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Abstract. In the present paper, we propose a new approach to solving the full fuzzy linear frac-
tional programming problem. By this approach, we provide a tool for making good decisions in 
certain problems in which the goals may be modelled by linear fractional functions under linear 
constraints; and when only vague data are available. In order to evaluate the membership function 
of the fractional objective, we use the α-cut interval of a special class of fuzzy numbers, namely the 
fuzzy numbers obtained as sums of products of triangular fuzzy numbers with positive support. 
We derive the α-cut interval of the ratio of such fuzzy numbers, compute the exact membership 
function of the ratio, and introduce a way to evaluate the error that arises when the result is ap-
proximated by a triangular fuzzy number. We analyse the effect of this approximation on solving a 
full fuzzy linear fractional programming problem. We illustrate our approach by solving a special 
example – a decision-making problem in production planning.

Keywords: full fuzzy program, triangular fuzzy number, fuzzy aggregation, linear fractional pro-
gramming, error approximation, decision making.
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Introduction

In majority economic and industrial engineering problems, one must make a decision, and 
the decision must be optimal. The optimization step consists in finding the best available 
values of an objective function over a well-defined domain. There are many different types 

Fuzzy sets and fuzzy logic in multi-criteria decision making. The 50th anniversary of prof. Lotfi Zadeh’s theory
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of objective functions defined over different types of domains by using different types of 
constraints. 

The optimization problems, where the objective function appears as a ratio of functions, 
form the fractional programming problems. Fractional programming is an important tool 
for modelling various decision processes, such as maximizing the profit/cost, volume/cost, or 
other quantities that measure the efficiency of a system. Fractional programming also appears 
in information theory, numerical analysis, decomposition algorithms for large linear systems, 
and in many other fields that are not necessarily economical.

In real-life problems, the consequences of decisions are known only with uncertainty, 
hence nobody knows in advance the exact effect of each decision. There is a variety of ways 
to deal with uncertainty. Fuzzy set theory, introduced by Zadeh (1965), is “a convenient 
and powerful way of modelling vague data without having recourse to stochastic concepts” 
(Slowinski 1998). Fuzzy set theory is a generalization of the conventional set theory, and 
it succeeds to manage the vagueness and imprecision in a strict mathematical manner. 
Zimmermann (1985) introduced the fuzzy concepts in mathematical programming.

Decision-making problems can be classified into two main categories with very distinct 
features. The first category includes the decision problems with a finite discrete set of pos-
sible alternatives, generally consisting of a small number of elements. For these decision 
problems, each alternative is completely known, and the decision maker generally ranks 
the alternatives according to a set of criteria. There is a variety of approaches that rank the 
alternatives with respect to some principles or desires. Many works, found in the recent 
literature, introduced fuzzy approaches for multiple attribute decision making. By weighting 
the evaluation information of each expert, Liu (2012) proposed a new way for producing the 
group decision-making matrix, used the maximum deviation method to calculate the attri-
bute weights, and applied the TOPSIS method to rank the alternatives. Liu (2011) presented 
a multi-attribute group decision-making method based on weighted aggregation operators to 
solve decision problems in which both the attribute values and weights were interval-valued 
trapezoidal fuzzy numbers. Liu, Zhang (2011) constructed a reasonable evaluation indicator 
system of the agriculture informatization in China, and proposed a new evaluation method 
for promoting the agriculture informatization. Their model may be used to rank the orders 
of the different areas according to the informatization level, and to quantify the agriculture 
informatization of different areas according to the evaluation system based on two-tuple and 
relative operators. Liu, Jin (2012) proposed a decision-making method, based on weighted 
geometric aggregation operators, to solve the multiple attribute group decision-making prob-
lems in which the attribute values take the form of generalized interval-valued trapezoidal 
fuzzy numbers. Liu et al. (2012) presented a new method, based on ordered weighted har-
monic averaging operators, to solve the same problem. Wei et al. (2013) investigated the 
multiple attribute group decision-making problems in which the attribute values take the 
form of triangular fuzzy information. They introduced some power aggregation operators for 
aggregating triangular fuzzy information, and applied them to develop some models for the 
given problem. Stanujkic (2013) proposed an extension of the MOORA method to use the 
triangular fuzzy numbers, discussed several methods for defuzzification and calculation of 
the distance between two fuzzy numbers, and showed how the ratio system and the reference 
point approach of the MOORA method can be used in fuzzy environment. Xu et al. (2014) 
proposed some new aggregation operators which are based on the Choquet integral and 
Einstein operations, and studied the relationship between them and the existing intuitionistic 
fuzzy Choquet aggregation operators. They also presented an approach, based on intuitionis-
tic fuzzy Einstein Choquet integral operators, to solve the multiple attribute decision-making 
problems; and applied it to solve a practical decision-making problem involving the water 
resource management.
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The second category includes the decision problems for which each possible alternative 
for the decision satisfies some constraints. In order to identify the set of all possible alterna-
tives for the decision, one needs to construct a mathematical model of the given constraints. 
Further, in order to find the best decision, one has to optimize an objective function over 
the set of the alternatives. Many examples of real-life decision-making problems that belong 
to this category can be found in (Murty 2015).

Bellman, Zadeh (1970) proposed the concept of decision making in a fuzzy environ-
ment, and further on many researchers adopted the concept in order to solve fuzzy linear 
programming problems. Pathak, Sarkar (2012) developed a supply chain fuzzy model con-
sidering aggregate production/distribution planning; and presented a fuzzy mixed-integer 
linear programming model for supply chain network design problems in a multi-echelon, 
multi-product, multi-stage with different methods of manufacturing at each stage, multi-dis-
tribution centres and multi-period supply chain planning. They applied fuzzy logic to solve 
the uncertain production, demand, capital and warehouse spaces with all costs being trian-
gular fuzzy numbers. Chen, Xu (2015) studied the interval reciprocal comparison matrices, 
proposed a new fuzzy programming method to derive the priority vector from an interval 
reciprocal comparison matrix, and introduced a membership function to measure the deci-
sion maker’s satisfaction degree for the priority vector derived from each interval constraint.

In our discussion, a full fuzzy model means a mathematical model whose both variables 
and coefficients are fuzzy quantities. Buckley, Feuring (2000) defined the full fuzzy linear 
optimization model (FFLP), by considering all coefficients and variables of a linear program 
as being fuzzy numbers. They first change the problem of maximizing the fuzzy value of the 
objective function into a multi-objective fuzzy linear programming problem. They intro-
duced the fuzzy flexible programming, showed that it can be used to explore the whole un-
dominated set for the multi-objective fuzzy linear program, and developed an evolutionary 
algorithm to solve the fuzzy flexible programs. Using their new algorithm, they solved two 
numerical problems and generated good solutions.

Later on, Hashemi et al. (2006) proposed a two-phase approach to find the optimal solu-
tion to a FFLP problem. They maximized the possibilistic mean value of the fuzzy objective 
function, obtained a subset of feasible solutions, and further minimized the standard devia-
tion of the original fuzzy objective function over the constructed feasible set.

Hosseinzadeh et  al. (2009) discussed the FFLP with all parameters and variables ex-
pressed by triangular fuzzy numbers. They used the concept of symmetric triangular fuzzy 
number, and introduced an approach to defuzzify a general fuzzy quantity. First, the fuzzy 
models were turned into two crisp linear problems; and with a special ranking on fuzzy 
numbers, the FFLPs were transformed to a multi-objective linear programming problem 
with crisp parameters.

Kumar et al. (2011) proposed a new method to find the fuzzy optimal solution of the 
same type of FFLPs. Using their method, the fuzzy optimal solution to a FFLP with no re-
strictions on the coefficients but equality constraints, occurring in real-life situations, can be 
easily obtained.

Razavi et al. (2013) extended a fuzzy version of the original data envelopment analysis 
models, and developed a method to solve it. The basic idea of their method was to transform 
the original DEA model, to an equivalent linear parametric programming model, applying 
the notion of alpha-cut. The linear fractional programming with decision variables expressed 
by fuzzy numbers was involved in the original model. Using the theoretical results introduced 
in the present paper, their solving approach may be extended further to solve a full fuzzy 
DEA model.



Khan et al. (2013) proposed a modified version of the well-known simplex method for 
solving linear programming problems in a fully fuzzy environment. Their technique used a 
ranking function in the Gaussian elimination process. Unfortunately, they made a mistake, 
thus their method does not always provide a feasible optimal solution. The fallacy of their 
method was pointed out in (Bhardwaj, Kumar 2014).

Ezzati et al. (2015) proposed a novel algorithm to solve the FFLP problem by convert-
ing it to an equivalent multi-objective linear programming problem that is solved by the 
lexicographic method.

Giri et al. (2015) formulated and solved a full fuzzy fixed charge multi-item solid trans-
portation problem, in which direct costs, fixed charges, supplies, demands, conveyance ca-
pacities and transported quantities were fuzzy in nature. They minimized the total fuzzy cost 
under fuzzy decision variables.

Pop, Stancu-Minasian (2008) proposed a method to solve the FFLFP problems with 
triangular fuzzy numbers. They used the Charnes-Cooper method to transform the linear 
fractional programming problem into a linear one. Then, they transformed the problem 
of maximizing a function with triangular fuzzy value into a deterministic multi-objective 
linear programming problem with quadratic constraints; and applied the extension prin-
ciple of Zadeh to aggregate the fuzzy numbers, and the Kerre’s method to evaluate the fuzzy 
constraints. Stanojevic, Stancu-Minasian (2012) introduced a new way of evaluating fuzzy 
inequalities, and based on it proposed a methodology for deriving an optimal solution to 
the FFLFP problem.

Pandian, Jayalakshmi (2013) proposed a new decomposition-restriction method, based 
on the decomposition principle and the denominator objective restriction method, to obtain 
an optimal fuzzy solution to the FFLFP problem.

Deb, De (2015) solved the FFLFP problem using graded mean integration representation 
method. They developed a computational algorithm to obtain an optimal solution by apply-
ing the simplex method.

As far as we know, all approaches to solving full fuzzy linear fractional programming 
problems, found in the literature, yield crisp solutions, or solutions expressed by triangular or 
trapezoidal fuzzy numbers. The goal of this paper is to introduce a novel approach that yields 
a fuzzy solution to the FFLFP problem, that is not necessary neither triangular nor trapezoi-
dal fuzzy number. Thus we provide a tool for making good decisions in certain problems 
in which the goals may be modelled by linear fractional functions under linear constraints; 
and when only vague data are available. Our approach takes into consideration the discrete 
representation of the inverses of the exact membership functions of the products and ratios 
of fuzzy numbers, thus avoiding possible errors that may arise when a multiple occurrence 
of a variable in an arithmetic expression of fuzzy numbers is improperly handled.

The reminder of the paper is organized as follows. The basics of the fuzzy numbers arith-
metic are presented in short in Section 1. Section 2 provides an exact formula for the mem-
bership function of a fuzzy number that is a ratio of sums of products of triangular fuzzy 
numbers with positive parameters; and presents a way to evaluate the approximation that 
arises when such fuzzy number is replaced by its corresponding triangular fuzzy number 
with the same parameters. In Section 3, we propose a novel approach to solve the FFLFP 
problems, based on interval’s arithmetic. In order to illustrate our methodology, we solve a 
special example of decision making in production planning, and report the numerical results 
in Section 4. We also solve a problem recalled from the literature, and compare our numerical 
results to the existing results. Some concluding remarks and directions for future research 
are inserted in Section 5.
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1. Fuzzy numbers arithmetic

The purpose of this section is to recall some concepts which will be needed in the sequel. 
For more details, we refer the reader to (Uhrig, Tsoukalas 1997; Zimmermann 1996; Du-
bois, Prade 1987).

A triangular fuzzy number Y  is a triplet ( )∈1 2 3 3, ,y y y R . The membership function of 
Y  is defined in connection with its real parameters as follows: 

 

( )
( ) ( ) (
( ) ( ) (

( ( )
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The value ( )Y x  represents a number in   0,1  that is the membership function of Y
evaluated at x. The α -cut of the fuzzy number Y  is the interval 

 
( ) ( )

α
   = − α + − α +   

2 1 1 2 3 3,Y y y y y y y .

The extension principle was formulated in (Zadeh 1965) in order to extend the known 
models implying fuzzy elements in the case of fuzzy entities. Given two fuzzy numbers A  
and B , and a real valued function × →:f R R R , the membership function of the fuzzy num-
ber ( ),f A B  is defined using the membership functions mA  and mB  of the fuzzy numbers 

A  and B , as follows:

 ( ) ( )
( )

( ) ( )( )( )
=

m = m m
, ,

max min ,A Bf A B f x y z
z x y .

Applying this principle the following well-known definitions of the addition and subtrac-
tion of triangular fuzzy numbers are obtained. Given two triangular fuzzy numbers A and B  , 
with real number parameters ( )= 1 2 3, ,A a a a , ( )= 1 2 3, ,B b b b , we have

 ( )+ = + + +1 1 2 2 3 3, ,A B a b a b a b ,

 ( )− = − − −1 3 2 2 3 1, ,A B a b a b a b .

In what follows, we consider that the triangular fuzzy numbers ( )= 1 2 3, ,A a a a  and 
( )= 1 2 3, ,B b b b  have non-negative endpoints. Multiplying their α-cut intervals,

 
( ) ( )α  = − α + − α + 
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we obtain the interval ( ) ( ) α α ,l r , where
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Inverting the functions ( )αl  and ( )αr , the membership function of the fuzzy number 
⋅A B  is
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see for instance (Dzitac, Pop 2006). Parameters p, m, n, q, t, s are real numbers, com-
puted with respect to the parameters of the triangular fuzzy numbers A  and B . Moreover, 

( )⋅mA B x  increases on   
1 1 2 2,a b a b  and decreases on   

2 2 3 3,a b a b , and the result of the 
multiplication is not a triangular fuzzy number anymore.

Dividing the α-cut intervals of the triangular fuzzy numbers ( )= 1 2 3, ,A a a a  and 
( )= 1 2 3, ,B b b b  with positive parameters, we obtain the interval:

 

( )
( )

( )
( )

 − α + − α +
 
 − α + − α + 
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,
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b b b b b b
.

Inverting the functions of α that describe the left and right endpoints of 
α

 
 /A B , the 

membership function of the fuzzy number /A B  is given by (1). 
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where the real parameters p, m, n, q, t, s are computed starting from the parameters of the 
triangular fuzzy numbers A and B . Moreover, the function ( )m /A B x  increases on the in-
terval   

1 3 2 2/ , /a b a b , and decreases on   
2 2 3 1/ , /a b a b , see (Pop, Stancu-Minasian 2008).

2. Exact membership functions to the ratio of certain fuzzy numbers

Given the triangular fuzzy numbers 1,..., nA A , 1,..., nB B , 1,..., nC C , 1,..., nD D  with positive 
endpoints, the α-cut interval of the fuzzy number 
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Note that the α-cut interval of the fuzzy number Z  is of the following shape

 
 α + α + α + α +
 α + α + α + α + 

2 2

2 2
' ' ',
' ' '

M N P M N P
R S Q R S Q

, (2)

where the coefficients M, N, P, R, S, Q, M’, N’, P’, R’, S’, and Q’ are real numbers computed 
with respect to the parameters of the original triangular fuzzy numbers 1,..., nA A , 1,..., nB B  ,

1,..., nC C , 1,..., nD D .
Inverting the functions of α that describe the interval given in (2), we derive the exact 

membership function to the ratio of two fuzzy numbers that are sums of products of trian-
gular fuzzy numbers, i.e. the concave increasing branch is one of the functions:
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and the convex decreasing branch is one of the functions:
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The three parameters (left, top, and right) of the fuzzy number Z  are:
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and the proper expressions for ( )lz x  and ( )rz x  are chosen from ( )±
lz x  and ( )±

rz x , 
respectively, such that:
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In what follows, we use the notation given 
in Figure 1, i.e. ( )z x  represents the exact mem-
bership function of the fuzzy quantity Z  (the 
convex-concave shape); and ( )T x  represents 
the membership function of the triangular fuzzy 
number with the same endpoints ( )1 2 3, ,y y y  as 
Z  (the linear shape).

The following proposition gives a way to eval-
uate the approximation that arises in the case of 
using a triangular fuzzy number with the same 
parameters (5), instead of the exact fuzzy num-
ber defined by (3)–(4).

Fig. 1. The graph of the exact membership 
function of Z , and its approximation by a 

triangular shape

y1 y2 y3

Z xl( )

Z xr( )

T xr( )

T xl( )
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Proposition 1. The area between the graphical representations of the membership function 
of the exact fuzzy number Z  and the approximated triangular fuzzy number with the same 
parameters is equal to:

 
( ) ( ) ( ) ( )− − − −α − α α + α − α α∫ ∫

1 1
1 1 1 1

0 0
l l r rz T d z T d ,

where ( )− α1
lz  and ( )− α1

rz  denote the inverse of the left and right sides of  ( )z x ; and 
( )− α1

lT  and ( )− α1
rT  denote the inverse of the left and right sides of ( )T x .

Proof. The direct way to evaluate the approximation, i.e. to compute the area of the shaded 
region in Figure 1, is to integrate ( ) ( )−Z x T x  with respect to x, namely to compute:

 
( ) ( ) ( ) ( )− + −∫ ∫

32

1 2

.
yy

l l r r
y y

z x T x dx z x T x dx

Inverting ( )z x  and ( )T x we derive ( ) ( ) ( ) ( )− −− = α − α α∫ ∫
2

1

1
1 1

0

y

l l
y

z x T x dx z T d  and 

( ) ( ) ( ) ( )− −− = α − α α∫ ∫
3

2

1
1 1

0

y

r r
y

z x T x dx z T d ; and integrate further the rational functions 

given in (2) from 0 to 1, instead of integrating their inverses given in (3)–(4). Since both 
− −1 1, rlz z  are rational functions with respect to α, and − −1 1, rlT T  are linear functions with re-

spect to α, the computation needed to evaluate the approximation is elementary.  
The ratio of the fuzzy numbers introduced in this section was analysed in order to be 

applied to an optimization problem. Nowadays, the process of making decisions in any field 
cannot be competitive without an optimization step, since the optimization approaches are 
means for making best decisions. See (Nguyen, Kreinovich 2006), that addresses the optimi-
zation and decision making under interval and fuzzy uncertainty, and introduces some new 
mathematical foundations.

Mathematical programming is widely used in the natural sciences, engineering disciplines, 
economics, sociology and political sciences (Zimmerman 1985). Mathematical programming 
is one of the most frequently applied operations research techniques in solving some eco-
nomic and social real-world problems. The objective functions involved in the mathemati-
cal models of real-life problems originally are non-linear. In the very beginning, only linear 
programming problems were solved efficiently, thus the objective functions were linearized 
before optimization. Even when the decision maker faced the problem of optimizing various 
ratios, such as profits/costs or outputs/employee, the scientists searched for linearization ap-
proaches. When the performance of the computers increased, the researchers turned back to 
non-linear problems and tried to solve them efficiently. Then, the field of fractional program-
ming problems – that are the nearest generalization of the linear case – became intensively 
studied. As indicated in (Kornbluth, Steuer 1981), the linear fractional objectives (i.e. ratio 
objectives that have linear numerator and denominator) are useful in production planning, 
financial and corporate planning, health care and hospital planning and so forth. 

Since, in most real-world applications, certainty, reliability and precision of the data is 
often illusory, the associated mathematical models must involve uncertain quantities, and the 
solving approaches must deal with the arithmetic of uncertainty.

Our next goal is to solve a full fuzzy linear fractional problem using a discrete represen-
tation of the inverses of the exact membership functions of the products and ratios of fuzzy 
numbers. 
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3. The FFLFP model and the solving approach

The general model of a full fuzzy linear fractional programming (FFLFP) problem is:

 
= =

    
    = + +

        
∑ ∑0 0

1 1
"max" /

n n

j j j j
j j

Z C X C D X D , (6)

                             s.t. =


= ≤ =


 ≤ ≤ =

∑
1

, 1,...,

, 1,...,

n

i ij j i
j

j j j

M A X B i m

P X R j n

 ,

where ( )
=1,...,j j n

C , 0C and ( )
=1,...,j j n

D , 0D  represent the fuzzy coefficients of the ob-

jective function; ( ) =

=

1,...,

1,...,

j n
ij i m

A represents the fuzzy coefficients of the left hand side of the 

constraints; ( )
=1,...,j j n

X  represent the fuzzy decision variables; ( )
=1,...,j j n

P  and ( )
=1,...,j j n

R  

represent the lower and upper bounds of the decision variables; and ( )
=1,...,i i m

B  represent 

the right hand sides of the constraints. We restrict our attention to a FFLFP problem with 
coefficients expressed by triangular fuzzy numbers; decision variables expressed by fuzzy 
numbers; lower bounds on the variables expressed by fuzzy sets defined by linear increas-
ing membership functions; and upper bounds and right hand sides of the constraints de-
fined by linear decreasing membership functions. According to the previous section, both 
the objective value Z  and quantities iM , =1,...,i m  will generally not be triangular fuzzy 
numbers.

Existing methods for solving FFLFP problems use a simple arithmetic to aggregate tri-
angular/trapezoidal fuzzy numbers, approximate the result by a triangular/trapezoidal fuzzy 
number, and then transform the original problem to a crisp multi-objective linear fractional 
programming problem.

Dong, Wong (1987) implemented the extension principle for computing the fuzzy weight-
ed averages. Broek, Noppen (2011) proposed a new method to evaluate the fuzzy weighted 
averages of the criteria ratings in multi-criteria decision making. Based on the interval analy-
sis (Moore 1966), both of them emphasized that the fuzzy weighted average must be treated 
in a different way than a general ratio of distinct fuzzy numbers, due to the multiple occur-
rence of the same fuzzy numbers.

We adopt their idea and use it to develop our novel approach to solve the FFLFP prob-
lems. First, we show the importance of a correct use of the fuzzy arithmetic in computing 
the fuzzy value of a linear fractional function with both coefficients and variables expressed 
by triangular fuzzy numbers.

For example, let us compute the fuzzy value of the function Z ,

 ( ) ( ) ( )
( ) ( )

⋅ +
=

⋅ +

499,500,520 21,41,61

2,3,11 1,2,4

X
Z X

X
, (7)

at the triangular fuzzy number (1, 2, 5). The coefficients in the function are triangular fuzzy 
numbers given by their parameters (left, top, right). Ignoring the fact that the same fuzzy 
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number (1, 2, 5) appears in both nominator and denominator of Z , we obtain wrongZ , the 
fuzzy number with the parameters (8.813, 130.125, 887). A correct use of the extension 
principle, as pointed out by Dong, Wong (1987), yields the fuzzy number correctZ  with the 
parameters (34.67, 130.125, 241.9).

Figure 2 shows both the correct and wrong results of applying fuzzy arithmetic. The tops 
of the fuzzy numbers are the same, but the support of the wrong fuzzy number is essentially 
wider than the support of the correct fuzzy number, thus influencing the conclusions of any 
analyst about the input-output relation through the function Z . 

Second, we present the effect of the translation of inputs, on the outputs, through a func-
tion that is a ratio of fuzzy numbers. Figure 3 shows the membership functions of the fuzzy 
numbers obtained by evaluating the full fuzzy linear fractional function (7) at ten points

( )
=1,10

i
i

X . The triangular shapes of the membership functions of ( )
=1,10

i
i

X  are also shown 

in Figure 3 – they all are equidistant translations from the triangular fuzzy number (1, 2, 5) 
to the triangular fuzzy number (4, 5, 8). 

Third, we describe our novel solving approach to FFLFP problems with coefficients ex-
pressed by triangular fuzzy numbers and general fuzzy numbers as decision variables. The 
solving approach to FFLFP is summarized below.

Fig. 2. Correct and wrong results in applying fuzzy arithmetic to compute the ratio Z

Fig. 3. The effect of the translation of the triangular fuzzy numbers X  on the objective function ( )Z X
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1. We decide how many α-cuts to use in order to have a satisfactory accuracy of the mem-
bership functions of the fuzzy solution, i.e. we split the interval   0,1  in p – 1 subinter-
vals by considering the equidistant values = α < < α =10 ... 1p .

2. For each αi, =1,...,i p
 – we evaluate the left and right sides of the α-cut of each fuzzy set involved in Problem 
(6), and solve two crisp linear fractional programming problems (8) and (9), where 
YL and YR represent the left and the right endpoints of the αi-cut interval of the fuzzy 
set Y .

 
= =

    
    = + +

        
∑ ∑0 0

1 1
max /

n n
L L R R
j j jj

j j
z c x c d x d ,

 

(8)

                               s.t. =


≤ =


 ≤ ≤ =

∑
1

, 1,...,

, 1,...,

n
L R
ij j i

j
L R
j j j

A x B i m

P x R j n
;

  
= =

    
    = + +

        
∑ ∑0 0

1 1
max /

n n
R R L L

j j jj
j j

z c x c d x d ,

 

(9)

                               s.t. =


≤ =


 ≤ ≤ =

∑
1

, 1,...,

, 1,...,

n
R R

j iij
j

L R
j j j

A x B i m

P x R j n
.

 – we denote by ( )= 1 ,...,I I I
nX x x  and Iz  the crisp optimal solution to Problem (8), and 

by ( )= 1 ,...,II II II
nX x x  and IIz  the crisp optimal solution to Problem (9);

 – we compute ( ) ( )α = min ,L I II
iz z z , ( )= arg min ,I IIk z z , and  ( )α =L k

iX X  for the left 
sides of the αi-cut intervals of the fuzzy optimal solution; and ( ) ( )α = max ,R I II

iz z z
 
, 

( )= arg max ,I IIq z z , and ( )α =R q
iX X  for the right sides of the  αi-cut intervals of 

the fuzzy solution.
Note that we treated differently the fuzzy coefficients and the fuzzy variables of 

Problem (6). We used only one set of variables ( )= 1,..., nx x x  for each of the crisp prob-
lems (8) and (9), like the decision variables were not fuzzy numbers with left and right end-
points of the fuzzy intervals. The reason is that we do not know in advance what side of the 
fuzzy numberX , the left one or the right one, makes the objective function maximal. Thus, 
we focus on the correct construction of the α-cut intervals of the fuzzy value ( )Z X , using a 
crisp x in the optimization step; and, only in the end, decide whether the obtained optimal x 
should be placed on the left or on the right side of the α-cut interval of the fuzzy solution X .

In our approach, we do not need any special definition for the inequality of two fuzzy 
numbers. We only impose on the decision variables to lie in the interval defined by their low-
er and upper bounds, derived from the α-cuts of the fuzzy numbers jP and jR , =1,...,j n. 

Comparing to other solving methods, our procedure has some advantages. It takes into 
consideration the multiple occurrences of the variables in the arithmetic expressions of the 
objective function and constraints, and handles it properly. It uses the discrete representa-
tion of the inverses of the exact membership functions of the products and ratios of fuzzy 
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numbers. It yields fuzzy solutions expressed by general fuzzy numbers, that are not neces-
sary neither triangular nor trapezoidal fuzzy numbers. The supports of the fuzzy solutions 
are the same as in the case of the crisp decision variables used instead of the fuzzy decision 
variables. It is easy to be implemented since it does not relay on any special definition of 
fuzzy inequality.

4. Computational results

4.1. Numerical example

In this section we illustrate our novel approach by solving a special example – a decision-
making problem in production planning.

A company produces two kinds of products. The selling price for each product can vary a 
little due to smaller discounts to certain customers, but the unit prices are about 500 euros for 
the first product and 40 euros for the second one. The time needed to process each of them 
is approximately 3 hours for the first product and 10 hours for the second one. The fixed 
time needed to organize the whole production is about 20 hours. The volumes of the main 
substance needed are about 2 litres per unit for both products. The available main substance 
for the production can vary slightly from week to week. The minimum volume available per 
week is 55 litres, and the maximum is 75. The minimal number of the products of the first 
kind is about 5, and the maximal number is about 105. The minimal number of the products 
of the second kind is about 3, and the maximal number is about 50. The company wants 
to determine the number of units to produce for each product per week to maximize its 
revenue and minimize the total production time. Since all the numbers given are uncertain, 
we model the problem as a FFLFP. We substitute a triangular fuzzy number for each given 
value, such that the top of the fuzzy number is at the given number. Hence, we have to solve 
the following FFLFP problem

 
( ) ( )

( ) ( ) ( )
 ⋅ + ⋅
 =
 ⋅ + ⋅ + 

1 2

1 2

490,500,520 30,40,70
max

2,3,11 8,10,21 10,20,40

X X
Z

X X
, (10)

                             s.t. 
( ) ( ) ( )
( ) ( )
( ) ( )

 ⋅ + ⋅ ≤
 ≤ ≤
 ≤ ≤

1 2

1

2

1,2,3 1,2,4 55,55,75 ,

4,5,5 105,105,121 ,

2,3,3 50,50,56 .

X X

X

X

 

Applying the methodology introduced in Section 2, we obtained the following results. 
The membership functions of the maximal 1X  and 2X  for Problem (10) are shown in 

Figure 4. The membership function of maxZ is shown on the left side of Figure 6. Only for 
the exemplification purpose, we also report the results obtained by minimizing the same 
objective. The membership functions of the minimal 1X  and 2X  are shown in Figure 5, 
while the membership function of minZ is shown on the right side of Figure 6.

We solved Problem (10) with two accuracy levels. First time we used 11 α-cuts, and the 
obtained values are represented in Figures 4, 5 and 6 by black rhombuses “♦”. Second time 
we computed the values of the membership functions for 101 α-cuts, and represented them 
by signs “+” in Figures 4, 5 and 6. The effect of the number of α-cuts used in computation, 
on the accuracy of the solution, can be seen in the graphical representation.
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Fig. 4. The shapes of the maximal solutions 1X  and 2X  to Problem (10)

Fig. 5. The shapes of the minimal 1X  and 2X

Fig. 6. The shapes of maxZ  (for the maximal 1X , 2X ) and minZ  (for the minimal 1X , 2X )
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4.2. Comparison to other methods

In this section, we recall the problem solved in (Stanojevic, Stancu-Minasian 2012, 2009; 
Pop, Stancu-Minasian 2008):

 
( ) ( ) ( )

( ) ( ) ( )
 ⋅ + − − ⋅ +
 =
 ⋅ + ⋅ + 

1 2

1 2

0,1,2 2, 1,0 0,1,2
max

0,1,2 0,1,2 1,2,3

X X
Z

X X
,

 

(11)

                                s.t. 
( ) ( ) ( )
( ) ( ) ( )

( )

 ⋅ + ⋅ ≤
 ⋅ + − − ⋅ ≤
 ≥

1 2

1 2

1 2

0,1,2 0,1,2 1,2,3 ,

0,1,2 2, 1,0 0,1,2 ,

, 0,0,0 .

X X

X X

X X

 

In (Pop, Stancu-Minasian 2008), the authors also reported the results obtained using their 
general method but working with crisp decision variables. In (Stanojevic, Stancu-Minasian 
2012), the authors reported the solutions obtained to a similar problem that had non-sym-
metric triangular fuzzy numbers as coefficients, but the same top and left parameters as the 
triangular fuzzy coefficients of Problem (11). The numerical results are summarized in Table 1.

Figure 7 shows the optimal solution 1X , and the optimal fuzzy value maxZ  obtained by 
applying our method to solve both Problem (11) and its variant introduced in (Stanojevic; 
Stancu-Minasian 2012). Dashed lines were used to show the results obtained in the case of 
non-symmetric triangular fuzzy coefficients. The parameters of the optimal 2X  were (0, 0, 
0) in both cases, hence its graphical representation does not bring any significance to our 
discussion. For the optimal 1X  and maxZ , it is interesting to see the change of the shapes 
with respect to the supports of the fuzzy coefficients of the problem.

Analysing the numerical results shown in Table 1, the following advantages of our meth-
od deserve to be mentioned: 

 – the increase of the values of the right parameters of the fuzzy coefficients of Problem 
(11) increases the values of the right parameters of the solution, and dilates the shapes 
of both increasing and decreasing branches of the fuzzy solutions (note that this is 
not the case of the method introduced in (Stanojevic, Stancu-Minasian 2012), where 
even the top of the fuzzy value of the objective function changed); 

Fig. 7. The shapes of the optimal solution 1X  and maxZ  to Problem (11)
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 – even for an optimal 1X  with an unbounded value of the right parameter, the cor-
responding value maxZ  has a bounded support (note that this is not the case of the 
method introduced in (Stanojevic, Stancu-Minasian 2009));

 – the support of the fuzzy value maxZ , obtained by our method, is the same with the 
support of the fuzzy value obtained by solving Problem (11) with crisp decision vari-
ables instead of fuzzy decision variables (note again that this is not the case of the 
other methods). 

We did not include in our discussion the method introduced in (Deb, De 2015), since the 
numerical results reported there contain obvious mistakes: the fuzzy numbers representing 
the solution had the values of the parameters improper ordered, or their solutions were not 
proper fuzzy numbers.

Conclusions

In this paper, we developed a novel approach to solving the full fuzzy linear fractional pro-
gramming problem, thus providing a tool for making good decisions in certain problems 
in which the goals may be modelled by linear fractional functions under linear constraints; 
and when only vague data are available. To the best of our knowledge, all approaches to 
solving full fuzzy linear fractional programming problems found in the literature yield 
crisp solutions, or solutions expressed by triangular or trapezoidal fuzzy numbers. On 
the contrary, following our methodology, the approximation of the results by triangular/
trapezoidal fuzzy numbers, and the comparison of fuzzy numbers were avoided. More-
over, comparing to existing methods, our approach used the discrete representation of the 
inverses of the exact membership functions of the products and ratios of fuzzy numbers, 

Table 1. The solutions to Problem (10) for comparison

Solving method/ solution 
features

Variables  
features Optimal 1X Optimal 2X maxZ

(Pop, Stancu-Minasian 
2008)/triangular  
fuzzy numbers

triangular fuzzy 
numbers

(0.0047, 1, 1.91) (0, 0, 0.911) (–0.21, 0.67, 5.82) 

crisp numbers 1 0 (0, 0.667, 4) 
(Stanojevic,  
Stancu-Minasian  
2009)/ triangular  
fuzzy numbers 

triangular fuzzy 
numbers

(0.125, 1, ∞) (0, 0, 0) (0, 0.667, ∞)

(Stanojevic,  
Stancu-Minasian  
2012)/ triangular  
fuzzy numbers

symmetric fuzzy 
coeff.

(0, 1, 1) (0, 0, 0) (0, 0.667, 1.33) 

non-symmetric 
fuzzy coeff.

(0, 1, 1) (0, 0, 0) (0, 0.55, 1.09) 

The new method/ 
non-triangular  
fuzzy numbers

symmetric fuzzy 
coeff.

(1, 1, ∞) (0, 0, 0) (0, 0.667, 4)

non-symmetric 
fuzzy coeff.

(1, 1, ∞) (0, 0, 0) (0, 0.667, 6) 
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thus avoiding possible errors that may arise when a multiple occurrence of a variable in an 
arithmetic expression of fuzzy numbers is improper handled. The approach does not use 
any special definition of fuzzy inequality, and it is easy to be implemented.

In order to construct the membership function of the fractional objective, we used the 
α-cut intervals of the fuzzy numbers obtained as sums of products of triangular fuzzy num-
bers with positive support. We derived the α-cut intervals of the ratio of such fuzzy numbers, 
computed the exact membership function of the ratio, and presented a way to evaluate the 
error that arose when the result was approximated by a triangular fuzzy number. We also 
analysed the effect of this approximation on solving full fuzzy linear fractional programming 
problem, and discussed some potential applications to decision making.

The membership functions of the solution to full fuzzy linear fractional programming 
problem derived in this paper is discrete and its accuracy can be tuned by choosing a con-
venient number of α-cut intervals to be computed. Involving the value α as a parameter in 
Problems (8) and (9), and developing a parametric analysis of the solutions to Problems (8) 
and (9) is a way to derive analytical expressions for the membership functions of the fuzzy 
solutions to full fuzzy linear fractional programming problems. Exploring this idea will be 
the subject of our further work.
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