
*Corresponding author. E-mail: shenfeng1213@gmail.com

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.
org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author 
and source are credited.

© 2019 The Author(s). Published by VGTU Press

Technological and Economic Development of Economy
ISSN: 2029-4913 / eISSN: 2029-4921

2020 Volume 26 Issue 2: 405–429

https://doi.org/10.3846/tede.2019.11337

A COST-SENSITIVE LOGISTIC REGRESSION CREDIT  
SCORING MODEL BASED ON MULTI-OBJECTIVE  

OPTIMIZATION APPROACH

Feng SHEN*, Run WANG, Yu SHEN

School of Finance, Southwestern University of Finance and Economics, Chengdu 611130, PR China

Received 18 February 2019; accepted 15 September 2019

Abstract. Credit scoring is an important process for peer-to-peer (P2P) lending companies as it 
determines whether loan applicants are likely to default. The aim of most credit scoring models is 
to minimize the classification error rate, which implies that all classification errors bear the same 
cost; however, in reality, there is a significant cost-sensitive problem in credit scoring methods. 
Therefore, in this paper, a new cost-sensitive logistic regression credit scoring model based on a 
multi-objective optimization approach is proposed that has two objectives in the cost-sensitive lo-
gistic regression process. The cost-sensitive logistic regression parameters are solved using a multiple 
objective particle swarm optimization (MOPSO) algorithm. In the empirical analysis, the proposed 
model was applied to the credit scoring of a Chinese famous P2P company, from which it was 
found that compared with other common credit scoring models, the proposed model was able to 
effectively reduce type II error rates and total classification error costs, and improve the AUC, the F1 
values (reconciliation average of Recall and Precision), and the G-means. The proposed model was 
compared with other multi-objective optimization algorithms to further demonstrate that MOPSO 
is the best approach for cost-sensitive logistic regression credit scoring models.
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Introduction 

Due to the prevalence of financial frictions and credit constraints, it is difficult for individuals 
and SME (small to medium-sized enterprise) to obtain loans from banks (Rashid & Jabeen, 
2018; Abraham, 2018). The peer-to-peer (P2P) lending market began to develop as an emerg-
ing lending channel. P2P lending market is a platform based portal that allows individual 
lenders to come into contact with borrowers seeking loans, for which the lender assumes full 
risk. P2P lending has become popular because of the reduced financing costs (Guo, Zhou, 
Luo, Liu, & Xiong, 2016). In the P2P lending market, the borrower submits a loan applica-
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tion through the website platform, and the lender decides whether or not to lend the amount 
requested based on the relevant borrower information (Zhu, Li, Wu, Wang, & Liang, 2013). 
However, relaxed regulation has caused many credit risks to society as well as increased losses 
for investors (Chen, Li, Wu, & Luo, 2017). Therefore, as predicting whether a borrower is able 
to repay the loan in the requested or granted time frame is extremely important, algorithmic 
online credit scoring has become a vital tool for P2P lending companies (Verbraken, Bravo, 
Weber, & Baesens, 2014). In credit scoring models, the dependent variable is dichotomous, 
with a default being assigned a “0”, and a successful loan being assigned a “1” (Serrano-Cinca 
& Gutiérrez-Nieto, 2016). Credit scoring models estimate default probabilities (PD) based on 
applicant credit histories so that lending institutions can determine whether to approve or 
reject the loan application (Bequé, Coussement, Gayler, & Lessmann, 2017). 

Traditional credit scoring models build a series of statistical models based on the prem-
ise that different classification errors have a consistent cost using classifiers such as logistic 
regression (LR) (Wiginton, 1980), support vector machines (SVM) (Min & Lee, 2005), deci-
sion trees (DT) (Huysmans, Dejaeger, Mues, Vanthienen, & Baesens, 2011), neural networks 
(NN) (Khashman, 2010), or ensemble approaches such as bagging (Yu, Yue, Wang, & Lai, 
2010), and boosting (Wang, Ma, Huang, & Xu, 2012). However, in the credit scoring process, 
cost-sensitivity is more important as the cost associated with approving an application for 
someone who defaults on the loan is far greater than the cost associated with rejecting an 
application from a customer who may have successfully repaid the loan (Kao, C. C. Chiu, & 
F. Y. Chiu, 2012).

Therefore, cost-sensitive learning is a relatively new machine learning approach that 
trains classifiers to recognize the different costs associated with different classification er-
rors. As shown in Figure 1, the orange circle indicates loan applicants who may default in 
the future and the green circle indicates applicants who may not default in the future. If it 
is assumed that the cost of misjudging a non-defaulter as a defaulter is 1, and the cost of 
judging a defaulter as a non-defaulter is 5, in Figure 1 left, there is a traditional classifier 
that minimizes this error rate; that is, the classification error cost of judging a defaulter as a 
non-defaulter is 5. The right side is the cost-sensitive learner that minimizes the cost of the 
classification errors by judging both borrowers as possible defaulters so that the resulting 
classification error cost is 1 + 1 = 2. Therefore, the cost-sensitive classifier has less total cost 
and is more in line with the actual credit scoring situation (Günnemann & Pfeffer, 2017).

Figure 1. The result of a cost-insensitive classifier (left); the result of a cost-sensitive classifier (right)
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Cost-sensitive learning algorithms can be divided into direct and indirect cost-sensitive 
methods (Ling & Sheng, 2011). The direct method builds a cost-sensitive learning algorithm 
by directly introducing different misclassification costs into the learning process, and the 
indirect cost-sensitive approach converts the cost-insensitive classifiers into cost-sensitive 
classifiers by preprocessing the training data through undersampling or oversampling or 
through postprocessing such as thresholding, which changes the cutoff value into a positive 
or negative when classifying a sample (Xia, C. Liu, & N. Liu, 2017). García, Marqués, and 
Sánchez (2012) examined whether resampling methods could improve classifier performance 
and found that for any classifier, the classifier performance after resampling was better than 
using unbalanced data. Marqués, García, and Sánchez (2013) then compared this credit scor-
ing resampling method and found that it was able to balance cost-sensitive data and that 
using an oversampling method was better than using an undersampling method. As indirect 
cost-sensitive methods are only modeled at the data level and are therefore not studied with 
the model itself, direct cost-sensitive methods may have more value. Therefore, the proposed 
method in this paper is based on a direct cost-sensitive method. 

In a direct cost-sensitive approach, J. Kim, Choi, G. Kim, and Suh (2012) compared 
a traditional classifier with a cost-sensitive decision tree and found that the lowest clas-
sification cost was incurred when a MetaCost approach was used and when the non-fraud 
data and fraud data were balanced. Bahnsen, Aouada, and Ottersten (2015) constructed an 
example-dependent cost-sensitive decision tree with a novel impurity measure and pruning 
criteria, which was found to outperform baseline models in terms of cost savings and train-
ing time. Of the various direct methods, cost-sensitive decision trees have been the most 
popular method because of their simple operability; however, as cost-sensitive decision trees 
are sensitive to data patterns, any small change in the training set can result in a completely 
different tree and a significant change in the predictions (James, Witten, Hastie, & Tibshi-
rani, 2013). Logistic regression, however, is not sensitive to data, is suitable for continuous 
variables, and the regression results contain the parameters for each variable, with the size 
and symbol of the parameter indicating whether and how the variable affects the loan ap-
plicant’s default probability; therefore, logistic regression is very explanatory and practical 
(Bequé et al., 2017).

Even though logistic regression has been found to have significant interpretability ad-
vantages, there have been few studies focused on the use of cost-sensitive logistic regression. 
Bahnsen, Aouada, and Ottersten (2014) developed an example-dependent cost-sensitive lo-
gistic regression model using two publicly available datasets, which achieved high-cost sav-
ings compared to the benchmarks; however, the loss function was linear, which caused weak 
differentiation between the false and correctly classified instances. Günnemann and Pfeffer 
(2017) introduced a new cost-sensitive prediction model based on a nonlinear loss func-
tion, which extended logistic regression and allowed for the different costs of misclassified 
instances, thereby obtaining prediction results with an overall lower cost. However, most of 
these cost-sensitive models have been based on a single optimization criterion. Therefore, in 
order to ensure the excellent performance of the classification model while identifying the 
defaulters who have the higher costs as accurately as possible, this paper seeks to synthesize 
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the two goals to construct a multi-objective optimization logistic regression model based 
on a maximum AUC and a minimum total classification cost, and then solves the proposed 
model using a MOPSO evolutionary algorithm.

In this paper, a logarithmic loss function and the AUC objective function are used to 
optimize the logistic regression parameters. The two objective functions are embedded in the 
MOPSO optimization algorithm to determine the optimal parameter set. This paper aims 
to construct a direct cost-sensitive logistic regression method based on multi-objectives to 
obtain a model that minimizes the total cost and maximizes the AUC. As the constructed 
model is better able to identify the sample categories with higher losses, it can therefore assist 
lenders identify possible defaulters, reduce default losses, and increase profits. The remainder 
of this paper is structured as follows. Section 1 introduces the preliminary knowledge used in 
this paper; logistic regression, the cost matrix, the AUC, and the multi-objective optimization 
algorithm. In Section 2, the multi-objective optimization cost-sensitive logistic regression is 
constructed, and in Section 3, the proposed model and algorithm are applied to a P2P dataset 
to evaluate its performance, and the results are compared with single-objective optimization 
and other multi-objective optimization algorithms to verify its effectiveness. Finally, conclu-
sions and further research recommendations are given in the last section.

1. Preliminary knowledge

This section gives a brief introduction to the theoretical knowledge used in the following 
sections; the theory of logistic regression, the derivation of the AUC, and the meaning of 
the cost matrix.

1.1. Logistic regression

Logistic regression is a classification model that estimates the posterior probability of a posi-
tive class in a specific binary classification context. Logistic regression is one of the most 
widely used statistical models for deriving classification algorithms (Abdou, Tsafack, Ntim, 
& Baker, 2016). Given an instance Xi, the estimated probability of the positive class is evalu-
ated as ( )1| iP y X= , and ( ) ( )0| 1 1|i iP y X P y X= = − =  respectively for the negative class oc-
currence. Here, ( )( ),f g x b  is defined as the sigmoid function, which is known as the logistic 
(Desai, Crook, & Overstreet Jr, 1996):
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b = b + b∑  is a linear function of the logistic regression parameters b and 

the explanatory variables, and 0 1ip≤ ≤  refers to the hypothesis of i given the parameters 
q. The constructed logistic regression model is solved to ensure a consistent estimate with 
a true value, and is usually determined using the maximum likelihood estimation method 
(MLE), which assumes that each sample in the dataset is independent. When the true value 
yi = 1, pi represents the probability that the sample is predicted to be 1; that is, the bigger the 
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pi, the smaller the difference between the predicted value and the true value. When the true 
value yi = 0, 1 – pi represents the probability that the sample is predicted to be 0; that is, the 
bigger the 1 – pi, the smaller the difference between the predicted value and the true value. 
The MLE principle ensures that the difference between the predicted value and the true value 
is the smallest; that is, when yi = 1, pi is the largest and when yi = 0, 1 – pi is the largest. The 
likelihood function for MLE is derived as follows (Günnemann & Pfeffer, 2017).
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As the b in logistic regression is obtained by maximizing ( ),L x b , the maximum likeli-
hood function solves the parameter by maximizing the difference between the predicted 
value and the true value; therefore, there is no cost-sensitive thinking in the MLE.

1.2. AUC

In traditional credit scoring models, the AUC (area under the receiver operating charac-
teristic curve) is an effective measure for evaluating model performance. This curve is an 
ROC curve (Receiver Operating Characteristic). To predict the default probability of appli-
cants ( 1| )i i ip P y X= = , traditional credit scoring models construct a suitable classifier ( )ih x  
based on a historical dataset of the loan applicants, for which an appropriate threshold t is 
chosen, typically 0.5; when pi < t, ( ) 1ih x = , the applicant’s loan is approved, and when pi > t, 
( ) 0ih x =  , the applicant’s loan is declined. However, threshold t selection greatly affects the 

evaluation index value (Ala’raj & Abbod, 2016). However, as the calculation of the AUC does 
not need to turn the prediction probabilities into categories, it is more useful for evaluating 
model performance.

There is a need to evaluate the classifier ( )ih x  performance after it is estimated. In prac-
tice, AUC has been widely used to assess the performance of a credit scoring model. In a 
dichotomous problem, samples have two categories; positive and negative. When a classifier 
predicts samples, positive samples can be predicted as negative samples or positive samples, 
and negative samples can be predicted as negative samples or positive samples; that is, there 
are four circumstances. A sample that is truly positive and is also predicted to be positive is 
called a true positive (TP), a sample that is truly positive but predicted to be negative is called 
a false negative (FN), a sample that is truly negative and also predicted to be negative is called 
true negative (TN), and a sample that is truly negative but predicted to be positive is called a 
false positive (FP). These four cases constitute the classification matrix, as shown in Table 1.

Table 1. Classification matrix

Actual positive yi = 1 Actual negative yi = 0

Predicted positive hi = 1 TP FP
Predicted negative hi = 0 FN TN

From the classification matrix, the true positive rate (TPR) and false positive rate (FPR) 
can be calculated.
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The ROC curve is based on the false positive rate on the horizontal axis and the true posi-
tive rate on the vertical axis. First, the classification threshold is adjusted to the maximum, at 
which time the true and false positive rates are both 0, after which the classification threshold 
is set as the predicted value of each example in sequence so that each predicted value cor-
responds to a set of true positive rates and false positive rates. The ROC curve is obtained by 
plotting these true positive rates and false positive rates on a graph, with the area under the 
ROC curve being the AUC; the larger the AUC, the better the model performance. 

This article uses the following formula to calculate the AUC (Fawcett, 2006):
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where M is the number of positive samples and N is the number of negative samples, and 
ranki is the ranking of the forecast probability of the ith positive sample.

1.3. Cost matrix

In a cost-sensitive learning method, the different categories have the different classification 
error cost, and the cost-sensitive learning model performance evaluation is not limited to 
the AUC. The cost matrix is used to express the different classification error costs. As clas-
sification errors have different costs, different weights are assigned to different classifications, 
as shown in Table 2. The weights that classify a positive class as a positive class are cTP, the 
weights that classify a positive class as a negative class are cFN, the weights that classify a 
negative class as a positive class are cFP, and the weights that classify a negative class as a 
negative class are cTN (Günnemann & Pfeffer, 2017).

Table 2. Cost matrix

Actual positive yi = 1 Actual negativeyi = 0

Predicted positive hi = 1 cTP cFP

Predicted negative hi = 0 cFN cTN

In general, only the cost of misclassification is considered; that is cTP = cTN = 0. Therefore, 
for the classifier ( )ih x , the expected cost based on this cost matrix is

 
( ) ( ) ( )

1

cost ( * 1 * * * 1 ),
n

FP i i FN i i
i

E c y p c y p
=

= − + −∑
 

 (6)

where { }0,1iy ∈  is the observed and { }0,1ih ∈  is the predicted category for instance i, with 
n being the number of instances.
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1.4. Multi-objective particle swarm optimization

In a single-objective optimization algorithm, the particle swarm optimization (PSO) al-
gorithm, which is a novel optimization algorithm inspired by birds swarming, provides 
high-speed convergence. Compared to other evolutionary computing models, PSO is more 
popular (Kou, Chao, Peng, Alsaadi, & Herrera-Viedma, 2019). The multi-objective Particle 
Swarm Optimization (MOPSO) was developed based on the PSO. However, when applying 
a single-objective PSO algorithm to a multi-objective optimization problem, there are several 
problems: (1) selecting the leader particles for the updating process, (2) maintaining the 
non-dominated solution to obtain the optimal Pareto front, and (3) preventing the particles 
from converging to a local optimum and maintaining group diversity (Ding, Chen, Xin, & 
Pardalos, 2018). To resolve these three problems for multi-objective optimization problems, 
each particle may have a set of different leaders from which just one can be selected to update 
its position. As these leader sets are usually stored in a different place from the swarm, these 
are called an external archive, which is a repository in which the non-dominated solutions 
found so far are stored. The solutions in the external archive are used as the leaders when 
the positions of the swarm particles have to be updated, and the external archive contents are 
also usually reported as the final algorithmic output (Reyes-Sierra & Coello, 2006); therefore, 
updating the external archives is a core issue for the MOPSO.

The main advantage of single-target PSO is the use of ε-dominance (Coello, Pulido, & 
Lechuga, 2004). In MOPSO, however, this method is primarily used to filter and update the 
external archives, as shown in Figure 2. In an optimization problem in which the objective 
function minimizes both f1 and f2, the particles in the external archives are analyzed. First, 
particle 7 is inferior to all other particles because box (2ε, 3ε) is dominated by box (2ε, 2ε). 
Particle 1 dominates Particle 2 because it is closer to the lower left corner of the point (ε, 3ε). 
The same particle 3 is superior to particle 4, and particle 5 is superior to particle 6. Therefore, 
after each iteration, the external archive is filtered according to the ε-dominance method. 
After the iteration, the optimized solution is randomly selected from among all externally 
archived particles.

The pseudo code for the MOPSO algorithm is shown in Figure 3 (Reyes-Sierra & Coello, 
2006). 

Figure 2. ε-dominance MOPSO external archives
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Input: Data set D = ( ) ( ) ( ){ }1 1 2 2, , , , , , ;m mx y x y x y

The number of particle group max;
Training rounds N.
Initialize swarm
Initialize leader in an external archive
Quality (leaders)

Process:
1: for t = 1, 2, ..., N, do
2:      for i = 1, 2, ..., max do
3:            Select leader
4:            Update Position
5:            Mutation
6:            Update pbest
9:     end for
10:   Update leaders in the external archive
11:   Quality (leaders)
12: end for
Output: the optimal particle is randomly selected from the repository.

Figure 3. Pseudocode for a general MOPSO algorithm

2. Proposed credit scoring model 

The essence of the credit scoring model is the data mining and machine learning of large 
quantities of historical information to ensure the most accurate prediction of the loan ap-
plicant default probabilities. After the prediction result is obtained, the prediction value is 
compared with the true value to evaluate the performance of the credit scoring model using 
the AUC. The AUC indicator does not need to set the threshold in advance, which avoids 
the impact of the threshold on the classification result. It is the comprehensive indicator 
used to evaluate model performance. Therefore, this paper uses the AUC as one of the model 
optimization goals. 

However, one of the AUC indicator assumptions is that different classification errors have 
consistent costs. This is unreasonable in some realistic credit scoring questions. In the credit 
scoring question, the cost of recognizing a possible defaulter as a non-defaulter is greater 
than recognizing a non-defaulter as a defaulter. If only the AUC is used as the optimization 
goal of the model, the proposed model has the same ability to recognize the defaulters and 
the non-defaulters, which would increase the total classification error cost of the model. 
However, in the realistic credit business, the total cost is closely related to the investor’s rev-
enue. In order to reduce the total classification error cost, the model would have a better abil-
ity to identify defaulters. Therefore, while considering the comprehensive performance of the 
classifier (evaluated in AUC), we cannot ignore the total classification error cost. Therefore, 
this paper uses the total classification error cost as one of the optimization goals. This paper 
describes how to construct a cost-sensitive loss function in the following sections. 

From the introduction in section 2.1, logistic regression uses a maximum likelihood func-
tion to solve the parameter:

 
( ) ( )( ) ( )( )( )(1 )
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=

b = b − b∏   (7)
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The logarithm of the above formula can be obtained:

 
L x y f g x y f g x� � � � � � � � �� � � �� �� � � �� �� �

1

ln , log , (1 log 1 , ).)
n

i i i i
i�
�(   (8)

If the deviation of the predicted value from the true value is defined as the loss, the pa-
rameter can also be solved from a loss minimization perspective. Then, the problem is to find 
the optimal parameters by minimizing the given cost function. In logistic regression, the cost 
function J(q) usually refers to the negative logarithm of the likelihood; therefore, maximizing 

( )ln ,L x b  is equivalent to minimizing J(q).

 
( ) ( )( )( ) ( ) ( )( )( )

1

1 ( log , 1 log 1 , ).
N

i i i i
i

J y f g x y f g x
N

=

q = − b − − − b∑   (9)

Function J(q) constructed in this way then becomes a logarithmic loss function. The 
characteristic of J(q) is that when the actual sample yi = 1 and the predicted probability pi = 1,  
J(q) = 0; however, J(q) increases as pi decreases, as shown in Figure 4. If the threshold selected 
is 0.5, when pi is greater than 0.5, the classification cost is FTP, and when it is less than 0.5, the 
classification error cost is FFN. When the actual sample yi = 0 and the predicted probability 
pi = 0, J(q) = 0; however, J(q) increases as pi increases, as shown in Figure 5. If the threshold 
selected is 0.5, when pi is less than 0.5, the classification cost is FTN, and when it is greater 
than 0.5, the classification error cost is FFP.

If the threshold is not determined in advance, the logarithmic loss function can effectively 
measure the deviation between the predicted value and the true value; that is, the greater the 
deviation, the greater the loss function value. However, the above logarithmic loss function 
does not reflect cost-sensitive thinking. ( )logi iy p−  is the cost of classifying the positive cat-
egory into the negative category and ( ) ( )1 log 1i iy p− − −  is the cost of classifying the negative 
category into the positive category, but it can be seen that the integrals of the two curves are 
the same. Therefore, the cost function indicates that the different classification errors costs 
are the same and needs to be improved. The different classification error costs need to be 
given different weights.

The cost matrix shows that the cost of classifying a positive category into a negative 
category is cFN, and the cost of classifying a negative category into a positive category is cFP. 
For the loss function J(q), ( )logi iy p−  is the cost of classifying a positive category into a 
negative category and ( ) ( )1 log 1i iy p− − −  is the cost of classifying a negative category into 
a positive category. Therefore, the cost-sensitive loss function for the logistic regression is:

 
( ) ( )( )( ) ( ) ( )( )( )log , 1 log 1 , .i FN i i FP i iCost c y f g x c y f g xq = − b − − − b

 
 (10)

This method is equivalent to directly increasing the area under the loss function to in-
crease the cost of the classification error; that is, instances with higher costs receive a higher 
average loss value. As the smaller the value of ( )iCost q , the smaller the classification error 
cost, and the greater the profit, the cost-sensitive loss function has practical business signifi-
cance. Therefore, minimizing the cost-sensitive loss function is taken as one of the optimi-
zation goals in this paper when constructing the multi-objective optimization cost-sensitive 
logistic regression.
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Therefore, a cost-sensitive loss function is constructed based on the cost matrix and the 
logarithmic loss function, with the maximization of the AUC and the minimization of the 
cost-sensitive loss function being the two goals for determining the parameters for the pro-
posed model. The constructed model is as follows:

 
� � �log 1 1Cost c y p c y log p

� � � �
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Figure 4. Cost loss function graph for yi = 1
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0.0 0.2 0.4 0.6 0.8 1.0

Treshold = 0.5 

0

1

2

3

4

FTN
FFP

–l
og

 (1
– 

p
) i



Technological and Economic Development of Economy, 2020, 26(2): 405–429 415

The multi-objective optimization algorithm MOPSO is then used to solve the proposed 
model parameters. As mentioned, MOPSO uses an ε-dominance method to update the ex-
ternal archive when searching for the optimal parameter set. In the proposed model, the 
horizontal axis of the external archive is the total costs of the classification errors, and the 
vertical axis is the inverse AUC value. During each iteration, the mesh closest to the origin 
in the entire mesh and the particles closest to the lower left corner in each mesh are selected 
and stored in the external archive. The position and velocity of each particle are updated 
using the formula before proceeding to the subsequent iteration, after which the particles 
in the external archive are output, from which the optimal solution is randomly selected.

The algorithmic steps for solving the multi-objective optimization cost-sensitive logistic 
regression parameter values using MOPSO are as follows (Figure 6):

Input: Data set D = ( ) ( ) ( ){ }1 1 2 2, , , , , , ;m mx y x y x y

The range of parameters of the proposed model;
The number of parameter group max;
Training rounds N.

Process:
1: for t = 1, 2, ..., N, do
2:      for i = 1, 2, ..., max do
3:   ( )0 1   , , ,i i inPOP i = b b … b    %  POP i    is the initial value of each group

        
0VEL i =    % VEL i    is the initial optimization speed of each group

4:     
( ) ( )
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1
2

*

ii

M M
rank p

AUC i
M N

∈

+
−

=  
∑

 % ( ),

1

1
i g x POP i

p
e−   

=
+

Cost i c y p c y p� � � � �� � � � � �log 1 log 1FN i i FP i i� �� �

5:     PBESTS i    is the groups which have maximum AUC and minimum Cost, 
         and store in the repository.
6:     REP h    is a value that is taken form the repository
7:      update

        ( ) ( )1 2         VEL i W VEL i R PBESTS i POP i R REP h POP i= × + × − + × −                        
        %W (inertia weight) takes a value of 0.4; R1 and R2 are random numbers in the range [0,1]
8:     update POP i POP i VEL i= +          
9:     end for
10: end for 
Output: optimal parameter is randomly selected from the repository.

Figure 6. Pseudocode for the proposed model solved using the MOPSO algorithm

3. Empirical study

3.1. Dataset description

The credit data set used in this paper was collected from a well-known P2P lending platform 
in China, for which the definition of a default loan is when the repayment is at least three 
times overdue (Greene, 1998); otherwise, the loans are classified as non-default. After delet-
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ing the credit target data, 5000 defaults and 10000 non-default loans were randomly selected 
as the experimental data for this paper; the default rate was about 33.33% (5000/15000). 
Each loan instance in the credit data had 22 variables, which included 21 observation vari-
ables and the loan status labels. The input variables for each sample included the borrower’s 
basic information, work information, credit certificate information, and asset information. 
Because there are decision trees and Bayes in the selected model, the selected variables were 
discretized in this paper. The definition for each variable is given in Table 3.

Table 3. Variable definitions

Variable Name Definition

ba
sic

 in
fo

rm
at

io
n Gender Gender 1 if an application is a man and 2 otherwise

Age Age Age of the application in years
education  
level Edu Education level of borrower, 1 = middle/high school, 

2 = 3-year college, 3 = 4-year college, 4 = graduate school
Marital  
status Marriage 1 = married, 2 = unmarried, 3 = divorced, 4 = widowed

Lo
an

 in
fo

rm
at

io
n

Use of  
the loan Purpose 1 = short-term turnover, 2 = personal consumption,  

3 = buy a house, 4 = buy a house, 5 = otherwise
Repayment  
type type 1 = Equal principal and interest / monthly repayment, 

2 = one-time debt service
Loan amount  
(in RMB) amount The loan amount requested by the application

Borrowing  
interest rate  
(in %)

interate The rate that the application pays on the loan

Loan period  
(in year) term Loan term requested by the application

A
ss

et
 in

fo
rm

at
io

n monthly  
income  
(in RMB)

income
Income level of the borrower, 1 = less than 1000, 
2 = 1001−2000, 3 = 2001−5000, 4 = 5001−10000, 
5 = 10001−20000, 6 = 20001−50000, 7 = more than 50000

Real estate house 1 if an application is a homeowner and 2 otherwise
Mortgage House_loan 1 if an application has a mortgage and 2 otherwise
Car asset car 1 if an application is a car owner and 2 otherwise
Car loans Car_loan 1 if an application has a car loan and 2 otherwise

W
or

k 
in

fo
rm

at
io

n Industry work Dummy variable
Company type Com_type Dummy variable

Company size size 1 = less than 10 persons, 2 = 10−100, 3 = 100−500,  
4 = more than 500

Working time length 1 = less than 1 year, 2 = 1−3 years, 3 = 3−5 years,  
4 = more than 5 years

Ap
pr

ov
al

 S
ta

tu
s

Credit 
certification Credit_c 1 if application passed credit certification and 0 otherwise

Identity 
certification Identity_c 1 if application passed identity certification and 0 otherwise

Work 
certification Work_c 1 if application passed work certification and 0 otherwise

Income 
certification Income_c 1 if application passed income certification and 0 otherwise
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The descriptive statistical analysis of these variables is shown in Table 4.

Table 4. Descriptive statistical analysis of variables

Variable mode P25 median P75 Variable mode P25 median P75

gender 1 1 1 1 car 1 1 2 3
age 35 31 36 42 car_loan 4 3 4 5
marriage 1 1 1 2 work 1 1 1 2
edu 2 2 2 3 com_type 2 2 2 2
purpose 1 1 2 3.25 size 2 1 2 2
type 2 2 2 2 length 2 2 2 2
amount 6 5 6 7 credit_c 1 1 1 1
interate 2 2 2 2 income_c 1 1 1 1
term 36 12 18 36 indentity_c 1 1 1 1
income 11 3 8 11 work_c 1 1 1 1
house 1 1 2 2 label 1 0 1 1
house_loan 4 2 4 4

3.2. Expected loss

The cost matrix for the research dataset was developed before credit scoring. The cost matrix 
can describe the default risk in the lending process (Nayak & Misra, 2018). If credit agencies 
divide non-defaulters into possibly loan defaulters, it is possible that they could lose loan 
interest; however, if they divide possible loan defaulters into non-defaulters, they could lose 
both loan interest and principal, which is usually measured as the expected loss (EL) and is 
calculated as shown in the following formula (Altman & Sabato, 2005; Thomas, 2010):

 * * ,EL PD EAD LGD=   (12)

where PD is the possibility of a loan applicant defaulting, and EAD is the exposure at default 
or the total amount owed at default and is expressed in monetary units, and LGD is the loss 
given default, which indicates the borrower’s financial losses after default and is expressed 
as a percentage.

 

( )Recoveries  costs
LGD% .

EAD NPV

EAD

− −
=   (13)

The loan amount and loan interest for a non-defaulter in the training set are used to 
calculate the possible interest income that could be lost when a non-defaulting applicant is 
judged as a possible defaulter. When the model recognizes that the non-defaulter as a de-
faulter, the interest income would be lost, corresponding to the value of cFN in the cost ma-
trix. The expected loss (EL) is calculated using the total default amount, the recovery amount, 
and the recovery costs of a defaulter sample in the training set. When the model recognizes 
that the defaulter as a non-defaulter, the loss is calculated from the EL, corresponding to the 
value of cFP in the cost matrix. As the value of the EL is 3.22 times the interest loss, the cost 
of recognizing a possible defaulter as a non-defaulter is 3.22 times greater than recognizing 
a non-defaulter as a possible defaulter in the research dataset. 
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3.3. Experimental design

K-fold Cross-Validation was used to train the training set and ensure the stability of the 
experimental results as it makes full use of the dataset to test the algorithmic effect, thereby 
avoiding over-fitting. The basic idea is to randomly divide the dataset into k parts, one of 
which is used as a test set and the remaining k-1 used as the training set. The experimental 
process is shown in Figure 7.

This paper used a 10-fold cross-validation to train the model; that is, the dataset was 
divided into 10 parts, 10 tests were performed, and the average result of the ten tests used to 
evaluate the model performance.

3.4. Experimental results

The empirical results were comprehensively evaluated using type I error rate, type II error 
rate, F value, G-mean, accuracy, AUC, and total cost (TC) indicators. The definitions and 
calculation formulas for the above indicators are described in the following.

The type I error rate indicates the ratio of false negatives to all positive examples (Tsai, 
2009).

 
type I error rate .FN

FN TP
=

+
  (14)

The type II error rate indicates the ratio of false positives to all counterexamples (Tsai, 
2009).

 
type II error rate  .FP

FP TN
=

+
  (15)

The total cost (TC) indicator is all error classification results calculated by combining 
the cost matrix.

 total cost * * .TC c FN c FP� � FN FP� �   (16)

The F1 indicator is a harmonic mean with Recall (also known as TPR) and Precision, 
which is presented as Eq. (19). The Recall and Precision are respectively calculated using Eq. 
(17) and Eq. (18) (Baldi, Brunak, Chauvin, Andersen, & Nielsen, 2000).

Figure 7. Demonstration of K-fold cross-validation

Training set

Training folds Test fold

First iteration

Second iteration 

Tenth iteration
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E10
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( )Recall  ;TPTPR

TP FN
=

+
  (17)

 
Precision ;TP

TP FP
=

+
  (18)

 

2 Recall Precision1 .
Recall Precision

F × ×
=

+
  (19)

The G-Mean (Geometric mean) indicator is a comprehensive evaluation method for im-
balance dataset (Shen, Zhao, Z. Li, K. Li, & Meng, 2019), and is determined using Eq. (20). 
A higher G-Mean indicates that the balance between the classes is reasonable and has good 
performance in the binary classification model. 

 
mean *  .  TP TNG

TP FN TN FP
− =

+ +
  (20)

From the collected data, 15000 samples were selected for training and prediction, and 
a 10-fold Cross-Validation used to prevent model overfitting. To assess the performance of 
the proposed multi-objective optimization cost-sensitive logistic regression, it was compared 
with other explanatory models; traditional logistic regression, decision tree, linear discrimi-
nant, Bayes, SVM, Bagging, Adaboost, cost-sensitive decision tree (CS-DT). The experimen-
tal results are shown in Table 5 and Table 6.

Table 5. Experimental results from the research dataset

Indicators error I error II F1 G-mean Accuracy TPR Precision
Traditional logistic 0.144 0.320 0.8488 0.7626 0.7969 0.856 0.842
Decision Tree 0.230 0.135 0.8381 0.8161 0.8017 0.770 0.920
Linear discrimination 0.151 0.298 0.8496 0.7717 0.7997 0.849 0.850
Bayes 0.698 0.003 0.4627 0.5482 0.5336 0.302 0.996
SVM 0.155 0.159 0.8778 0.8428 0.8433 0.845 0.914
Bagging 0.219 0.121 0.8480 0.8283 0.8135 0.781 0.928
Adaboost 0.153 0.178 0.8747 0.8341 0.8384 0.847 0.905
CS-DT 0.225 0.141 0.8398 0.8159 0.8030 0.775 0.917
Proposed model 0.279 0.036 0.8289 0.8335 0.8018 0.721 0.976

Table 6. Significance test for the AUC and cost

Indicators AUC paired t test TC paired t test
Traditional logistic 0.8842 −1.49 945.4 31.19***

Decision Tree 0.8558 −9.10*** 567.4 15.58***

Linear discrimination 0.8841 −1.29 897.6 29.98***

Bayes 0.8528 −10.80*** 704.8 30.76***

SVM 0.9116 14.3*** 553.0 12.74***

Bagging 0.8627 −6.23*** 522.2 15.60***

Adaboost 0.9119 12.42*** 598.8 24.28***

CS-DT 0.8568 −11.02*** 576.7 15.18***

Proposed model 0.8844 − 369.3 −

Note: For t test, Proposed model is used as baseline; *** Significant at 1% level; ** Significant at 5% 
level; * Significant at 10% level.
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As can be seen from the experimental results, compared to the other classifiers, the pro-
posed model had the smallest total classification error costs and a large AUC. Figures 8 and 
9 show the box plots for the total costs and AUC obtained from the 10-fold cross-validation 
by the proposed model and the comparative models. The boxplots have six data nodes, which 
arrange the data from the largest to the smallest and then calculate the maximum, the upper 
quartile, the median, the lower quartile, the minimum, and the outliers; if there are no outli-
ers, there are only five data nodes. As can be seen from Figures 8 and 9, the total cost distri-
bution for the proposed model was lower in all experiments with the 10-fold cross-validation, 
and the maximum total cost in all experiments was lower than the minimum total cost of 
the other classifiers. Therefore, the proposed model performance clearly demonstrated that 

Figure 8. Total cost box plot

Figure 9. AUC box plot
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it was effective in dealing with cost-sensitive issues. At the same time, the proposed model 
in this paper was found to have a large AUC, with the value being only lower than the SVM 
and Adaboost models. As the logistic regression used in this paper was a simple classifier 
and the data dimension was small, it was acceptable that the AUC for the proposed model 
was slightly lower than these two models.

To further verify that the AUC and cost indicators were better than the other comparison 
models, a paired t-test was performed, the results for which are shown in Table 6. As can 
be seen, the AUC for the proposed model was significantly higher than the Decision Tree, 
Bayes, Bagging, and the CS-DT, and the total cost was significantly lower than all other 
comparison models; therefore, the proposed model was found to be effective in dealing with 
cost-sensitive issues.

As can be seen from the Table 5, the empirical results showed that the type II error rate 
for the proposed model was significantly lower, which indicated that the model was better 
able to identify possible future loan defaulters. As this article defined non-defaulters as 1, FP 

indicated that the defaulters were classified as non-defaulters; therefore, Precision TP
TP FP

=
+

 

was able to measure the ability and better identify defaulters. As can be seen from the Table 5,  
except for the Bayes model, the precision of the proposed model in this paper was the high-
est. However, the F1, G-mean, and Recall of Bayes were low, indicating that while the model 
developed in this article was better at identifying the defaulters, the ability to identify non-de-
faulters was not reduced. Figure 10 shows about 100 defaulted samples that the proposed 
model sample classifications were correct but that the traditional logistic regression clas-
sifications were incorrect. The black dots show the traditional logistic regression prediction 
results and the blue dots show the proposed model prediction results. The true label for these 
samples was 0 (loan defaulters). When traditional logistic regression was used to classify 
these samples, as the prediction probability was greater than the 0.5 threshold, these samples 
were judged as non-defaulters. However, when the proposed model was used to classify these 
samples, the prediction probability was less than 0.5, and the samples were judged as prob-
able future loan defaulters. Therefore, the proposed model classifications were correct. If the 

Figure 10. Some examples of the prediction probabilities for the two models
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credit scoring model can better identify loan defaulters, then credit institutions would be able 
to reduce their default loans and improve their overall profit performances. 

It can be seen from the F value, G-mean, and accuracy that the proposed model had a 
large G-mean and accuracy and a large F1 value, as shown in the line graph in Figure 11. As 
can be seen, the G-mean value of the proposed model is slightly lower than SVM and Ada-
boost. As the G-mean is a key indicator for the evaluation of unbalanced data performance, 
a high G-mean indicates that the model performed better on the unbalanced data sets. 

3.5. Discussion and Robust test

This section first compares the results of the proposed multi-objective model with the results 
of the single goal, which the PSO method is used to estimate the logistic regression param-
eters based on minimum cost or maximum AUC. The comparative experimental results are 
shown in Table 7, where PSO(Cost) represents the experimental results of the PSO optimiza-
tion based on the minimum cost, and PSO(AUC) represents the experimental results of the 
PSO optimization based on the maximum AUC.

Figure 11. F value, G-mean and accuracy line graph
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Table 7. Experimental results of performance comparison

Indicators AUC paired t test TC paired t test

PSO(Cost) 0.8836 −0.84 463.6 2.97**

PSO(AUC) 0.8871 3.99*** 850.7 6.40***

Proposed model 0.8844 − 369.3 −

Note: For t test, Proposed model is used as baseline; *** Significant at 1% level; ** Significant at 5% 
level; * Significant at 10% level.
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It can be seen from the experimental results that the results based on multi-objective op-
timization had the lowest total cost compared to the single-objective optimization. Although 
the AUC based on the multi-objective optimization was significantly lower than the result 
of the AUC-based single-objective optimization by 3‰, the total cost based on the multi-
objective optimization was less than half. The box plots of the corresponding comparisons 
are shown in Figures 12 and 13. As can be seen from Figure 12, the total cost based on the 
multi-objective optimization was the lowest and had the most stable distribution. At the same 

Figure 12. Total cost boxplot

Figure 13. AUC boxplot
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time, it can be seen from the results of the significance test that the cost of the multi-objective 
optimization model proposed in this paper is significantly lower than that of single-objective 
optimization. Therefore, it can be seen from the above analysis that the model had a better 
practical effect based on the multi-objective optimization than on the single-objective opti-
mization. When using the credit scoring model to decide whether to issue a loan in practice, 
it is necessary to pay greater attention to the total cost indicator.

The multi-objective optimization results of the MOPSO were also compared with the NS-
GA-II (Deb, Agrawal, Pratap, & Meyarivan, 2000), PAES (Knowles & Corne, 2000), and mi-
croGA (Coello & Pulido, 2001), they are common multi-objective optimization algorithms. 
The experimental results of performance comparison are shown in Table 8.

It can be seen from the experimental results that the results based on MOPSO had the 
largest AUC, while the total cost is significantly lower than the other multi-objective op-
timization methods. Therefore, it can be seen from the above indicators that determining 
the optimal solution based on MOPSO produced the best results for the constructed multi-
objective credit scoring model.

As this paper’s focus was on the total cost and AUC indicators, this section uses the box 
plot to show the results of the 10-fold cross-validation. The total cost and AUC box plots for 
the MOPSO and the other multi-objective optimization methods are shown in Figures 14 
and 15. As can be seen from Figure 14, the total cost based on the MOPSO was the lowest 
and had the most stable distribution. Figure 15 shows that the MOPSO optimization also 
performed better than the other three multi-objective optimization algorithms on AUC.

Further, to verify the robustness of the proposed model, this paper used a dataset from 
a “lending club” website for the empirical analysis. Lending club data with a credit period 
of three years were downloaded from the associated website in 2015. After missing value 
processing and variable selection, 420,000 data points and 17 characteristic variables were 
obtained, after which 20000 samples; 10000 non-defaulters and 10000 defaulters; were ran-
domly extracted for the empirical research. The empirical results are shown in Table 9.

From the experimental results in Table 9, it can be seen that the AUC for the proposed 
model in this paper was significantly higher than the decision tree, Bayes, SVM, Bagging, 
and CS-DT, and there was no significant difference between the LDA and Adaboost. The 
proposed model was therefore found to have a better classification performance. From a total 
cost perspective, the total cost for the model constructed in this paper was significantly lower 
than all other comparison models; therefore, the model proposed in this paper had better 
classification results for the lending club dataset.

Table 8. Experimental results of performance comparison

Indicators AUC Paired t test TC Paired t test

NSGA-II 0.8838 −0.186 416.9 4.95***

PAES 0.8840 −0.400 898.6 16.60***

MicroGA 0.8844 0.803 448 30.76***

MOPSO 0.8844 − 369.3 −

Note: For t test, Proposed model is used as baseline; *** Significant at 1% level; ** Significant at 5% 
level; * Significant at 10% level.
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Figure 14. Total cost boxplot

Figure 15. AUC boxplot

Table 9. Experimental results from the lending club dataset

Indicators AUC paired t test TC paired t test
Traditional logistic 0.702 0.70 497.70 15.02***

Decision Tree 0.637 −18.71*** 419.29 7.60***

Linear discrimination 0.702 1.23 499.01 15.48***

Bayes 0.673 −7.99*** 414.82 7.87***

SVM 0.696 −2.04** 490.20 18.30***

Bagging 0.675 −12.96*** 604.01 29.65***

Adaboost 0.696 −1.64 489.96 16.37***

CS-DT 0.650 −15.90*** 501.81 17.72***

Proposed model 0.701 − 367.67 −

Note: For the t test, the proposed model was used as the baseline; *** Significant at 1% level; ** Signif-
icant at 5% level; * Significant at 10% level.
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Figures 16 and 17 show the results for the ten-fold cross-validation, from which it can be 
seen that the AUC indicator was on a higher level, the total cost indicator was on the lowest 
level, and the distribution was the most stable. Therefore, the proposed model in this paper 
was shown to have a certain robustness.

Conclusion and future work

Credit scoring is an important process for P2P lending companies as it determines the prob-
ability of loan applicant defaults. Traditional credit scoring models only focus on classifica-
tion error rates and the different classification errors are assumed to attract the same costs. 

Figure 16. AUC boxplot for the lending club dataset

Figure 17. Total cost boxplot for the lending club dataset
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However, this is unrealistic, there is an inherent cost-sensitive problem in the credit scoring 
process. Therefore, in this paper, a new cost-sensitive logistic regression credit scoring model 
based on multi-objective optimization approach was proposed, in which there were two 
objectives in the logistic regression: maximizing the AUC and minimizing the total classifica-
tion error costs. An empirical analysis applied the proposed model to the credit scoring of a 
Chinese famous P2P company, from which it was found that compared to traditional credit 
scoring models, the proposed model was able to significantly reduce the type II error rate and 
the total classification error costs. This paper then compared the proposed model with single-
objective optimization methods and other multi-objective optimization approaches, which 
clearly showed that the MOPSO was the best multi-objective optimization approach for cost-
sensitive logistic regression credit scoring model. In future research, we plan to integrate 
cost-sensitive problems into other base classifiers to develop other direct cost-sensitive credit 
scoring models. Ensemble classifiers have become more popular in recent years because of 
the unstable and inaccurate results from individual classifiers. We will also incorporate cost-
sensitivity into an ensemble model to develop a cost-sensitive ensemble learning approach.
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