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Abstract. As a generalized form of both intuitionistic fuzzy set and Pythagorean fuzzy sets, the 
q-rung orthopair fuzzy set (q-ROFS) has strong ability to handle uncertain or imprecision decision-
making problems. This paper aims to introduce a new multiple criteria decision making method 
based on the original gain and lost dominance score (GLDS) method for investment evaluation. 
To do so, we first propose a new distance measure of q-rung orthopair fuzzy numbers (q-ROFNs), 
which takes into account the hesitancy degree of q-ROFNs. Subsequently, two methods are devel-
oped to determine the weights of DMs and criteria, respectively. Next, the original GLDS method 
is improved from the aspects of dominance flows and order scores of alternatives to address the 
multiple criteria decision making problems with q-ROFS information. Finally, a case study con-
cerning the investment evaluation of the BE angle capital is given to illustrate the applicability and 
superiority of the proposed method. 

Keywords: investment evaluation, multiple criteria decision making, gained and lost dominance 
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Introduction 

Uncertainty is filled with our daily life. For instance, when a decision-maker (DM) evaluates 
a student’s scientific research ability, he/she may give the judgment as “not bad”. Obviously, 
such an evaluation is imprecise. How to deal with such imprecision is a problem researched 
by many scholars over the past decades (Atanassov, 1986; Yager, 2014; Liu & Liao, 2017; 
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Liu, Aiwu, Lukovac, & Vukic, 2018a; Pamučar, Badi, Sanja, & Obradović, 2018; Pamučar, 
Sremac, Stević, Ćirović, & Tomić, 2019). As two effective extensions of Zadeh (1965)’s fuzzy 
set, Atanassov (1986) and Yager (2014) respectively proposed the intuitionistic fuzzy set (IFS) 
and Pythagorean fuzzy set (PFS) to represent the imprecise information by the member-
ship function a, non-membership function b and hesitancy function g with the conditions: 
0 1≤ a +b ≤  for the IFS and 2 20 1≤ a +b ≤  for the PFS. However, both of them fail to tackle 
some cases in real life. For example, suppose that a DM express his/her opinion in (0.6, 0.9), 
neither the IFS nor PFS can model this case because 0.6 0.9 0.1+ >  and 2 20.6 0.9 0.1+ > . 
In this regard, Yager (2017) proposed the concept of q-rung orthopair fuzzy set (q-ROFS), 
which also describes DMs’ opinions from the aspects of membership function a, non-mem-
bership b and hesitancy functions g, but the constraint was relaxed to 1q q qa +b + g = ( 1)q ≥  
rather than 1a +b+ g =  for the IFS or 2 2 2 1a +b + g =  for the PFS. In this way, the above 
limitation can be overcome. 

Since the q-ROFS was proposed, it has attracted increasing attention from scholars (Yager, 
2017; Du, 2018a, 2018b; Gao, Liang, Shang, & Xu, 2018; Joshi, Singh, Bhatt, & Vaisla, 2018; 
Liu & Wang, 2018, 2019; G. W. Wei, Gao, & Y. Wei, 2018; Peng, Dai, & Garg, 2018; Wang 
et  al., 2019; P. D. Liu & J. L. Liu, 2018; Liu, Chen & Wang, 2018b. These achievements 
can be classified into different topics, such as information measures (Du, 2018a, 2018b), 
q-ROF function (Gao et al., 2018), interval-valued q-ROFS (Joshi et al., 2018) and q-ROF 
aggregation operators (Liu & Wang, 2018, 2019; Wei et al., 2018; Peng et al., 2018; Wang 
et al., 2019; P. D. Liu & J. L. Liu, 2018; Liu et al., 2018b, 2018). For example, Du (2018a, 
2018b) studied the distance measures and correlation measures between q-ROFSs. Gao et al. 
(2018) proposed the q-ROF functions and then discussed their properties in depth, which 
contains the continuities, derivatives and differentials of the q-ROF functions. In addition, 
Joshi et al. (2018) proposed the interval-valued q-ROFS and then defined its basic opera-
tions and aggregation operators, respectively. Besides, a series of aggregation operators of 
q-ROFS have been studied in recent years. Yager (2017) introduced the concept of q-ROFS 
and then proposed the q-rung orthopair fuzzy (q-ROF) ordered weighted aggregation op-
erator. Liu and Wang (2018) investigated the weighted averaging operator and weighted 
geometric operator of q-ROFSs. Wei et al. (2018) proposed several aggregation operators 
for generalized q-ROFSs, which contains the q-ROF generalized Heronian mean operator, 
q-ROF generalized weighted Heronian mean operator, q-ROF geometric Heronian mean 
operator, and q-ROF weighted geometric Heronian mean operator. Peng et al. (2018) defined 
a new score function of q-rung orthopair fuzzy number (q-ROFN) and then investigated 
the q-ROF weighted exponential aggregation operator. Moreover, some scholars also ex-
tended the classical operators to q-ROFS circumstance and proposed the q-ROF Archime-
dean Bonferroni mean operator (Liu & Wang, 2019), q-ROF Maclaurin symmetric mean 
operator (P. D. Liu & J. L. Liu, 2018), and q-ROF Bonferroni mean operator (P. D. Liu &  
J. L. Liu, 2018; Liu et al., 2018a), respectively. 

As we can see, there are few methods to solve multiple criteria decision making (MCDM) 
problems with q-ROF information. As usual, the MCDM methods can be classified into 
two types (Liao, Xu, Herrera-Viedma, & Herrera, 2018b): utility value-based methods such 
as the TOPSIS, VIKOR, COPRAS, MABAC, and CODAS, and outranking methods such 
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as the ELECTRE, PROMETHEE, and TODIM. Essentially, the TOPSIS, VIKOR, COPRAS, 
MABAC and CODAS need to choose a compromise solution, that is, the nearest alternative 
to the ideal solution. However, the TOPSIS method does not consider the relative impor-
tance of distances of each alternative to the positive ideal solution and negative ideal solu-
tion. The VIKOR method calculates the utility values of alternatives from the perspectives 
of group utility and individual regret value respectively, but ignores the subordination of 
alternatives. The same limitation exists in the CODAS, MABAC and COPRAS methods. The 
ELECTRE method suffers from complex computation and time-consuming because it derives 
the consistency and inconsistency indexes according to the subdivision relations between 
alternatives (including dominance relation, indifference relation and incomparable relation). 
Although the PROMETHEE method can calculate the positive (negative) dominant flows of 
alternatives, it fails to describe the accurate relationships between alternatives under impre-
cise environment. Moreover, the standardization process is neglected in the TODIM method 
and the selected alternative may have poor performance under some criteria because the 
individual regret values are not taken into account. 

Based on the gained and lost dominance connections between alternatives, Wu and Liao 
(2019) originally proposed the gain and lost dominance score (GLDS) method to solve cogni-
tive complex MCDM problems. The GLDS method is a new dominance-based method. The 
principle of the GLDS method is to compare any an alternative Ai with all the other alterna-
tives Av ( 1,2, , ; )v m v i= ≠  under a criterion, and then aggregate the gained/lost dominance 
scores of Ai to get its overall gained/lost dominance score. After that, two rankings of alter-
natives are obtained according to the gained dominance scores and lost dominance scores. 
Finally, a comprehensive ranking of alternatives is determined by an aggregation function. 
Comparing with other existing MCDM methods, the GLDS method has the following ad-
vantages (Wu & Liao, 2019): 

 – The solution obtained from the GLDS method is the closest one to the ideal solution;
 – The normalization process in the GLDS method can tackle different types of criteria, 
while such a process is always ignored in other dominance-based methods such as 
the TODIM method (Zhang, Xu, & Liao, 2019) and PROMETHEE method (Liao 
et al., 2018a);

 – The GLDS method takes into account the “group utility” and “individual regret” si-
multaneously, and therefore the derived solution is more acceptable for most DMs.

However, there are also some limitations in the initial GLDS method. Firstly, in the origi-
nal GLDS method, the overall lost dominance score only retains the largest value but ignores 
all the other values. This assumption would fit some MCDM problems in which the DMs are 
risk-averse, but it fails to handle the case in which the DMs are risk-preferred or even prefer-
ence dependence. Subsequently, the original GLDS method is limited to handle the MCDM 
problems with probability linguistic information (Liao, Jiang, Z. S. Xu, J. P. Xu, & Herrera, 
2017). Although the hesitant fuzzy linguistic GLDS method (Fu, Wu, Liao, & Herrera, 2018) 
was proposed recently, it can only be used to handle the qualitative MCDM problems, but 
cannot tackle the problems with q-ROF information. Thus, this paper aims to improve the 
GLDS method to overcome these two limitations.

To do so, methods to derive the weights of DMs and criteria are respectively investigated 
according to the newly proposed distance measure of q-ROFNs. After that, we improve the 
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initial GLDS method by integrating the order scores of alternatives with a new aggregation 
function. To summary, the contributions of this paper can be highlighted as follows:

 – We propose a new distance measure of q-ROFNs in which the membership degree, 
non-membership degree and hesitancy degree are considered, simultaneously.

 – A new method to determine the weights of DMs is investigated by the improved TOP-
SIS method. Meanwhile, a goal programming-based method is developed to derive 
the weights of criteria.

 – A new concept called the order score of an alternative is defined. Then, a q-ROF-
GLDS method is proposed in which a new aggregation function is introduced to in-
tegrate the dominance flows and the order scores of alternatives to obtain the ranking 
of alternatives.

 – We apply the q-ROF-GLDS method to address a case study concerning the invest-
ment evaluation for BE angle capital. The validity of the method is verified by some 
comparative analyses.

The remainder of this paper is constructed as follows: In Section 1, knowledge of the 
q-ROFS and the initial GLDS method is recalled, respectively. A new distance measure of 
q-ROFNs is proposed in Section 2. Two methods are applied in Section 3 to determine the 
weights of DMs and criteria, respectively. In Section 4, we improve the initial GLDS method 
within the context of q-ROFSs and then propose the q-ROF-GLDS method. A case study 
related to the investment evaluation of the BE angle capital is presented in Section 5 to dem-
onstrate the applicability and superiority of the proposed MCDM method. The study ends 
with some conclusions in the final section.

1. The q-rung orthopair fuzzy set

In this section, concepts and operations related to q-ROFSs are recalled for the facility of 
future presentation. 

As a generalized form of both the IFS and PFS, the q-ROFS provides DMs more 
freedom to express their opinions on the membership and non-membership grades. Let 

{ }1 2= , , , nX x x x  be a universe of discourse. A q-ROFS A in X is mathematically defined 
as (Yager, 2017) 

 { },( ( ), ( )) ,A AA x x x x X= < a b > ∈   (1)

where ( ) : 0,1A x Xa →     is the membership function and ( ) : 0,1A x Xb →     is the non-
membership function, satisfying ( ) 0,1A xa ∈   , ( ) 0,1A xb ∈   , 0 ( ( )) ( ( )) 1q q

A Ax x≤ a + b ≤  
( 1q ≥ ). For any x, ( ( ), ( ))A A qx xa b  is called a q-ROFN. The hesitancy degree of a q-ROFS 
is defined as

 ( )
1

( ) 1 ( ( )) ( ( )) qq q
A A AA x xg = − a − b .  (2)

For a q-ROFN ( , )a a qa = a b , the score function and accuracy function can be defined 
as (Liu & Wang, 2018):

 ( ) ( )( ) q q
a as a = a − b , ( ) ( )( ) q q

a ah a = a + b , for 1q ≥ .  (3)
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On this basis, Liu and Wang (2018) proposed a method to compare q-ROFNs. For any 
two q-ROFNs 1 1 1( , )qa = a b  and 2 2 2( , )qa = a b , (1) if 1 2( ) ( )s a s a> , then 1 2a a> ; (2) if 

1 2( ) ( )s a s a= , then if 1 2( ) ( )h a h a> , 1 2a a> , and if 1 2( ) ( )h a h a= , 1 2a a= .
Let ( , )a a qa = a b , ( , )b b qb = a b  be two q-ROFNs. Liu and Wang (2018) gave the opera-

tions of q-ROFNs as follows:
(1) ( )1( ) ,q q q q q

a a ab b ba b⊕ = a +a −a a b b ; 

(2) ( )1,( )q q q q q
a a ab b ba b⊗ = b b a +a −a a ; 

(3) ( )1(1 (1 ) ) ,q qq
a aa εε = − −a b ; 

(4) ( )1,(1 (1 ) )q q q
a aaε ε= b − −a . 

For a collection of q-ROFNs aj (j  = 1, 2, ..., n) with ( )1 2, , , T
nω= ω ω ω  being their 

weight vector such that 0,1jω ∈    and 
1

1
n

jj=
ω =∑ , Liu and Wang (2018) proposed a q-

rung orthopair fuzzy weighted averaging operator (q-ROFWA) as:

 

( ) ( ) ( )
1

1 2 1
1 1

, , , 1 1 , .
j j

q
n nn

q
n j j j jj

j j

q ROFWA a a a a a
ω ω

ω
=

= =

 
 − = ⊕ ω = − − b
 
 
∏ ∏   (4)

2. A novel distance measure of the q-ROFNs

In this subsection, a novel Euclidean distance measure between q-ROFNs is proposed, and 
its properties are further investigated in detail.

Let ( )1 1 1,a = a b  and ( )2 2 2,a = a b  be two q-ROFNs. The Euclidean distance between 
a1 and a2 can be defined as:
d(a1, a2) =

( )
( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )( ) ( ) ( )( )

* * * * * * 1 2 1 2

1 2 1 2 1 2

2 2 2

1 2 1 2 1 2 1 2 1 2 1 2
*

1 2 2 2 22 1
1 2 1 2 1 2

*

1 1 , if , ,
2

, ,
1 1 , otherwise

2

q q q q q q q q q q

q q q q q q

q q
q

d a a
q q

q

  
 ⋅ a − a + b − b + g − g a = a b = b ≠    = 

− +   ⋅ a − a + b − b + g − g   
 

 

(5)
where q1, q2 and *q  are three integers with )1 2, 1,q q ∈ +∞  and { }* 1 2max ,q q q= . 

Theorem 1 reveals the properties of the proposed Euclidean distance of q-ROFNs.
Theorem 1. Let ( )1 1 1,a = a b , ( )2 2 2,a = a b  and ( )3 3 3,a = a b  be three q-ROFNs. Then, 
(1) ( ) ( )1 2 2 1, ,d a a d a a= ; (2) ( )1 2, 0d a a =  if and only if 1 2a a= ; (3) ( )1 20 , 1d a a≤ ≤ ; (4) If 

1 2 3a a a≤ ≤  and 1 2 3q q q= = , then ( ) ( )1 2 1 3, ,d a a d a a≤  and ( ) ( )2 3 1 3, ,d a a d a a≤ .
The proof of Theorem 1 can be found in the Appendix.
In what follows, several examples regarding q-ROFNs, PFNs and IFNs are provided to 

demonstrate the applicability and superiority of the proposed Euclidean distance of q-ROFNs 
compared with some existing formulas.

Example 1. Let ( )1 0.60,0.80a = , ( )2 0.36,0.64a = , ( )3 0.70,0.80a = , ( )4 0.90,0.80a =  and 
( )5 0.60,0.50a =  be five q-ROFNs. Then, both Eq. (5) and Du’s method shown as ( ),ED A B  

in Ref. (Du, 2018a) are respectively used to calculate the distances between them. The cal-
culation results are shown in Table 1.
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Table 1. Calculation results of the Euclidean distances between q-ROFNs

Method d(a1,  a2) d(a1, a3) d(a1, a4) d(a1, a5) d(a2, a3) d(a2, a4) d(a2, a5) d(a3, a4) d(a3, a5) d(a4, a5)

Du 
(2018a) 0.1638 0.0639 0.3626 0.2096 0.1934 0.4416 0.0740 0.2987 0.2191 0.4188

This 
paper 0.1152 0.0915 0.2244 0.1950 0.1373 0.2805 0.3900 0.1336 0.1693 0.2221

Example 2. Let ( )1 0.90,0.30a = , ( )2 0.70,0.50a = , ( )3 0.50,0.80a = , ( )4 0.10,0.80a =  and 
( )5 0.70,0.40a =  be five q-ROFNs. Then, Eq. (5), Eq. (3.3) in Zhang and Xu (2014) and Eq. (13)  

in Li and Zeng (2018) are respectively used to calculate the distances between them. The 
calculation results are shown in Table 2.

Table 2. Calculation results of the Euclidean distances between PFNs

Method d(a1,  a2) d(a1, a3) d(a1, a4) d(a1, a5) d(a2, a3) d(a2, a4) d(a2, a5) d(a3, a4) d(a3, a5) d(a4, a5)

Zhang 
and Xu 
(2014)

0.3200 0.5600 0.8000 0.3200 0.3900 0.4800 0.0900 0.2400 0.4800 0.4800

Li and 
Zeng 
(2018)

0.1760 0.3884 0.5964 0.1467 0.2231 0.4270 0.0653 0.2526 0.2817 0.4660

This 
paper 0.1386 0.2775 0.7100 0.1457 0.1704 0.4900 0.0450 0.1552 0.2078 0.5587

Example 3. Let ( )1 0.60,0.40a = , ( )2 0.36,0.64a = , ( )3 0.70,0.20a = , ( )4 0.30,0.50a =  and 
( )5 0.40,0.50a =  be five IFNs. Then, Eq. (5) and Eq. (61) in Szmidt and Kacprzyk (2000) 

are respectively employed to calculate the distances between them. The calculation results 
are shown in Table 3.

Table 3. Calculation results of the Euclidean distances between IFNs

Method d(a1,  a2) d(a1, a3) d(a1, a4) d(a1, a5) d(a2, a3) d(a2, a4) d(a2, a5) d(a3, a4) d(a3, a5) d(a4, a5)

Szmidt 
and 
Kacprzyk 
(2000)

0.2400 0.1732 0.2646 0.1732 0.3995 0.1778 0.1249 0.3606 0.3000 0.1000

This 
paper 0.2400 0.1732 0.2646 0.1732 0.3995 0.1778 0.1249 0.3606 0.3000 0.1000

From Example 1, we find that there exists differences between the results calculated by 
Du (2018a)’s method and the proposed method. According to these two methods, we obtain 
different ranking results, which are ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 4 4 5 1 4 3 4 3 5 1 5 2 3 1 2 2 5 1 3, , , , , , , , , ,d a a d a a d a a d a a d a a d a a d a a d a a d a a d a a> > > > > > > > > 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 4 4 5 1 4 3 4 3 5 1 5 2 3 1 2 2 5 1 3, , , , , , , , , ,d a a d a a d a a d a a d a a d a a d a a d a a d a a d a a> > > > > > > > > by Du’s method and ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 5 2 4 1 4 4 5 1 5 3 5 2 3 3 4 1 2 1 3, , , , , , , , , ,d a a d a a d a a d a a d a a d a a d a a d a a d a a d a a> > > > > > > > >  
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 5 2 4 1 4 4 5 1 5 3 5 2 3 3 4 1 2 1 3, , , , , , , , , ,d a a d a a d a a d a a d a a d a a d a a d a a d a a d a a> > > > > > > > > ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 5 2 4 1 4 4 5 1 5 3 5 2 3 3 4 1 2 1 3, , , , , , , , , ,d a a d a a d a a d a a d a a d a a d a a d a a d a a d a a> > > > > > > > > by the proposed method. In particular, using the proposed method, the values of 

( )1 3,d a a  and ( )2 5,d a a  are 0.0915 and 0.3900, which are different from the results obtained 
by Du’s method shown as 0.0639 and 0.0740. When applying the proposed method, ( )2 5,d a a
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obtains the maximum value; however, ( )2 4,d a a  is the maximum one corresponding to Du’s 
method. The main reason for this is that we consider the hesitancy degrees of q-ROFNs in 
the proposed distance measure. Moreover, we know that the ability to model DMs’ opinions 
increases with the value of coefficient q increases. In this regard, the value of coefficient q 
should also be considered in measuring the deviation between q-ROFNs. Unfortunately, 
both the hesitancy degree and the value of coefficient q were not considered in Du (2018a)’s 
method, and therefore the obtained results are questionable. 

From Example 2, we know that ( )1 4,d a a  and ( )2 5,d a a  are, respectively, the maximum 
value and minimum value among all distance values. If we use Zhang and Xu (2014)’s meth-
od to calculate the distance between PFNs, then we have ( ) ( ) ( )2 4 3 5 4 5, , ,d a a d a a d a a= =  
and ( ) ( )1 2 2 3, ,d a a d a a= . It reveals that Zhang and Xu (2014)’s method cannot accurately 
measure the difference between PFNs. Almost the same results can be obtained using Li and 
Zeng (2018)’s method and the proposed method, that is, ( ) ( ) ( )1 4 4 5 2 4, , ,d a a d a a d a a> > >
( ) ( ) ( )1 3 3 5 3 4, , ,d a a d a a d a a> > > ( ) ( ) ( ) ( )2 3 1 2 1 5 2 5, , , ,d a a d a a d a a d a a> > >  for the for-

mer and ( ) ( ) ( ) ( )1 4 4 5 2 4 1 3, , , ,d a a d a a d a a d a a> > > > ( )3 5,d a a > ( )2 3,d a a > ( ) ( ) ( ) ( )3 4 1 5 1 2 2 5, , , ,d a a d a a d a a d a a> > > ( ) ( ) ( ) ( )3 4 1 5 1 2 2 5, , , ,d a a d a a d a a d a a> > >  for the latter. It should be note that Li and Zeng (2018)’s 
method is time-consuming because extra parameter including the strength of a and its 
strength direction are needed to be determined in advance.

From Example 3, we can see that the same results are obtained by Szmidt and Kacprzyk 
(2000)’s method and the proposed method. Obviously, Eq. (5) is degraded to Eq. (61) in 
Szmidt and Kacprzyk (2000) if the given values are IFNs. Thus, as a general form of Szmidt 
and Kacprzyk (2000)’s method, the proposed method has wider applications and can be used 
to measure the difference between IFNs, PFNs or q-ROFNs.

Compared with the existing methods (Szmidt & Kacprzyk, 2000; Zhang & Xu, 2014; Du, 
2018), the proposed distance measure for q-ROFNs has the following advantages: (1) it has 
wider application fields, which contains IFNs, PFNs, and q-ROFNs; (2) all the parameters 
including membership degree, non-membership degree and hesitancy degree are considered 
in the proposed formula, and therefore the obtained result is convincing; (3) the proposed 
formula is time-saving compared with Li and Zeng (2018)’s method.

3. New weight-determining methods for DMs and criteria

In this section, two novel methods are investigated to derive the weights of DMs and criteria, 
respectively.

3.1. A method to determine the weights of DMs

For a multi-expert MCDM problem which contains a collection of alternatives Ai (i = 1, 
2, ..., m) and a set of criteria cj (j = 1, 2, ..., n), assume that t DMs are invited to assess the 
alternatives and then express their opinions in q-ROFNs. Let the weight vector of the DMs 
be ( )1 2, , , T

kl = l l l , and the weight vector of the criteria be ( )1 2, , ,
T

jw w w w=  , respec-

tively, satisfying , 0k jwl ≥ , 
1

1
t

k
k=

l =∑  and 
1

1
m

j
j

w
=

=∑ . All evaluations provided by the DMs 
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are stored in q-ROF decision matrices, shown as follows:

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1

11 11 1 11 1
1

1 1

                                                                     

, , ,

, , ,

j n
k k k k k k

n nj j

k k k k k k k k
i i iij ij ij ij ij

m n m n

m

c c c

A

AD d

A
× ×

     a b a b a b     
     

      = = a b = a b a b     
      

 

 

    







( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
1 1

,

, , ,

k k
in in

k k k k k k
m i mn mnmj mj

 
 
 
 

   a b      
 
      a b a b a b      
      



    

 

, 

  1,2, , .k t=                                                                                                                (6)

In this subsection, we investigate a new distance measure between q-ROFSs. After that, 
based on the positive ideal solution (PIS), negative ideal solution (NIS) and relative closeness 
formula, we propose an improved q-ROF TOPSIS method to derive the weights of DMs.

Firstly, we need to normalize the decision matrix ( )kD . Here, we use the following equa-
tion to obtain the dimensionless evaluations:

 

( ) ( ) ( )
( ) ( )

( ) ( )

, , for benefit criteria
, .

, , for cost criteria

k k
ij ijN k N k N k

ij ij ij k k
ij ij

d

 a b    = a b =      b a 
 

  (7)

The optimal solution should be closest to the PIS and farthest from the NIS. However, 
in actual multi-expert MCDM problems, there always does not exist the PIS since different 
DMs may have distinct preferences on alternatives. Thus, it is hard to find the PIS which is 
accepted by all DMs. In this case, we take the mean values of DMs’ evaluations as the q-ROF 
PIS, that is

 ( )* * *,ij ij ijPIS = a b ,  (8)

where ( )*

1

1 t
k

ij ij
kt =

a = a∑  and ( )*

1

1 t
k

ij ij
kt =

b = b∑ , for all i = 1, 2, ..., m, j = 1, 2, ..., n.

Based on Eq. (8), the q-ROF PIS decision matrix is determined as

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

* * * * * *
11 11 1 1 1 1

* * * * * *
1 1

* * * * * *
1 1

, , ,

, , ,

, , ,

j j n n

i i ij ij in in

m m mj mj mn mn

PIS

 a b a b a b
 
 
 = a b a b a b 
 
  a b a b a b 

 

    

 

    

 

.  (9)

We further discuss the q-ROF NIS from two aspects, including the left q-ROF NIS and 
the right q-ROF NIS. The q-ROF NIS, which is deemed as the worst solution, should be 
farthest from the q-ROF PIS. In this sense, we introduce the q-ROF NIS from two aspects, 
namely, the left q-ROF NIS NISl and the right q-ROF NIS NISr:

 ( ),l l l
ij ij ijNIS − −= a b , for i = 1, 2, ..., m, j = 1, 2, ..., n;  (10)

 ( ),r r r
ij ij ijNIS − −= a b , for i = 1, 2, ..., m, j = 1, 2, ..., n,  (11)
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where ( ) ( )min ,k kl
ij ij ijk

NIS s  = a b  
  

, ( ) ( ) ( ), ,k kl l
ij ij ij ijs s− −  a b ≤ a b 

 
, ( ) ( )max ,k kr

ij ij ijk
NIS s  = a b  

  
 

and ( ),r r
ij ijs − −a b ≥ ( ),k k

ij ijs a b  for 1,2, ,k t=  . ( ) ( ),k k
ij ijs a b 

 
 denotes the score value derived 

by Eq. (3).
Based on Eqs (10) and (11), the left q-ROF NIS decision matrix NISl and the right q-ROF 

NIS decision matrix NISr are, respectively, determined as:

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

11 11 1 1 1 1

1 1

1 1

, , ,

, , ,

, , ,

l l l l l l
j j n n

l l l l l l l
i i ij ij in in

l l l l l l
m m mj mj mn mn

NIS

− − − − − −

− − − − − −

− − − − − −

 a b a b a b
 
 
 = a b a b a b 
 
  a b a b a b 

 

    

 

    

 

;  (12)

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

11 11 1 1 1 1

1 1

1 1

, , ,

, , ,

, , ,

r r r r r r
j j n n

r r r r r r r
i i ij ij in in

r r r r r r
m m mj mj mn mn

NIS

− − − − − −

− − − − − −

− − − − − −

 a b a b a b
 
 
 = a b a b a b 
 
  a b a b a b 

 

    

 

    

 

.  (13)

Remark 1. NISl and NISr shown as Eqs. (12) and (13) are, respectively, expressed as the 
PIS and NIS in the existing TOPSIS method (Zhang et  al., 2019). The reason why we 

choose them as the q-ROF NIS is that ( ) ( ),k k
ij ij

 a b 
 

, which is either close or far from *
ijPIS , 

is viewed as the non-optimal solution. In particular, if ( ) ( ),k k
ij ij

 a b 
 

 has the biggest distance 

from *
ijPIS  and satisfies ( ) ( ) ( ), ,k kl l

ij ij ij ijs s− −  a b ≤ a b 
 

, then it is regarded as the left q-ROF 

NIS, i.e., NISl; otherwise, if ( ) ( ),k k
ij ij

 a b 
 

 has the biggest distance from *
ijPIS  and satisfies 

( ) ( ), ,r r k k
ij ij ij ijs s− −a b ≥ a b , then it is regarded as the right q-ROF NIS, i.e., NISr.
Once PIS, NISl and NISr are determined, we shall calculate the distances of them to the 

kth DM’s q-ROF decision matrix ( )N kD ( 1,2, , )k t=  . Based on Eqs (14), (15) and (16), we 
can obtain the distances from PIS, NISl, NISr to ( )N kD  as

( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

* * * 2 2* * * 1 1

1

2 2 2
* * * * *

1 2
*

*

2 1 *

*

1 1 , if , ,
2

,
1 1

2

q q q q qq q q q qN k N k N k N k N k
ij ij ij ij ijij ij ij ij ij

N k
ij ij

q N k
ij ij

q q
q

d
q q

q

                ⋅ a − a + b − b + g − g a = a b = b ≠                                     a a = 
  − + ⋅ a − a

 ( ) ( ) ( ) ( )2 2 21 1
2 2 2

* *

;

, otherwise
q q qq qN k N k

ij ijij ij







             + b − b + g − g                           
(14)

( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

* * * 2 2* * * 1 1

1

2 2 2

1 2
*

2 1

*

1 1 , if , ,
2

,
1 1

2

q q q q qq q q q qN k N k N k N k N kl l l l l
ij ij ij ij ijij ij ij ij ij

N kl
ij ij

ql
ij

q q
q

d
q q

q

− − − − −

−

−

                ⋅ a − a + b − b + g − g a = a b = b ≠                                     a a = 
  − +

⋅ a − a ( ) ( ) ( ) ( ) ( )2 2 21 1
2 2 2

;

, otherwise
q q qq qN k N k N kl l

ij ijij ij ij
− −







              + b − b + g − g                             

 

(15)
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( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

* * * 2 2* * * 1 1

1

2 2 2
+ +

1 2
*

2 1

*

1 1 , if , ,
2

,
1 1

2

q q q q qq q q q qN k N k N k N k N kl l l l l
ij ij ij ij ijij ij ij ij ij
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ij ij
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q q
q

d
q q
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+ + +

+

+

                ⋅ a − a + b − b + g − g a = a b = b ≠                                     a a = 
  − +

⋅ a − a ( ) ( ) ( ) ( ) ( )2 2 21 1
2 2 2

,

, otherwise
q q qq qN k N k N kl l

ij ijij ij ij
+ +







              + b − b + g − g                             

 

(16)

where q1, q2 are integers with )1 2, 1,q q ∈ +∞ . In addition, for Eqs (14)−(16), ( ) ( )1 1* * 1
q q

ij ija + b ≤  

( ) ( )1 1
1

q qN k N k
ij ij

    a + b ≤         
 and ( ) ( )1 11 1* * 1

q q
ij ij

− −
a + b >  

( ) ( )1 11 1
1

q qN k N k
ij ij

− −    a + b >         
 

hold for all i = 1, 2, ..., m and 1,2, ,j n=  .
According to Eqs (17)−(19), the distances ( ), N kd PIS D  

 
, ( ), N kld NIS D  

 
 and 

( ), N krd NIS D  
 

 are, respectively, calculated by

 

( ) ( )*

1 1

1, , ;
m n

N k N k
ij ij

i j

d PIS D d
mn = =

   = a a   
   ∑∑   (17)

 

( ) ( )

1 1

1, , ;
m n

N k N kl l
ij ij

i j

d NIS D d
mn

−

= =

   = a a   
   ∑∑   (18)

 

( ) ( )

1 1

1, , .
m n

N k N kr l
ij ij

i j

d NIS D d
mn

+

= =

   = a a   
   ∑∑   (19)

We further derive the relative closeness ( )kRC  of the kth DM by

( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
,

,

max , , , , ,

max max , , , , ,

N k N k N k N kkl r l
l rk

N k N k N k N kl r r l
k l r

d NIS D d NIS D d NIS D d NIS D
RC

d NIS D d NIS D d NIS D d NIS D

                
        = −

                  
         

      
( )

( )

( ),
.

min ,

N k

N k

k

d PIS D

d PIS D    
                                                                      

(20)

The smaller the value of ( )kRC  is, the lower importance of the kth DM should be, and 
vice versa.

Remark 2. Different from the relative closeness formula in the original TOPSIS method, 
in this paper, we use Eq. (29) to compute the relative closeness value of each DM. The key 
principle of Eq. (20) is to find out the optimal solution which has the shortest distance from 
PIS and farthest distances from NISl and NISr, simultaneously.

On this basis, the weights of the DMs can be calculated by

 

( ) ( )
1

0.8 0.2 *
t

k k
k

k

t RC RC
=

 
 l = +
 
 

∑ , 1,2, ,k t=    (21)

such that 0kl ≥ , 
1

1
t

k
k=

l =∑ .
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Next, we use the aggregation operator shown as Eq. (4) to aggregate DMs’ decision ma-

trices, ( ) ( )N k N k
ij

m n
D d

×

 =  
 

( 1,2, , )k t=  , to obtain the collective one:

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1

11 11 1 1 1 11

1 1

1 1

                                                           

, , ,

, , ,

, , ,

j n
CN CN CN CN CN CN

j j n n

CN CN CN CN CN CN CN
i i i ij ij in in

CN CN CN CN CN CNm
m i mj mj mn mn

c c c

A

AD

A

 a b a b a b


= a b a b a b

a b a b a b

 

 

    



 



    

 

.







 
  



  (22)

3.2. A method to determine the weights of criteria

In this subsection, based on the maximizing deviation method (Wang, 1997), models are 
constructed to determine the weights of criteria.

As we know, the weights of criteria play a crucial role in solving MCDM problems. Un-
reasonable weights would lead to a questionable or even counter-intuitive decision results 
in real life. In most existing MCDM methods with q-ROF information (Peng et al., 2018), 
the weights of criteria are predefined. It makes the decision results be of subjectivity. To ad-
dress this issue, we introduce several goal programming models to determine the weights 
of criteria.

For criterion cj, the deviation of alternative Ai to all the other alternatives Av
( , 1,2, , )v i v m≠ =   can be measured by

 
( ) ( ) ( )( )2

1

, , , .
m

CN CN CN CN
ij j ij ij vj vj

i

f w w d
=

= a b a b∑   (23)

Using Eq. (5), Eq. (23) can be rewritten as
( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

2 2
2 1

*
2 2

*

1
, otherwise

1

j

q q q q q q q qCN CN CN CN CN CN CN CN
ij vj ij vj ij vj ij vj

j
q q q q q q q qCN CN CN CN CN CN CN CN

ij vj ij vj ij vj ij vj

f w

q q
qw

q

=

− +       ⋅ a − a + b − b + a − a b − b      
      

     ⋅ a − a + b − b + a − a b − b     
     

( ) ( ) ( ) ( )1 2 1 21 1
1 2 1 2 1 2

,

, if , ,

m m

q q q qv i q q= =





   a = a b = b ≠ 

 

∑∑

(24)

where 1 2,q q  are two integers with )1 2, 1,q q ∈ +∞ . In addition, in Eq. (24), ( ) ( )1 1 1
q qCN CN

ij ija + b ≤
 ( ) ( )1 1 1

q qCN CN
ij ija + b ≤  and ( ) ( )1 11 1

1
q qCN CN

ij ij
− −

a + b >  hold for all i = 1, 2, ..., m, j = 1, 2, ..., n.
The key point to address MCDM problems is to find out an optimal alternative with good 

performances under all criteria. Meanwhile, in actual life, there often exist several alternatives 
which have approximate or equal performances on a certain criterion. Thus, it is unrealistic 
to assign all criteria with the same importance. By contrast, the larger the performance dif-
ferences among the alternatives on a criterion is, the higher the importance of this criterion 
should be. Therefore, we should assign the weights of criteria which can maximize the devia-
tions of all criteria. In this regard, we can construct the following goal programming model:
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Model 1

( ) ( ) ( )( )

)

2

1 1 1

2

1

1 2

max , , ,

0 1, 1,2, ,

. . : =1 ,

, 1,
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j ij ij vj vj
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j
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j
j
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s t w

q q

= = =

=

= a b a b

 ≤ ≤ =




 ∈ +∞

∑ ∑∑

∑


where ( ) ( )1 1 1
q qCN CN

ij ija + b ≤  and ( ) ( )1 11 1
1

q qCN CN
ij ij

− −
a + b >  hold for all i = 1, 2, ..., m and 

j = 1, 2, ..., n.
Solving Model 1 by the Lagrange multiplier method, the optimal weights of criteria can 

be determined as

 

( ) ( )( )

( ) ( )( )

2

1 1
2

2

1 1 1

, , ,

, , ,

m m
CN CN CN CN
ij ij vj vj

v i
j

m m m
CN CN CN CN
ij ij vj vj

j v i

d

w

d

= =

= = =

a b a b

=
 
 a b a b
 
 

∑∑

∑ ∑∑
, j = 1, 2, ..., n.  (25)

By maximizing the distances among different alternatives under the criteria, we can ob-
tain the optimal weights of criteria based on the above goal programming model. If there 
exists larger deviation among alternatives under a certain criterion, then a higher weight 
should be assigned to this criterion.

Except the case that the weights of criteria are completely unknown, the situation that the 
weights of criteria are partially known is also common in many MCDM problems. In this 
case, similar to Model 1, we shall construct the following single goal programming model to 
calculate the weights of criteria:

Model 2
( ) ( ) ( )( )

)

2

1 1 1

1

1 2

max , , ,

0 1, 1,2, ,

. . : ,=1

, 1,

m m m
CN CN CN CN

j ij ij vj vj
j v i

j
n

j
j

F w w d

w
w j n

s t w

q q

= = =

=

= a b a b

∈q
 ≤ ≤ =





∈ +∞ 

∑ ∑∑

∑


where q denotes the known information of criteria weights. In addition, it should be noted 
that the normalized constraint of weights in Model 2 is 

1
1

n
jj

w
=

=∑ , which is different from 
that in Model 1, that is, 2

1
1

n
jj

w
=

=∑ .

Solving Model 2 by LINGO or MATLAB software package, we can obtain the optimal 
weights of criteria as ( )1 2, , ,

T
mw w w w=  .
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4. A q-ROF-GLDS method for MCDM problems

As discussed in the Introduction, the original GLDS method (Wu & Liao, 2019) has some 
limitations. Firstly, in the original GLDS method, the overall lost dominance score only re-
tains the largest value but ignores other values. This fits the MCDM problems in which DMs 
are risk-averse, but fails to deal with the case that DMs are risk-preferred. Subsequently, the 
original GLDS method (Wu & Liao, 2019) can only be applied to address the MCDM prob-
lems with probability linguistic term information but cannot deal with q-ROF information. 
In this section, the GLDS method is investigated in the context of q-ROFSs based on the 
defined dominance flow, order score and aggregation function. The improved q-ROF GLDS 
method includes three parts: calculating the dominance flows of alternatives, determining 
the order scores of alternatives, and the final aggregation.

4.1. Calculating the dominance flows of alternatives

For two alternatives Ai and Av ( v i≠ ; , 1,2, ,i v m=  ), the dominance flow of the former over 
the later under criterion cj can be defined as

 

( ) ( ) ( ) ( ) ( )
( ) ( )

,  if
,

0                 , if
ij vj ij vj

j i v
ij vj

s A s A s A s A
DF A A

s A s A

 − ≥= 
<

, for j = 1, 2, ..., n,  (26)

where ( )ijs A  and ( )vjs A  are derived by Eq. (3), representing the score values of the evalu-

ations ( ),CN CN
ij ija b  and ( ),CN CN

vj vja b , respectively.
As we know, the evaluation standards regarding the performances of alternatives may be 

different under different criteria. Thus, it would be inappropriate to integrate the dominance 
flows of alternatives directly. In this sense, all the obtained dominance flows need to be nor-
malized. In the following, both the linear normalization and vector normalization methods 
are respectively used to derive the normalized dominance flows of alternatives. By vector 
normalization, we have

 
( ) ( ) ( )( )2

1 1

, , ,
m m

N
j i v j i v j i v

i v

DF A A DF A A DF A A
= =

= ∑∑ . (27)

After normalization, for criterion cj, the gained dominance score of alternative Ai to al-
ternative Av can be defined by

 
( ) ( )

1

, ,
m

N
j i v j i v

v

GDS A A DF A A
=

=∑ .  (28)

Taking into account the weights of criteria, the comprehensive gained dominance score 
of alternative Ai can be determined as

 
( ) ( )

1

,
n

i j j i v
j

CGDS A w GDS A A
=

= ⋅∑ .  (29)

In the prospect theory, Kahneman and Tversky (2013) considered that DMs have different 
attitudes on gains and losses under distinct scenarios. Kahneman and Tversky (2013) also 
deemed that the majority of DMs are risk-averse for gains but risk-preferred for losses. In this 
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sense, DMs with different risk attitudes would have completely different ways to handle the 
lost dominance flows of alternatives. Therefore, different from the original gained dominance 
score function, we shall discuss the lost dominance scores of alternatives from two aspects, 
i.e., risk-averse and risk-referred.

If a DM is risk-averse, then, for criterion cj, the lost dominance score of Ai to Av can be 
defined as

 
( ) ( ){ }1 , max ,N

j v i j v iv
LDS A A DF A A= . (30-1)

If a DM is are risk-referred, then, for criterion cj, the lost dominance score of Ai to Av 
can be determined as

 
( ) ( )2

1

, ,
m

N
j v i j v i

v

LDS A A DF A A
=

=∑ .  (30-2)

The comprehensive lost dominance score of Ai is defined as

 
( ) ( )1

1

,
m

i j j v i
v

CLDS A w LDS A A
=

= ⋅∑  or 2

1

( , )
m

j j v i
v

w LDS A A
=

⋅∑ .  (31)

where ( , )j v iLDS A A  can be derived from Eqs (30-1) or (30-2), depending on the types of 
DMs.

Besides, we can derivate the ascending order 1
iR  and descending order 2

iR  of alternative 
Ai according to ( )iCGDS A  and ( )iCLDS A , respectively.

4.2. Determining the order scores of alternatives

This part investigates the order scores of alternatives. Assume that j
ivh  equals to one if alter-

native Ai is superior to Av ( , 1,2, , )i v v m≠ =  under criterion cj; otherwise, j
ivgh  equals to 

zero. In this sense, from the aspect of gains, we define the order score of Ai to Av as

 

( ) ( )
( ) ( )

1, if

0, if
ij vjj

iv
ij vj

s A s A
g

s A s A

 ≥h = 
<

, (32)

where ( )ijs A  and ( )vjs A  are calculated by Eq. (3), denoting the score values of ( ),ij ija b  

and ( ),vj vja b , respectively.
For all criteria cj (j = 1, 2, ..., n), we obtain the order score of alternative Ai to all the other 

alternatives as

 1 , 1

n m
j

i iv
j v i v

g g
= ≠ =

h = h∑ ∑ . (33)

From the aspect of losses, we obtain the order score of Ai to Av as

 

( ) ( )
( ) ( )

0, if

1, if
ij vjj

iv
ij vj

s A s A
l

s A s A

 ≥h = 
<

.  (34)

For all criteria cj (j = 1, 2, ..., n), we obtain the order score of alternative Ai to all the other 
alternatives as

 1 , 1

n m
j

i iv
j v i v

l l
= ≠ =

h = h∑ ∑ .  (35)
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4.3. The final aggregation

At the final stage, we shall apply the aggregation function shown as Eq. (36) to integrate the 
results obtained in both Sections 4.1 and 4.2 to derive the final ranking of alternatives:

 
( ) ( ) ( )1 2

1 1

1
m m

i i i i i i i i i
i i

CS CGDS A R g g CLDS A m R l l
= =

   
   = ⋅ ⋅ h h − ⋅ − + ⋅ h h
   
   

∑ ∑ ,  (36)

where igh  and ilh  represent the order scores of alternative Ai from the aspects of gains and 
losses, respectively. CSi means the comprehensive score of alternative Ai.

The final ranking of alternatives is obtained in descending orders of CSi (i = 1, 2, ..., m). 
The lager the value of CSi is, the better the alternative Ai should be.

4.4. Procedure of the q-ROF-GLDS method for multiple experts MCDM problems

In this subsection, a new q-ROF MCDM method is proposed, in which both the weights of 
DMs and criteria are considered simultaneously. The procedure of the proposed method is 
given below step by step and lists in Algorithm 1:

Step 1. Construct an MCDM problem with q-ROF information, which contains a set of 
alternatives Ai (i = 1, 2, ..., m) and a collective of criteria cj (j = 1, 2, ..., n). There are t DMs 
ek ( 1,2, , )k t=   who are invited to evaluate the alternatives over the criteria and then give 

their opinions in q-ROFNs, i.e., ( ) ( ) ( ),k k k
ij ij ij

m n m n
d

× ×

   = a b   
   

. 

Step 2. Normalize all the opinions provided by the DMs by Eq. (7).

Step 3. Calculate the weight vector of DMs by Eq. (21).

Step 4. Calculate the weight vector of the criteria by Eq. (25) or Model 2.

Step 5. Determine the comprehensive gained and lost dominance flow scores ( )iCGDS A  
and ( )iCLDS A  of the alternatives by Eqs (29) and (31), respectively.

Step 6. Derive the order scores, 1
iR  and 2

iR , of alternatives from the aspects of gains and 
losses by Eqs (32)–(35).

Step 7. Integrate the comprehensive dominance flow scores and the order scores of each 
alternative by Eq. (36), and obtain the comprehensive scores of alternatives.

Step 8. Rank the alternatives according to the descending orders of CSi.
Algorithm 1 (The Q-ROF-GLDS method)
Input: DMs’ evaluation values with q-ROFNs.
Output: The ranking of alternatives.

1. Construct ( )k
ij

m n
d

×

  
 

 according to DMs’ opinions.

2. Normalize all the opinions using Eq. (7).
3. Derive the weights of DMs by Eq. (21).
4. Derive the weights of criteria through Eq. (25) or Model 2.
5. Determine ( )iCGDS A  and ( )iCLDS A  by Eqs (29) and (31), respectively.
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6. Calculate the values of igh , ilh , 1
iR  and 2

iR  by Eqs (32)−(35), respectively.
7. Calculate the value of CSi for each alternative based on Eq. (36).
8. Rank the alternatives in descending order of CSi.
Compared with the original GLDS method (Wu & Liao, 2019), the improved q-ROF 

GLDS method involves some novelties, including new methods to derive the weights of DMs 
and criteria, new function of the order scores of alternatives and new aggregation function 
shown as Eq. (45). In particular, for the order scores of alternatives, we discuss the lost domi-
nance scores from two aspects, i.e., the DMs are risk-averse or risk-preference. In this way, 
the DMs would be free to choose an appropriate one for MCDM problems.

To clarify the improved q-ROF GLDS method, we further illustrate it by a flowchart 
shown as Figure 1. 

5. Case study: Investment evaluation of BE angle capital in China

In this section, a case study regarding investment evaluation of BE angle capital is presented 
to demonstrate the applicability of the proposed q-ROF GLDS method. After that, detailed 
comparisons with existing methods are given to verify the validity of the proposed method.

5.1. Case description

In recent years, the Angel investment, Internet Finance, and other investment/financial ser-
vices have developed rapidly, which provides a strong capital thrust for both innovation and 
entrepreneurship. Meanwhile, the main body of entrepreneurship has also been translated 
from “small group” to “public”, leading to more and more groups devoting themselves to 
entrepreneurship. For this reason, the innovation and entrepreneurship have become a value 
orientation, lifestyle and atmosphere. From Figure 2, we can see that the scale of venture 

Figure 1. The flowchart of the q-R-GLDS method for MCDM problems
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capital in China is gradually decreasing, mainly due to the slowdown of China’s economic 
growth. Most Chinese venture capital institutes are cautious because of the uncertain eco-
nomic outlook, the slowdown of China’s economy and the expectation of interest rate hikes1. 
In addition, the investment amount has a decreasing trend compared with the same quarter. 
The total amount of early investment cases also decreases from 680 in Q2’16 to 528 in Q2’18, 
resulting in a significant decline. How to select high-quality angel-round investment projects 
has become a difficult decision-making problem.

The BE company is an innovative private equity parent fund and managed by the world’s 
top fund management team. It is praised by the world because it often tracks or follows up 
outstanding projects. The BE company mainly concentrates on the seed or angel invest-
ment, especially focusing on industrial internet, Internet finance, artificial intelligence, big 
data healthcare, intelligent hardware, and block chains. The investment team is composed of 
well-known venture capitalists from various fields, such as Harvard University postdoctoral 
students, president of Beijing University Institute of Industrial Technology and Minister of 
Science and Technology Development.

Recently, the BE company has a fund ready to put into Angel Round project through the 
company’s preliminary screening from 304 projects. For the five preliminary screening proj-
ects, it still needs to further screen out the optimal one for investment. A brief description 
of these five projects is given in Table 4.

_______________________
1 https://www.pedate.com

Figure 2. Changes in China’s early investment in total from the first quarter  
of 2016 to the third quarter of 2018
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Table 4. Brief descriptions of the five investment projects

A1 The aim of this project is to develop a new rabies vaccine for veterinary use. The vaccine uses the 
world’s leading chimeric antigen vaccine technology, i.e., the food-grade engineering bacteria to 
express viral characteristic proteins

A2 The company was established in 2017 with 5 million RMB registered capital. It is committed 
to the research and development, production and sales of temperature-sensitive intelligent cell 
petri dishes

A3 It is a public welfare organization focusing on helping college students especially the 
disadvantaged groups. Based on the dual-track operation of campus associations and public 
welfare organizations, a closed-loop ecological circle of mentors and trainees is built on the 
platform of Public Number

A4 It is an intelligent toothbrush that integrates visual brushing experience, timely oral examination, 
personalized customized guidance. The project has been supported by the State Key Laboratory 
of Oral Diseases and the Institute of Computing, Chinese Academy of Sciences

A5 The company uses the world’s first isolation dual network structure technology to produce high-
performance polymer thermal conductive materials, to solve the worldwide technical problems 
of thermal conductivity

To select the invested projects accurately, four professional investors Ek ( 1,2,3,4)k =  of 
the BE Company score those five projects strictly by presentation. Because the information 
is not comprehensive, investors cannot give precise values. To express the investors’ opinions 
as accurately as possible, their evaluations were made by two variables: membership degrees 
and non-membership degrees of q-ROFSs. All the investors Ek ( 1,2,3,4)k =  evaluated the 
five alternatives in terms of six criteria in Table 5 and then gave their decision matrices as 
( )kD  ( 1,2,3,4)k = .

Table 5. Criteria for investment projects evaluation

c1 (Market pain point) It mainly describes the extent to which the problem solved by the project 
affects the market

c2 (Market capacity) It is an evaluation of the future development potential of entrepreneurship 
projects

c3 (Product and    
    service innovation)

This index mainly describes the level of innovation compared with similar 
previous products and services

c4 (Business model) It mainly describes whether the business logic of entrepreneurship project 
conforms to the market law or not

c5 (Project team) It indicates the team literacy, such as complementarity of entrepreneurial 
team competence, and tacit understanding of cooperation

c6 (Performance of    
    financing plan)

It evaluates the rationality and reliability of future financial forecasting

( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )1

0.682,0.213 0.384,0.625 0.721,0.236 0.423,0.488 0.689,0.231 0.723,0.281
0.732,0.189 0.643,0.325 0.431,0.582 0.631,0.331 0.652,0.209 0.538,0.232
0.483,0.211 0.589,0.108 0.397,0.281 0.723,0.226 0.693,0.233 0.529,0.23D = ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

7 ;
0.543,0.188 0.573,0.109 0.430,0.215 0.531,0.119 0.558,0.221 0.543,0.209
0.521,0.187 0.733,0.412 0.513,0.407 0.438,0.109 0.670,0.432 0.597,0.202

 
 
 
 
 
  
 
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( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )2

0.667,0.199 0.364,0.695 0.761,0.284 0.469,0.397 0.642,0.233 0.711,0.221
0.752,0.149 0.593,0.312 0.531,0.592 0.611,0.351 0.612,0.219 0.539,0.230
0.513,0.231 0.599,0.118 0.357,0.261 0.733,0.220 0.698,0.231 0.539,0.23D = ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

3 ;
0.547,0.186 0.583,0.119 0.480,0.205 0.532,0.129 0.598,0.203 0.573,0.219
0.531,0.197 0.753,0.422 0.533,0.417 0.448,0.113 0.681,0.437 0.586,0.214

 
 
 
 
 
  
 

( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )3

0.691,0.313 0.484,0.524 0.756,0.486 0.623,0.312 0.678,0.442 0.621,0.412
0.812,0.199 0.523,0.425 0.531,0.562 0.731,0.431 0.752,0.312 0.638,0.242
0.453,0.210 0.689,0.328 0.497,0.221 0.721,0.220 0.652,0.802 0.629,0.28D = ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

7 ;
0.596,0.187 0.566,0.139 0.530,0.205 0.530,0.113 0.548,0.213 0.572,0.309
0.571,0.183 0.743,0.402 0.514,0.457 0.448,0.179 0.680,0.431 0.523,0.301

 
 
 
 
 
  
 

( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )4

0.651,0.613 0.489,0.724 0.656,0.536 0.626,0.510 0.698,0.402 0.691,0.372
0.704,0.229 0.543,0.468 0.531,0.662 0.702,0.531 0.682,0.372 0.608,0.222
0.457,0.210 0.659,0.308 0.501,0.221 0.691,0.320 0.652,0.193 0.649,0.28D = ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

6 .
0.599,0.180 0.587,0.349 0.538,0.405 0.549,0.103 0.524,0.303 0.502,0.209
0.581,0.180 0.793,0.502 0.524,0.497 0.459,0.169 0.700,0.562 0.528,0.321

 
 
 
 
 
  
 

5.2. Solving the case using the improved q-ROF GLDS method

In what follows, we use the q-ROF GLDS method to solve the case.

Step 1. Related information is given in Section 5.1.

Step 2. Note that all the criteria in this MCDM problem are benefit. So the normalization 
process is omitted.

Step 3. Using Eqs (8)−(13), the positive ideal solution PIS, left negative ideal solution NISl 
and right negative ideal solution NISr can be determined as:

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

0.673,0.335 0.430,0.642 0.724,0.386 0.535,0.427 0.677,0.327 0.687,0.322
0.750,0.192 0.576,0.383 0.506,0.560 0.669,0.411 0.675,0.278 0.581,0.232
0.477,0.216 0.634,0.216 0.438,0.246 0.717,0.247 0.674,0.365 0.586,0.2PIS = ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

61 ;
0.571,0.185 0.577,0.179 0.495,0.258 0.536,0.116 0.557,0.235 0.548,0.237
0.551,0.187 0.756,0.435 0.521,0.445 0.448,0.143 0.683,0.466 0.559,0.260

 
 
 
 
 
  
 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

0.651,0.613 0.364,0.695 0.656,0.539 0.423,0.488 0.678,0.442 0.621,0.412
0.704,0.229 0.543,0.468 0.531,0.662 0.702,0.531 0.682,0.372 0.538,0.232
0.453,0.210 0.689,0.328 0.357,0.261 0.691,0.320 0.652,0.802 0.573,0.lNIS = ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

219 ;
0.543,0.188 0.587,0.349 0.538,0.405 0.532,0.129 0.548,0.213 0.572,0.309
0.521,0.187 0.733,0.412 0.524,0.497 0.459,0.169 0.700,0.562 0.523,0.301

 
 
 
 
 
  
 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

0.682,0.213 0.484,0.524 0.761,0.284 0.623,0.312 0.689,0.231 0.711,0.221
0.812,0.199 0.643,0.325 0.531,0.562 0.731,0.431 0.752,0.312 0.638,0.242
0.513,0.231 0.599,0.118 0.501,0.221 0.733,0.220 0.698,0.231 0.629,0.rNIS = ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

287 .
0.596,0.187 0.583,0.119 0.530,0.205 0.549,0.103 0.598,0.203 0.573,0.219
0.581,0.180 0.743,0.402 0.533,0.417 0.448,0.113 0.680,0.431 0.597,0.202

 
 
 
 
 
  
 

Calculate the distances from PIS, NISl, NISr to DN(k) through Eqs. (14)−(16), respectively. The 
calculation results are given in Table 6.
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Table 6. Distances between PIS / NISl / NISr and DN(k)

( )* , N k
ij ijd  a a 

 
( ), N kl

ij ijd − a a 
 

( ), N kl
ij ijd + a a 

 
D(1) 0.0706 0.0993 0.0538
D(2) 0.0662 0.0981 0.0374
D(3) 0.0537 0.0745 0.0467
D(4) 0.0967 0.0480 0.1117

Next, the relative closeness of each DM can be calculate by Eq. (20), which are 
( )1 0.6092RC = − , ( )2 0.1578RC = − , ( )3 0.3909RC = −  and ( )4 0.9104RC = − . We obtain the 

weight vector of the DMs as ( )0.2589,0.2153,0.2378,0.2880 Tl = . Correspondingly, through 
Eq. (22), the comprehensive decision matrix DCN is derived as:

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

0.628,0.312 0.439,0.640 0.685,0.369 0.522,0.425 0.637,0.317 0.651,0.317
0.741,0.192 0.544,0.381 0.508,0.601 0.639,0.409 0.643,0.274 0.584,0.231
0.475,0.215 0.630,0.194 0.445,0.244 0.686,0.247 0.574,0.296 0.593,0.2CND = ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

61 .
0.574,0.185 0.578,0.165 0.498,0.253 0.536,0.115 0.555,0.236 0.545,0.232
0.553,0.186 0.758,0.434 0.489,0.445 0.449,0.140 0.684,0.467 0.558,0.257

 
 
 
 
 
  
 

Step 4. We can obtain the distance between Ai and Av ( ,  1,2, ,5; )i j i v= ≠  by Eq. (5) and 
the results are given in Table 7. Then the weight vector of the criteria can be determined as 

( )0.1425, 0.3050, 0.1823, 0.3179, 0.0949, 0.0427
T

w =  by solving Model 2.

Table 7. Distances between Ai and Av

c1 c2 c3 c4 c5 c6

( )1 2,d A A 0.000738334 0.114482567 0.047577225 0.108655966 0.001588504 0.017498700

( )1 3,d A A 0.029994658 0.143397068 –0.00195316 0.029515603 0.005730273 0.009710084

( )1 4,d A A 0.055717892 0.113831615 0.054814094 0.091962687 0.019909988 0.027317554

( )1 5,d A A 0.047405853 0.110511767 0.012565259 0.107207380 0.055263030 0.017654395

( )2 3,d A A 0.064982305 0.026438704 0.026883749 0.105790937 0.003747790 0.001228100

( )2 4,d A A 0.029253874 0.040886098 0.043081391 0.012478694 0.012618900 0.001484741

( )2 5,d A A 0.036401625 0.031671739 0.079649299 0.001286251 0.043933305 0.000675091

( )3 4,d A A 0.007587528 0.005136365 0.003243576 0.059672057 0.005089975 0.004497936

( )3 5,d A A 0.004636554 0.003228254 0.051321343 0.093020397 0.025690926 0.001346606

( )4 5,d A A 0.000392686 0.000589744 0.035632533 0.006089969 0.009569901 0.001133685

Step 5. Both the gained dominance scores and order scores of alternatives can be obtained 
through Eqs (28)−(31). The calculation results are shown in Table 8.
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Table 8. The overall gained dominance scores of the alternatives

c1 c2 c3 c4 c5 c6 ghi

A1 0.113258321 0.000000000 1.215184183 0.000000000 0.554407835 0.608916305 11
A2 1.780408407 0.307716276 0.000000000 0.229180789 1.512316606 1.480049032 14
A3 0.000000000 0.811232151 0.597524551 1.096866379 0.143240745 0.547998469 13
A4 0.457813619 0.736450439 0.765097154 0.983839895 0.546472129 0.138015221 15
A5 0.325214966 0.668822230 0.189099448 0.444435904 0.000000000 0.000000000 7

Step 6. Based on Eqs (32)−(35), the lost dominance scores and order scores of alternatives 
Ai ( 1,2, ,5)i =   can be determined. The calculation results are presented in Table 9.

Table 9. The overall lost dominance scores of the alternatives

c1 c2 c3 c4 c5 c6 lhi

A1 0.736982767 1.836304935 0.000000000 1.627465109 0.239477193 0.217783182 13
A2 0.000000000 0.605439832 1.593272272 0.710741955 0.000000000 0.000000000 10
A3 1.190016050 0.000000000 0.224236826 0.000000000 0.849614739 0.258395073 11
A4 0.330648697 0.018695428 0.112521757 0.028256621 0.244767664 0.873369945 9
A5 0.419047799 0.063780901 0.836874481 0.387859282 1.422577720 1.425430828 17

Step 7. Calculate the comprehensive score of each alternative by Eq. (36). Then, we have 
( )0.7626,0.2053,0.2662,0.1357, 0.1133 T

iCS = − − .

Step 8. We rank the alternatives in descending orders of CSi (i = 1, 2, ..., 5), and obtain the 
ranking of the alternatives as 3 2 4 1 5A A A A A    . Thus, A3 is the optimal investment 
project.

5.3. Comparative and sensitive analyses

In this subsection, detailed comparisons with existing methods are given to illustrate the 
validity and superiority of the q-ROF GLDS method.

5.3.1. Comparative analyses with other methods

(1) Solving the case by the q-ROF TOPSIS method
We address the case in Section 5.1 by the q-ROF TOPSIS method (Liu & Wang, 2018) 

and all the calculation procedures are presented step by step below.

Step 1. From Section 5.2, we know the normalized comprehensive decision matrix as DCN. 
Next, both the positive ideal solution pis and the negative ideal solution nis can be deter-
mined as:

( ) ( ) ( ) ( ) ( ) ( )( )0.7408,0.1921 , 0.6300,0.1939 , 0.6846,0.3693 , 0.6861,0.2468 , 0.6432,0.2742 , 0.5844,0.2310 ;pis =

( ) ( ) ( ) ( ) ( ) ( )( )0.4754,0.2146 , 0.4389,0.6397 , 0.5081,0.6012 , 0.5216,0.4251 , 0.5741,0.2956 , 0.5584,0.2570 .nis =
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Step 2. By Eqs (37) and (38), we calculate the distance from the evaluation values of each 
alternative Ai (i = 1, 2, ..., 5) to pis and nis, respectively. All the calculation results are given 
in Table 10.

( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

2 2 2 21 1 1 1

2 2 21 1 1 1

2 2
2 1

*
2 2

*

,

1
, otherwise

1

i

q q q qq q q qpis pis pis pisCN CN CN CN
ij ij ij ijj j j j

j
q q qq q q qpis pis pis pCN CN CN CN

ij ij ij ijj j j j

d pis A

q q
q

w

q

=

− +       
⋅ a − a + b − b + a − a b − b      
      

     
⋅ a − a + b − b + a − a b − b     
     

( ) ( ) ( ) ( ) ( )2 2 21 11
1 2, if , ,

n

q q qq qj is pis pis
ij ijj j q q

=





  

a = a b = b ≠  
 

∑

(37)
and
( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1

2 2
2 1

*
2 2

*

,

1
, otherwise

1

i

q q q q q q q qCN nis CN nis CN nis CN nis
ij j ij j ij j ij j

j
q q q q q q qCN nis CN nis CN nis CN n

ij j ij j ij j ij j

d nis A

q q
qw

q

=

− +       ⋅ a − a + b − b + a − a b − b      
      

     ⋅ a − a + b − b + a − a b − b     
     

( ) ( ) ( ) ( ) ( )2 1 2 1 21
1 2

.

, if , , and

n

q q q q qj is nis nis
ij j ij j q q=





   a = a b = b ≠ 

 

∑

(38)

Table 10. Distances between pis / nis and Ai

Distance A1 A2 A3 A4 A5

d (pis, Ai) 0.1677 0.1363 0.0435 0.1135 0.1541

d (nis, Ai) 0.0547 0.1777 0.1426 0.1824 0.2051

Step 3. Determine the relative coefficient value of each alternative by Eq. (39):

 ( ) ( ) ( )( ), , ,i i i iRC d nis A d pis A d nis A= + .  (39)

Then, we have 1 0.2461RC = , 2 0.5660RC = , 3 0.7662RC = , 4 0.6164RC =  and  5 0.5710RC =  .

Step 4. Rank the alternatives in descending orders of RCi. The ranking of the alternatives 
is 3 4 5 2 1A A A A A    . Thus, the optimal investment project is A3.
(2) Solving the case by the q-ROF VIKOR method

Below we shall tackle this case by the q-ROF VIKOR method and related procedures are 
shown in detail below.

Step 1. Same as above.

Step 2. Calculate the values of group utility measure GUi and individual regret measure IRi 
by Eq. (40). The results are shown in Table 11.

 

( )
( )1

,

,

cnn
j ij

i j
j j j

d c d
GU w

d c c

+

+ −
=

=∑ , 
( )
( )

,
max

,

cn
j ij

i jj
j j

d c d
IR w

d c c

+

+ −

 
 =  
  

, for 1,2, ,5,i =    (40)

where ( ) ( )max ,k k
j ij ijk

c s+   = a b  
  

 and ( ) ( ) ( ), ,k kr r
ij ij ij ijs s− −  a b ≥ a b 

 
; ( ) ( )min ,k k

j ij ijk
c s−   = a b  

  
 

and ( ),l l
ij ijs − −a b ≤ ( ) ( ),k k

ij ijs a b 
 

 for 1,2, ,k t=  . 
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Table 11. Calculation results of GUi and IRi

A1 A2 A3 A4 A5

GUi 1.1211 0.9195 0.3806 0.9578 1.3138
IRi 0.3179 0.6018 0.1427 0.4519 0.5643

Step 3. Determine the value of compromise measure CMi for each alternative by Eq. (41). 
The results are shown in Table 12.

 
( )1i i

i
GU GU IR IR

CM
GU GU IR IR

− −

+ − + −

− −
= y + −y

− −
, for 1,2, ,5,i =    (41)

where min ii
GU GU− = , max ii

GU GU+ = , min ii
IR IR− = , max ii

IR IR+ = . The coefficient y 

represents the trade-off of the DM regarding GUi and IRi over the conflicting criteria: if 
0 0.5< y < , then the DM prefers to minimize the individual regret against group utility; 
otherwise, the DM prefers to group utility when 0.5 1< y < . Especially, if y = 0.5, then the 
same attentions from the DM are paid to both the individual regret and group utility.

Table 12. Values of the compromise measure with different values of y

y = 0.1 y = 0.2 y = 0.3 y = 0.4 y = 0.5 y = 0.6 y = 0.7 y = 0.8 y = 0.9

CM1 0.4227 0.4640 0.5052 0.5464 0.5876 06288 0.6700 0.7112 0.7524
CM2 0.9578 0.9155 0.8733 0.8310 0.7888 0.7465 0.7043 0.6620 0.6198
CM3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
CM4 0.6681 0.6626 0.6571 0.6516 0.6461 0.6406 0.6351 0.6295 0.6240
CM5 0.9265 0.9347 0.9428 0.9510 0.9592 0.9673 0.9755 0.9837 0.9918

Order 31452 31452 31452 31425 31425 31425 34125 34215 32415

Note: “31452” in Table 11 denotes the ranks of the alternatives, meaning 3 1 4 5 2A A A A A    .

Step 4. From Table 12, we obtain that the compromise solution is A3. That is to say, A3 is 
the optimal investment project.

As mentioned above, there exist several differences among the rankings of the alterna-
tives derived by the q-ROF TOPSIS method, q-ROF VIKOR method, and q-ROF GLDS 
method. Using the q-ROF TOPSIS method, we have 3 4 5 2 1A A A A A    . By the 
q-ROF VIKOR method, the ranking of the alternatives varies with the value of y: (1) if 

0.1,0.2,0.3y = , then we have 3 1 4 5 2A A A A A    ; (2) if 0.4,0.5,0.6y = , then we ob-
tain 3 1 4 2 5A A A A A    ; (3) if 0.7,0.8,0.9y = , the rankings of the alternatives are 

3 4 1 2 5A A A A A    , 3 4 2 1 5A A A A A     and 3 2 4 1 5A A A A A     , respec-
tively. By the q-ROF GLDS method, we derive the ranking of the alternatives as 3 2 4 1 5A A A A A    

3 2 4 1 5A A A A A    , which is the same as that determined by the q-ROF VIKOR method (y = 0.9).  
However, the optimal investment project is always A3 no matter what method is used.

Note that the method to determine the positive ideal solution pis and the negative ideal 
solution nis is the same as NISr and NISl, shown in Section 3.2. As demonstrated in Section 
3.2, in actual life, there always does not exist the pis because different DMs may have distinct 
preferences on decision-making problems. Meanwhile, it is also hard to find the optimal so-
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lution, namely the PIS, which is accepted by all the DMs simultaneously. More importantly, 
the formula to calculate the values of relative coefficient is questionable (Yue, 2011). Thus, 
the result obtained by the q-ROF TOPSIS method is unconvincing. Like the q-ROF TOPSIS 
method, the approach to derive pis and nis also exists defects for the q-ROF VIKOR method. 
However, all above defects are tackled by the improved q-ROF GLDS method.

5.3.2. Sensitivity analyses

(1) Change in the weights of experts
Experts’ weights play an important role in the process of solving MCDM problems 

(Mukhametzyanov & Pamucar, 2018). In the following, we make a sensitivity analysis about 
the proposed method by changing the weights of experts (see Table 13). 

Subsequently, according to Eq. (25) or Model 2, we can obtain the weight vector of cri-
teria, which are shown in Table 14.

Figure 3 depicts the final scores of the alternatives under different experts’ weights to 
illustrate the effect of the experts’ weights on the ranking results. From Figure 3, we can 
obtain that when expert weight allocations are S-0, S-1, S-2, S-3 and S-4, then, the ranking 
results of the alternatives are the same, namely 3 2 4 5 1A A A A A    ; while the rank-
ing result of the alternatives varies slightly, shown as 3 4 2 5 1A A A A A    , if the expert 
weight allocations is S-5. It shows that the orders of alternatives 2 and 4 have been changed. 
Next, the mean score of each alternative under the six weight assignments can be calculated 
as ( )0.9168,0.1760,0.3434,0.1295, 0.1367− − , based on which, we obtain the ranking result 
of the alternatives as 3 2 4 5 1A A A A A    . The scores of the alternatives vary with the 
values of experts’ weights, but the optimal alternative is always A3. Since changes in experts’ 

Table 13. Experts’ weights assignment

Experts
(S-0) Under 
the proposed 

method

(S-1) The 
same weights

(S-2) Priority 
of Expert 1

(S-3) Priority 
of Expert 2

(S-4) Priority 
of Expert 3

(S-5) Priority 
of Expert 4

l(1) 0.2589 0.25 0.4 0.2 0.2 0.2
l(2) 0.2153 0.25 0.2 0.4 0.2 0.2
l(3) 0.2378 0.25 0.2 0.2 0.4 0.2
l(4) 0.2880 0.25 0.2 0.2 0.2 0.4

Note: The term “priority of Expert 1” means Expert 1 being with the biggest weight among all experts.

Table 14. The weights of criteria in different situations

Criteria (S-0) (S-1) (S-2) (S-3) (S-4) (S-5)

c1 0.1425 0.1407 0.1299 0.1377 0.1442 0.1411
c2 0.3050 0.3009 0.2885 0.3000 0.3021 0.3048
c3 0.1823 0.1797 0.1759 0.1766 0.1805 0.1806
c4 0.3179 0.3114 0.3064 0.3112 0.2930 0.3219
c5 0.0949 0.1107 0.1013 0.1002 0.1451 0.1073
c6 0.0427 0.0388 0.0392 0.0326 0.0392 0.0481
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weights have little impact on the ranking results of the alternatives, the proposed q-ROF-
GLDS method has good robustness and can be used for solving MCDM problems.
(2) Change in the weights of criteria 

We further make a sensitivity analysis about the proposed method by changing the 
weights of criteria (Pamučar, Božanić, & Ranđelović, 2017). The weights of the criteria are 
given in Table 15. 

From Figure 4(a), we can obtain that: (1) when criterion weight allocation is H-1, the 
ranking result of the alternatives is 3 2 4 5 1A A A A A    ; (2) when criterion weight al-
location is H-2, then the ranking result of the alternatives is 2 4 5 3 1A A A A A    ; (3) 
when criterion weight allocation is H-3, H-4 or H-5, the ranking result of the alternatives is 

3 4 2 5 1A A A A A    ; (4) when criterion weight allocation is H-6, then the ranking result 
of the alternative is 4 2 3 1 5A A A A A    ; (5) when criterion weight allocation is H-7, 
then the ranking result of the alternative is 4 3 2 1 5A A A A A    . The above-mentioned 
results show that the changes in the weights of criteria have obviously impact on the ranking 
results of alternatives regarding the q-ROF TOPSIS method. 

Figure 3. The final scores of alternatives under different experts’ weights
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Table 15. Criteria’s weights assignment

Situations c1 c2 c3 c4 c5 c6

(H-1) Approximately equal weight Criteria 0.17 0.17 0.17 0.17 0.16 0.16
(H-2) Priority of c1 0.30 0.14 0.14 0.14 0.14 0.14
(H-3) Priority of c2 0.14 0.30 0.14 0.14 0.14 0.14
(H-4) Priority of c3 0.14 0.14 0.30 0.14 0.14 0.14
(H-5) Priority of c4 0.14 0.14 0.14 0.30 0.14 0.14
(H-6) Priority of c5 0.14 0.14 0.14 0.14 0.30 0.14
(H-7) Priority of c6 0.14 0.14 0.14 0.14 0.14 0.30
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Next, using the proposed q-ROF GLDS method, we can obtain that: (1) when crite-
rion weight allocation is H-1, H-2 or H-7, then the ranking result of the alternatives is 

4 3 2 1 5A A A A A    ; (2) when criterion weight allocation is H-3 or H-5, then the 
ranking result of the alternatives is 4 3 2 5 1A A A A A    ; (3) when criterion weight 
allocations is H-4, then the ranking result of the alternatives is 3 4 1 2 5A A A A A     ; 
(4) when criterion weight allocation is H-6, then the ranking result of the alternatives is 

4 2 3 1 5A A A A A    . 
Figure 4 shows that A3 is a highly volatile scheme under different weight assignments of 

criteria. A3 ranks first four times in seven experiments under the q-ROF-TOPSIS method; 
while A4 ranked first six times in seven experiments under the proposed q-ROF GLDS meth-
od. It shows that the optimal scheme selected by the q-ROF GLDS method is less affected by 
the change of criteria’s weights. Meanwhile, for the proposed q-ROF GLDS method, changes 
in the weights of criteria have little impact on the ranking results of alternatives. Thus, it has 
a better robustness than the q-ROF TOPSIS method. In other words, the obtained optimal 
scheme for this case by our proposed method is A3, the same as the result of H-2. It shows 

Figure 4. Ranking schematic map under different weight distribution:  
a – sensitive analyses of q-R-TOPSIS; b – sensitive analyses of q-R-GLDS
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that there are obvious differences among the five schemes under the third criterion and 
product innovation does play a key role in future earnings for angle capital. 

As has been mentioned above, the proposed q-ROF GLDS method has the following 
advantages:

 – Methods to determine the weight vectors of DMs and criteria are respectively con-
sidered in the method. It would eliminate the influence of subjective factors as much 
as possible.

 – Both the dominance flow and order scores of alternatives are considered in the meth-
od. In this regard, the solution obtained by the q-ROF GLDS method is not only the 
closest one to the ideal solution but also dominates others. 

Conclusions

In this paper, based on the original GLDS method, we proposed an MCDM method to 
tackle the problems with q-ROFS information. Firstly, we defined a new distance measure of 
q-ROFNs in which all the membership degrees, non-membership degrees and hesitancy de-
grees were considered at the same time. Thus, it can measure the deviations among q-ROFNs 
more accurately than existing formulas. Subsequently, using the improved TOPSIS method 
and the maximum deviation method, two methods to determine the weights of DMs and 
criteria were investigated in detail. On this basis, we improved the original GLDS method 
by integrating the order scores of alternatives and the proposed weight-determining meth-
ods. Finally, the proposed MCDM method was demonstrated by a case study regarding the 
investment evaluation of BE angle capital. Comparative and sensitive analyses were provided 
to demonstrate the robustness and efficiency of the proposed method.

In the future, we will apply the proposed q-ROF GLDS method to deal with other prob-
lems, such as hospital management, supplier selection and education evaluation. In addition, 
the application of the proposed method under the interval-valued q-ROFS environment is 
also an interesting direction to be studied.
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APPENDIX

The proof of Theorem 1

(1) It is easy to obtain that ( ) ( )1 2 2 1, ,d a a d a a= , and therefore the proof is omitted.
(2) Case 1.

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )1 2 1 2 1 2
2 2 22 1

1 2 1 2 1 2 1 2
*

1 1,
2

q q q q q qq q
d a a

q
− +  

= ⋅ a − a + b − b + g − g  
 

.

If 

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )1 2 1 2 1 2
2 2 22 1

1 2 1 2 1 2 1 2
*

1 1, 0,
2

q q q q q qq q
d a a

q
− +  

= ⋅ a − a + b − b + g − g =  
 

then we have ( ) ( )1 2
1 2

q qa = a , ( ) ( )1 2
1 2

q qb = b  and ( ) ( )1 2
1 2

q qg = g . According to the defini-
tion of q-ROFN (Liu & Wang, 2018), we have

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )* * * * * *
2 2 2

1 2 1 2 1 2 1 2
*

1 1,
2

q q q q q qd a a
q

 
= ⋅ a − a + b − b + g − g  

 
 

holds if ( ) ( )1 2
1 2

q qa = a , ( ) ( )1 2
1 2

q qb = b  and 1 2q q≠ . Thus, for Situation 1, 1 2q q=  holds. 
It follows that 1 2a a= .

In addition, if 1 2a a=  holds, it is easy to obtain that ( )1 2, 0d a a = .

Case 2. ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )* * * * * *
2 2 2

1 2 1 2 1 2 1 2
*

1 1,
2

q q q q q qd a a
q

 
= ⋅ a − a + b − b + g − g  

 
, 

if ( ) ( )1 2
1 2

q qa = a , ( ) ( )1 2
1 2

q qb = b  and 1 2q q≠ .

If ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )* * * * * *
2 2 2

1 2 1 2 1 2 1 2
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1 1, 0
2

q q q q q qd a a
q

 
= ⋅ a − a + b − b + g − g =  

 
,

then we have ( ) ( )* *
1 2

q qa = a , ( ) ( )* *
1 2

q qb = b  and ( ) ( )* *
1 2

q qg = g . It follows that 1 2a a= .
If 1 2a a=  holds, we have

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )1 2 1 2 1 2
2 2 22 1
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*

1 1, =0
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q q q q q qq q
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q
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As analyzed above, we prove the property that ( )1 2, 0d a a =  if and only if 1 2a a= .
(3) Case 1. 

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )1 2 1 2 1 2
2 2 22 1

1 2 1 2 1 2 1 2
*

1 1,
2

q q q q q qq q
d a a

q
− +  

= ⋅ a − a + b − b + g − g  
 

.

Since 1 1 10 , , 1≤ a b g ≤  ( 2 2 20 , , 1≤ a b g ≤ ) and 1 2,q q  are two integers with condition 

)1 2, 1,q q ∈ +∞ , then ( ) ( ) ( )1 1 1
1 1 10 , , 1q q q≤ a b g ≤  ( ( ) ( ) ( )2 2 2

2 2 20 , , 1q q q≤ a b g ≤ ) holds. It 

follows that ( ) ( )( )1 2
2

1 20 ,q q≤ a − a ( ) ( )( ) ( ) ( )( )1 2 1 2
2 2

1 2 1 2, 1q q q qb − b g − g ≤ . Thus, we have
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Moreover, it is easy to obtain that ( )1 2, 0d a a ≥ . Thus, we have ( )1 20 , 1d a a≤ ≤ .

Case 2. ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )* * * * * *
2 2 2

1 2 1 2 1 2 1 2
*

1 1,
2

q q q q q qd a a
q

 
= ⋅ a − a + b − b + g − g  

 
, if 

( ) ( )1 2
1 2

q qa = a , ( ) ( )1 2
1 2

q qb = b  and 1 2q q≠ .
Similar to Situation 1, we have ( )1 2, 0d a a ≥  and
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( ) ( )( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )
( )( ) ( )( ) ( ) ( )( )

( )

* * * * * *

* * * * * * * *

* * * *

2 2 2

1 2 1 2 1 2 1 2
*

2 2 2

1 2 1 2 2 1 2 1
*

2 2 2

1 1 2 2
*

*

1 1,
2

1 1
2

1 1
2

1 1 1 1 1.
2

q q q q q q

q q q q q q q q

q q q q

d a a
q

q

q

q

 
= ⋅ a − a + b − b + g − g  

 
 

= ⋅ a − a + b − b + a − a + b − b  
 
 

≤ ⋅ a + b + a + b  
 

≤ ⋅ + ≤

Thus, for Eq. (33), ( )1 20 , 1d a a≤ ≤  always holds.
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(4) If 1 2 3a a a≤ ≤  and 1 2 3q q q= = , we have 1 2 3a ≤ a ≤ a  and 1 2 3b ≥ b ≥ b . Then,
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1 2 1 3
q q q qa − a ≤ a − a , ( ) ( )( ) ( ) ( )( )1 2 1 3

2 2

1 2 1 3
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q q
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 ≤ − a − b − − a − b 
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Thus, 
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*

1 1,
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q q q q q qq q
d a a

q
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( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )1 3 1 3 1 3
2 2 23 1
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*
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q q q q q qq q
d a a

q
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.

In the same way, we can prove ( ) ( )2 3 1 3, ,d a a d a a≤ , which completes the proof of Theo-
rem 1.


