PCMs and the group priority 
vectors obtained using AIJ, AIP, RGMM and TSPP are listed in Table 4. 

Table 3. Group priority vectors and ranking orders obtained by AIJ, AIP, RGMM and TSPP 

Aggregation method AIJ (EM) AIP (EM) RGMM TSPP

1
Gν

2
Gν

3
Gν

4
Gν

0.5324(1)
0.2634(2)
0.1333(3)
0.0709(4)

0.5344(1)
0.2637(2)
0.1326(3)
0.0694(4)

0.5416(1)
0.2579(2)
0.1299(3)
0.0688(4)

0.6092(1)
0.2329(2)
0.0991(3)
0.0589(4)

Table 4. GCI and PVN values for AIJ, AIJ, RGMM and TSPP

Aggregation method AIJ(EM) AIP(EM) RGMM TSPP

GCI 0.391 0.415 0.341 0.100
PVN 0.083 0.083 0.083 0.083

From Tables 2 and 3, the group ranking order obtained using TSPP is the same as those 
derived from the new set of the individual PRMs. In other words, the TSPP does not violate 
the Pareto principle of social choice theory in the case of Example 1. Further, it can be seen 
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from Table 3 that the group ranking orders obtained by TSPP, AIJ, AIP and RGMM are the 
same, that is, the TSPP does not result in the rank order reversal. From Table 4 shows that 
the GCI and PVN values of the TSPP are not higher than the corresponding ones of AIJ, 
AIP and RGMM. With respect to the ordinal and cardinal compatibilities, the results of the 
TSPP are more reliable than those of AIJ, AIP and RGMM.

Example 2 

Let us consider another group decision analysis situation with six decision makers taken from 
the reference (Altuzarra et al., 2007). In this case, the six individual PCMs ( )kA ( 1,2, ,6)k =   
are listed below: 

(1)

1 3 5 4 7
1 3 1 3 2 5
1 5 1 3 1 1 2 3
1 4 1 2 2 1 3
1 7 1 5 1 3 1 3 1

A

 
 
 =  
 
  

, (2)

1 4 3 5 8
1 4 1 4 3 6
1 3 1 4 1 1 5
1 5 1 3 1 1 7
1 8 1 6 1 5 1 7 1

A

 
 
 =  
 
  

, 

(3)

1 1 2 3 2 5
2 1 5 1 2

1 3 1 5 1 2 1 2
1 2 1 1 2 1 5
1 5 1 2 2 1 5 1

A

 
 
 =  
 
  

, (4)

1 3 5 2 6
1 3 1 1 3 2
1 5 1 1 4 5
1 2 1 3 1 4 1 1 2
1 6 1 2 1 5 2 1

A

 
 
 =  
 
  

, 

(5)

1 2 6 3 3
1 2 1 2 5 4
1 6 1 2 1 1 2 1
1 3 1 5 2 1 5
1 3 1 4 1 1 5 1

A

 
 
 =  
 
  

, (6)

1 2 5 4 9
1 2 1 3 2 6
1 5 1 3 1 1 2
1 4 1 2 1 1 3
1 9 1 6 1 2 1 3 1

A

 
 
 =  
 
  

.

We first investigate the consensus and consistency of the six individual PCMs. The GCCI, 
GOCI and CR values of the six individual PCMs are listed in Table 5. The priority vectors 
and the ranking orders derived from the six individual PCMs by LLSM are listed in Table 6.

Table 5. CR, GCCI, and GOCI values of six individual PCMs

PCM (1)A (2)A (3)A (4)A (5)A (6)A
GCCI 0.113 0.378 0.693 0.752 0.338 0.045
GOCI 0 0 0.4 0.8 0 0

CR 0.028 0.100 0.227 0.147 0.123 0.005 

Table 6. Priority vectors and ranking orders of six individual PCMs under LLSM

PCM (1)A (2)A (3)A (4)A (5)A (6)A
( )
1
kν

( )
2
kν

( )
3
kν

( )
4
kν

( )
5
kν

0.491(1)
0.232(2)
0.092(4)
0.138(3)
0.046(5)

0.470(1)
0.244(2)
0.115(4)
0.141(3)
0.141(5)

0.309(2)
0.327(1)
0.105(4)
0.188(3)
0.072(5)

0.451(1)
0.183(3)
0.211(2)
0.074(4)
0.081(5)

0.407(1)
0.291(2)
0.085(4)
0.147(3)
0.070(5)

0.475(1)
0.261(2)
0.098(4)
0.120(3)
0.046(5)
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From Table 5, we have
(4) (3)C ( ) C ( ) 0.5G CI A G CI A> > , (4) (3)( ) O ( ) 0GOCI A G CI A> > ;

(6) (1) (2) (5) (4) (3)( ) ( ) 0.1 ( ) ( ) ( ) ( )CR A CR A CR A CR A CR A CR A< < < < < < .

It is concluded that (3)A  and (4)A  have not the acceptable consensus while (1)A , (2)A  ,
(5)A  and (6)A  have the acceptable consensus. Moreover, (2)A , (3)A , (4)A  and (5)A  have not 

the acceptable consistency while (1)A  and (6)A  have the acceptable consistency. From the 
preference structure, (3)A  and (4)A  are not of the fully ordinal consensus. More specifically, 
the preference structures of (3)A  and (4)A  are (21435) and (12354), respectively, which 
are in disagreement with the preference structure (12435) supported by the other four in-
dividual PCMs (see Table 6). Thus, (3)A  and (4)A  should be adjusted till they reach the 
acceptable consensus. Here, we adopt OC as the consensus tool to adjust (3)A  and (4)A .  
According to OC, the judgments with the highest level of variability are 12a , 34a , 35a  and 

45a  since 12 8OC = , 34 8OC = , 35 10OC = , and 45 14OC = . Moreover, the judgments  
( (3)

12a  , 
(3)
35a , (4)

34a  and (4)
45a ) in (3)A and (4)A  disagree the most with the preference structure 

(12435) and should be adjusted to reach the acceptable consensus. We replace ( )k
ija  with 

1
1( ) ( )=( )rk l

ij ij
l k

a a −

≠

′ ∏ ( 3,4)k = for (3)
12a , (3)

35a , (4)
34a  and (4)

45a  in (3)A  and (4)A  for reaching the 

acceptable consensus. Thus, (3)
12 =2.702a′ , (3)

35 =2.724a′ , (4)
34 =0.871a′ , and (4)

45 =4.360a′ . Accord-
ingly, (3)

21 =0.370a′ , (3)
53 =0.367a′ , (4)

43 =1.149a′ , and (4)
54 =0.229a′ . The two individual revision 

matrices ( (3)A′  and (4)A′ ) for (3)A  and (4)A  are listed below. Moreover, the GCCI, GOCI 
and CR values of (3)A′  and (4)A′  are shown in Table 7. The priority vectors and the ranking 
orders derived from (3)A  and (4)A  by LLSM are given in Table 8.

(3)

1 2.702 3 2 5
0.370 1 5 1 2
1 3 1 5 1 2 2.724
1 2 1 1 2 1 5
1 5 1 2 0.367 1 5 1

A

 
 
 ′ =  
 
  

, (4)

1 3 5 2 6
1 3 1 1 3 2
1 5 1 1 0.871 5
1 2 1 3 1.149 1 4.360
1 6 1 2 1 5 0.229 1

A

 
 
 ′ =  
 
  

.

From Table 7, we have 
(3)( ) 0.5GCCI A′ < , (3)( )=0GOCI A′ , (3)( ) 0.1CR A′ > ;
(4)( ) 0.5GCCI A′ < , (4)( )>0GOCI A′ , (4)( ) 0.1CR A′ > .

It is concluded that (3)A′  and (4)A′  have not the acceptable consistency even though 
they have the acceptable cardinal consensus. We next revise (3)A′ , (4)A′ , (2)A  and (5)A  us-
ing Steps 4–7 of Algorithm I till they reach the acceptable consistency. The four individual 
Bayesian revision matrices ( (3)BA , (4)BA , (2)BA  and (5)BA ) corresponding to (3)A′ , (4)A′ , (2)A  
and (5)A , respectively, are listed below. Moreover, the GCCI, GOCI and CR values of (3)BA  , 

(4)BA , (2)BA  and (5)BA  are shown in Table 7. The priority vectors and the ranking orders 
derived from (3)BA , (4)BA , (2)BA  and (5)BA  by LLSM are shown in Table 8. Furthermore, 
in the case of (4)BA , the distance between 0.165(3) and 0.164(4) is 0.001 (very small) (see 
Table 8), thus the rank orders ((3) and (4)) may be exchanged by coordination. This makes 
the GOCI value of (4)BA  equal to zero. 
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(3)

1.000 1.327 2.980 2.112 5.514
0.428 1.000 3.209 1.088 2.476
0.336 0.312 1.000 1.390 2.500
0.473 0.919 0.720 1.000 3.991
0.181 0.404 0.400 0.251 1.000

BA

 
 
 =  
 
  

, (4)

1.000 1.468 4.223 2.252 6.711
0.355 1.000 1.053 2.251 2.379
0.237 0.950 1.000 0.911 4.249
0.444 0.444 1.097 1.000 3.856
0.149 0.420 0.235 0.259 1.000

BA

 
 
 =  
 
  

,

(2)

1.000 1.532 3.296 4.675 9.709
0.312 1.000 3.304 2.684 6.513
0.303 0.303 1.000 0.993 4.568
0.214 0.373 1.007 1.000 5.816
0.103 0.154 0.219 0.172 1.000

BA

 
 
 =  
 
  

, (5)

1.000 1.206 5.567 2.918 3.752
0.564 1.000 2.405 3.643 4.043
0.180 0.416 1.000 0.524 1.064
0.343 0.274 1.908 1.000 3.716
0.267 0.247 0.939 0.269 1.000

BA

 
 
 =  
 
  

.

Table 7. CR, GCCI, and GOCI values of six PRMs

PRM (3)A′ (3)BA (4)A′ (4)BA (2)BA (5)BA
CR 0.156 0.030 0.105 0.023 0.006 0.033

GCCI 0.391 0.190 0.353 0.211 0.228 0.204
GOCI 0 0 0.400 0.400 (0) 0 0

Table 8. Priority vectors and ranking orders of six PRMs under LLSM

PRM (2)BA (5)BA (3)A′ (3)BA (4)A′ (4)BA
( )
1
kν

( )
2
kν

( )
3
kν

( )
4
kν

( )
5
kν

0.444(1)
0.267(2)
0.126(4)
0.129(3)
0.034(5)

0.389(1)
0.300(2)
0.087(4)
0.152(3)
0.083(5)

0.405(1)
0.219(2)
0.137(4)
0.176(3)
0.063(5)

0.378(1)
0.228(2)
0.144(4)
0.184(3)
0.066(5)

0.453(1)
0.184(2)
0.156(3)
0.155(4)
0.053(5)

0.425(1)
0.195(2)
0.165(3)
0.164(4)
0.056(5)

From Table 7, we have
( )( ) 0.5B kGCCI A < , ( )( )=0B kGOCI A , ( )( ) 0.1B kCR A < ( 2,3,4,5).k =

That is, (3)BA , (4)BA , (2)BA  and (5)BA  have the acceptable consensus and consistency. At 
the same time, (1)A  and (6)A  have the acceptable consensus and consistency.

Table 9. CR, GCCI and GOCI values of six PRMs

PRM (1)A  (2)BA (3)BA (4)BA (5)BA (6)A
GCCI 0.133 0.228 0.190 0.211 0.204 0.045
GOCI 0 0 0 0 0 0

CR 0.028 0.006 0.030 0.023 0.033 0.005

The new set of the individual PRMs consists of two original individual PCMs ( (1)A  and 
(6)A ) and four of the individual Bayesian revision matrices ( (2)BA , (3)BA , (4)BA  and (5)BA  ), 

which are the acceptable consensus and consistency (GCCI < 0.5, GOCI = 0, CR < 0.1) (See 
Table 9). 



Technological and Economic Development of Economy, 2020, 26(2): 525–545 541

We next obtain the Bayesian group priority vector for the new set of the individual PRMs 
using Algorithm II. The Bayesian group PRM (ABG) obtained from the new set of the indi-
vidual PRMs and the Bayesian group priority vector derived from ABG by LLSM are given 
as follow:

1.000 1.656 4.129 3.264 6.167
0.500 1.000 2.543 2.284 4.035
0.242 0.393 1.000 0.999 2.090
0.306 0.438 1.001 1.000 2.702
0.162 0.248 0.478 0.370 1.000

BGA

 
 
 =  
 
  

, (0.430,0.263,0.116,0.131,0.060)BGv ′= .

The group PRM (AG) obtained from the original individual PRMs using AIJ and the 
group priority vector derived from AG by LLSM are shown below:

1.000 2.040 4.347 3.141 5.972
0.490 1.000 2.667 2.376 3.772
0.230 0.375 1.000 1.122 2.054
0.318 0.421 0.891 1.000 3.039
0.167 0.265 0.487 0.329 1.000

GA

 
 
 =  
 
  

, (0.439,0.258,0.114,0.129,0.059)Gv ′= .

From the viewpoint of revision effectiveness, we have 

( , ) 0.384 2BG GA Ad = << , ( , ) 0.139 1BG Gs A A = << .

That is to say, the Bayesian group PRM (ABG) is acceptable, as it preserves the most origi-
nal information of the group PRM (AG) obtained from the individual PCMs. 

Finally, we compare TSPP with AIP, AIJ and BPP (Altuzarra et al., 2007) based on the 
compatibility indicators (GCI and PVN). Note that we also use EM as the prioritization 
method in AIJ and AIP. The group priority vectors and the ranking orders obtained by AIJ, 
AIP, BPP and TSPP are listed in Table 10. The compatibility indicators (GCI and PVN) be-
tween the individual PCMs and the group priority vectors obtained by AIJ, AIP, BPP and 
TSPP are listed in Table 11. 

Table 10. Group priority vectors and ranking orders obtained by AIJ, AIP, BPP and TSPP 

Aggregation method AIJ(EM) AIP(EM) BPP TSPP

1
Gν

2
Gν

3
Gν

4
Gν

5
Gν

0.438(1) 
0.258(2) 
0.114(4) 
0.130(3) 
0.059(5)

0.436(1) 
0.256(2) 
0.116(4) 
0.133(3) 
0.059(5)

0.479(1)
0.259(2)
0.097(4)
0.119(3)
0.045(5)

0.430(1)
0.263(2)
0.116(4)
0.131(3)
0.060(5)

Table 11. GCI and PVN values of AIJ, AIP, BPP and TSPP 

Aggregation method AIJ(EM) AIP(EM) BPP TSPP

GCI 0.387 0.387 0.363 0.272
PVN 0.108 0.108 0.108 0.108
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From Tables 6, 8 and 10, it is clear that each ranking order derived from the new set of 
the individual PRMs is the same as the group one obtained using TSPP. In other words, the 
TSPP does not violate the Pareto principle of social choice theory in the case of Example 2. 
Table 10 shows that the ranking order obtained using TSPP is same to those obtained using 
AIJ, AIP and BPP. That is to say, the TSPP does not result in rank order reversal. From Table 
11, it can be seen that the GCI and PVN values of the TSPP are not higher than the corre-
sponding ones of AIJ, AIP and BPP. With respect to the ordinal and cardinal compatibilities, 
the results for the TSPP are more reliable than those of RGMM, AIP and AIJ.

The above examples highlight the performance of the TSPP during multiplicative AHP-
GDM with respect to two measure indices (GCI and PVN) and two criteria for revision 
effectiveness. The results clearly show that the individual revision PRM has better consensus 
and consistency than the corresponding individual PCM, and that the Bayesian group PRM 
preserves the most original information of the group PRM obtained from the individual 
PRMs. Moreover, the TSPP satisfies the Pareto principle of social choice theory and does not 
result in a reversal of the rank order. 

However, the TSPP demands that the individual PCMs are constructed on one to nine 
scale, and that the multiplicative preference relations are complete. We now are not sure if 
the TSPP can be extended to the incomplete PCMs and other preference relations such as 
fuzzy preference and fuzzy linguistic preference, which is our research direction in the future. 

Conclusions 

In this study, two-stage prioritization procedure (TSPP) is proposed to determine the group 
priority vector for multiplicative AHP-GDM. The TSPP first checks and revises the individual 
PCMs for reaching the acceptable consensus and consistency, and then estimates the group 
priority vector using Bayesian approach. The results obtained for two different numerical 
examples confirm that the TSPP is effective in improving the consistency and consensus 
of the individual PCMs and yields more accurate group priority vector. Further, the TSPP 
does not violate the Pareto principle of social choice theory and to some degree performs 
better than some of other methods, as evidenced by comparisons based on measure indices 
and criteria for revision effectiveness. Thus, the TSPP is an effective alternative for resolving 
highly complex GDM-related problems. In the future, we aim to extend the TSPP to the 
incomplete individual PCMs and other preference relations during large-scale AHP-GDM. 
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