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Abstract. It is important to know the properties of an optimization problem and the difficulty an 
algorithm faces to solve it. Population evolvability obtains information related to both elements 
by analysing the probability of an algorithm to improve current solutions and the degree of those 
improvements. DPEM_HH is a dynamic multi-objective hyper-heuristic that uses low-level heu-
ristic (LLH) selection methods that apply population evolvability. DPEM_HH uses dynamic multi-
objective evolutionary algorithms (DMOEAs) as LLHs to solve dynamic multi-objective optimiza-
tion problems (DMOPs). Population evolvability is incorporated in DPEM_HH by calculating it 
on each candidate DMOEA for a set of sampled generations after a change is detected, using those 
values to select which LLH will be applied. DPEM_HH is tested on multiple DMOPs with dynamic 
properties that provide several challenges. Experimental results show that DPEM_HH with a greedy 
LLH selection method that uses average population evolvability values can produce solutions closer 
to the Pareto optimal front with equal to or better diversity than previously proposed heuristics. 
This shows the effectiveness and feasibility of the application of population evolvability on hyper-
heuristics to solve dynamic optimization problems.

Keywords: population evolvability, hyper-heuristic, dynamic multi-objective optimization, dynamic 
multi-objective evolutionary algorithm, fitness landscape analysis, DNSGA–II.
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Introduction

Optimization techniques have become a significant area concerning industrial, economics, 
business, and financial systems. Meta-heuristic optimization algorithms play a relevant role 
in innovating real–world practical applications.
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Optimization problems can be complex; an example of this is the dynamic multi-objec-
tive optimization problem (DMOP), which has multiple objectives to solve at the same time 
while satisfying a set of constraints. This paper does not consider those problems obtained 
by multi-objectivization adding objectives to single-objective problems, which can be harder 
or easier than the original (Brockhoff et al., 2007).

It is expected that these problems could also be affected as time progresses. This dyna-
mism could result in a drop in the quality of the solutions obtained by optimization algo-
rithms, as those changes could make these solutions less effective or even unfeasible. 

A dynamic multi-objective optimization problem can be defined formally as
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where x


 is a vector of decision variables F is a set of objectives to be minimized at time t. 
Lastly, g and h represent the set of inequality and equality constraints, respectively.

The changes over time in a problem could affect the difficulty an algorithm faces to solve 
it. Therefore, fitness landscape analysis (FLA) methods used on dynamic optimization prob-
lems must adapt to said changes. Several FLA methods for dynamic problems using time step 
control and average values were proposed in (Richter, 2013). 

However, most FLA methods both for static and dynamic environments only focus on 
the properties of the problem and pay no attention to the optimization methods used to 
solve it. Some researchers (Smith, Husbands & O’Shea, 2002; Wang, Li, Zhang & Yao, 2017) 
have proposed the use of population evolvability as an FLA method capable of combining 
the properties of optimization problems and algorithms.

The application of dynamic multi-objective evolutionary algorithms (DMOEAs) to solve 
DMOPs has been gaining interest among authors in the last decade. Several DMOEAs 
taking different approaches towards dynamism have been proposed, such as the Dynamic 
Non-dominated Sorting Genetic Algorithm (DNSGA–II) (Deb, Rao & Karthik, 2007), the 
Dynamic Competitive Cooperative Coevolutionary Algorithm (dCOEA) (Goh & Tan, 2009) 
and the Dynamic Multi-objective Evolutionary Algorithm with Core Estimation of Distribu-
tion (CDDMEA) (Liu, 2010).

There is also a growing interest in the use of hyper-heuristics to solve optimization prob-
lems. These are defined as methodologies that can select or generate a set of low-level heu-
ristics (LLHs) to solve problems (Burke et al., 2010). Therefore, hyper-heuristics use the most 
suitable method (or permutation of methods) for the current state of the problem to obtain 
good–quality solutions.

The application of hyper-heuristics to solve single and multiple-objective optimization 
problems have been proposed before with satisfying results (Burke, Silva & Soubeiga, 2005; 
García, 2010; Maashi, Özcan & Kendall, 2014; Maashi, Kendall & Özcan, 2015; Zamli, Din, 
Kendall & Ahmed, 2017; Santiago et al., 2019). Hyper-heuristics have also been applied to 
tackle dynamic single-objective problems (Baykasoğlu & Ozsoydan, 2017; Topcuoglu, Ucar 
& Altin, 2014). However, the number of proposed hyper-heuristics used to solve DMOP is 
scarce and, to our knowledge, uses problem–specific heuristics as LLHs. (Nguyen, Zhang, 
Johnston & Tan, 2014).



Technological and Economic Development of Economy, 2019, 25(5): 951–978 953

This paper proposes a hyper-heuristic that uses DMOEAs as low-level heuristics to solve 
DMOPs, named Dynamic Population–Evolvability based Multi-objective Hyper-heuristic 
(DPEM_HH). In this case, a set of DNSGA–II variations, which will be explained in later sec-
tions, is used. Population evolvability is applied in the LLH selection method of DPEM_HH 
to determine which DMOEA is used in each time step. The results obtained by DPEM_HH 
show a significant difference over several DNSGA–II variations with respect to convergence 
and diversity.

The main contributions of this paper can be summarized in three elements: i) The appli-
cation of population evolvability, a fitness landscape analysis method, as an LLH selection 
method; ii) A hyper-heuristic capable of solving DMOPs and iii) The use of DMOEAs as 
LLHs.

The remaining sections of this paper follow the next order. Sections 1 and 2 explain 
DMOEAs and hyper-heuristics, respectively, as well as previous related work. Section 3 de-
scribes population evolvability and its application in algorithm selection task. Section 4 pre-
sents DPEM_HH, a hyper-heuristic that incorporates population evolvability on its heuristic 
selection method. Section 5 establishes the experimental settings to evaluate the results ob-
tained by DPEM_HH. These results are shown and analysed in Section 6. Finally, we explain 
our conclusions of this paper and the possible future work.

1. Evolutionary algorithms in DMOPs

Evolutionary algorithms (EA) have been previously used to solve multi-objective optimiza-
tion problems. These EAs are defined as multi-objective evolutionary algorithms (MOEA). 
One of the most widely known examples is the Non-dominated Sorting Genetic Algorithm 
(NSGA–II) (Deb, Pratap, Agarwal & Meyarivan, 2002), an MOEA that uses a non-dominat-
ing sorting approach in combination with an evolutionary process to solve MOPs. One of the 
main advantages of MOEAs over exact methods is their capability of obtaining good–quality 
solutions in a reasonable computation time. 

However, MOEAs face challenges when solving DMOPs. As the environment changes, 
previously found solutions could suffer a loss of their quality or become unfeasible. Therefore, 
two new elements were inserted in MOEAs to adapt to changes (Deb, Rao & Karthik, 2007). 
First, a change detection method to find an environment change. When a change is detected, 
the second element, change response, is applied.

Another important issue that must be considered is that diversity within the population 
must be maintained to avoid the possibility of getting stuck in local optima (Chen & Zeng, 
2011). This is crucially important in dynamic optimization, as environmental changes can 
massively affect the diversity of a current population. To avoid this situation, the change 
response strategy used by DMOEAs not only focuses on keeping good–quality solutions but 
also on promoting diversity within the current population. Different change response strate-
gies with different approaches have been previously proposed. In Azzouz, Bechikh, and Said 
(2017a), these approaches are classified considering what is the response strategy based on: 
diversity by population replacement, change prediction, use of external memory, the appli-
cation of parallel EAs or dividing a DMOP into multiple non-dynamic MOPs.
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DNSGA–II is a DMOEA proposed in (Deb, Rao & Karthik, 2007) that uses population 
replacement to maintain diversity. NSGA–II is modified to handle dynamic optimization 
problems. First, the algorithm selects a subset of random solutions from the parent popula-
tion and re–evaluate them. If a change is detected in any objective or constraint functions, 
the algorithm establishes that there has been a change. Then, the parent solutions are re–eval-
uated before merging with the child population, this process allows both parent and child 
populations (already evaluated under the new environment) to be evaluated under the new 
objectives and constraints.

Also, after a change is detected, a subset of the new population is modified. Two versions 
with different modification methods were proposed in their work. DNSGA–II–A replaces 
the selected individuals with randomly created solutions. Meanwhile, DNSGA–II–B takes 
the selected solutions and mutate them. These alterations to the original NSGA–II allow the 
population to adapt to changes and avoid stagnating at local optima or having unfeasible 
solutions.

Other DMOEAs have been proposed in the literature such as the Dynamic Multi-ob-
jective EA (DMEA), proposed in (Liu & Wang, 2006), this algorithm splits the DMOP into 
smaller subperiods using an environment feedback changing operator. Each subperiod is 
seen as a static environment. Therefore, each subperiod is treated as an MOP and solved 
using a static EA. Each MOP is transformed into a bi–objective optimization problem using 
static rank variance and static density variance of the population.

dCOEA (Goh & Tan, 2009) is a DMOEA that uses a cooperative–competitive mechanism 
to solve DMOPs and a memory strategy to maintain diversity. A fixed number of archived 
solutions are used to detect changes. When a change occurs, dCOEA initiates a competitive 
process combining individuals from subpopulations and others generated stochastically to 
increase diversity. Also, a temporal archive containing outdated solutions is used to provide 
previously obtained information to the current population to allow it to adapt faster to a 
new environment. 

The Multi–strategy Ensemble Multi-objective Evolutionary Algorithm (MS–MOEA) 
(Wang & Li, 2010) is a memory–based DMOEA. To create offspring, MS–MOEA uses adap-
tive genetic and differential operators and a Gaussian mutation operator. If a change is de-
tected, solutions are either replaced by new solutions or reinitialized by selecting a random 
archived solution and adding values to each of its variables according to a Gaussian distri-
bution.

CDDMEA (Liu, 2010) is a change–prediction based DMOEA that incorporates a core 
estimation of distribution model taking Pareto–optimal solutions obtained in previous en-
vironments to predict the position of the optimal solutions in the next environment. The 
Population Prediction Strategy (PPS), proposed in Zhou, Jin, and Zhang, (2014) is another 
change–prediction strategy that divides the Pareto set into two parts: a centre point and a 
manifold. The centre points and manifolds obtained during each previous time step form a 
sequence and are used to predict the next centre and manifold, respectively. This strategy 
was incorporated into a dynamic version of the Regularity Model–based Multi-objective Es-
timation of Distribution Algorithm (RM–MEDA) (Zhang, Zhou & Jin, 2008) and compared 
to versions of the same algorithm with a random initialization strategy and the feed–forward 
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prediction strategy (Hatzakis & Wallace, 2006) with RM–MEDA with PPS statistically out-
performing the other tested DMOEAs.

In Azzouz, Bechikh, and Said (2017b), an adaptive hybrid population management strate-
gy was proposed. This strategy uses several change response strategies based on memory, lo-
cal search and randomness to handle dynamic environments. After a change is detected, this 
strategy evaluates the change severity and determines the size of the memory and number 
of random solutions that will be used as a change response. A dynamic version of NSGA–II, 
named Adaptive Population Management–Based Dynamic NSGA–II (A–Dy–NSGA–II), is 
presented to utilize this strategy as its change response. A–Dy–NSGA–II is compared against 
a dynamic improved version of NSGA–II (INSGA–II) proposed in Wang and Li (2009), using 
several different change response strategies with A–Dy–NSGA–II providing better results 
while keeping adaptability and robustness even when facing substantial changes. 

The steady–state and generation EA (SGEA) (Jiang & Yang, 2017) is a recently proposed 
DMOEA that combines an evolutionary algorithm with a steady–state algorithm, using the 
latter for offspring creating and the former for population update. This DMOEA incorporates 
a prediction strategy that reuses well–distributed outdated solutions and new solutions close 
to the Pareto front based on information obtained from previous environments. SGEA pro-
duced satisfying results over renown DMOEAs and strategies such as DNSGA–II, dCOEA, 
and PPS for DMOPs from the FDA (Farina, Deb & Amato, 2004) and dMOP (Goh & Tan, 
2009) test suites.

While there are many DMOEAs proposed in the literature, this paper focuses on the use 
of DNSGA–II as an element of DPEM_HH because despite being shown to be outperformed 
by other recent DMOEAs, it holds a high recognition in the dynamic and non-dynamic 
optimization area for of its simplicity and effectiveness. Also, the NSGA–II source code is 
available in several MOEA frameworks such as jMetal1 and both the change detection and 
response methods of DNSGA–II can be easily implemented into this algorithm.

2. Hyper-heuristics

Meta-heuristics work directly with the solution space, obtaining the most suitable solution 
or set of solutions according to their defined procedure. However, considering that there are 
problems with high difficulty and the ample quantity of proposed meta-heuristics, the exis-
tence of a methodology capable of selecting from a set of algorithms those that give a better 
solution for a problem is desirable.

Hyper-heuristics are defined as “an automated methodology for selecting or generating 
heuristics to solve hard computational search problems” (Burke et al., 2010). This methodolo-
gy or high–level heuristic (HLH) operates over a heuristic search space, which contains a set of 
heuristics or meta-heuristics known as low-level heuristics (LLH). The HLH selects the most 
suitable LLH to apply for solving a problem in its current state until the next selection stage. 
Hyper-heuristics do not act directly on the solution search space, as they instead select heuris-
tics that will act on that search space, creating new solutions or modifying pre–existing ones.

1 Framework downloaded from http://jmetal.github.io/jMetal/.
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It is possible that a set of LLHs being applied in a certain combination on a problem 
could cover the flaws of each heuristic, obtaining a better solution compared to what said 
heuristics could obtain individually. Another advantage is that the variety of the LLHs used 
could allow a hyper-heuristic to solve a more extensive array of optimization problems in 
comparison to single DMOEAs.

A classification of hyper-heuristics based on two dimensions is presented in (Burke et al.,  
2010). The first dimension classifies them according to the nature of the heuristic search 
space: selection, where LLHs are selected from a set; and generation, where LLHs are generat-
ed using available components. Another matter to consider in this dimension is the nature of 
the low-level heuristics. For this case, two types of LLHs are considered, heuristics that create 
new solutions and heuristics that alter existing solutions. The second dimension considers if 
the hyper-heuristic applies a learning mechanism and how is it used. Hyper-heuristics can 
be classified as non-learning, online (obtain knowledge during execution) or offline (obtain 
knowledge prior execution) learning.

The process of hyper-heuristics with heuristic–selection methods using perturbative LLHs 
can be divided into two stages, according to Bilgin, Özcan, and Korkmaz (2006): the heuristic 
selection mechanism and move acceptance. The heuristic selection method is used to deter-
mine which LLH to apply to the problem until the next selection stage. These methods can 
be adaptive or non-adaptive. Adaptive methods learn from previous selection stages and use 
any obtained information to update their selection criterion. Several adaptive methods have 
been previously presented, such as Random Descent, Permutation Descent, Choice Function 
(Cowling, Kendall & Soubeiga, 2000), Tabu Search (Dowsland, Soubeiga & Burke, 2007) or 
Roulette Wheel with updated probabilities (Baykasoğlu & Ozsoydan, 2017; Santiago et al., 
2019). Meanwhile, non-adaptive methods only consider currently existing data to perform 
its selection, such as Simple Random or Greedy (Cowling, Kendall & Soubeiga, 2000).

The move acceptance criterion analyses the solutions obtained by the selected LLH and 
compares them with the current solutions. Then, it determines if the newly obtained solu-
tions replace the current solutions or not. Move acceptance criteria can be deterministic or 
non-deterministic. Deterministic criteria will always produce the same result, given a specific 
configuration, such as All Moves, Only Improving or Equal–or–Improving criteria (Cowl-
ing, Kendall & Soubeiga, 2000). Non-deterministic criteria will not always bring the same 
outcome as there are parameters such as time or probabilities that can alter the result. Move 
acceptance criteria based on Monte Carlo (Ayob & Kendall, 2003), Simulated Annealing (Bai 
& Kendall, 2005) or Late Acceptance (Burke & Bykov, 2008) are examples of non-determin-
istic approaches.

The application of hyper-heuristics to solve multi-objective problems is a recent area of 
research that has been gaining interest among researchers recently. A hyper-heuristic that 
uses tabu search with roulette wheel selection (TSRoulWheel) is proposed in (Burke, Silva 
& Soubeiga, 2005) to solve space allocation and timetabling problems. In García (2010), a 
hyper-heuristic based on genetic algorithm for Social Portfolio Problem (HHGA_SPP) is pre-
sented as a methodology capable of solving multi-objective social portfolio problems using a 
population of permutations of the available low-level heuristics. HHGA_SPP uses a genetic 
algorithm to select the most adequate permutation. The Markov Chain-based Hyper-heu-



Technological and Economic Development of Economy, 2019, 25(5): 951–978 957

ristic (MCHH) (McClymont & Keedwell, 2011) is an online–learning hyper-heuristic that 
employs reinforcement learning and Markov chains to update transition weights between a 
set of low-level heuristics according to their performance. MCHH was applied to the DTLZ 
test suite (Deb, Thiele, Laumanns & Zitzler, 2002) and compared against a random heuris-
tic selection and TSRoulWheel. The results showed that MCHH has a better convergence 
with the Pareto optimal front. A Fast Multi-objective Hyper-heuristic Genetic Algorithm 
(MHypGA), proposed in Kumari, Srinivas, and Gupta (2013), uses reinforced learning with 
adaptive weights to select from a set of low-level heuristics based on different combinations 
of selection, crossover and mutation operators. A hyper-heuristic that uses a fuzzy logic 
engine named Fuzzy Adaptive Multi-objective Evolutionary algorithm (FAME) (Santiago 
et al., 2019) has been recently proposed. This methodology manages several reproduction 
operators as low-level heuristics. FAME uses a roulette–wheel mechanism to select the set 
of crossover and mutation operators to apply on an MOP. The probabilities of each operator 
are defined by using the Mamdani–type fuzzy inference system (Roy & Chakraborty, 2013). 
The results obtained by FAME have shown better overall performance than several state–of–
the–art algorithms.

While most hyper-heuristics use simple low-level heuristics such as swap or random mu-
tations, some hyper-heuristics using more complex low-level heuristics, such as meta-heu-
ristics, have been proposed before. A new selection method called Fuzzy Inference Selection 
(FIS) was proposed and used in a hyper-heuristic in (Zamli, Din, Kendall & Ahmed, 2017). 
The LLH set was composed by the search operator mechanisms from four different me-
ta-heuristics to solve a combinatorial t–way test suite generation problem. 

A Choice–function based hyper-heuristic (HH_CF) proposed in Maashi, Özcan, and 
Kendall, (2014), used three MOEAs, including NSGA–II, as LLHs. A choice function was 
used to select which MOEA to apply on the MOP being solved for a set of generations. This 
choice function (CF) was applied to each LLH h. CF was based on two elements, a two–stage 
ranking scheme (c1) and a time variable (c2) and was defined as

 1 2( ) ( ) ( ).CF h c h c h= α +  (2)

The LLH with the highest CF(h) was selected. In the ranking scheme, the first stage ranks 
the solutions obtained by each LLH using multiple performance metrics, making a ranking 
for each metric. The second stage ranks how many times an LLH had the best rank for all 
metrics. After this, c1 for each LLH was calculated by

 1( ) 2 * ( 1) { ( ) ( )},rank rankc h N Freq h RNI h= + − +   (3)

where N is the number of LLHs, Freqrank(h) is the ranking of each LLH for the second–stage 
ranking and RNIrank(h) is the position of a heuristic based on a ranking of a metric that 
calculates the ratio of non-dominated individuals with respect to the entire population that 
each heuristic obtained. As it could be noticed, c1 supports intensification. Meanwhile, c2 
supports diversification as it is defined as the seconds elapsed since the last time the re-
spective LLH was used. Therefore, low-level heuristics that have been not chosen recently 
will have a higher value with respect to LLHs that were just called. The variable α is a large 
positive value, set by the authors, that is used to maintain a balance between both functions.  
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In Maashi, Kendall, and Özcan, (2015), HH_CF was evaluated on the WFG test suite (Hu-
band, Hingston, Barone & While, 2006) and the vehicle crashworthiness design problem 
(Liao, Q. Li, Yang, Zhang & W. Li, 2008) using three different move acceptance criteria: All 
Moves, Great Deluge Algorithm (Dueck, 1993) and Late Acceptance (Burke & Bykov, 2008). 
The results obtained demonstrate the effectiveness of using complex low-level heuristics, such 
as MOEAs to solve MOPs.

Among the meta-heuristics and MOEAs proposed in the literature, NSGA–II is one of the 
algorithms most commonly chosen as an element of a hyper-heuristic, usually as a low-level 
heuristic. Proposals such as HH_CF, which was previously mentioned, and the works of 
Vrugt and Robinson, (2007), Furtuna, Curteanu, and Leon (2012), Vázquez-Rodríguez and 
Petrovic (2012), Li, Özcan and John (2017) are examples of the application of NSGA–II with-
in a hyper-heuristic. This is mostly because of the simplicity of this MOEA and its worldwide 
renown. Despite being outdated and already outperformed by new algorithms, it still is one 
of the most recognized evolutionary algorithms today and usually accepted as a comparison 
point when presenting new MOEAs and hyper-heuristics.

Hyper-heuristics have also been used in dynamic optimization context. A memory/
search algorithm is merged with a hyper-heuristic on a hybrid technique to solve dynam-
ic single objective problems in Topcuoglu, Ucar, and Altin, (2014). This new framework 
showed a significant performance difference in comparison to the memory/search algorithm 
when solving the dynamic generalized assignment problem and the moving peaks bench-
mark (Branke, 2001). In Baykasoğlu and Ozsoydan (2017), three meta-heuristics, adapted 
to dynamic changes using auxiliary procedures, were used as LLHs on a hyper-heuristic to 
solve dynamic multi–dimensional knapsack problems. Each LLH was assigned a selection 
probability based on the improvement in the quality of the solutions obtained compared to 
previous solutions. Then, an LLH was selected randomly using the assigned probabilities, 
promoting the selection of high–improving LLHs. Diversity was also kept by using Triggered 
Random Immigrants and Adaptive hill–climbing strategies (H. Wang, D. Wang, Yang, 2009). 
However, most of the current hyper-heuristics focus on single-objective dynamic optimiza-
tion problems. One of the few works that focus on DMOPs is the Multi-objective Generic 
Programming based Hyper-heuristic (MO-GPHH), proposed in Nguyen, Zhang, Johnston 
and Tan (2014), which is focused on the dynamic multi-objective job shop scheduling prob-
lem. MO–GPHH is a coevolutionary hyper-heuristic that uses an MOEA, including NSGA–
II, as a search strategy to define effective scheduling programs.

While hyper-heuristics have been previously used to solve dynamic optimization prob-
lems, to our knowledge there is no existence of a hyper-heuristic that can solve DMOPs using 
as LLHs a set of dynamic meta-heuristics. In theory, the use of more complex LLHs should 
allow the hyper-heuristic to solve a wider array of problems effectively. Therefore, this paper 
proposes a selection–based hyper-heuristic capable of solving DMOPs using DMOEAs as 
LLHs.

There are few works that use fitness landscape analysis methods as a part of a hyper-heu-
ristic. In Soria-Alcaraz, Ochoa, Sotelo-Figeroa, and Burke (2017), evolvability and landmark-
ing are used by considering a ratio of fitness–improving solutions from a set of neighbours 
of an initial solution and by using a First–Improvement Hill–Climbing of a solution, re-
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spectively. Both methods are used as part of offline–learning strategies to define selection 
probabilities to each low-level heuristic. Evolvability is used as part of an online–learning 
strategy in Soria-Alcaraz, Espinal, and Sotelo-Figueroa (2017) by estimating it during each 
search step using a pre–trained neural network. Both proposals are focused on single-objec-
tive optimization, and the FLA methods are applied on a single initial solution.

While FLA methods have been previously used within a hyper-heuristic, to our knowl-
edge, these methods have not been used for dynamic multi-objective optimization. In the 
specific case of evolvability, its application has only been reported for static single-objective 
optimization problems and considering the evolvability of single solutions instead of a whole 
population. Our proposal seeks to utilize a more complex concept of evolvability, named 
population evolvability, as an online–learning strategy used on a heuristic–selection method. 
Population evolvability, as the name implies, can evaluate the evolvability of an entire popu-
lation and will be explained in detail in the next Section. 

Also, as previously indicated, there are many different move acceptance criteria in the 
literature, each one with its degree of complexity and effectiveness. However, we must con-
sider that the focus of this work is to analyse the application of population evolvability as 
part of a heuristic–selection method, as well of the use of DMOEAs as LLHs. Therefore, it 
is advisable to begin with the simplest methods and criteria and use, as future work, more 
complex elements once the usability of this FLA method has been demonstrated. Therefore, 
the Greedy and Choice Function heuristic–selection methods and the All Moves criterion 
are used for this paper.

3. Population evolvability

A common issue with FLA methods applied to optimization problems is that they only focus 
on the properties of a problem, disregarding the algorithm being used to solve it. However, 
the results obtained by those methods could be misleading, as problems that are defined as 
hard could be easily solved by a certain group of algorithms while problems considered as 
easy could be hard to solve (Wang, Li, Zhang & Yao, 2017).

An alternative for EAs to avoid this issue is the use of evolvability as a method to measure 
the difficulty of a problem. Evolvability is defined as “the ability of a population to produce 
variants fitter than any yet existing” (Altenberg, 1994). This concept can be used to correlate 
an optimization problem and algorithm performance.

A method to calculate evolvability of a solution was presented in Smith, Husbands, and 
O’Shea (2002), by using fitness evolvability portraits. In their work, the evolvability Ea of 
a candidate solution x is calculated based on a neighbourhood of the solution N(x) and a 
subset of that neighbourhood containing only solutions with better fitness than the candidate 
solution N*(x) = {d | d ∈ N(x), f(d) ≥ f(x)}

 
*| ( ) |

| ( ) |a
N xE
N x

= . (4)

Ea indicates the probability of obtaining a mutation with better fitness than the original 
solution. Therefore, a high Ea means that the current solution can improve easily. A low Ea 
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value means that the problem can be considered hard, as it will be difficult for the optimiza-
tion algorithm to obtain a better solution.

Population evolvability was presented in Wang, Li, Zhang, and Yao (2017), as an extension 
of the original concept. This work evaluates the evolvability of an entire population instead 
of a single solution focusing on two factors: a) the probability of the candidate population to 
evolve into a better solution set, and b) the evolutionary ability of the algorithm used during 
the optimization process. Population evolvability is calculated using the next equation.
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where Pi is the candidate population, f b(P) is the best fitness value obtained in a population 
P, σ(f(Pi)) is the standard deviation of the fitness values of the population Pi, NP is the size of 
Pi, N(Pi) is a set of children populations of Pi defining its neighbourhood, N+(Pi) is a subset 
of N(Pi) which contains only neighbours with a better fitness value than Pi. For minimiza-
tion problems this is denoted as N+(Pi) = {Pij | Pij ∈ N(Pi), f b(Pij) < f b(Pi)} in which j = 1,…, 
|N+(Pi)|. 

The range of evp(Pi) is [0, +∞). This value represents the evolutionary ability of the cur-
rent state, which is related to the difficulty that the applied algorithm will have to find better 
solutions for the current problem. In other words, the higher the evp(Pi) value is, the easier 
for an algorithm to find new solutions with better fitness. 

The authors of this concept indicate that population evolvability is feasible for algorithm 
selection task if it is viewed as a set of obtained characteristics for population–based me-
ta-heuristic algorithms. However, their experiments were applied to non-dynamic single-ob-
jective optimization problems and have not been tested yet in a dynamic multi-objective 
environment. Therefore, this paper takes this FLA method and adapts it to handle dynamism 
to test its feasibility as a selection method of DMOEAs that solve DMOPs.

One of the main advantages of population evolvability over other FLA methods previ-
ously used on hyper-heuristics is the depth of the information obtained by this method. For 
the FLA methods mentioned in Section 2, evolvability finds the probability of a solution to 
evolve into a fitter state while landmarking can detect the degree of its evolution. Population 
evolvability obtains information regarding both topics at the same time. Another point that 
must be taken into consideration is that evolvability and landmarking focuses on a single 
solution, while population evolvability works with an entire population, allowing a fitness 
landscape analysis on a diverse set of solutions. Finally, it must be considered that popula-
tion evolvability is a novel concept that offers a good breakthrough point on dynamic and 
multi-objective optimization.
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4. Dynamic population–evolvability based multi-objective hyper-heuristic

As the number of proposed DMOEAs to solve DMOPs increase, it becomes more difficult to 
know which DMOEA (or a subset of DMOEAs) could give the best solutions while solving a 
certain DMOP. There is also the possibility that the application of a set of DMOEAs on a par-
ticular order could obtain better solutions in comparison to what those algorithms could find 
individually. As mentioned in Section 2, hyper-heuristics have a heuristic selection method 
that allows them to select from a set of heuristics, which one to use to solve a problem.

Therefore, this work presents the dynamic population–evolvability based multi-objec-
tive hyper-heuristic (DPEM_HH). A set of DMOEAs are used as low-level heuristics for 
DPEM_HH. Also, population evolvability is considered in the heuristic selection process and 
its application in the proposed hyper-heuristic will be explained in detail later in this Section.

As mentioned in Section 3, population evolvability has yet to be tested as an algorithm 
selection method on dynamic optimization problems. Considering this, DPEM_HH uses this 
FLA method on its LLH selection method. The approach allows all DMOEAs from the LLH 
set to be evaluated after each change, selecting the algorithm that could perform better for 
that time step according to the LLH selection method.

Figure 1 shows the flowchart of DPEM_HH. First, the hyper-heuristic creates a random 
initial population. Then, an LLH is randomly selected and applied to the problem. If the stop-
ping criteria have not been reached and a change in the environment has been detected, the 
heuristic selection process begins. First, each LLH is given a copy of the current population. 
Then, each heuristic applies its change response method in their respective copy population 
and is executed for a set of sampled generations. Population evolvability is calculated every 
generation for all LLHs.

After the sampling process ended, the average population evolvability of each LLH is 
calculated by dividing the sum of population evolvability values obtained by the number 
of sampled generations. These values are used in an LLH selection method to define which 
DMOEA will be used for the next generations until a change is detected or the stopping 
criteria are reached.

Figure 1. DPEM_HH flowchart
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According to Burke et al. (2010), DPEM_HH is classified as an online–learning, heu-
ristic–selecting methodology. In other words, it updates its information about all available 
low-level heuristics on each selection stage and chooses from that LLH set which heuristic 
to apply on the problem for a time step during the process.

Population evolvability can be a very costly process because of its exploration process 
during each generation. Therefore, the number of sampled generations must be carefully 
defined to avoid a very computationally complex process. The authors of this concept (Wang, 
Li, Zhang & Yao, 2017) suggest using 20% of the total number of evaluations. Translating 
this consideration into the dynamic optimization domain, focusing specifically on DMOP, 
the maximum number of sampled generations per time step for DPEM_HH has been set in 
20% of the number of generations passed between changes.

Two LLH selection methods that use population evolvability are proposed and compared 
in this work: the first method applies a greedy strategy that uses the average population 
evolvability value obtained by each LLH during the selection process to select an LLH. The 
second proposal presents a choice function that combines a set of performance metrics used 
to analyse the solution set obtained by each LLH during the selection process and its respec-
tive average population evolvability to perform an LLH selection.

Average population evolvability (EVP). Each sampled generation, a set of neighbour pop-
ulations is created, and population evolvability of the current generation is calculated for 
each LLHs. To do so, equation (5) is adapted to handle dynamic environments by adding a 
variable t denoting the current static period of the problem. However, since said equation 
focuses on single objective problems, it uses only one value to represent the fitness of a 
solution. Therefore, an aggregation method must be used to combine all objective function 
values. DPEM_HH uses a weighted sum method (Li & Deb, 2017), combining the value of 
m objectives and a weight vector λ = (λ1, ..., λm) to obtain a single fitness value. For this 
work, all objectives have equal importance. Thus, the vector weight is distributed evenly for 
DPEM_HH. The aggregation function is defined as

 
1 1

min ( | ) ( ) s.t. 0, 1
m m

i i i i
i i

f x f x
= =

λ = λ λ ≥ λ =∑ ∑ ,  (6)

even though it is known that this approach is not suitable to find the nonconvex parts of the 
Pareto–optimal front, it is only used to compare solutions obtained during the LLH selection 
process. Meanwhile, the Pareto dominance is used to determine the non-dominated solution 
set and the solutions that are passed from a generation to the next one.

The modified equation (7) can be used on dynamic optimization problems as the var-
iable t, denoting the current time step, has been added to all relevant parameter. The first 
child population obtained by each LLH is set as the new population for the next sampled 
generation. This means that all neighbour populations that were evaluated to obtain evpt(Pi,t) 
have no effect on the quality of the next sampled generation and they are only used to cal-
culate this value. Therefore, it can be compared against non-hyper-heuristic methods, such 
as DMOEAs.
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For each LLH, the average population evolvability is obtained following equation (8), 
where st indicates the number of sampled generations. This heuristic–selection method fol-
lows a greedy strategy. Therefore, the LLH with the highest average evolvability value is 
selected and used until the next change is detected. Average population evolvability supports 
exploitation of the solution search space by thoroughly analysing the neighbourhood of each 
parent population during the sampled generations. Exploration is supported by analysing a 
solution set in comparison to other FLA methods that only focus on a single solution.
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Choice function (CF): This LLH selection method integrates average population evolvabil-
ity together with a set of performance metrics applied at the end of the sampled generations, 
using them in a choice function. The objective is to analyse the possibility of obtaining a di-
verse set of high–quality solutions using a more complex method based on the properties of 
the DMOP being solved, the DMOEA used and the quality of the solutions obtained during 
the sampled generations.

The choice function is based on equation (2) proposed in (Maashi, Özcan & Kendall, 
2014), which uses a two–stage ranking scheme (c1) and a time variable (c2) for the LLH se-
lection process. The previously presented average population evolvability selection method 
is a greedy method, choosing the best LLH according to its average evpt value. Meanwhile, 
this method supports both intensification and diversification as it was previously explained in 
Section 2. The c1 function is modified to insert population evolvability into the said equation 
by making the ranking of average population evolvability obtained by each LLH the most 
relevant value. Therefore, the modified c1 is

 1( ) 2 * ( 1) { ( ) ( )},rank rankc h N Freq h EVP h= + − +  (9)

where EVPrank(h) is the ranking of each LLH according to their average population evolvabil-
ity. The milliseconds elapsed since the last time an LLH was selected is used to calculate c2.

This heuristic selection method also takes the exploitation versus exploration dilemma 
into consideration. As it was mentioned, the c1 function promotes intensification by search-
ing the LLH with the best–quality solutions for the current period. Also, the addition of aver-
age population evolvability means that each parent population from the sampled generations 
will perform an exhaustive local search looking for fitter neighbour populations. Exploration 
is supported by the c2 function, as it is regulated not by the quality of the solution set ob-
tained by an LLH, but the time elapsed since that heuristic was used. Therefore, an LLH that 
has not been used by DPEM_HH for a long time could be selected even if the quality of its 
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solutions is not currently the best, allowing the LLHs from DPEM_HH to explore areas from 
the solution search space that would not have been explored if only c1 had been considered.

As mentioned in Section 2, the move acceptance criterion of DPEM_HH is All Moves 
(Cowling, Kendall & Soubeiga, 2000). This criterion accepts any new population of solutions 
obtained by the currently selected LLH. This selection was based on the simplicity of the 
move acceptance criterion and to test the capability of DPEM_HH to cover the weaknesses 
of each of its LLHs with their combined strengths. 

Algorithm 1 describes the procedure of DPEM_HH. The input is the number of gen-
erations per static period, also defined as change frequency (ττ), the number of sampled 
generations per evaluation period (st) and the LLH set. The output is a population found by 
DPEM_HH after the stopping criteria have been reached. First, an initial population is creat-
ed and a variable to control the number of generations for every execution (τtest) is initialized. 
Then, the first LLH to be used is chosen randomly and executed for ττ – τtest generations. 

Algorithm 1 DPEM_HH. Evolvability–based multi-objective hyper-heuristic 

BEGIN

1: pop ← GenerateInitialPopulation()
2:	 τtest ← 0
3: s ← RandomSelectLLH(LLH)
4: while stopping criteria not reached 
5:    pop ← ExecuteLLH(s, pop, ττ – τtest)
6:	 			τtest ← 0
7:    if change is detected
8:	 						τtest ← st
9:       for i = 1 to |LLH|
10:          pop_evpi ← Copy(pop)
11:          for j = 1 to st
12:              pop_evpi ← ExecuteLLH(llhi, pop_evpi, τtest)
13:              NP ← GenerateNeighbourhood(llhi, pop_evpi)
14:              evpi ← evpi + CalculateEvolvabillity(pop_evpi, NP)
15:          end for
16:          evpi ← evpi/st
17:       end for
18:       MET ← MetricEvaluation(POP_EVP)
19:       s ← SelectLLH(LLH, EVP, MET)
20:       pop ← SetPopulation(s, POP_EVP)
21:    end if
22: end while

END
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Since the first selection was random and no population evolvability test was done, τtest is 
set on 0 for the current LLH execution. When a change is detected, τtest is given the same 
value than st. This is done because the generations used by the selected LLH to compute its 
respective population evolvability must be accounted for. Then, each LLH is given a copy of 
the current population (pop_evpi represents the population copy assigned to the i-th LLH) 
and performs a population evolvability analysis for st generations. As equation (7) shows, a 
population neighbourhood is required to calculate population evolvability. This is done by 
generating a set of neighbour populations (NP) for each LLH on every sampled generation, 
which is formed by creating a set of children population (line 13). The average population 
evolvability of all available LLHs (evpi denoting the respective evolvability of the i-th LLH) 
and performance metric values (MET) of each LLH are calculated (line 16 and 18, respec-
tively). After those values have been obtained, an LLH is chosen according to the selection 
method being used. Lastly, the current population of the selected LLH obtained during the 
sampled generations is set as the current population (line 20).

5. Experimental design

Eleven test problems are applied in this work to examine the performance of DPEM_HH 
in comparison with other algorithms. FDA1, FDA3, FDA4, and FDA5 from the FDA test 
suite (Farina, Deb & Amato, 2004), the DMZDT test suite (Wang & Li, 2010) and the dMOP 
test suite (Goh & Tan, 2009). This allows DPEM_HH to be tested in type I (non-changing 
Pareto optimal front), II (changing Pareto optimal front and optimal solution set) and III 
(non-changing optimal solution set) DMOPs, according to the classification in Farina, Deb, 
and Amato, (2004), with convex, nonconvex, discontinuous and multimodal Pareto optimal 
fronts with uniform and nonuniform optimal solution sets. The time instance t of these 
DMOPs has been adapted to be set as t = (1/nt)[τ/ττ] (where nt represents change severity, 
ττ change frequency and τ the current generation). The definition of these problems can be 
found in the referenced works.

5.1. Algorithms and performance metrics

Two configurations of DPEM_HH are tested in this paper. Each one using one of the LLH 
heuristic selection methods presented in Section 4 and the All Moves acceptance criteria. 
DPEM_HH uses three versions of DNSGA–II as LLHs. Each version has a different change 
response method. The first two versions used, DNSGA–II–A and DNSGA–II–B, were pro-
posed in Deb, Rao, and Karthik, (2007) and explained in Section 1. The third version, DNS-
GA–II–AB, is proposed in this work. After a change DNSGA–II–AB randomly selects a 
subset of the solutions from the new population, replacing half of that subset with newly 
created solutions and mutating the other half. 

When analysing the performance of an algorithm regarding the quality of solutions ob-
tained for multi-objective optimization, it is desirable to use a set of performance metrics that 
can cover as many properties as possible. Such as the number of non-dominated solutions, 
how close is the solution set to the Pareto–optimal front (POF*) and the uniformity of the 
distribution among solutions. 
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In Maashi, Özcan, and Kendall (2014), the set of performance metrics used for the choice 
function do not consider the POF*. However, it was only applied to static MOPs. DPEM_HH 
works with DMOPs so there is a possibility that a solution set loses quality and diversity after 
a problem changes, making an analysis more difficult. Therefore, this paper uses performance 
metrics that compare the solution set with the current POF*. The POF* of all the selected 
DMOPs can be mathematically obtained. 

The following performance metrics are used for both the choice function and to evaluate 
the solutions obtained by DPEM_HH and other algorithms used in this experimental study. 
This selection is based on the information these metrics can provide regarding the size of the 
non-dominated solution set, convergence to the POF* and diversity of the solution set with 
respect to itself and the POF*. 

Ratio of non-dominated individuals (RNI) (Tan, Lee & Khor, 2002). RNI compares the 
number of non-dominated individuals obtained in the Pareto–optimal front (POF) with the 
size of the population P. A higher RNI value means an algorithm found more non-dominated 
solutions.
 RNI |POF|.

|P|
RNI =  (10)

Inverted generational distance (IGD) (Sierra & Coello, 2005). IGD measures the conver-
gence and diversity of an obtained POF. This metric is defined as:
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where POF* is a set of uniformly distributed points in the true POF and d(v, POF) is the 
shortest Euclidean distance between v and every point of POF. A smaller value means a bet-
ter convergence.

Maximum spread (MS) (Goh & Tan, 2007). MS measures how well the obtained POF 
covers the true POF* 
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where (POFi , POF*i ) are the highest and (POFi , *POF i ) are the lowest values for POF and 

POF* for objective i, respectively. A high MS value equals a better spread.
Hyper–volume ratio (HVR) (Van Veldhuizen, 1999). Given the hypervolume of a POF 

using a reference point, denoted as HV(POF). HVR obtains the ratio of this value with the 
hypervolume of POF* to measure the convergence and diversity of POF with respect to POF*. 
Therefore, the best possible ratio value is 1. 

 HVR
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In our consideration, this set of metrics provides enough data about the performance of 
each LLH to make a well–based heuristic selection. Also, it must be considered that all per-
formance metrics previously mentioned have been already used for dynamic multi-objective 
optimization problems to analyse the performance of EAs. Therefore, this same metric set is 
also used to evaluate both DPEM_HH configurations when compared against each other and 
IGD, MS and HVR when compared to the three versions of DNSGA–II tested in this work.

5.2. Parameter setting and implementation

Population size for all test problems is set to 100 for DPEM_HH and DNSGA–II. Every 
DNSGA–II version, both when running individually or used as LLHs, uses simulated binary 
crossover as crossover operator and polynomial distribution as mutation operator (Agrawal 
& Deb, 1995). The crossover and mutation probabilities are set to 0.9 and 1/n, where n is 
the number of variables of the DMOP, respectively. Distribution indexes are set to 10 for 
crossover and 20 for mutation. These values are defined following the original setting of 
DNSGA– II (Deb, Rao & Karthik, 2007).

Change detection is set according to the current generation being evaluated. When the 
problem reaches a generation where an alteration on t is detected all algorithms start their 
respective change response methods. Each DNSGA–II versions apply its change response 
method to 20% of the new population for every change. In DPEM_HH, the total sampled 
generations on each time step is set as the 20% of ττ. For the choice function, α is set to 2000.

For the FDA and dMOP test suite problems the change severity nt is set to 10, the num-
ber of generations for each time step ττ is set to 25. Meanwhile for the DMZDT test suite 
nt = 100, and ττ = 25. These values were defined according to recommendations from both 
authors and the guideline defined in Helbig and Engelbrecht (Helbig & Engelbrecht, 2014). 
For all DMOPs, the total number of generations is set as nt*ττ.

DPEM_HH was implemented using the framework jMetal 5.11, modifying the NSGA–II 
algorithm provided by this framework to develop the three DNSGA–II versions used as LLHs 
in this paper. All the algorithms were run 30 times for each DMOP using a laptop with an 
Intel Celeron 2.13 GHz processor and 4GB RAM.

6. Experimental results and discussion

Both configurations of DPEM_HH are executed for each DMOP. The execution time of the 
instances from the FDA and dMOP test suites is in a range of 10 to 30 seconds. Meanwhile, 
DMZDT problems take 1–2 minutes per execution. The two versions of DPEM_HH are 
compared by evaluating the offline (average of all-time steps) mean and standard deviation 
of RNI, IGD, MS and HVR of the solution set obtained by each algorithm. Table 1 shows the 
configuration that obtained the best value for each DMOP per metric and the total number 
of times a configuration is superior when compared against the other version of DPEM_HH 
for each metric. 

DPEM_HH using CF as the LLH selection method provide the best results for RNI and 
MS in a higher number of instances than the other version. Meanwhile, DPEM_HH using 
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EVP obtained the best results regarding IGD and HVR. The difference between both versions 
with respect to IGD is relevant, with a significant advantage towards average population 
evolvability. These results lead to an implication that DPEM_HH using this LLH selection 
method can provide solutions closer to the POF* but slightly less spread and with a smaller 
non-dominated solution set.

Focusing on each DMOP, EVP is superior in all metrics for dMOP1 and DMZDT4, while 
CF dominated in all metrics for dMOP2 and DMZDT1. For the FDA instances, EVP provides 
the best results in terms of closeness to the POF* while CF obtained solution sets with better 
diversity. Analysing the DMZDT instances, EVP has a clear dominance over CF with respect 
to convergence and diversity taking into consideration its dominance for IGD and MS, with 
CF providing better results for only DMZDT1. Lastly, the results obtained for the dMOP test 
suite slightly favour CF, especially for dMOP2 and all metrics but RNI in dMOP3. However, 
the results obtained by EVP in dMOP1 dominated those obtained by CF for all metrics.

As every metric provides relevant information regarding the solution set obtained by each 
DPEM_HH version, all are considered equally important. Therefore, to make a fair compari-
son, the number of times a configuration is superior in a metric on each of the tested DMOPs 
are added to its respective total. Analysing this table, EVP shows a slight dominance over 
CF with a total of 23 to 21. This dominance is emphasized when the comparing IGD, which 
as previously mentioned, denotes the capability of DPEM_HH using EVP to find solutions 
with good convergence. 

Taking the results obtained and the information provided by Table 1, the configuration 
of DPEM_HH that uses EVP as the LLH selection method is defined as a canonical version 
of DPEM_HH that will be compared against all three DNSGA–II versions used in this work. 
For the remainder of this section, DPEM_HH will refer to that setting. 

Table 1. Best configuration of DPEM_HH for each DMOP for all metrics and sum of best ranking

Problem RNI IGD MS HVR

FDA1 CF EVP EVP CF
FDA3 EVP CF CF EVP
FDA4 EVP EVP CF EVP
FDA5 CF EVP CF EVP
DMZDT1 CF CF CF CF
DMZDT2 CF EVP EVP EVP
DMZDT3 CF EVP EVP CF
DMZDT4 EVP EVP EVP EVP
dMOP1 EVP EVP EVP EVP
dMOP2 CF CF CF CF
dMOP3 EVP CF CF CF
Total EVP: 5 EVP: 7 EVP: 5 EVP: 6 TOTAL: 23

CF: 6 CF: 4 CF: 6 CF: 5 TOTAL: 21

Note: EVP and CF indicate average population evolvability and choice function used as the LLH selec-
tion method, respectively.
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The offline mean and standard deviation of IGD, MS and HVR obtained from all tested 
algorithms are presented in Tables 2–4, respectively. The result obtained by DPEM_HH is 
compared against all tested DNSGA–II versions run individually for all DMOPs. The best 
results are highlighted in italic face. The Friedman aligned ranks test (Hodges & Lehmann, 
1962) with a 0.05 significance level is applied to check if there exists any significant difference 
among a group of algorithms for the selected DMOP set. Then, Holm post–hoc procedure 
(Holm, 1979) is used for pairwise comparisons between DPEM_HH and all tested DNS-
GA–II versions.

Table 2 presents the results obtained for the IGD metric by each algorithm. DPEM_HH 
outperform all tested versions of DNSGA–II in several instances by having a smaller IGD 
value. For all cases, except for FDA3, DPEM_HH presents a better performance than at least 
one version of DNSGA–II. These results imply that DPEM_HH can find solutions closer to 
the POF* in comparison to the other algorithms for most cases. In many cases, statistical 
significance supports these statements. The performance of DPEM_HH in FDA1, DMZDT1, 
and dMOP2 shows a statistically significant improvement over all the DNSGA–II versions. 
This table also shows that DPEM_HH is particularly dominant when compared against DNS-
GA–II–B.

Although cases like FDA3, DMZDT3, and dMOP3 appeared, where DPEM_HH shows a 
lower performance against a particular version of DNSGA–II. The concept of hyper-heuris-
tics is still maintained as it produces a better result than another DNSGA–II version. These 
results demonstrate that DPEM_HH can take the strengths of its LLHs to cover their re-
spective weaknesses to produce solution sets with better convergence than the LLHs applied 
alone. Therefore, DPEM_HH shows its effectiveness regarding this characteristic.

Table 2. Offline mean and standard deviation of IGD metric for DPEM_HH and all DNSGA–II versions

Problem DPEM_HH DNSGA–II–A DNSGA–II–B DNSGA–II–AB

FDA1 1.959E–3(4.710E–4) 5.525E–3(2.120E–3)* 5.151E–3(1.919E–3)* 5.996E–3(2.804E–3)*

FDA3 1.331E–2(1.342E–3) 1.248E–2(9.520E–4)■ 1.269E–2(1.384E–3)■ 1.208E–2(1.084E–3)■

FDA4 1.181E–2(7.560E–4) 1.179E–2(4.690E–4) 1.310E–2(8.470E–4)* 1.240E–2(1.011E–3)*

FDA5 1.091E–2(6.310E–4) 1.094E–2(7.570E–4) 1.184E–2(6.990E–4)* 1.134E–2(8.310E–4)

DMZDT1 4.741E–3(8.800E–5) 4.898E–3(1.420E–4)* 4.879E–3(1.830E–4)* 4.911E–3(1.610E–4)*

DMZDT2 9.334E–3(1.144E–3) 9.800E–3(1.261E–3) 9.693E–3(1.339E–3) 9.687E–3(1.104E–3)

DMZDT3 2.285E–2(2.600E–5) 2.285E–2(1.090E–4) 2.285E–2(5.500E–5) 2.284E–2(1.050E–4)■

DMZDT4 3.579E–2(1.964E–2) 3.294E–2(1.270E–2) 3.873E–2(2.151E–2) 3.783E–2(1.854E–2)

dMOP1 6.616E–3(4.683E–3) 8.353E–3(4.305E–3) 8.669E–3(4.501E–3) 7.603E–3(4.832E–3)

dMOP2 1.221E–3(1.020E–4) 1.378E–3(1.540E–4)* 1.341E–3(2.450E–4)* 1.335E–3(1.300E–4)*

dMOP3 6.703E–3(1.984E–3) 1.667E–3(9.640E–4)■ 1.024E–2(2.131E–3)* 2.788E–3(1.483E–3)■

Note: * and ■ indicate that DPEM_HH is significantly better or worse for that specific DMOEA, re-
spectively.



970 T. Macias-Escobar et al. Application of population evolvability in a hyper-heuristic for dynamic ...

Table 3 displays the results obtained for the MS metric. DPEM_HH provides results 
equal or better than the rest of the algorithms for several cases, apart from FDA3, FDA4, 
FDA5, DMZDT4 and dMOP3. However, aside from FDA4 and dMOP3 the difference is not 
significant. The results imply that DPEM_HH can obtain solutions sets with equal or better 
distribution than DNSGA–II. It must be noted that DPEM_HH offers the best values for all 
DMZDT instances, except for DMZDT4, and offers a significant advantage over all DNS-
GA–II versions for FDA1, all these DMOPs are type I (non-changing POF*, different optimal 
solution set). This could mean that DPEM_HH performs especially well for DMOPs of this 
type. However, if the performance of an LLH is poor, the results of a hyper-heuristic might be 
affected. This situation arises in FDA3 and dMOP3, where the performance of DNSGA–II–B 
affects DPEM_HH and, while still capable of obtaining better results than DNSGA–II–B, it 
cannot outperform one or the rest of the DMOEAs.

Lastly, Table 4 presents the results obtained by DPEM_HH and DNSGA–II for the 
HVR metric. DPEM_HH outperforms the results obtained of at least one of the versions 
of DNSGA–II in all DMOPs, except FDA3. DPEM_HH can obtain solution sets with a 
better relationship between convergence and diversity in comparison to DNSGA–II. For 
FDA1, DMZDT1, DMZDT2, and dMOP2. DPEM_HH significantly outperforms the results 
obtained by all the other tested algorithms. Meanwhile, for FDA4, FDA5, DMZDT3, and 
dMOP3, it shows a statistically significant advantage over some of the DNSGA–II versions. 
It must be noted that DPEM_HH shows a significant superiority against DNSGA–II–B for 
most of the tested instances.

Following the same situation presented in Table 2, there are DMOPs where the perfor-
mance of DPEM_HH is affected by the poor results obtained by one of the LLHs. While 
DPEM_HH provides better results than the poor–performing LLHs, it is unable to obtain a 
better result than all versions of DNSGA–II. This situation once again shows that DPEM_HH 
fulfils the concept of a hyper-heuristic by using the strengths of its LLHs to cover their 
weakness. Although, there are cases where the low performance of LLHs can affect the result 
provided by the hyper-heuristic.

The experimental results allow the analysis of the relevance of each proposed element in 
this paper. As shown in Table 1, the version of DPEM_HH that uses a greedy LLH selec-
tion method based on average population evolvability provides better results for most cases 
in comparison to DPEM_HH using a choice–function based LLH selection method. After 
comparing this configuration of DPEM_HH with all three versions of DNSGA–II, the results 
show significant positive results in terms of convergence while keeping or improving the 
diversity of the solution set.

Type I DMOPs offer the challenge of finding a single POF* while having the optimal 
solution set change over time. DPEM_HH takes advantage of its properties and the greedy 
nature of its selection method to keep an intensification–focused search for solutions close 
to the POF* while keeping good diversity as population evolvability allows the exploration 
of several neighbour populations during the selection process. These characteristics allow 
DPEM_HH to obtain better values for all metrics in most cases, with a statistically signifi-
cant improvement for IGD and HVR, meaning that the obtained POF is closer and better 
distributed to POF* in comparison to the three DNSGA–II versions.
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Table 3. Offline mean and standard deviation of MS metric for DPEM_HH and all DNSGA–II versions

Problem DPEM_HH DNSGA–II–A DNSGA–II–B DNSGA–II–AB

FDA1 9.796E–1(1.134E–2) 9.302E–1(3.865E–2)* 9.346E–1(4.387E–2)* 9.205E–1(5.438E–2)*

FDA3 9.938E–1(2.519E–3) 9.940E–1(3.002E–3) 9.918E–1(1.511E–2) 9.941E–1(4.420E–3)

FDA4 1.000E–0(3.000E–6) 1.000E–0(1.000E–6) 1.000E–0(1.000E–6) 1.000E–0(1.000E–6)

FDA5 1.000E–0(3.000E–6) 1.000E–0(1.000E–6) 9.999E–1(2.900E–5) 1.000E–0(0.000E–0)

DMZDT1 9.693E–1(2.304E–3) 9.681E–1(3.040E–3) 9.679E–1(3.825E–3) 9.675E–1(3.693E–3)*

DMZDT2 9.049E–1(1.327E–2) 8.996E–1(1.452E–2) 9.001E–1(1.466E–2) 9.008E–1(1.318E–2)

DMZDT3 9.103E–1(1.168E–3) 9.051E–1(1.430E–2) 9.083E–1(8.060E–3) 9.078E–1(1.451E–2)

DMZDT4 8.109E–1(5.226E–2) 8.251E–1(4.425E–2) 8.278E–1(4.865E–2) 8.112E–1(4.649E–2)

dMOP1 9.170E–1(6.169E–2) 8.885E–1(6.101E–2) 8.818E–1(6.243E–2) 9.001E–1(6.643E–2)

dMOP2 9.855E–1(3.367E–3) 9.830E–1(5.359E–3) 9.844E–1(6.070E–3) 9.839E–1(5.919E–3)

dMOP3 8.374E–1(4.451E–2) 9.740E–1(1.698E–2)■ 7.694E–1(3.972E–2)* 9.520E–1(2.627E–2)■

Note: * and ■ indicate that DPEM_HH is significantly better or worse for that specific DMOEA, re-
spectively.

Table 4. Offline mean and standard deviation of HVR metric for DPEM_HH and all DNSGA–II ver-
sions

Problem DPEM_HH DNSGA–II–A DNSGA–II–B DNSGA–II–AB

FDA1 9.690E–1(4.508E–3) 9.015E–1(1.127E–2)* 9.063E–1(9.023E–3)* 9.001E–1(1.321E–2)*

FDA3 7.073E–1(2.866E–2) 7.262E–1(2.043E–2) ■ 7.217E–1(3.159E–2) ■ 7.339E–1(2.384E–2) ■

FDA4 6.291E–1(2.742E–2) 6.355E–1(1.862E–2) 5.871E–1(2.958E–2)* 6.176E–1(2.595E–2)

FDA5 6.638E–1(2.752E–2) 6.678E–1(2.965E–2) 6.298E–1(3.319E–2)* 6.503E–1(3.324E–2)

DMZDT1 9.016E–1(1.061E–3) 8.982E–1(1.406E–3)* 8.987E–1(1.508E–3)* 8.985E–1(1.087E–3)*

DMZDT2 7.191E–1(9.305E–3) 7.095E–1(1.041E–2)* 7.116E–1(1.063E–2)* 7.120E–1(8.866E–3)*

DMZDT3 9.337E–1(9.030E–4) 9.321E–1(3.382E–3)* 9.339E–1(2.420E–3) 9.331E–1(3.537E–3)

DMZDT4 5.222E–1(1.908E–1) 5.391E–1(1.580E–1) 5.131E–1(1.885E–1) 4.864E–1(1.938E–1)

dMOP1 9.133E–1(4.727E–2) 8.923E–1(4.509E–2) 8.898E–1(4.720E–2) 9.037E–1(4.886E–2)

dMOP2 9.642E–1(3.075E–3) 9.599E–1(3.382E–3)* 9.615E–1(2.961E–3)* 9.616E–1(3.384E–3)*

dMOP3 9.428E–1(1.725E–2) 9.816E–1(4.870E–3)■ 9.130E–1(1.964E–2)* 9.767E–1(6.899E–3)■

Note: * and ■ indicate that DPEM_HH is significantly better or worse for that specific DMOEA, re-
spectively.

Type II DMOPs challenge algorithms to adapt to the environment changes to find the 
new POF* and optimal solution set. The greedy strategy of DPEM_HH allowed it to quickly 
adapt to the DMOP changes by focusing on the search for good–quality solutions based on 
their aggregated fitness. This lets DPEM_HH get a solution set closer to the POF* quicker 
than DNSGA–II. DPEM_HH shows a significant increase with respect to convergence. Just 
as in the case of type I DMOPs, the explorative nature of the population evolvability helped 
DPEM_HH to keep diversification equal or slightly better when compared to DNSGA–II. 
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In the case dMOP2, DPEM_HH proved better than all DNSGA–II versions. However, a 
unique situation raised with FDA3. While DPEM_HH can obtain well–spread populations, 
which is this instance’s main challenge, it provided to be very difficult for DPEM_HH to find 
solutions with good convergence for this instance. A possible explanation for this is that a 
greedy approach might not be the most suitable approach for FDA3, as the diversity of the 
POF* variates after each environmental change.

The dMOP1 problem is a type III DMOP, meaning that it will keep a single optimal solu-
tion set but multiple POF*. As the optimal solution set does not change, the greedy nature of 
DPEM_HH allows it to exploit areas close to its current solution set and produce solutions 
closer to the current POF*. Also, the results imply that DPEM_HH can obtain sets with 
slightly better converge and diversity than DNSGA–II for this type of DMOP.

DPEM_HH performs particularly well for DMOPs with convex POF*, implying a bet-
ter performance in terms of convergence and diversity than DNSGA–II for DMOPs with 
POF* of this shape. The positive effects of DPEM_HH are seen after studying the results of 
FDA1, DMZDT1, and dMOP1. FDA4, FDA5, and DMZDT2 have non-convex POF*, for 
these DMOPs, DPEM_HH takes advantage of the intensification and diversification provided 
by the greedy method and the population evolvability, respectively, producing populations 
with a POF closer to the POF*. 

While MS shows that DPEM_HH provides no significant improvement over DNSGA–II 
regarding the diversity of the solution set, HVR shows that there is a clear superiority of the 
hyper-heuristic, proving a better relationship between convergence and diversity for the ob-
tained solutions. DPEM_HH seems capable of handling DMOPs with a POF* shifting from 
convex to non-convex, as the outcome for dMOP1 and dMOP2 favours the hyper-heuristic 
over all DNSGA–II versions and in case of dMOP2, these differences are even statistically 
significant. 

The discontinuous POF* of DMZDT3 proved to be challenging for DPEM_HH in terms 
of convergence as the results obtained for IGD were lower than those obtained by DNSGA–
II. Similar to FDA3, a possible explanation might be the constant change in the diversity of 
the POF* that leads to DPEM_HH to find well–spread populations but not very close to the 
POF*.

DMZDT4 presents another problem characteristic to be tested as it is defined as a multi-
modal DMOP. DPEM_HH handled this challenge well in comparison to the tested DMOEAs. 
As Tables 2 and 4 show, the results obtained by the presented hyper-heuristic are slightly 
better than DNSGA–II-B and DNSGA–II–AB for IGD and HVR. This performance allows 
to believe that the ability of DPEM_HH (or any hyper-heuristic) to use multiple heuristics, 
or in this case DMOEAs, makes it capable of handling multimodal problems well in terms 
of convergence.

The dMOP3 is a type I problem that randomly changes the variable that controls the 
spread of the Pareto front. This tests the adaptability of an algorithm for sudden and random 
changes. While DNSGA–II–A performs well, the performance of DNSGA–II–B is poor. An 
issue that hyper-heuristics face is there is a possibility that if one or a subset of the LLHs have 
a significantly low performance, the rest of the LLHs might be unable to make up for those 
results, even if they can obtain high–quality results on their own. This situation shows as 
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DPEM_HH obtains better results than DNSGA–II–B. However, it cannot surpass DNSGA–
II–A for all performance metrics. These results reflect the importance of using an adequate 
LLH set or the necessity to introduce some flexibility to the greedy selection method.

Along with the results obtained by DPEM_HH, the performance of DNSGA–II–AB, a 
DMOEA proposed in this work to be used as an LLH, is another outcome from these exper-
imentations that should be noted. This algorithm provides better results for all metrics for 
FDA3, DMZDT2 and, dMOP1 in comparison to the other two DNSGA–II versions. In gen-
eral, for the tested set of DMOPs this version can produce solutions with a better convergence 
with respect to DNSGA–II–B and diversity with respect to DNSGA–II–A. A possible expla-
nation could be that merging the change adaptation techniques of both previously proposed 
DNSGA–II versions into one, allows the new version to find a balance between exploration, 
by generating new solutions; and exploitation, by mutating current ones.

Conclusions

In this paper, the use of population evolvability in a hyper-heuristic has been proposed. 
DPEM_HH is presented in this work as a dynamic multi-objective hyper-heuristic that uses 
this FLA method as part of a low-level heuristic selection method. This work has proposed 
two LLH selection methods, the application of an average of the population evolvability val-
ues obtained by each DMOEA and the combination of this value with a set of performance 
metric on a choice function.

Three different versions of DNSGA–II were used as LLHs for DPEM_HH. Two configu-
rations of DPEM_HH, each using a different LLH selection method (greedy and choice func-
tion) were tested on a set of DMOPs from the FDA, DMZDT and dMOP test suites. Then, 
a canonical version was selected, and its results were compared against those obtained by 
every DMOEA used as an LLH run individually by using a set of performance metrics. The 
outcome of the comparison was mostly positive as the solution sets obtained by DPEM_HH 
had an overall better quality in most of the instances tested than the solutions obtained by 
all DNSGA–II versions.

Each proposed DPEM_HH configuration showed to be useful in certain situations, as 
there were cases where each variation significantly improved the quality of the solutions 
obtained by our proposed hyper-heuristic even further. These positive results denoted their 
utility and application to solve DMOPs.

Both proposed LLH selection methods showed to be effective in certain situations. The 
average population evolvability was able to find populations closer to the POF*. It also per-
formed well on DMOPs with type I DMOPs and problems with shapeshifting POF* in terms 
of both convergence and diversity. This is due to the greedy nature of this method, which 
selects solutions that provide the best immediate results, allowing to quickly find solutions 
closer to POF* and an easier adaptation to problems with irregular changes. Meanwhile, the 
choice function–based selection method has a better adaptation to problems that show a 
pattern in their changes as it focuses on the convergence and diversity of a solution set with 
respect to the POF* as well as the population evolvability. This method selects which LLH 
is the most appropriate but not necessarily the one that brings the best immediate results.
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The combination of the components used on DPEM_HH, such as a greedy selection 
method and the application of population evolvability, allowed the proposed hyper-heu-
ristic to attempt to find a balance between exploitation and exploration. This is a possible 
explanation of why the configuration of DPEM_HH that uses a greedy strategy to perform a 
low-level heuristic selection, obtained the best results for most of the tested DMOP set and 
was considered as the canonical version during the experimental design.

These results indicate that the application of population evolvability on a hyper-heuristic 
is feasible, and it can effectively obtain high–quality solutions if this FLA method is used 
correctly, either used as the only heuristic choosing factor or combined with other elements 
to form a more complex selection method.

One of the main advantages of hyper-heuristics over other optimization algorithms is 
their generality, as the variety of their LLH set could allow them to be used in a wider ar-
ray of problem types in comparison to individual meta-heuristics. Taking said advantage 
in consideration, DPEM_HH has yet to be tested using other DMOEAs as LLHs and solv-
ing DMOPs than were not selected for this paper and bring different challenges such as 
constrained problems, DMOPs with a changing number of objectives or decision variables, 
many–objective DMOPs or problems with dependencies between decision variables, just to 
name a few examples. Another unexplored area is the consideration of preferences and how 
to insert said preferences into the aggregated fitness value. A possible solution to this would 
be the use of multiple weight vectors. Also, while this work used a weighted sum method to 
unify all objective function values, there are other aggregation methods yet to be tested that 
could obtain better quality solutions. As mentioned in Section 2, there are many different 
LLH selection methods and move acceptance criteria that have been proposed and have not 
been tested on a multi-objective or dynamic environment. This is another topic that must 
be considered, as this factor could change the quality of the solutions obtained. Lastly, while 
this paper proved the effectiveness of population evolvability within LLH selection methods, 
there are still several selection methods where this FLA method could be inserted, such as 
roulette or tabu search. All these observations can be considered as future work.
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