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Article History:  Abstract. Video anomaly detection aims to identify unusual events in surveillance footage, 
yet many existing deep learning solutions remain too computationally heavy for real-time de-
ployment on resource-limited hardware. This study presents a systematic comparison of three 
lightweight deep learning models for frame-level anomaly detection on the Avenue dataset, 
including a baseline 2D convolutional autoencoder, an enhanced reconstruction-based auto-
encoder with refined feature representation and decoding strategy, and a MobileNetV2-based 
supervised classifier fine-tuned for anomaly recognition. The baseline autoencoder achieves 
moderate detection performance, with an approximately AUC of 0.75. In contrast, the en-
hanced autoencoder improves reconstruction quality and raises the AUC to approximately 
0.84 through more effective feature abstraction rather than increased architectural depth. The 
strongest results are obtained by the MobileNetV2 classifier, which achieves an AUC close 
to 0.99, high precision and recall, and a stable confusion matrix. These results demonstrate 
that lightweight architectures, when combined with appropriate training strategies and careful 
handling of class imbalance, can outperform more complex models. Overall, the study con-
firms that architectural efficiency and learning paradigm selection are more critical than mod-
el depth alone, making lightweight models well-suited to practical, real-time video anomaly 
detection scenarios.
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1.	Introduction 

Video anomaly detection (VAD) focuses on identifying rare and abnormal events in long sur-
veillance video streams, where the vast majority of observed activity corresponds to normal 
behavior. With the extensive deployment of CCTV systems in public and semi-controlled 
environments, continuous manual monitoring is neither scalable nor reliable. As a result, 
automatic detection of anomalous events has become an essential task in computer vision 
research and intelligent surveillance systems (Adam et al., 2008; Mahadevan et  al., 2010). 
Despite substantial progress enabled by deep learning, video anomaly detection remains in-
herently challenging. Abnormal events are typically sparse, highly diverse in appearance, and 
often confined to small spatial regions of video frames. In addition, most surveillance datasets 
exhibit severe class imbalance, with anomalous frames representing only a small fraction of 
the data. These characteristics significantly complicate model training and generalization, 
particularly for data-driven approaches that rely on learning regular patterns from normal 
behavior (Hasan et al., 2016; Sultani et al., 2019).
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The CUHK Avenue dataset exemplifies these challenges and is widely used as a bench-
mark for evaluating video anomaly detection methods. Anomalies in Avenue are short-term, 
spatially localized, and heterogeneous, while the training data consist almost exclusively of 
normal activities. Under such conditions, complex and highly parameterized deep learning 
models often struggle to generalize beyond the limited normal training data, leading to 
unstable detection performance and increased false alarms (Hasan et al., 2016; Mahadevan 
et al., 2010). In response to these limitations, recent research has increasingly emphasized 
lightweight and computationally efficient deep learning models for video anomaly detection. 
Multiple survey studies highlight that compact architectures can reduce the risk of overfitting, 
improve real-time applicability, and remain effective on datasets with limited training samples 
and strong class imbalance (Abdalla et al., 2024; Wu et al., 2024; Yadav & Kumar, 2022). Such 
models are particularly relevant for practical surveillance scenarios, where computational re-
sources, latency constraints, and deployment feasibility play a critical role.

In this study, we investigate frame-level video anomaly detection on the Avenue dataset 
by systematically comparing three lightweight deep learning models. Rather than introducing 
a new architecture, the focus is on analyzing how different learning paradigms—unsupervised 
reconstruction, temporal prediction, and supervised classification—perform under identical 
experimental conditions. This enables a clear assessment of how supervision level, temporal 
modeling, and architectural simplicity influence detection robustness in a highly imbalanced 
surveillance setting.

The main contributions of this work are summarized as follows:
	■ A controlled comparative study of three lightweight architectures for frame-level video 
anomaly detection on the CUHK Avenue dataset, including a 2D convolutional autoen-
coder, an enhanced sequence 2D convolutional autoencoder, and a MobileNetV2-based 
supervised classifier.

	■ A comprehensive evaluation using metrics suitable for highly imbalanced data, includ-
ing frame-level AUC and confusion-matrix analysis.

	■ An empirical analysis demonstrating how supervision level and model simplicity affect 
anomaly detection performance on datasets characterized by limited training data and 
localized abnormal events.

	■ Practical insights into the strengths and limitations of lightweight reconstruction-based 
and classification-based approaches for surveillance-oriented anomaly detection.

The remainder of this paper is organized as follows. Section 2 reviews related work on 
video anomaly detection, with an emphasis on deep learning and lightweight approaches. 
Section 3 describes the CUHK Avenue dataset, preprocessing steps, and the experimental 
setup. Section 4 presents the evaluated model architectures and experimental results. Finally, 
Section 5 concludes the paper and discusses future research directions.

2.	Related works

VAD has evolved significantly over the past decade, progressing from hand-crafted feature 
representations and statistical modeling to deep learning–based spatio-temporal architec-
tures and, more recently, lightweight models designed for real-time deployment. Early works 
focused on modeling motion patterns and deviations using classical computer vision and 
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signal processing techniques, while more recent studies emphasize data-driven learning and 
scalable deployment (Adam et al., 2008; Mahadevan et al., 2010). Comprehensive surveys 
further systematize this evolution by reviewing benchmark datasets, evaluation protocols, 
and learning paradigms across different eras of VAD research (Abdalla et al., 2024; Keleko 
Teguede, 2022; Choudhry et al., 2023; Pang et al., 2022; Wu et al., 2024; Yadav & Kumar, 2022). 
These reviews consistently highlight persistent challenges, including severe class imbalance, 
a scarcity of anomalous events, and the need for fair, frame-level evaluation. Early research 
on video anomaly detection primarily relied on handcrafted motion descriptors, trajectories, 
and statistical models of normal behavior. Optical flow statistics, spatio-temporal interest 
points, and trajectory-based representations were commonly used to characterize regular 
crowd dynamics and detect deviations (Adam et al., 2008; Mahadevan et al., 2010). Sparse 
and low-rank reconstruction models extended this line of work by decomposing scenes into 
dominant regular components and rare abnormal patterns, showing effectiveness on early 
benchmarks but reduced robustness in complex environments (Cong et al., 2011; Gnouma 
et al., 2018). Later surveys note that although these methods are computationally efficient, 
their reliance on manual feature design limits scalability and generalization (Anoopa & Salim, 
2022; Fernandes et al., 2019; Middha et al., 2024).

To improve motion sensitivity, several approaches explicitly incorporated optical flow into 
anomaly detection pipelines. These methods either treat flow maps as direct network inputs 
or integrate them as auxiliary cues for shallow convolutional or reconstruction-based mod-
els (Hasan et al., 2016; Liu et al., 2018). Survey studies emphasize that optical flow-based 
representations provide strong local motion information and are particularly effective for 
crowd anomalies and sudden motion changes, but they introduce significant computational 
overhead and are sensitive to flow estimation errors (Duong et al., 2023; Pathirannahalage 
et  al., 2024). These limitations motivate the exploration of lighter architectures that learn 
motion implicitly from RGB frames. Deep autoencoders marked a significant shift in unsu-
pervised VAD by enabling the learning of standard spatio-temporal patterns directly from 
data. Convolutional autoencoders trained on standard sequences identify anomalies by in-
creasing reconstruction error, serving as a widely used baseline in the literature (Hasan et al., 
2016; Zhao et al., 2017). Prediction-based approaches further enhance temporal modeling 
by forecasting future frames or features and using prediction error as an anomaly score. Liu 
et al. (2018) demonstrated that future-frame prediction can outperform pure reconstruction 
on several benchmarks. Subsequent studies incorporate ConvLSTM units and hierarchical 
temporal modeling to capture dynamic evolution more accurately (Medel & Savakis, 2016). 
Surveys confirm that reconstruction- and prediction-based methods remain the dominant 
paradigms for unsupervised deep VAD (Abdalla et al., 2024; Wu et al., 2024). Despite their 
effectiveness, these models are often computationally intensive and rely on long temporal 
windows, complicating deployment in real-time or resource-constrained scenarios.

To address the limited discriminative power of basic autoencoders, memory-augmented 
architectures store representative standard patterns in external memory modules and con-
strain reconstructions accordingly (Gong et al., 2019). Attention mechanisms further enhance 
performance by focusing on salient spatial or temporal regions, improving anomaly locali-
zation (Barbalau et al., 2023; Ristea et al., 2022). Weakly supervised methods reduce labeling 
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costs by using video-level annotations instead of frame-level labels. Multiple-instance learn-
ing frameworks enable scalable anomaly detection on long untrimmed videos, though often 
at the expense of precise temporal localization (Choudhry et al., 2023; Sultani et al., 2019). 
Continual learning approaches have also been explored to adapt models to evolving scenes, 
but they introduce additional complexity and stability challenges (Doshi & Yilmaz, 2020). As 
surveillance systems scale up, computational efficiency and deployability have become central 
concerns. Several reviews highlight the importance of lightweight architectures and edge 
computing for real-time anomaly detection (Li et al., 2025; Noghre et al., 2025; Patrikar & 
Parate, 2022). MobileNet-based architectures represent a key development in this direction. 
MobileNetV2 introduces inverted residuals and depthwise separable convolutions to achieve 
an efficient accuracy–latency trade–off (Sandler et al., 2018). Subsequent studies tailor Mo-
bileNet-family models for embedded platforms such as Raspberry Pi, demonstrating their 
feasibility for real-time video analytics (Glegoła et al., 2021). Lightweight CNNs have also been 
applied to surveillance-related tasks such as violence detection and safety monitoring, show-
ing competitive performance with significantly reduced computational cost (Suba et al., 2022).

Although existing literature covers a wide range of anomaly detection paradigms, direct 
comparisons under strictly identical experimental conditions remain limited. In this study, a 
controlled comparison is conducted on the CUHK Avenue dataset using consistent preproc-
essing, training protocols, and evaluation metrics. Three lightweight models representing 
unsupervised reconstruction, temporal prediction, and supervised classification are evaluated 
to isolate the impact of supervision level, temporal modeling, and architectural simplicity in 
a highly imbalanced surveillance setting. The summary of some related research is presented 
in Table 1.

Table 1. The summary of related works

Authors Core methodology Key contributions Main limitations

Adam et al. 
(2008),
Mahadevan et al. 
(2010),
Cong et al. (2011)

Hand-crafted motion 
features, trajectories, 
statistical modelling, 
sparse / low-rank 
reconstruction

Established early 
benchmarks for crowd 
anomaly detection; 
introduced motion- and 
trajectory-based modelling 
of normal behaviour

Strongly dependent on 
manual feature design; 
limited representation 
capacity; weak 
generalization to complex 
and crowded scenes

Hasan et al. 
(2016),
Liu et al. (2018)

Optical flow maps 
as inputs or auxiliary 
cues to CNN / AE 
models

Provide explicit motion 
information; improve 
sensitivity to dynamic 
anomalies compared to 
purely appearance-based 
features

High computational cost for 
flow estimation; sensitive 
to flow noise and camera 
motion; less suitable for 
strict real-time constraints

Hasan et al. 
(2016), 
Zhao et al. (2017)

Convolutional and 
spatio-temporal 
autoencoders trained 
on normal data; 
anomalies detected 
via reconstruction 
error

Enable unsupervised 
learning of normal patterns; 
do not require anomaly 
labels; form strong 
baselines on standard 
datasets

Limited discriminative 
power when anomalies are 
subtle or visually similar 
to normal patterns; often 
rely on relatively heavy 
architectures
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Authors Core methodology Key contributions Main limitations

Liu et al. (2018),
Medel and 
Savakis (2016)

Future frame 
prediction; temporal 
regularity modelled 
via CNN / ConvLSTM 
networks

Provide stronger temporal 
cues by explicitly modelling 
frame-to-frame evolution; 
often outperform pure 
reconstruction on motion-
centric anomalies

Computationally more 
demanding; sensitive to 
noise, camera motion, and 
temporal misalignments; 
less attractive for 
lightweight edge 
deployment

Gong et al. 
(2019), 
Ristea et al. 
(2022), 
Doshi and Yilmaz 
(2020)

External memory 
modules, attention 
mechanisms, and 
continual learning on 
top of AE / predictive 
backbones

Improve modelling of 
normal patterns; reduce 
trivial reconstruction of 
anomalies; better focus on 
salient regions and evolving 
scenes

Increased architectural and 
training complexity; higher 
memory footprint; harder 
to tune and deploy under 
resource constraints

Sultani et al. 
(2018)

Multiple Instance 
Learning with 
video-level labels; 
ranking or scoring of 
segments within long 
videos

Reduce annotation cost 
by avoiding frame-level 
labels; scale better to long, 
untrimmed videos

Temporal localization 
remains coarse; 
performance depends 
on assumptions in MIL 
formulation; label noise can 
degrade detection quality

Ristea et al. 
(2022),
Barbalau et al. 
(2023),
Pang et al. (2022)

Self-attention over 
long sequences; 
spatio-temporal 
graphs for object 
interactions

Capture long-range 
temporal dependencies 
and structured interactions; 
achieve strong performance 
on complex benchmarks

Very high computational 
and memory requirements; 
currently impractical for 
lightweight, edge-oriented 
settings on datasets like 
Avenue

Sandler et al. 
(2018),
Glegoła et al. 
(2021),
Patrikar and 
Parate (2022),
Suba et al. (2022)

Lightweight CNN 
backbones (e.g., 
MobileNetV2), 
depthwise separable 
convolutions, edge-
focused deployment 
strategies

Achieve favourable 
accuracy–latency trade-
offs; enable real-time or 
near real-time inference on 
embedded / edge devices; 
directly relevant to practical 
CCTV systems

Often evaluated in isolation 
or on different tasks (e.g., 
violence detection); limited 
controlled comparisons 
with unsupervised baselines 
on standard VAD datasets

3.	Background of the experimental investigation

The methodology of the experimental investigation is illustrated in Figure 1 and follows 
a structured pipeline consisting of preprocessing, optimization, training, and evaluation 
stages. First, each video sequence from the CUHK Avenue dataset is decomposed into 
individual RGB frames, which is a common practice in frame-level video anomaly detec-
tion to enable independent analysis of visual patterns. Second, all frames are resized to a 
fixed spatial resolution to satisfy the input requirements of the evaluated models, namely 
128×128 pixels for the autoencoder-based architectures and 224×224 pixels for the Mo-
bileNetV2 classifier, in line with prior lightweight anomaly detection and CNN-based studies 
(Wu et al., 2024; Sandler et al., 2018).

Third, image normalization is applied to ensure numerical stability during optimization 
and to align the input distribution with the assumptions of each learning paradigm. For the 
autoencoder-based models, pixel intensities are linearly scaled to the [0,1] range, a widely 

End of Table 1
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adopted normalization strategy in reconstruction-based anomaly detection that stabilizes pix-
el-wise loss functions and facilitates convergence (Hasan et al., 2016; Zhao et al., 2017). Given 
an input image I with pixel values I(x, y, c) ∈ [0,255], the normalized image  I is computed as:

	
( ) ( )

.ˆ , ,
, ,

255
I x y c

I x y c = 	 (1)

In contrast, the MobileNetV2 model employs the standard input preprocessing defined 
in its original architecture to preserve compatibility with ImageNet-pretrained weights. Spe-
cifically, each RGB channel is mapped to the [–1,1] range according to:
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This normalization centers the input distribution around zero and matches the statistical 
assumptions under which the convolutional filters were originally trained, which has been 
shown to be critical for stable fine-tuning and optimal performance in lightweight CNNs 
(Sandler et al., 2018; Glegoła et al., 2021). Following preprocessing, the training subset is used 
to optimize model parameters by minimizing a task-specific loss function. For the autoencoder 
models, optimization aims to minimize the reconstruction error between the input frame I and 
its reconstructed output I , commonly formulated as a mean-squared error loss:
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which is standard in unsupervised video anomaly detection to capture deviations from 
learned normal patterns (Hasan et al., 2016; Gong et al., 2019).

For the MobileNetV2 classifier, parameter optimization is performed using binary cross-en-
tropy loss between the predicted anomaly probability pi and the ground-truth label yi:
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which is appropriate for highly imbalanced binary classification problems commonly encoun-
tered in frame-level anomaly detection (Johnson & Khoshgoftaar, 2019).

Finally, the optimized models are evaluated on the testing subset using frame-level 
anomaly scores and classification outputs, as summarized in Figure 1. No temporal stacking 
or sequence aggregation is employed, as the objective of this study is strictly frame-level 
anomaly detection, allowing a focused comparison of learning paradigms without introduc-
ing additional temporal modeling complexity.

Figure 1. The methodology of experimental investigation
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3.1. Dataset analysed

The experiments in this study are conducted on the Avenue dataset, a popular benchmark for 
video anomaly detection. The dataset contains short surveillance clips recorded in an outdoor 
campus environment, where anomalies include actions, such as running, throwing objects 
or moving in unusual directions. An important challenge is that anomalous events appear 
suddenly and often cover only small regions of the frame which makes detection difficult 
(Gnouma et al., 2018; Mahadevan et al., 2010). The dataset provides frame-level annotations 
through a MATLAB file that lists the exact frame intervals where anomalies occur. These in-
tervals are short and unevenly distributed, resulting in a strong class imbalance. This issue is 
common in real-world surveillance datasets and can affect both reconstruction-based models 
and CNN classifiers (Johnson & Khoshgoftaar, 2019). Because of this imbalance, metrics such 
as AUC and precision–recall curves provide a more reliable evaluation than accuracy alone 
(Davis & Goadrich, 2006). The sample of the dataset is presented in Figure 2.

For all models, frames were resized to a fixed resolution and normalized. The autoencoder 
models used pixel values scaled to the [0, 1] range while MobileNetV2 used the standard 
preprocessing recommended in the original paper (Sandler et al., 2018). A small validation 
set was created from the normal training frames to monitor overfitting, following common 
practice in reconstruction-based anomaly detection (Wu et al., 2024).

Figure 2. Sample of the dataset used in experiments

3.2. Lightweight model architectures evaluated in this study

This section describes the three lightweight model architectures evaluated in this study for 
frame-level video anomaly detection on the CUHK Avenue dataset. The comparative exper-
imental investigation was performed using three different types of models. The first model 
is a simple 2D Convolutional Autoencoder used as the baseline for this study. Autoencoders 
are widely used in video anomaly detection because they learn to reconstruct normal pat-
terns and produce higher errors on abnormal frames (Hasan et al., 2016). The baseline model 
includes a small encoder–decoder structure with a few convolutional and transpose convolu-
tional layers. It is intentionally kept simple to show the starting performance of a lightweight 
reconstruction model on the Avenue dataset. This model does not use temporal information. 
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Each frame is processed independently. Because of its shallow structure, it tends to miss sub-
tle anomalies and often produces blurred reconstructions on fast or irregular motions. These 
limitations are consistent with observations in previous works using basic autoencoders for 
anomaly detection (Zhao et al., 2017).

The second model expands the baseline design by adding deeper convolutional blocks, 
larger feature maps and normalization layers. These changes help the autoencoder learn 
richer representations of normal frames and reduce reconstruction noise. Deeper reconstruc-
tion-based models have been shown to improve stability and reduce false positives in similar 
tasks (Wu et al., 2024). Although the structure is still lightweight, the enhanced model produc-
es sharper reconstructions and responds more clearly to unusual objects or motion patterns. 
This improvement explains the higher AUC achieved by this model compared to the baseline 
autoencoder (2DConv AE, AUC ≈ 0.75 and Enhanced 2DConv AE, AUC ≈ 0.84).

The third model uses MobileNetV2 as a feature extractor followed by a small classifica-
tion head. MobileNetV2 is designed for efficient inference on limited hardware and relies on 
inverted residual blocks with depthwise separable convolutions (Sandler et al., 2018). These 
design choices significantly reduce computation while preserving strong feature quality, mak-
ing MobileNet suitable for lightweight anomaly detection. In this study, MobileNetV2 is fine-
tuned on frame-level labels derived from the ground truth of the Avenue dataset. Because 
the model directly predicts whether a frame is normal or anomalous, it avoids the limitations 
of autoencoder reconstruction. Prior work has shown that MobileNet variants can achieve 
strong accuracy even on embedded devices (Glegoła et al., 2021), supporting their use as 
practical alternatives to heavier CNN architectures.

The selection of models in this study was guided by the objective of conducting a con-
trolled and fair comparison of representative lightweight learning paradigms for frame-level 
video anomaly detection under identical experimental conditions. Rather than exhaustively 
evaluating all existing VAD approaches, this work focuses on isolating the impact of supervi-
sion level and architectural simplicity on detection performance.

Accordingly, three models were deliberately chosen to represent distinct yet widely adopt-
ed paradigms in the literature. The baseline 2D convolutional autoencoder serves as a ca-
nonical unsupervised reconstruction-based method and provides a commonly used reference 
point in video anomaly detection studies. The enhanced autoencoder extends this baseline 
to examine how improved feature representation within the same reconstruction paradigm 
affects anomaly sensitivity, without introducing fundamentally new mechanisms. Finally, the 
MobileNetV2-based classifier provides lightweight, supervised feature-based detection, se-
lected for its strong accuracy–efficiency trade-off and relevance to real-time and edge-ori-
ented deployment scenarios.

More complex architectures, such as memory-augmented models, attention-based net-
works, or long-term temporal sequence models, were intentionally excluded, as they intro-
duce additional architectural complexity, higher computational overhead, and multiple con-
founding factors. Including such models would obscure the core objective of this study, which 
is to analyze the performance gap between reconstruction-based and classification-based 
lightweight approaches under controlled conditions. This deliberate scope restriction ensures 
clarity of comparison and supports reproducible conclusions.
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4.	Experimental investigation results

All experiments were conducted in JupyterLab using a Quadro T2000 (graphic card) as GPU. 
The Avenue dataset was processed by extracting every frame from the training and testing 
videos. Only normal frames from the training set were used to train the two autoencoder 
models while the MobileNetV2 classifier was trained using frame-level labels derived from 
the ground truth of the test set. The baseline autoencoder and the enhanced autoencoder 
were trained using the Mean Squared Error loss. The MobileNetV2 classifier was trained with 
a binary cross-entropy loss. All models were optimized using Adam with a fixed learning rate. 
Batch sizes were selected based on the available GPU memory to maintain stable training. 
Model performance was evaluated using frame-level AUC, precision–recall curves and con-
fusion matrices. These metrics are preferred for imbalanced datasets where accuracy alone 
does not provide a reliable measure of the model’s behavior (Davis & Goadrich, 2006). The 
hyperparameters for each model (ID: 1, 2, 3) training is presented in Table 2.

Table 2. The training parameters for each model

Model 1 Model 2 Model 3

Architecture Conv + BN + ReLU  
(4 layers)  

ConvTranspose  
(4 layers)

Conv + ReLU  
(3 layers)  

ConvTranspose  
(3 layers)

Frozen MobileNetV2 
features  

Custom classifier head

Input Size 128×128×3 128×128×3 224×224×3
Train Data Normal Only Normal Only Normal + Anomalous
Testing Data 15% 15% 20%
Batch Size 16 16 16
Epochs 40 50 50
Loss Function MSELoss MSELoss BCE with LogistLoss
Optimizer Adam, lr = 1e-3 Adam lr = le-3 Adam lr = le-3
Bottleneck Channels 256 256 _
Trainable Parameters 77.987 2.1M 2.2M
Output Type Reconstructed frame Reconstructed frame Anomaly probability

Model 1 (Baseline Autoencoder) and Model 2 (Enhanced Autoencoder) were trained 
exclusively on normal frames. Their ability to reproduce unseen test frames forms the basis 
of anomaly detection. Model 1 shows reasonable reconstruction capabilities but struggles 
with fine spatial structures. In contrast, Model 2 produces sharper and more stable recon-
structions, indicating stronger feature learning. For both autoencoders, reconstruction error 
is consistently higher for anomalous frames than for normal frames, confirming that the 
models successfully capture the regular motion patterns present during training. Recon-
struction-based error distributions were compared for normal and anomalous frames in 
Models 1 and 2. Normal frames show a compact distribution with low error values, while 
anomalous frames exhibit wider ranges and higher mean errors. Although both models can 
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separate normal from anomalous behavior, Model 2 provides clearer separation and more 
stable error patterns than Model 1. The sample of reconstruction is presented in Figure 3.

Figure 3. Sample input frames, reconstructions and error maps produced by the autoencoder 
models

Unlike the autoencoder-based models Model 3 (MobileNetV2) is a supervised classifi-
er trained directly on labeled normal and anomalous frames. Using ImageNet-pretrained 
weights, class-balancing and lightweight fully connected layers, this model achieved the 
strongest performance among all models. MobileNetV2  demonstrates excellent discrimi-
nation between normal and anomalous frames, producing a steep ROC curve and highly 
confident predictions. The model generalizes well despite class imbalance, primarily due to 
its robust feature extraction and balanced training strategy. As we can see in Figure 4, the 
fame-level AUC values clearly highlight the performance differences.

Figure 4. Frame-level AUC comparison across all models

The improvements from Model 1 to Model 2 reflect the benefits of deeper feature extrac-
tion and more stable reconstruction (Figure 5). Model 3’s significant lead demonstrates the 
effectiveness of supervised learning for this dataset when labels are available.
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Figure 5. ROC curves for all three models on the Avenue dataset

In Figure 6, the confusion matrix shows that the model correctly identified 985 out of 
1,036 anomalous frames (TP), while misclassifying only 51 anomalies as normal (FN). For nor-
mal frames, it produced 1,923 true negatives with 106 false positives. This balance between 
Type-I and Type-II errors indicates a stable and reliable decision boundary. The quantitative 
metrics further confirm this behavior: MobileNetV2 reached an accuracy of 0.9488, precision 
of 0.9028, recall of 0.9508, and an F1-score of 0.9262. Its AUC of 0.9865 demonstrates ex-
cellent separability between normal and anomalous behavior, outperforming both baseline 
models by a clear margin. These results can be attributed to MobileNetV2’s efficient archi-
tecture which uses inverted residual blocks and depthwise separable convolutions to extract 
expressive features while maintaining low computational cost. Additional design choices in 
this study such as using pretrained ImageNet weights, standard RGB normalization, 224×224 
input resolution, and class-imbalance weighting further improved the model’s robustness.

Figure 6. Confusion matrix for the MobileNetV2 classifier on the Avenue dataset
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5.	Conclusions

This study compared three lightweight deep-learning models for frame-level anomaly de-
tection on the Avenue dataset: a simple 2D convolutional autoencoder, an optimized recon-
struction-based autoencoder and a MobileNetV2-based classifier. The results highlight clear 
differences in how each model interprets visual anomalies and how architectural choices 
shape detection performance. The simple convolutional autoencoder, although computation-
ally efficient, achieved only moderate discrimination (AUC ≈ 0.75), confirming the limitations 
of shallow reconstruction-based models in capturing the diverse and subtle motion patterns 
present in real-scene surveillance footage. The optimized autoencoder showed better recon-
struction stability and improved anomaly separation (AUC ≈ 0.84), suggesting that deeper 
encoding layers and more expressive feature extraction can reduce error-map ambiguity and 
enhance anomaly sensitivity.

Among all models, MobileNetV2 demonstrated the highest and most stable performance 
(AUC ≈ 0.99), supported by strong precision, recall, and F1-score values. Its confusion matrix 
revealed balanced detection with both false positives and false negatives substantially low-
er than in the reconstruction-based approaches. These results indicate that, for frame-wise 
anomaly detection without temporal modeling, feature-based classification with lightweight 
pretrained architectures can outperform pixel-space reconstruction methods, especially when 
the dataset contains diverse lighting conditions, cluttered backgrounds, and subtle anomaly 
patterns. Overall, the results indicate that MobileNetV2 can serve as a strong and practical 
baseline for lightweight anomaly detection in datasets that share the characteristics of the 
Avenue dataset. 

So, the gap between reconstruction-based and classification-based performance high-
lights opportunities for future research using hybrid models, temporal reasoning, or self-su-
pervised feature learning.
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