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Abstract. This paper offers a new approach for the estimation of levelized cost of energy (LCOE) 
by considering the shareholder internal rate of return (IRR) as an unexplored measure in this kind 
of analysis. The study relies on a comprehensive techno-economic evaluation based on interac-
tions among a set of factors. This mathematical model is then empirically tested for a CSP power 
plant in Extremadura (Spain) due to their dominant market position and also for being the most 
developed renewable system at the present. A sensitivity analysis is also performed to establish the 
influence that market conditions have on the determination of LCOE for different scenarios under 
the maintenance of a given shareholder IRR for investors. This last assumption makes investment 
decisions indifferent among several projects in order to focus solely on the minimization of the 
LCOE. Results reveal that while the annual net electricity production contributes to the reduction 
of LCOE, total investments, equity percentage and operation and maintenance (O&M) costs help 
to increase their value by a high percentage. This study gives important scientific basis for invest-
ment decision making and also becomes a standpoint to design suitable public incentives that may 
enhance future technological developments in the CSP generation industry.

Keywords: renewable energy, levelized cost of energy, CSP energy, shareholder returns, public 
policy, Spain.

JEL Classification: K32, O13, H30. 

Introduction

The goal of sustainable development compatible with the growing demand for electricity 
generated as a consequence of population growth worldwide represents one of the greatest 
global challenges in recent times. For this reason, it is essential to search for alternatives to 
the more traditional energies that generate greenhouse gases and, eventually, the degrada-
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tion of the environment. Renewable energies (RE), which limit the effects of climate change 
and global warming, can be a solution to address all these issues (Tian & Zhao, 2013). In a 
business context of minimization of production costs and new market opportunities, solar 
energy emerges as a substitute source capable to compete with the new-build fossil fuel 
(International Energy Agency [IEA], 2014). In particular, concentrated solar power (CSP) 
plants are especially interesting in economies with growing capacity needs because the built-
in storage of this technology can be easily integrated and, unlike other RE, dispatchable (Liu 
et al., 2016).

In most developed countries, governments and other stakeholders involved in the energy 
sector are aware of the feasibility of making the renewable economy a reality both technically 
and economically. The transition to the use of nearly 100% energy produced by renewable 
sources is not only possible by 2050 but also cost-effective, providing clean energy accessible 
to the global economy1. Thus, for decades, the public support in the promotion of renewable 
sources jointly with private technological improvements resulting in cost reductions and 
industrial dynamics led to a paramount growth of solar energy (Timilsina, Kurdgelashvili, & 
Narbel, 2012). Despite these rapid developments, market and policy frameworks need to 
evolve in these technologies in order to cope simultaneously the provision of long-term price 
signals to attract investment, the strengthening of efficient short-term electricity dispatching, 
the measurement of negative externalities and the existence of sufficient levels of flexibility 
(IEA, 2017). 

Spain is a European dominant country in the technological development of electricity 
generation from RE sources and, particularly, it is playing the leading position worldwide 
regarding the CSP technologies. By 2012, the solid economic-legal system, the involvement 
of stakeholders and also sub-central governments, and technical and economic private opera-
tors of the system as well as other related companies were especially remarkable factors (Ruiz 
Romero, Colmenar Santos, & Castro Gil, 2012). However, since then, the public incentives 
have phased out and the national government support has hardly decreased in the RE sector 
in order to gain unbiased insights into the economic performance under steadily decreasing 
investment cost. The acceleration of this adjustment occurred unexpectedly and led to a 
sudden paralysis in the development of the Spanish sector, incapable to follow a new resilient 
pathway as other countries did, like Germany (Martínez Alonso et al., 2016). 

After the disappearance of the support of policy makers in the promotion of the RE 
market it is crucial that, in the absence of public subsidy schemes, the generation of energy 
becomes commercially viable (Schleicher-Tappeser, 2012). This scenario calls for the empow-
erment of stakeholders in the implementation process goal in order to prevent a small group 
of authoritative agents composed mainly of multinationals and governments can manipulate 
the energy sector and generate higher systemic instability in the system (Martínez Alonso 
et al., 2016). This evaluation requires a systematic analysis of quantitative business projects 
and also a detailed research based on calculations of the cost of capital and its influence on 
the realization and financing of the project (Pawel, 2014). 

1 For instance, RE shares in the EU energy roadmaps were decided through binding targets by 2020 and, also, in 
the United States, President Obama’s agenda included objectives based on the emphasis on similar purposes.



Technological and Economic Development of Economy, 2021, 27(1): 1–23 3

The development and commercialization of new solar technologies may constitute a sig-
nificant cost saving within a scenario where the cost of conventional electricity is constantly 
increasing. Enhanced solar technologies could achieve, in this way, large-scale grid parity in 
the coming years (Lund, 2011). This is another reason that justifies the enormous interest 
of a large number of stakeholder groups in following those improvements in CSP, with a 
quantitative precision that entails in turn a great value (Nemet & Kammen, 2007). In order 
to provide reliable information to investors and funding agents regarding their expected 
returns as well as to regulators and policy makers about the economic outcomes related to 
energy production, a technical-economic method is required for all those actors to analyze 
proposed technology developments and, eventually, to adequately evaluate the cost of energy. 
The LCOE is expected to be the desirable instrument to measure it.

This paper outlines a new approach in the methodology to measure the LCOE by con-
sidering not only the project internal rate of return but the shareholder IRR. Other studies 
have also taken into account considered the project IRR but not that of the shareholder, that 
is, they consider the fixed charge rate (FCR, hereafter) as a given value. The algorithm de-
veloped under this new approach is related to the viability of the investment. In this way, the 
shareholder IRR variable is determined in order to measure the potential returns obtained for 
shareholders as an endogenous variable. Besides, this framework also permits the alteration 
characteristics in different input factors to be analyzed. Then, this model calculates the LCOE 
as the price of energy that must to be offered in the market to break even over the lifetime 
of the technology. This question is essential for cases of tenders in which the RE project is 
carried and companies must offers the cheapest LCOE. For this reason, the knowledge of the 
price is paramount: knowing the LCOE at which they can sell electricity, they can perfectly 
adjust the tender proposal. As a case study, this enhanced theoretical model is developed 
to a 50 MW parabolic trough CSP power plant with 14-hour thermal storage (with molten 
salts) located in Extremadura (Spain), although the methodology can be applicable to other 
scenarios (for instance, other types of technologies such as photovoltaic, wind power, etc. in 
Spain or in other countries) and even to other methodologies like TES system, fuel backup 
system, co-firing, etc. 

The paper is structured according to the following sections. After the introduction, Sec-
tion 1 gives an outline of the literature review about the insights of LCOE for RE with a 
special focus on CSP plants. Section 2 describes the methodology through an enhanced 
framework as a novelty for the measurement of LCOE by including both project IRR and 
shareholder IRR. Section 3 applies the enhanced LCOE model for concentrated solar power 
plants as a case of study by including a sensibility analysis under different economic factors in 
order to maintain the shareholder IRR inalterable. Section 4 presents a discussion and inter-
pretation of results obtained and also offers some public policy recommendations regarding 
these RE. Then, the conclusion section summarizes the main contributions of the paper.

1. Literature review

Since solar energy is the most abundant source of energy, the implementation and devel-
opment of this type of technologies may turn out to be the best option for the production 
of clean energy worldwide (Darling, You, Veselka, & Velosa, 2011). CSP plants, especially 
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the ones using parabolic trough-concentrating solar power (PT-CSP)2, has been the most 
commercially-attractive option over the past few decades (Zhang, Baeyens, Degrève, & 
Cacères, 2013). Thus, although CSP plants are widely installed and operated in the United 
States and Spain (IEA, 2014), these technologies still occupy a very small percentage of the 
global electricity production. The lack of production is due to their relatively higher costs, 
both the initial costs (approximately, between RMB27.73/W and RMB57.44/W) and also the 
generation costs, in comparison with the traditional energies like coal, fossil fuel or natural 
gas power (Caldés, Varela, Santamaría, & Sáez, 2009). Nevertheless, advanced technology 
and the deployment of market scale are expected to reduce the costs of CSP in the future 
and, eventually, to reach power grid parity with the conventional ones (Dieter & González, 
2014); also bearing in mind considerable hidden costs identified with fossil fuels that are 
frequently not taken into account such as global warning or pollution (National Research 
Council [NRC], 2010). 

There have been previous research that conducted the technical and economic evalua-
tion of CSP generation. Table 1 summarized the main studies carried out in the last years. 
In this sense, the hybridization of solar energy technologies with other conventional power 
configurations (especially photovoltaic-CSP, or simply, PV-CSP) also emerges as a feasible 
framework to diminish the LCOE of CSP while increasing their efficiency. For instance, 
Spelling and Laumert (2015) developed a techno-analysis study of several combined pro-
cesses of hybrid cycle power plants with CSP configurations or other solar technologies in 
order to find the optimal combination concerning benefits and also environmental pollution. 
Nevertheless, it lacks effective strategies to be applied in the market under changing condi-
tions. Parrado, Girard, Simon, and Fuentealba (2016) calculated the LCOE of PV-CSP hybrid 
plant based on different scenarios for the period 2014 and 2050. More specifically, Silinga and 
Gauché (2014) studied the viability to operate peak-load power storage within CSP plants 
in South America. They found a feasible solution by using a hybrid system with gas turbines 
of diesel open cycle, being able to drop the LCOE in comparison with diesel peaking power 
plants by 45%. In turn, Silinga, Gauché, Rudman, and Cebecauer (2015) performed a double 
tariff scheme under an enhanced performance based on the optimization of the CSP system. 
However, this analysis may need a broad presence of performance indicators since the solely 
factors used to evaluate the viability of the plant configuration was the LPOE, that is, the 
Levelised Profit of Energy.

Under the design of any power generation cost calculation model, the estimation of 
LCOE is indispensable (Hernández-Moro & Martínez-Duart, 2013). Notice that there are 
some number of investigations in discussing the cost-benefit of distinctive energy system 
under a LCOE perspective, it is clearly seen however that those are lacking financial indexes, 
such as net present value (NPV), payback period, or internal rate of return (IRR) (Yang et al., 
2018). Thus, in the above studies, system cost and O&M cost are usually considered because 
they make up the most significant part of the total cost of a project. However, other variables 
such as interest payments and tax expenditures are disregarded by most of the researchers 
even when they present a largely impact on the cost structure of CSP systems over their eco-

2 There are four available technologies nowadays for concentrating solar power (CSP), namely parabolic trough 
(PT), linear Fresnel (LF), solar tower (ST) and parabolic dish (PD), and the heat transfer fluids mainly include 
water, thermal oil, molten salt, all solid state concrete and air.
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nomic lifetime (Zhao et al., 2017). The existing research involving these financial evaluations 
(see, for instance, Lee, Hong, Koo, & Kim, 2018) rarely refers to the case of CSP industry. 
Moreover, the design of models for the performance of CSP plants usually implies the exist-
ence of contradictory objectives that leads to final results that has to be offset among them. 
The problem is that these considerations are not always contemplated in this type of studies. 
The main goal is the minimization of LCOE through performance indicators for baseload 
operations. Nevertheless, the incorporation of other goals, such as the maximization of IRR, 
may enhance the analysis in order to contemplate the actual hour of generation of electricity 
or dispatchability for peaking operations.

In view of the importance of cost-benefit to the investment decisions and policy making 
(like, for instance, in the case of lenders), this paper elaborates a comprehensive analysis of all 
lifetime cost expenditures in order to minimize LCOE for a CSP power plant. In particular, 

Table 1. Empirical research on the cost structure of CSP system

Reference Country
of analysis

Power system
analysis Characteristics

Reichling and 
Kulacki (2008)

USA Hybrid wind-solar power 
plant vs Wind-only plant: 
two case studies

Performance analysis (comparative) 
using market and retail value  
of energy, and LCOE

I. Purohit and  
P. Purohit (2010)

India CSP technologies: two case 
studies

Techno-economic analysis: 
identifying niche areas

Hernández-Moro 
and Martínez-
Duart (2013)

Global 
general 
data

PV vs CSP technologies: grid 
parities

Performance analysis (comparative) 
using LCOE: identifying best 
locations (latitudes)

Wagner and Rubin 
(2014)

USA CSP (parabolic trough) plant 
operating with: TES, natural 
gas-fired backup, and no 
backup

Performance, cost and profit 
(comparative) analysis among 
systems: revealing the importance 
of TES system

Guédez, Spelling, 
Laumert, and 
Fransson (2014)

Spain CSP with TES system in a 
particular location: Seville

Optimum power plant 
configurations considering different 
price-based grid integration 
strategies

Guédez et al. 
(2016)

South 
Africa

CSP plant: molten salt solar 
tower plants with storage

Multi-objective optimization 
(comparative): investment and 
profits

Izquierdo, 
Montanes, 
Dopazo, and 
Fueyo (2016)

Spain CSP technologies: parabolic-
trough vs tower plants

Minimal cost objective using 
solar multiple, capacity factor and 
storage capacity

Zhao, Chen, and 
Thomson (2017)

China CSP plants LCOE and sensitivity analysis using 
investment, O&M cost, production 
and discount rate

Boukelia, Arslan, 
and Mecibah 
(2017)

Turkey Parabolic trough CSP: TES 
vs fuel backup system

LCOE analysis (comparative) using 
artificial neural network (ANN) 
model

Yang, Zhu, and 
Guo (2018)

China CSP demonstration plants Cost-benefit analysis using SP, 
NPV, NPVR, and IRR
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it determines a new theoretical framework of the LCOE by introducing the estimation of the 
shareholder IRR endogenously as a novelty in this kind of analysis. Then, the empirical study 
firstly estimates the shareholder IRR and secondly discusses the sensitivity factors affecting 
the model for the cost-benefit evaluation of the Spanish CSP demonstration projects (that is, 
from a technical, economic, political and also financial perspective). This enhanced approach 
is a powerful manner to identify the accurate tradeoff between the chosen design objectives 
(such as the calculation of the shareholder IRR for them to know their expected return on 
investment) in a given area while at the same time contemplating a comprehensive plant 
design by means of the calculation of the whole project IRR. In short, the main contribution 
of this paper is the calculation of IRR from the point of view of the shareholder, which does 
not include only the current benefits and costs (initial costs, O&M costs, insurance costs, 
etc.) but also includes other aspects equally important as depreciation (A), financial costs (F), 
taxes (T) and bank financing (E).

2. Modeling the Levelized Cost of Energy (LCOE) 

The mathematical calculation of the LCOE follows a life-cycle technique through a closed-
form model that in turn can be applied to empirical studies. Thus, section 3.1 estimates the 
LCOE for the Spanish CSP plants by introducing directly the corresponding real data in the 
model. Then, section 3.2 carries out a sensitivity analysis for different variables that affect 
the LCOE in order to notice the relevance of the techno-analysis in renewable energy sector 
for policy planning. In particular, this model will be applied to the LCOE of CSP plants but 
it may be extended to basically other energy technologies.

The LCOE defines “the present value of the total cost of building and operating a generat-
ing plant over an assumed financial life and duty cycle, converted to equal annual payments, 
given an assumed utilization, and expressed in terms of real money to remove inflation” 
(IEA, 2014, p. 17).This value is measured in $/kilowatt-hour. Unlike other studies, it offers 
an evaluation of the economic lifetime energy cost and also lifetime energy production, not 
cost annually (I. Purohit & P. Purohit, 2010) so all the variables entering the formulas have a 
precise meaning. We follow the specification of Hernández-Moro and Martínez-Duart (2013) 
but estimating under this new approach both shareholder IRR (as the novelty in this kind of 
analysis) and the usually project IRR3. The expenses and sales revenues have to be discounted 
at a present time performing a discounted cash flow (DCF) analysis, i.e., using a discount 
rate (in this case, shareholder IRR) that reflects the return when the investor breaks even. 
Therefore, LCOE is calculated when the present value of the discounted total revenues are 
equivalent to the discounted total costs during the project lifetime.

 = =

   
=      + +   

∑ ∑
0 0

Revenues Costs
.

(1 ) (1 )

Nl Nl
y y

y y
shareholder shareholdery yi i

  (1)

3 Other studies, such as Hernández-Moro and Martínez-Duart (2013), also introduces financial indicators (discount 
rate which measure the time value of the money and the risk of the investment). The novelty here is to estimate 
shareholder IRR (not only project IRR) as one of the objectives of the model taking into account not only tra-
ditional costs (initial costs, O&M costs, insurance costs, etc) but also amortization (A), financial costs (F), taxes 
(TAX) and equity percentage (E) that is inside the total investment (I). 
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The variables used in this enhanced model for the measurement of LCOE and both the 
project IRR and the shareholder IRR are defined in Table 2. The model is described below.

Table 2. Measurement of LCOE: factors

Parameter Description Parameter Description

Plant dependant Factors General Factors
P1 Annual Net Electricity Production S Annual Insurance Rate
Z Production load T Annual Income Tax Rate

Nc Construction period Nl Plant Life
AV Plant Availability Fa Depreciation base
D Degradation Na Amortization schedule
I Total investment Factors for Financial or Shareholder IRR

I1 Investment in year 1 i_
shareholder Annual Discount Rate (IRRs*)

O&M1 O&M costs r Bank Interest Rate

io
Annual Discount Rate in O&M 
Costs E Equity percentage

pf Fuel Price Ng Grace period
C1 Annual fuel consumption in year 1 Nf Bank Financing Period**
if Annual Discount Rate in Fuel Costs Factors for Economic or Project IRR

i_project Annual Discount Rate 
(Economic or Project IRR)

Note: *IRRs = financial or shareholder IRR; ** including grace period.

LCOE can be also identified, in terms of Net Present Value (NPV), as the average internal 
price of energy that must to be sold in order to reach the break-even point throughout the 
lifetime of the technology (Darling et al., 2011), that is to say, to achieve a zero NPV. 

 =

 
= =  + 
∑

0

0,
(1 )

Nl
y

y
shareholdery

Rt
NPV

i
 

 (2)

where Rty = BDIy + Ay –Iy (see equation 21), being y the year index and Nl the selected project 
lifetime. This estimation inherently considers a fixed discount rate of i for a given time period 
although the model can be measured under different discount rates. Notice that the project 
lifetime is key in order to obtain the outcomes. 

In this context, the LCOE multiplied by the energy generated annually, Py, (being both 
discounted terms) must be equal to the discounted total costs of the project

 = =

   
=      + +   

∑ ∑
0 0

* Costs
,

(1 ) (1 )

Nl Nl
y y

y y
shareholder shareholdery y

LCOE P

i i
  (3)

where Py, being the annual production of energy, with i = 0, …, Nl, requires the fulfillment of 
this condition: y – Nc if y < Nc and y – Nc + 1, otherwise, being yi the time in years. Bear in 
mind that while other previous investigations only consider discount rate (r) and lifetime (N),  
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this study differentiates between the year of investment (y) and the year of production (x), 
because the initial investment occurs at the initial time (y = 0) while the period for obtaining 
benefits usually occur after this initial investment. 

Taking into account that the annual value of LCOE is constant:

 

=

=

 
  + 

=
 
  + 

∑

∑
0

0

Costs

(1 )
.

(1 )

Nl
y

y
shareholdery

Nl
y

y
shareholdery

i
LCOE

P

i

  (4)

The above expression can be decomposed between revenues (Py) and costs (Costsy). 
Within the revenues, the annual electricity production, Py, over the whole lifetime of the 
project is considered a flow of income and therefore it must be discounted. This production 
(P1), in turn, is affected by plant availability (AV), production load (Z), and annual degrada-
tion rate (d), obtaining as a result, Py. We can express this energy produced for any year y 
as follows: 
 

−= − 1
1* (1 ) * .x

y y yP Z P d AV   (5)

Regarding the costs related to the production, the initial investment (I1) including both 
cost of the system and required land are initial capital costs relatively high and variable 
depending on the market segment that are paid up-front and, in consequence, they are not 
discounted. However, the operation and maintenance costs (O&M), fuel costs (Fc) and insur-
ance costs (IC) must be discounted because they are paid annually as a constant percentage 
of the production load (Z):

 
= +1 ;& * & * (1 )y

y oyO M Z O M i
 

 (6)

                                      
= +1 f ;* )* (1* y

y y fFc Z C p i                                                (7)

                                     
= * * .y yZ SC II                                                                  (8)

Therefore, from Eqs (4)–(8), LCOE is rewritten as follows:

 

=

=

+ + 
+   + 

=
 
  + 

∑

∑
1

1

&

(1 )
.

(1 )

Nl
y y y

y
shareholdery

Nl
y

y
shareholdery

O M Fc IC
I

i
LCOE

P

i

  (9)

Next, after this technical analysis, and in order to convert this expression into an eco-
nomic analysis for the numerical estimation of the LCOE (and also the IRR, both the one 
for the project and the one for the shareholder) it must be shown how the different variables 
enters into the model for any given lifetime project. 

Thus, starting from the total revenues, i.e, the annual electricity production multiplied 
by LCOE: 
 

* ,yP LCOE   (10)

we can formulate the Earnings Before Interest, Depreciation, Taxes and Amortization (EBID-
TAy):
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− − − ≤
=  >

* & if Nl  
.0 if Nl 

y y y y
y

P LCOE O M Fc IC y
EBITDA y   (11)

Being the depreciation (Dy):

 
−


 < ≤ == 



∑
2

1 * if 0  , where 1 .Na
0 in the rest of cases 

Nx

y y
y

Z y Nx DD   (12)

Taking into account the amortization4 (Ay):

 
= ·Fa* ,y yA D I   (13)

we can also calculate the Profit Before Interest and Tax (BAIIy):

 
= − ,y yBAII EBITDA A   (14)

where Ay = Dy*In this model, in order to obtain the shareholder returns (shareholder IRR) 
as a novelty, we also consider financial and investment factors. According to the financial 
costs (Fy), we defined them as:

 

( )
( ) − −

=
 ⋅ − ⋅ < ≤


=   ⋅ − ⋅ < ≤  − +  < ≤

( )

0 if 0
1  if  0

.11 r if  
1 (1 )

0 if  

y
Nf Ng

x
I E r x Ng

F
I E Ng x Nf

r
Nf x Nl

   (15)

Then, the Profit Before Tax (BAIy) is obtained as:

 
= − .y y yBAI BAII F   (16)

Before defining the investment, we can also consider the influence of taxes in the calcula-
tion of LCOE by establishing the difference in profits before and after taxes (TAXy):

 

≤
=  ⋅ >

0 if 0 
TAX if 0 

y
y

y y

BAI
T BAI BAI   (17)

and, therefore, the profits after taxes (BDIy) are:

 
= −TA ,Xy y yBDI BAI   (18)

we can also include the above amortization in the BDI expression:

 
+ .y yBDI A   (19)

Finally, the investment (Iy) is derived from the following expression:

 

( )
=

 = − ⋅ + ≤ >  >
0

       if  1  
E c ( ) if 0  ,if  1    0 if 0

y

I Nc
I I Nc x xNc x

  (20)

4 The amortization period for goods is fixed by law. In the case of Spain, equipment is assigned by 10 years and 
constructions by 20 years.



10 R. Peón Menéndez et al. An enhanced techno-economic analysis of LCOE: public incentives ...

where 
−

=
−

1·
2

( 1)
I Nc I

c
Nc Nc

, and ∑
Nl

y
y

I I  leads us to obtain Ry (see equation 2) as the measured 

used in the determination of the techno-economic analysis of LCOE:

 
= −+ .y y y yRt BDI A I

 
 (21) 

The scheme of this theoretical model for LCOE is summarized in the cash diagram ex-
pressed jointly with the corresponding equations aforementioned in Figure 1. 

Thus, for the calculation of the shareholder IRR (ishareholder), we follow this flowchart 
for each year (y), starting from an initial LCOE. Then, we estimate the sum of the annual 
Rty values along the lifetime project and we obtained the shareholder IRR from the NPV 
expression (Equation (2)) taking into account the amortization (A), the financial costs (F), 
the taxes (TAX) and the equity percentage (E) that is inside the total investment (I). If share-
holder IRR coincides with its desired value (for instance, 8%) we maintain the initial LCOE. 
Otherwise, we change the LCOE value and perform the same procedure until we obtain the 
desired shareholder IRR. In other words, we obtain the LCOE that satisfies the desired value 
for the shareholder IRR. For the case of the project IRR, we implement the same procedure 
but without including the financial costs (F) nor the equity percentage (E). 

Figure 1. Cash diagram of LCOE
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3. Case of study: the Spanish CSP plants

CSP technology relies on the aggregation of the solar energy to collect mainly thermal en-
ergy which, in turn, serves to produce steam and with it operate a conventional turbine 
that produces electricity. Despite the fact that nowadays photovoltaic energy has a wider 
geographic area of application, CSP is able to effectively solve the issues on the instability 
of solar energy by installing a thermal energy storage (TES) system in the CSP plants (Yang 
et al., 2018). Besides, some advantages of this CSP technology are: 1) it is manageable or, in 
other words, it is capable of adapting energy production to demand; 2) it can be combined 
with fossil fuels, allowing the reduction of emission of polluting gases to the atmosphere in 
conventional plants, while it can extend its useful life and, 3) it promotes socio-economic 
development through the creation of employment and industrial fabric that favor technologi-
cal development, innovation and entrepreneurship. The first aspect is especially important 
since it offers electricity in times of great need identified with also highest electricity tariff 
(Stekli, Irwin, & Pitchumani, 2013). 

The generation of energy from CSP plants reached 1,095 MW by the end of 2010. Since 
then, it has been developed exponentially all around the globe. In spite of the above, its rate 
of growth has been slower than the officially predicted expectations (IEA, 2014). The market 
for CSP is determined by direct solar radiation, which is one that comes directly from the sun 
to the earth’s surface without the obstruction of other elements such as particles or clouds. 
The countries with the highest installed capacity of CSP are Spain and the United States5.

Spain is a world leader in the generation of electricity from CSP technologies, represent-
ing almost 2% of the annual production. By the end of 2017 electricity energy balance from 
CSP was 5,375 GWh and the installed power capacity remained 4,431 MW (Red Eléctrica 
Española [REE], 2017). The CSP plants turns out to be a viable alternative for the generation 
of electricity due to their solar resource available and also their effectively capacity to meet 
the steadily increasing electricity demand profile. Moreover, this technology may diminish 
the cost of energy in the long-run from the heavy fuel-fossil energies and also the C02 emis-
sions. However, in the last years, the policy regime shift has provoked a paralysis in the RE 
developments (Martínez Alonso et al., 2016). Under these circumstances, Spain may soon be 
overtaken by the United States. Thus, for instance the revival of solar power was restricted by 
the Spanish Government to 2.3. GW under the downturn initiated in 2008. Another example 
is that CSP plants used natural gas as a backup until the premiums were eliminated, once the 
policy support was withdrawn for this type of technologies. On the contrary, non-electric 
CSP increased worldwide almost 5 times from 40GWth in 2000 to 185GWth in 2010, being 
the reason behind this rapid growth the public promotion of a green environment in most 
developed countries (IEA, 2014).

Nowadays, once the public incentives have been removed, the existence of a growing 
number of new CSP projects is no longer a reality in Spain, even though CSP capacity of 
5GW was envisaged by the national renewable action plan by 2020 (IDAE, 2010). The LCOE 
of CSP fluctuates at a large extent with the area, technology, design and intended utilization 

5 Nonetheless, there is great growth in countries such as South Africa and Morocco, and it is expected that many 
countries in Latin America, the Middle East and North Africa will also form part of the energy mix.
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of plants. In Spain, the current average LCOE is high because their plants presents relatively 
weak direct normal irradiance (IEA, 2014). In turn, O&M costs have been evaluated at USD 
50/MWh in the CSP plants, considering fuel costs for backup and water consumption for 
mirror cleaning, feed water make-up and condenser cooling; though the larger the plants, 
the lower the O&M costs per MW, benefitting from better solar resource (Kovacic & Bogataj, 
2017).

3.1. Determination of LCOE for CSP plants in Spain: a new approach

The case study is based upon a 50MW parabolic trough CSP power plant with 14-hour 
thermal storage (with molten salts) located in Extremadura (Spain). This empirical study was 
carried out in 2018. We firstly define in detail the factors involved in the model that directly 
affect the LCOE present value to implement the theoretical model with the real values they 
take in this case study. Then, we group them into four dimensions: plant dependant factors, 
general factors, financial factors and economic factors.

Time variables

Investing year (y): it represents the year when the project starts (y = 0) and, therefore, when 
the initial investment is made (I0).

Construction period (Nc): it represents the time it takes to build the plant; in our case 
study, one year.

Production year (x): it represents the period in which energy is produced. In our case 
study, given that the construction lasts one year (Nc = 1), energy is not be produced nor, 
therefore, sold until one year later (y = 1).

Plant life (Nl): it represents the estimated life time of the plant and its components. For 
this type of plants, it usually varies between 25 and 30 years.

Investment 

Total investment (I): it corresponds to the total investment needed to carry out the project. 
In this case study, it refers to a project of M€ 280. In turn, it can be broken down into:

 – Investment year 1 (I1): under this approach, the possibility of not doing all the in-
vestment in a single year is contemplated. It may be the case that the investment is 
distributed throughout the construction period. In this case it is not considered.

 – Equity percentage (E): equity share. From the total investment required for the pro-
ject, it is considered that 70% is from the shareholder and that the remaining 30% is fi-
nanced by the bank, which has a series of financial costs, which will be analyzed later6. 

Electricity production

Annual Net Electricity Production (Py): it indicates the net GWh that the plant produces per 
year, that is, exports to the network. 

6 This is one of the main differences with respect to other previous studies (see, for instance, Zhao et al., 2017) 
since the shareholder never finances 100% of the investment but rather looks for the banks to finance a part of 
the project.
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 – Electricity production of the plant (P1): Plant production without degradation and 
with an availability of 100%. For our reference plant, it was considered 219 GWh/year.

 – Degradation (d): since the plant degrades over time, production is affected by this 
degradation along the time. A degradation of 0.1% has been considered, which is 
mainly due to the degradation of the turbine, and to the yield losses of both the heat 
exchangers and the solar field.

 – Production load (Zy): it is related to the production year (x) since it can happen that, 
if the construction last 2 years, in the last year of construction a certain part of the 
energy produced can be sold. In this study case, this possibility is not considered. 

 – Availability (AVy): it considers that the plant never works at 100% of its capacity due 
to scheduled stops, maintenance, etc. In addition, this factor may be different during 
the first years of operation of the plant, since it is also necessary to take into account 
the learning process of the operators working in the plant. In our case study, 97% for 
the first year and 98% for the rest of years are considered.

Annual costs

Operation & Maintenance costs per year (O&My): it contemplates the costs related to the 
operation of the plant, the maintenance of the equipment, the cleaning of the solar field, etc 
and their inflation.

 – O&M costs at year 1 (O&M1): estimated as a 1.5% of the total investment.
 – Annual discount rate in O&M costs (i0): an inflation rate is taken into account for 
these costs of 1.42% (annual discount rate).

Fuel costs (Fc): solar thermal plants also use fuel, both for start-ups and for use on days 
when solar radiation is low:

 – Fuel price (pf): the price of fuel at the time this calculation was made was €/MWh 50.
 – Annual fuel consumption (C1): fuel consumption was estimated at 22 GWh/year.
 – Annual Discount rate in fuel costs (i0): the fuel inflation rate was estimated at 1.42%.

Insurance costs (IC): due to the risks that exists in this type of project, insurance should 
be considered and therefore, the costs derived from it:

 – Annual insurance rate (S): in this case study, the insurance cost is 1% of the total 
investment.

Financial costs

 – Amortization (A): as a novelty, this study considers the amortization
- Amortization schedule (Na): the amortization period is set by law in 15 years.
- Depreciation base (Fa): The applicable base of the amortization is 100%.

 – Financial costs (F): this is another fundamental factor in this paper. The financing of 
a part of the project by the bank has associated costs. 
- Bank interest rate (r): the bank interest is 5% for this project.
- Equity percentage (E): as discussed above, it was 70% for this project.
- Grace period (Ng): there could be a grace period for the repayment of the debt, but 

in this study case it is not considered.
- Bank financing period (Nf): period of repayment of the debt (including the grace 

period), which was 15 years. 



14 R. Peón Menéndez et al. An enhanced techno-economic analysis of LCOE: public incentives ...

 – Annual income tax rate (T): the tax rate for this type of projects is 30%.
 – Annual discount rate (shareholder IRR): normally, it is assumed a shareholder IRR 
between 8–10%. For this project, it was used as 8%.

 – Levelized cost of electricity (LCOE): according to the model, the electricity would 
have to be sold at 165.9 for the sharedholder to have an IRR of 8%. 

According to the above, next, we develop an empirical study for the Spanish CSP plants 
considered as a case study. In the absence of any public incentives, this empirical study cal-
culates the LCOE on these plants with the aim of assessing different advanced alternatives 
for unending energy delivery related to the viability of the investment. In the determination 
of LCOE and, particularly related to risk assuming and financial issues, not only up-front 
investment cost but shareholder IRR over the project lifetime plays a key role and, therefore, 
it must be emphasized (Pawel, 2014). However, shareholder IRR and even other assumptions 
lying beneath are misreported due to the uncertainty revolving around them. For this reason, 
the measurement of that unpredictability is nowadays away from substantially all LCOE es-
timations (Darling et al., 2011).Thus, this new approach present estimations for both project 
IRR and shareholder IRR within a scenario projection for 25 years in Table 3.

In our study case, the evaluation of the LCOE for the CSP plants presented as a case study 
for Spain requires a total investment of 280 M€ within a lifetime of 25 years. It also shows 
an annual discount rate for the project (economic IRR) of 6.4% and an annual discount rate 
for the shareholder (financial IRR) of 8%. Besides, the LCOE achieved a level of 165.90 €/
MWh. This value will be the benchmark when carrying out the sensitivity analysis of the 
factors below.

Table 3. Measurement of LCOE: results for CSP plants in Spain

Parameter Value Parameter Value

Plant dependant factors General factors
P1 219.00 GWh/year S 1%

Z0 ; Zy>0 0%; 100% T 30%
Nc 1 year Nl 25 years

AV1; AVy>1 97%; 98% Fa 100%
d 0.1% Na 15 years
I 280 M€ Factors for financial or shareholder IRR
I1 257.78 M€ i_shareholder 8%

O&M1 4.24 M€/year r 5%
io 1.42% E 70%
pf 50 €/MWh Ng 0
C1 22 GWh/year Nf 15 years
if 1.42% Factors for economic or project IRR

LCOE 165.90 i_project 6.4%
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3.2. Sensibility analysis for minimizing LCOE value: description and results 

In this study, once the LCOE measure regarding revenues generated from the project cost (for 
both shareholder IRR and project IRR) is achieved, it can be suggested a quantitative analysis 
based on input parameter distributions in order to gain better insight into the selection of 
different alternatives for a given business case. In order to calculate the financial costs, the 
enhanced LCOE model has been empirically tested by means of a sensitivity analysis to bear 
in mind not only system costs but also other factors such as financial and banking issues, 
O&M costs, or different types of depreciation schedules. Besides, this configuration can be 
altered in order to incorporate public policy considerations such as taxes or subsidies. Thus, 
this sensitivity analysis approach led to a simplified comparison of different projects under 
the consideration of a set of input factors. The results for the CSP plants selected for Spain 
can be found in Table 4. It describes the usual values of financial variables established by the 
banks and also economic information from a public tender about a representative sample of 
CSP plants in Spain7.

In the sensibility analysis, fours dimensions are contemplated: plant dependent factors 
(annual net electricity production, total investment and O&M costs), general factors (an-
nual insurance rate, annual income tax rate, plant life, and amortization schedule), factors 
for shareholder IRR (bank interest rate, equity percentage and bank financing period), and 

7 This information is confidential and it cannot be provided to the general public.

Table 4. Sensitivity analysis: results for the Spanish CSP plants 

Descriptive 
Variables Factors New LCOE

(IRR = 8%) LRU Sensitivity
Parameter

Sensitivity
Value

IRR 
project

Annual Net 
Electricity 
Production(a)

ΔP1 = 20% 138.3 –0.166 ΔLCOE/ΔP1 –0.832 6.4%

Total investment(a) ΔI = 20% 193.4 0.165 ΔLCOE/ΔI 0.829 6.4%
O&M Costs(a) ΔO&M1 = 20% 170.5 0.028 ΔLCOE/ΔO&M1 0.139 6.4%
Annual Insurance 
Rate ΔS = 20% 168.6 0.016 ΔLCOE/ΔS 0.081 6.4%

Annual Income 
Tax Rate ΔT = 20% 167.9 0.012 ΔLCOE/ΔT 0.060 6.3%

Plant Life ΔNl = 20% 164.7 –0.007 ΔLCOE/ΔNl –0.036 6.9%
Amortization 
schedule ΔNa = 20% 168.2 0.014 ΔLCOE/ΔNa 0.069 6.4%

Bank Interest Rate Δr = 20% 168.1 0.013 ΔLCOE/Δr 0.066 6.5%
Equity 
percentage(a) ΔE = 20% 176.0 0.061 ΔLCOE/ΔE 0.304 7.1%

Bank Financing 
Period(b) ΔNf = 20% 164.8 –0.007 ΔLCOE/ΔNf –0.033 6.3%

Note: (a) important factors if |LRU| > 2%, (b) including grace period. P is measured in GWh/year; I 
is measured in €Millions; O&M is measured in M€/year; LCOE and LRU (LCOE with relative uncer-
tainty) are measured in €/MWh and time periods are measured in years.
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factors for economic IRR. This analysis has been developed by altering one of the factors 
(one by one) and calculating the value of the LCOE in order to maintain the shareholder’s 
IRR always at 8%, as it was obtained for the real case study of the CSP plants in Spain. In 
this way, this analysis seeks to minimize the LCOE not being altered the shareholders’ re-
turns (shareholder IRR) in order to guarantee the viability of the project. In order to offer a 
homogeneous evaluation analysis and following other previous studies (Zhao et al., 2017), 
the percentage change of each parameter was 20%. The most important factors are expected 
to be those for which |LRU| is greater than 2%.

From the real LCOE value of 165.9 for the current CSP plants, the sensitivity analysis 
yields the following results. The variables that lead to a minimization of the LCOE value are 
not associated to any specific parameter group, and in particular, they are: the annual net 
electricity production, the plant life and the bank financing period. Thus, the higher their 
values, the lower the LCOE value (negative sign in their sensitivity values). However, its 
importance in the contribution to reducing the LCOE is not equivalent. Thus, while the an-
nual net electricity production achieves a LCOE reduction of more than 16%, the other two 
variables barely achieve a reduction of 0.7%. Regarding the impact on the IRR (economic) 
project, it would increase similarly in the three cases (6.4%, 6.9% and 6.3%, respectively).

In the rest of cases, on the contrary, the LCOE value increases as the level of those vari-
able also rises. However, again, these changes are not the same. In particular, it is remarkable 
the total investments which would increase the LCOE by more of 16%, with a maximum 
value of 193.4, followed by the equity percentage, with an increase in the LCOE of 6.1%. 
O&M costs are also important, although to a lesser extent, since their increase only means 
an increase of 2.8% in the LCOE. Other factors such as insurance, taxation, amortization 
systems or bank financing period have barely shown a significant influence on the changes 
of the LCOE. The LCOE values (for a fixed shareholder IRR of 8%) under the variation of 
the most important factors are represented in Figure 2.

From the above it follows that the most sensitive factors for the LCOE (changes with 
|LRU| greater than 2%) are, in most cases, harmful in order to get the minimization of the 
price of energy. Thus, except for the annual net electricity production, the other three fac-
tors (total investments, equity percentage and O&M costs) contribute to increase the LCOE 
by a high percentage. The results of this study are in line with the most recent empirical 
evidence worldwide, which holds that investment costs, O&M costs, electricity production 
and discount rate are the most significant variables that affect the LCOE of CSP projects 
(Hernández-Moro & Martínez-Duart, 2013; Zhao et al., 2017; Yang et al., 2018). Addition-
ally, in our case, equity percentage also appears as one of the fundamental variables for 
minimizing the LCOE. There are other branch of studies that focus on factors in particular 
to establish comparative analyzes, such as Reichling and Kulacki (2008) for the USA, which 
points out the importance of cost capital or Boukelia et al. (2017) for Turkey, which empha-
sizes the annual power generation and the capacity factor, also highlighted by I. Purohit and 
P. Purohit (2010) for India and also by Izquierdo et al. (2016) and Guédez et al. (2014) for 
Spain, along with the storage capacity. Other variables, however, such as the useful lifetime 
of the CSP system, have a lower effect on their NPV.
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Overall, these outcomes call attention to the viability of CSP plants as a sustainable alter-
native for the generation and delivery of electricity in Spain. This technology is remarkable to 
address the risks of climate change and also to achieve the challenging Sustainable Develop-
ment Goal number 7 of the United Nations: ensure access to affordable, reliable, sustainable 
and modern energy for all. Besides, this alternative can strengthen the electricity price stabi-
lization, favoring in this way a decarbonized industry. Thus, more generally, the evaluation of 
projects in this regard must include not only LCOE estimations but also the expected returns 
of the shareholders involved in those projects in order to obtain a comprehensive net pres-
ent value. This comprehensive techno-economic study can add some preeminent scientific 
groundwork for the investment decisions and policy making of CSP industry in Spain since 
it includes all the factors contemplated in Table 5, unlike other previous studies where only 
some of them are contemplated.

Table 5. Factors considered in the analysis of LCOE: empirical evidence 

Reference Fc O&M I IC r T A E F BDI
Hernández-Moro and  
Martínez-Duart (2013) x x x

Li, Liao, Rao, and Liu (2014) x x x
Ouyang and Lin (2014) x x
Ondraczek, Komendantova,  
and Patt (2015) x x

Yuan, Sun, Zhang,  
and Xiong (2014) x x x x

Zhao et al. (2017) x x x x x x x

Figure 2. Sensitivity analysis: main results: a – Annual Net Electricity Production;  
b – Total investment; c – O&M costs; d – Equity percentage
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4. Discussion and implications: public incentives vs private investment 

From the previous results, it can be glimpsed whether the public incentives or the private 
ones favor the minimization of the price of energy, that is, of the LCOE value. At a glance, 
this study shows that traditional public measures such as taxes or fiscal amortization schemes 
have a little impact on LCOE. On the contrary, the influence of other private factors such as 
annual net electricity production or total investment are clearly more effective. These out-
comes are aligned with the current empirical evidence at the point that if private stakeholders 
are empowered to implement a comprehensive evaluation process of these technologies, it 
is less probable that governments can dominate the energy process (Martínez Alonso et al., 
2016) and, therefore, they promote the model of RE generation to a new promising roadmap. 
Hence, public incentives should relied on other type of government actions more related to 
production process or investment.

RE technologies and, in particular, CSP have become increasingly cost-competitive. Be-
sides, the available capital to invest in RE projects all around the world has no shortages with 
a financial sector that comprises over €100 trillion of assets. Under this panorama in the 
private environment, it is hard to believe why investment in RE not growing faster and still 
is constrained the debt financing for capital-intensive renewable projects8. In this regard, con-
tradictory policies, imbalances in electricity markets and investment risk are then the factors 
explaining the deficiency on investment and innovation in RE (Ang, Röttgers, & Burli, 2017). 

At this political field, enlarge investment in RE demands the design of public incentives 
in the form of feed-in tariffs (FiTs, i.e., a guaranteed minimum price per unit of RE gener-
ated); RE certificates (certifying that one unit of electricity was generated from a RE source, 
which can be offered in the market independently from the subjacent physical electricity 
related to a RE generation source); and public tenders (including public competitive bid-
ding or auctions for a set capacity of RE). In this sense, while feed-in tariffs and certificates 
stimulate investment in most developed economies, auctions and tenders have favored sus-
tainable investment in emerging countries despite the strain from fossil-fuel subsidies in 
the electricity market. However, at the same time, explicit carbon prices (using emissions 
trading schemes or taxes) have boosted investment in RE in both advanced and emerging 
countries, especially in solar energy. Therefore, the alignment of incentives is crucial not only 
for investment in low-carbon energies but also for innovation in these technologies, finding 
both positive effects (such as FiTs stimulating renewable patents) and negative ones (such as 
the combination of setting carbon prices with government RD&D spending in renewables 
technologies). On the other hand, public expenditures in research, development and dem-
onstration (RD&D) has been proved to be a key to promote patents in RE (Polzin, Migendt, 
Täubec, & von Flotow, 2015). 

Despite this knowledge, public policy in most countries has been moved off from FiTs 
toward public tenders to adapt it to the conditions of a constantly changing market and also 
to regulate the development of large-scale RE and reduce prices in the final market. Never-
theless, public RD&D expenditures are at historic lows with the subsequence negative impli-

8 It is required that annual investment in renewable increase by 150% until 2050 to fulfil the Paris Agreement’s goal 
of reducing temperature below 2 °C.
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cations for innovation. Hence politicians want to articulate incentives and build the require-
ments from investment policy to competition market policy (including trade and financial 
considerations) in order to make more attractive to investors the firm commitment to the RE 
(Table 6). To sum up, targeted public incentives and green policies should encompassed the 
broader investment and innovation environment for RE. Besides, evidence-based research 
(as the one provided in this empirical study) and stakeholder cooperation are required to 
easily design powerful public measures and other related incentives by politicians in order 
to forward the transformation to a decarbonized economy9.

Table 6. Policy drivers for investment flows in renewable power

Significant factor Description (examples)

Business Overall ease of doing business
Investment policy Registering property

Corruption perception 
Regulatory quality for solar energy

Investment facilitation Licenses
Permit system

Competition policy Direct control of the state over enterprises
Trade policy Ease of trading across borders in the EU
Financial market policy Access to domestic credit for private sector

Sovereign credit rating
Implementation of Basel III leverage ratio (which aims at restricting 
excessive leverage and exposure from banks, constraining access  
to long-term financing for capital – intensive RE projects)

In Spain, the main government support for the generation of electricity from RE (the 
“Régimen Especial”) was initially supported by a price regulation system where the plant 
operators could select one of the following alternatives: a FiT or a guaranteed premium paid 
when at the pike of the electricity price on the wholesale market. Thus, Spain has utilized 
FiTs to favorably boost RE, especially wind and solar. However, EU FiTs programs have 
been reproved as a mechanism that excessively promote RE at the expense of higher public 
expenditures. Because of this and other reasons, after several years as a world leader in the 
implementation of RE, Spain undergo a rapid deceleration since 2012 when governments 
removed all the public incentives created to deploy RE creating at that time a paralysis in 
the entire RE sector. Then, in 2014 for a new support scheme pursued to award a particular 
compensation regime for new RE plants placed in the electricity system through three com-
petitive call for tenders: 1) a contribution mechanism creating fees for pre-existing and new 
self-consumption putting in place Renewable Energy Systems (RES) according to levels of 
capacity and generation (e.g. a tax credit for solar thermal); 2) RES-Electricity operators are 
empowered to grid connection where a dispatchable energy is prioritized contrary to the grid 
operator; and 3) policies for training and certification (e.g. financial backing in constructions 

9 The number of universities and patents related to RE technologies are both considered in this type of empirical 
studies.
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that are provided from RES). Besides, a new RD&D plan for the period 2017–2020 intended 
to promote RES-E, RES-H&C and RES-T (electricity, heating & cooling and transport, re-
spectively). Based on the aforementioned, this new public incentives may aim to deploy RES 
in a more effective way by combining public incentives that encourage private investment in 
order to achieve a low carbon economy. Only in this way it can be avoided lock-down situa-
tions like the one occurred from 2012 in Spain and even be reduced the systemic instability 
of this sector.

Conclusions 

Decision making in the selection of investment projects related to energy technologies re-
quire an extensive financial analysis, involving not only investor but also other stakeholders 
such as technical professionals and even regulators and policy makers. Despite of its great 
interest, there is still no well-established methodology to compare costs and returns among 
different electricity-generating technologies in a comprehensive manner. 

This paper introduces a comprehensive methodology in the mathematical model of 
LCOE for power generation cost calculation by exploring the required system and finance 
cost needed during the lifetime cycle and the time value of investment. Thus, this techno-
economic research offers a new approach for the calculation of the shareholder IRR that to 
the best of our knowledge had never been explored before. As a result, the LCOE model 
constructed in this paper includes not only the traditional plant dependant factors or other 
general factors but also financial and economic factors such as degradant rate, inflation rate, a 
breakdown analysis of depreciation and financial costs (grace period, bank financing period, 
etc.). Moreover, this theoretical model can be used as a reference for the minimization of 
LCOE in any type of renewable energy power generation technology since the methodology 
used includes common factors for most of power plants. 

CSP plants represent an increasing share in the era of renewable energy and these tech-
nologies are especially remarkable in the case of Spain. For those reasons, in the empirical 
part of the paper we implemented this model for a 50MW parabolic trough CSP power plant 
with 14-hour thermal storage (with molten salts) located in Extremadura (Spain). This par-
ticular technology is the most developed one within the CSP power plants. To do so, general 
relations within the model were obtained and several factors variations were also discussed. 
The results obtained from LCOE calculations are highly influenced by the assumptions first 
set in the analysis. Because of it, the derived model was then used to compare various proj-
ects (plants) under different assumptions. Thus, a sensitivity analysis is also performed to 
establish the influence that market conditions have on the determination of LCOE for dif-
ferent scenarios under the maintenance of a given shareholder IRR for investors. This last 
assumption makes investment decisions indifferent among several projects in order to focus 
solely on the minimization of the LCOE. In this way, the richness of the available data allows 
us to use a wide set of input factors showing, a more adjusted LCOE distribution in order to 
reduce the uncertainty of the costs associated with a CSP project. 

Findings reveal that the minimization of the LCOE value can be achieved under the coop-
eration of public and private agents based on the alignment of incentives that leads to a low 
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carbon economy. Precise public incentives jointly with other greener political measures (such 
as FiTs and government RD&D expenditures) should be incorporated in line with a greater 
drive for private investment and innovation in RE environments. Therefore, a strategic public 
planning for CSP plants could be of great importance in achieving the goals of RE planning 
and carbon emission reduction. To do so, the policy design is crucial since not only the type 
of support instrument but rather its profitability characteristics will influence the investor 
behavior. Finally, this model has the advantage of readily extending to other technologies in 
order to compare the returns and costs from different types of energy. In this way, further 
studies using the new approach outlined in this paper are demanded in order to create a 
systematic analysis and also quantitative assessment by using LCOE and FCR estimations for 
diverse business projects and, therefore, its influence on both shareholder and project returns.
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