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Article History:  Abstract. Fare prediction is a critical component of online ride-hailing services, as it signifi-
cantly influences consumer decision-making and enhances operational efficiency for service 
providers. Reliable fare prediction is especially important in dynamic pricing environments, 
where fares are affected by factors such as demand fluctuations, traffic conditions, and weath-
er patterns. This study aims to enhance fare prediction in ride-hailing services by utilizing 
advanced deep learning models. Using a comprehensive dataset of Uber and Lyft fare data 
collected in Boston during the winter of 2018, we evaluated three deep learning architectures: 
Long Short-Term Memory (LSTM), Bidirectional LSTM (BiLSTM), and BiLSTM with an atten-
tion mechanism (BiLSTM + Attention). The results showed that the BiLSTM + Attention mod-
el achieved the highest prediction accuracy, making it the most effective approach for fare 
prediction. However, its longer training time poses limitations for time-sensitive applications. 
Conversely, the LSTM model provided a strong balance between predictive accuracy and com-
putational efficiency, making it a suitable alternative for scenarios that require faster model 
deployment. Additionally, our analysis identified key factors influencing fare variability – such 
as trip distance, time of day, and weather conditions – highlighting the importance of feature 
selection in enhancing model performance. By improving fare prediction accuracy, this study 
offers valuable insights for optimizing dynamic pricing strategies, enhancing consumer satis-
faction, and helping ride-hailing platforms better manage supply–demand imbalances. These 
findings provide a foundation for future research exploring hybrid models and real-time data 
integration to further improve predictive capabilities in ride-hailing services.
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1. Introduction 

Fare pricing is an important factor influencing consumer decisions in online ride-hailing 
services. Pricing strategies directly impact customer demand, company revenue, and mar-
ket competition. Various dynamic factors contribute to fluctuations in ride fares, including 
weather conditions, peak-hour demand, city events, and unforeseen crises such as pandemics 
(Liu et al. 2021; Rangel et al., 2022). Thus, a robust and accurate fare prediction model is es-
sential for both ride-sharing companies and consumers, ensuring transparency and optimized 
pricing. Ride-hailing services like Uber and Lyft have transformed the transportation industry 
by positioning themselves as cost-effective and accessible alternatives to traditional taxis. In 
major metropolitan areas such as Boston, these services advertise base fares ranging from 
$2 to $8 per mile, excluding luxury vehicle segments (Dogo et al., 2020; Haolun Huang, 2023; 
Schwieterman, 2019). However, the actual cost incurred by a passenger is influenced by mul-
tiple dynamic factors beyond the base fare. Price surges, which can cause the fare to increase 
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between 1.5 to 3 times the standard rate, contribute to significant price volatility, creating 
challenges for both users and regulators (Battifarano & Qian, 2019; Farris et al., 2014).

A key concern for consumers is the unpredictability of pricing, which can undermine trust in 
ride-hailing applications. Unforeseen fare hikes during peak hours, adverse weather conditions, 
or major public events add complexity to fare structures. While this price variability may seem 
unfair from a consumer perspective, it functions as a dynamic pricing strategy that helps busi-
nesses balance supply and demand efficiently. Previous studies have shown that surge pricing 
mechanisms enable ride-hailing companies to optimize fleet utilization, manage driver availabil-
ity, and maximize revenue while maintaining service efficiency (Ashkrof et al., 2022; Battifarano 
& Qian, 2019; Castillo et al., 2017; Garg & Nazerzadeh, 2020). Furthermore, several studies have 
examined ride-hailing fare determinants, revealing that time of day, weather conditions, trip 
distance, ride demand, and local events significantly impact fare variability (Rangel et al., 2022). 
Additionally, research has indicated that regulatory policies and fuel prices play an essential role 
in price fluctuations (Battifarano & Qian, 2019; Sriwongphanawes & Fukuda, 2024). 

Given these challenges, this study aims to explore the key factors influencing Uber and 
Lyft fares. Moreover, to enhance the accuracy of fare prediction, we propose the implementa-
tion of deep learning techniques, specifically Long Short-Term Memory (LSTM), Bidirectional 
LSTM (BiLSTM), and BiLSTM with Attention mechanisms (BiLSTM + Attention). These models 
are particularly effective in processing time-series data and can capture complex non-linear 
relationships in pricing trends without requiring extensive manual feature engineering (Eslami 
& Ghaderi, 2024; S. Li et al., 2024). By training these models on datasets that include variables 
such as time, ambient temperature, trip origin, destination, and external conditions, we aim to 
improve fare prediction accuracy over traditional statistical and machine learning approaches. 
Our research seeks to provide deeper insights into ride-hailing pricing strategies and to 
develop an advanced predictive framework for dynamic fare estimation. The findings will 
not only benefit consumers by offering better price transparency but also assist ride-hailing 
companies in optimizing pricing algorithms for improved efficiency and fairness.

2. Related works

Numerous studies have explored the application of machine learning and deep learning tech-
niques to enhance the predictability of Uber and Lyft fares. These studies demonstrate the 
effectiveness of various predictive models in capturing dynamic pricing patterns influenced by 
factors such as trip distance, time of day, demand-supply imbalances, and external conditions. 
Regarding the machine learning-based approaches, traditional machine learning models have 
been extensively used to forecast Uber and Lyft fares due to their efficiency and interpret-
ability. For instance, Battifarano and Qian (2019) employed a Linear Regression-based model 
enhanced with L1 regularization and pattern clustering techniques. Their model successfully 
predicted Uber’s surge multiplier in Pittsburgh up to two hours in advance and Lyft’s surge 
multiplier up to 20 minutes in advance, outperforming alternative non-linear models in vari-
ous locations (Battifarano & Qian, 2019).

Random Forest (RF) models have also demonstrated robust performance in fare predic-
tion tasks. For instance, Silveira-Santos et al. (2023) predicted Uber fares in Madrid using 
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Random Forest, Decision Tree, as well as Linear Regression models. Their results revealed 
that Random Forest had better accuracy and effectively identified discrepancies caused by 
peak-hour surges. Similarly, Hao Huang (2023) introduced a Random Forest-based system for 
predicting Uber fares using data from various locations and highlighted its superior predic-
tive performance over baseline models. Moreover, other machine learning approaches such 
as XGBoost have demonstrated success in capturing nonlinear fare trends and mitigating 
overfitting issues. XGBoost regression model was used for predicting travel times in ride-
hailing services with improved accuracy by identifying inlier and extreme-conditioned trips 
(Kankanamge et al., 2019). XGBoost was also mentioned to outperform Random Forest model 
and was highlighted to be suitable for high- accuracy fare prediction (Jashwanth et al., 2024; 
Kankanamge et al., 2019; Poongodi et al., 2022). Moreover, Y. Chen et al. (2015) used various 
machine learning algorithms, including AdaBoost, Gradient Boosting, K-Nearest Neighbors 
(KNN), and Bagging with extra tree classifiers, to predict Uber fare and mentioned that XG-
Boost consistently demonstrated superior predictive performance. 

Deep learning models have gained increasing attention for predicting ride-hailing fares 
due to their ability to model complex and non-linear relationships in time-series data. Long 
Short-Term Memory (LSTM) networks have been particularly effective in this domain due to 
their ability to capture long-term dependencies in sequential data (Guo et al., 2024; Kumar 
et al., 2021). LSTM model was also used to predict Uber travel demand and exhibited good 
performance (Alghamdi et al., 2022). Additionally, Bi-directional LSTM (BiLSTM) model has 
shown improved performance by processing input data in both forward and backward direc-
tions, offering a more comprehensive understanding of temporal dependencies. X. Zhao et al. 
(2023) proposed an Random Forest-Bidirectional LSTM (RF-BiLSTM) model integrated with an 
attention mechanism, which significantly enhanced prediction precision for Uber pickup data in 
New York City. The model demonstrated improved forecasting accuracy compared to standard 
LSTM models by selectively focusing on key temporal features. Furthermore, Z. Li et al. (2024) 
presented a model combining BiLSTM with an attention mechanism to improve the prediction 
of dynamic fare fluctuations and short-term traffic flow. Their proposed model outperformed 
traditional LSTM models and other approaches like Autoregressive Integrated Moving Average 
(ARIMA) and Support Vector Regression (SVR). X. Zhao et al. (2023) combined the attention 
mechanism and the RF-BiLSTM as well as XGboost-BiLSTM models to enhance the predic-
tion accuracy of Uber pickups and these proposed models outperformed traditional LSTM 
model. CNN-LSTM hybrid models have also emerged as powerful tools for fare prediction. 
For instance, Ara and Hashemi (2022) proposed a CNN-LSTM-Autoencoder model to predict 
ride-hailing demand patterns in New York City, demonstrating improved predictive accuracy 
by capturing both spatial and temporal dependencies. 

Recent studies emphasize the importance of incorporating external factors such as 
weather conditions, traffic congestion, and local events to improve fare prediction models. 
For instance, weather conditions such as rainfall and strong winds significantly influenced 
ride demand, impacting dynamic fare pricing (Liu et al., 2021). Furthermore, Silveira-Santos 
et al. (2023) examined the impact of demand-supply imbalances on Uber fares in Madrid, 
demonstrating how city events, holidays, and unexpected disruptions contribute to fare 
volatility. Moreover, the balance between the number of drivers (supply) and passenger 
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requests (demand) can be the primary driver of dynamic pricing. Particularly, during peak 
hours or special events, demand often outstrips supply and lead to higher fares (Karamanis 
et al., 2021). Fares tend also to be higher during rush hours, late nights, and weekends., 
thus, predictive models must account for these temporal patterns (Battifarano & Qian, 2019; 
Sindhu et al., 2022; Zhang et al., 2017). Previous studies have also investigated the impact 
of unforeseen crises, such as the COVID-19 pandemic, on fare prediction models. The 
ride-hailing fares decreased significantly in 2020 due to reduced demand during COVID-19 
(Silveira-Santos et al., 2024). Moreover, another study suggest that COVID-19-related fears 
influenced driver behavior, resulting in a lower acceptance rate for ride requests, which 
could have indirectly impacted fare dynamics (Ashkrof et al., 2022). Table 1 provides a 
summary of several previous studies focused on predicting ride-hailing fares and demand.

Table 1. Summary of several previous studies on using machine learning and deep learning for 
predicting ride-hailing fares and demands.

Target Model Evaluation metrics References

Uber travel 
demand

Multilayer perception RMSE: 0.1446; SMAPE: 0.1147 Alghamdi et al. 
(2022)Multi-LSTM RMSE: 0.1381; SMAPE: 0.1074

Sequence to Sequence RMSE: 0.1133; SMAPE: 0.0965
MSP-TCN RMSE: 0.0971; SMAPE: 0.0793

UberX fare Linear Regression RMSE: 3.41, MAPE: 8.01 Silveira-Santos 
et al. (2023)Decision Tree RMSE: 3.85, MAPE: 6.60

Random Forest RMSE: 3.40, MAPE: 6.32
Uber fare 
price

Linear Regression RMSE: 1.718 Hao Huang 
(2023)Decision Tree RMSE: 1.277

Random Forest RMSE: 1.264
Uber pickups Attention-RF-BiLSTM MAE: 0.0283, MSE: 0.0015 X. Zhao et al. 

(2023)Attention-XGBoost-BiLSTM MAE: 0.0306, MSE: 0.0018
LSTM MAE: 0.0346, MSE: 0.0025

Uber 
passenger 
demand

LSTM RMSE:17.16, MAE: 11.46 J. Zhao et al. 
(2023)ST-ResNet RMSE:14.85, MAE: 8.87

Unified Spatio-Temporal Network RMSE:14.22, MAE: 8.39
STIMN RMSE:14.04, MAE: 8.32

Ride-hailing 
services

LSTM SMAPE: 7.53, RMSE: 179.21 L. Chen et al. 
(2021)CNN-LSTM SMAPE: 7.48, RMSE: 179.82

CNN SMAPE: 7.79, RMSE: 183.03
UberNet SMAPE: 7.31, RMSE: 177.84

Taxi fare prices Linear Regression RMSE: 0.32 Chou et al. 
(2023)Random Forest RMSE: 0.59

Multilayer perception RMSE: 0.25
LSTM RMSE: 0.098

Note: MSP-TCN – Multi-stage Probabilistic Temporal Convolution Network; STIMN – Spatio-Temporal Information 
Modulation Network; ATT-BiLSTM – Fusion Attention Mechanism Bidirectional Long Short-Term Memory; RMSE – 
Root mean square error; SMAPE – Symmetric mean absolute percentage error; MSE – Mean squared error; MAE –: 
Mean absolute error.
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3. Dataset description

We utilize the “Uber and Lyft Cab Prices” dataset – available on Kaggle (https://www.kaggle.
com/datasets/ravi72munde/uber-lyft-cab-prices/data) – to investigate the factors affecting 
ride fares and implement deep learning models for fare prediction. The dataset comprises two 
components: “Cab_ride” and “Weather”. The “Cab_ride” dataset was collected every five min-
utes and contained 693,071 records with 10 features, such as distance, cab type, timestamp, 
destination, source, ride prices, cab name, surge multiplier, and record ID. The “Weather” 
dataset was recorded hourly and had 6,276 records with 8 features, including temperature, 
location, cloud cover, pressure, humidity, wind index, and timestamp. This data provides 
comprehensive insights into ride characteristics and environmental conditions, supporting 
robust predictive modeling with deep-learning techniques.

For data preprocessing, the timestamp values in both datasets were transformed into 
the “dd/mm/yy hh:mm:ss” format to maintain a standardized temporal structure. Next, the 
Uber and Lyft vehicle models were grouped into six categories: “Share” ([UberPool, Shared]), 
“Normal” ([UberX, Lyft]), “SUV” ([UberXL, Lyft XL]), “LUX” ([Black, Lux Black]), “LUX SUV” ([Black 
SUV, Lux Black XL]), and “Other” ([Lux, Taxi, WAV]). Then, rows with missing “price” values in 
the “Car_ride” dataset were removed to ensure data integrity, while missing “rain” values in 
the “Weather” dataset were filled with zero. Additionally, the “humidity” column was rescaled 
from 0–1 to 1–100 for consistency. The two datasets were then merged into a new one to 
enable comprehensive analysis and improved predictive modeling. 

After preprocessing, the datasets are free of missing value. The statistical description 
of the merged dataset, which was used for further analysis and fare prediction, is shown 
in Table 2. As shown in this table, the data likely came from cold months (November to 
December) of 2018. Rides were likely to concentrate in morning to early evening, and the 
surge of fare prices would depend on trip distance or vehicle models. Additionally, weather 
conditions showed relatively low ambient air temperature, high humidity, high cloudy skies, 
and low rainfall. These meteorological conditions would represent a cold urban environment. 

Table 2. Statistical description of the merged dataset.

Variable Unit Range Q1 Q2 Q3 Mean SD

Day – 1–30 16 27 29 22.02 9.34
Month – 11–12 11 11 12 11.35 0.48
Year – 2018 2018 2018 2018 2018 0
Hour – 0–23 6 10 17 11.12 6.57
Distance – 0.02–7.86 1.28 2.15 2.94 2.19 1.14
Price USD 2.5–97.5 9 13.5 22.5 16.54 9.32
Surge multiplier – 1–3 1 1 1 1.02 0.1
Temperature °F 19.62–55.41 37.28 39.63 42.74 39.28 5.48
Cloud cover – 0–1 0.46 0.76 0.97 0.68 0.3
Pressure mb 988.25–1035.12 994.1 1000.85 1014.57 1005.02 12.71
Rain inches 0–0.78 0 0 0 0.01 0.05
Humidity % 45–99 66 72 87 75.3 11.96
Wind mph 0.29–18.18 4.99 8.88 10.25 7.72 3.44

Note: Q1 – the 25th percentile; Q2 – the 50th percentile; Q3 – the 75th percentile; SD – Standard deviation. Several va-
riables which are non-numeric and likely used for grouping or classification include vehicle models, destination, source, 
product ID, and location.

https://www.kaggle.com/datasets/ravi72munde/uber-lyft-cab-prices/data
https://www.kaggle.com/datasets/ravi72munde/uber-lyft-cab-prices/data
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4. Proposed method

To predict Uber and Lyft fares, we employed three deep learning models: LSTM, BiLSTM, and 
BiLSTM combined with an Attention mechanism (BiLSTM + Attention). The architectures of 
the LSTM and BiLSTM models are illustrated in Figure 1. 

Input layer
Sequence length: 15

Features: 16

LSTM layer
256 units reLU

BiLSTM layer
256 units reLU

Dropout layer
0.2

Dropout layer
0.25

LSTM layer
64 units reLU

Dense layer
32 units reLU Output layer

BiLSTM layer
64 units reLU

Dense layer
32 units reLU Output layer

LSTM

BiLSTM

Figure 1. The architecture of LSTM and BiLSTM models

Our proposed models were trained on an extensive dataset comprising trip details and 
meteorological conditions in Boston, USA during winter of 2018. We fed input features with a 
size of 16 and a sequence length of 15 into the LSTM and BiLSTM models for learning context 
information and capturing long-term dependency, which frequently appears in time-series. 
These models are developments and modifications of Recurrent Neural Networks (RNNs) 
(Z. Li et al., 2024). The LSTM model (Vuong et al., 2025) is a more advanced version of RNN 
designed to mitigate the vanishing gradient problem. In addition, LSTM model mitigates 
the vanishing gradient problem by incorporating a cell state component per timestep t. The 
memory block receives three essential parts: the cell state 1tC − , the hidden state 1th − , which 
are from the previous timestep and current timestep xt . The cell state plays an important role 
as long – term memory, while hidden state is short – term memory. In addition, the memory 
block has three gates: forget gate, input gate and output gate to maintain important infor-
mation. Information stored in this component can be added or deleted using these gates. 
Figure 2 shows an example of LSTM unit. 

An advanced type of LSTM model, the BiLSTM model (Ihianle et al., 2020; X. Zhao et al., 
2023) is a deep learning model that is often used for time series data analysis. Unlike LSTM, 
the Bidirectional LSTM (BiLSTM) can process data in both forward and backward directions, 
thereby enhancing its performance capabilities. This bidirectional nature enables the model to 
capture dependencies from both past and future contexts, improving its ability to understand 
relationships within the data. As a result, BiLSTM often outperforms standard LSTM models, 
which can only process information in a single direction. However, these advantages come at a 
cost: the construction and training of BiLSTM models are typically more resource-intensive, often 
requiring nearly twice the computational cost of LSTM. Furthermore, when working with large 
datasets, BiLSTM models tend to have significantly longer training times. In applications that 
demand real-time data processing, these limitations may hinder the practicality of using BiLSTM. 

Figure 3 shows an example of the BiLSTM model. As mentioned previously, there are for-
ward and backward layers in a bidirectional layer. These sub-layers use many LSTM models to 
train data., however, the forward layer is responsible for training data in the direction from the 
beginning of the time series to the end of the time series, and the backward layer is respon-
sible for training data in the direction from the end of the time series to the beginning of it.
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4.1. Proposed BiLSTM + Attention model

To effectively model the complexity of fare data, we introduce a hybrid deep learning archi-
tecture that combines BiLSTM with an Attention mechanism (hereafter BiLSTM + Attention) 
(Z. Li et al., 2024; Pham et al., 2024; Vuong et al., 2025). This design enables the model to 
focus selectively on the most relevant parts of the input sequence, thereby improving the 
accuracy of fare price predictions. The Attention mechanism assigns dynamic weights to 
each time step in the input sequence, enabling the model to emphasize the most influential 
time steps when making predictions. It produces a context vector – a weighted summary 
that captures the most relevant sequence information – thereby enhancing the model’s de-
cision-making process.

Figure 4 illustrates an example of the BiLSTM+Attention model. As shown in the figure, 
the input, output, forward, and backward layers function similarly to those in the standard 
BiLSTM model. However, the key distinction lies in the incorporation of the attention mecha-
nism. This mechanism aims to generate an attention vector that highlights the most relevant 
features the model should focus on when making predictions.

Figure 2. A memory block in the LSTM model (Vuong et al., 2022, 2025)

Figure 3. The BiLSTM model’s architecture (Ihianle et al., 2020)
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Our hybrid BiLSTM + Attention model effectively captures the complementary strengths 
of recurrent neural networks and context-aware feature weighting. The BiLSTM component 
plays a critical role in modeling fare price data by capturing both past and future dependen-
cies, ensuring temporal continuity while maintaining model complexity. Meanwhile, the Atten-
tion mechanism enables the model to dynamically prioritize significant time steps, allowing 
it to better adapt to irregular patterns in fare fluctuations. Combined, these components 
work synergistically to enhance predictive performance, with both the BiLSTM and Attention 
mechanisms contributing significantly to the model’s effectiveness.

4.2. Training process

The dataset was divided into three subsets: 70% for training (approximately 411,394 records 
for Uber and 388,804 records for Lyft), 15% for validation (approximately 89,656 records for 
Uber and 83,315 records for Lyft), and the remaining 15% for testing, with the test set con-
taining the same number of records as the validation set for both services. Our Validation was 
conducted using a time-series hold-out strategy. Due to the sequential nature of fare data, 
we split the dataset in chronological order. This approach helps prevent data leakage and 
simulates a real-world forecasting setting where future data is inaccessible during training. 
For model training, we conducted 100 epochs with a batch size of 128 for the LSTM model, 
while the BiLSTM and BiLSTM + Attention models were trained with a batch size of 256. We 
utilized the Adam optimizer, a widely used adaptive learning rate optimization algorithm 
known for its computational efficiency and low memory requirements. Mean Squared Error 
(MSE) was selected as the loss function to measure prediction error, ensuring the models 
effectively minimized the variance between predicted and actual fare values.

During the training process, we observed that deep learning models often face challenges 
such as slower convergence rates and a heightened risk of overfitting when applied to large 
datasets. To mitigate these issues, we implemented an early stopping mechanism, which 
halts the training process if no improvement is observed after 10 consecutive epochs. This 
approach effectively prevents overfitting and optimizes model performance by ensuring the 
models generalize well to unseen data.

Figure 4. The BiLSTM – attention model’s architecture (Yousaf & Nawaz, 2022)
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5. Results and discussion

5.1. Factors influencing fares and demand in Uber and Lyft services

5.1.1. An analysis of the demand for Uber and Lyft services

To assess the demand for Uber and Lyft services, we analyzed the “Cab_ride” dataset. As shown 
in Figure 5, 51.82% of trips (330,568 rides) were taken with Uber, while 48.18% (307,408 rides) 
were with Lyft, indicating a slight consumer preference for Uber. Although the difference in 
market share was relatively small, it suggested a marginal advantage in favour of Uber. Sever-
al factors might account for this discrepancy. For example, Uber’s international presence likely 
enhanced its brand recognition and customer reach. Additionally, Uber’s earlier entry into the 
market may have provided a competitive advantage in terms of consumer trust, familiarity, 
and market penetration, contributing to its slight dominance over Lyft.

Figure 5. The demand for services measured by the number of rides

5.1.2. An analysis of service demand based on customers’ preferred car types

Figure 6 shows the frequently selected car types in Uber and Lyft services during November 
and December of 2018. The data indicated that UberXL, WAV (Wheelchair Accessible Vehi-
cle), and Black SUVs accounted for 55,096 rides, all belonging to Uber. Their popularity is 
linked to capacity and accessibility. Particularly, UberXL and Black SUVs offered seven seats 
for comfortable group travel, while WAV was designed for wheelchair users with enhanced 
safety features.
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5.1.3. Influence of weather conditions on trip fares

Figure 7 illustrates the distribution of Uber and Lyft fares across various weather conditions. 
The data suggested that weather conditions have a minimal impact on overall fare structures 
for both services because there were no significant differences in fares among weather con-
ditions, such as rain, cloudiness, and humidity levels. Moreover, both Uber and Lyft exhibited 
similar fare distribution patterns, with most fares falling within the $10 to $25 range.

Figure 7. Fares of Uber (a) and Lyft (b) in several weather conditions

a) b)

5.1.4. Influence of time on fares 

Figure 8 illustrates the hourly variation in fares across different vehicle models for Uber and 
Lyft. To ensure a more accurate representation of temporal fare fluctuations, ride data for 
Saturday and Sunday were excluded from the analysis, as weekends often deviate from typical 
weekday patterns. In the lower-priced segments, such as the “Normal” and “Share” vehicle 
types, fares remain relatively stable throughout the day. In contrast, higher-priced segments, 
including “SUV,” “Lux,” and “Lux SUV,” exhibit significant price variability. Both Uber and Lyft 
show a similar trend, with fares starting to rise around 3 AM, peaking between 6 and 7 AM, 
followed by a sharp decline until approximately 3 PM, after which fares increase again during 
the evening hours. The fares for these services tend to be higher during these peak travel 
periods, reflecting increased demand and traffic congestion.

Figure 8. Hourly variation in fares for Uber (a) and Lyft (b)
a) b)
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5.1.5. Influence of distance on fares

Figure 9 illustrates the relationship between fares and the distance between the source and 
destination for Uber and Lyft services. The positive correlation between distance and fare is 
observed for both Uber and Lyft. In addition, Lyft fares are more densely clustered at lower 
price points, indicating a stronger presence in budget-friendly, short-distance rides, particu-
larly for trips between 0.5 to 6.5 miles. In contrast, Uber fares exhibit greater variability, espe-
cially for longer-distance trips, with Uber’s distance range appearing comparatively broader. 
For short trips of approximately 0.5 to 3 miles, Lyft tends to offer more cost-effective options. 
Conversely, Uber’s relatively stable pricing structure suggests that for longer trips, the fare 
difference may remain more substantial. Overall, Uber appears to dominate the long-distance, 
while Lyft is more competitive in short-distance travel.

Figure 9. Scatter plot of distance and fares of Uber and Lyft

5.1.6. Influence of car’s types on fares

The average fare per ride across different vehicle types of Uber and Lyft is illustrated in 
Figure 10. The data reveals that vehicle type is a significant factor influencing trip fares, as 
there is a clear distinction in fares across various vehicle types for both companies. In the 
premium segment, Uber’s “Black SUV” and “Black” services have average fares of $30.29 and 
$20.52, respectively, while Lyft’s “Lux Black XL” and “Lux Black” services are priced higher at 
$32.32 and $23.06. This shows that Lyft’s premium services tend to be more expensive than 
Uber’s by approximately $2 to $3, representing around a 6.7% difference. 

Conversely, in the budget segment, Lyft demonstrates a significant advantage. Lyft’s 
“Shared” service averages $6.03, considerably lower than Uber’s “UberPool” at $8.75, reflect-
ing a 45.11% cost reduction. This suggests that Lyft holds a competitive edge in the low-cost 
market, making it a preferable choice for budget-conscious customers seeking short-distance, 
affordable travel. The fare differences reflect strategic pricing employed by Uber and Lyft to 
cater to diverse customer needs and budgets. By offering distinct pricing tiers, both compa-
nies enhance customer choice while optimizing revenue streams and expanding their reach 
across multiple market segments. 
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5.2. Prediction of ride-hailing fares
5.2.1. Model performance

The fares of Uber and Lyft were predicted using three deep learning models: LSTM (L. Chen 
et al., 2021; Chou et al., 2023), BiLSTM (X. Zhao et al., 2023), and BiLSTM combined with an 
attention mechanism. The performance of these models was assessed using three evaluation 
metrics: mean squared error (MSE), mean absolute error (MAE), and the coefficient of de-
termination (R²). Additionally, this study examined the learning behavior and stability of the 
models, considering factors such as learning rate, risks of overfitting and underfitting, and 
the models’ ability to generalize and predict accurately on new data. The training process was 
conducted using two T4 GPUs on the Kaggle platform; without GPU acceleration, the training 
time would have been significantly longer. 

Table 3 presents the evaluation metrics (i.e., MAE, MSE, and R²) for three deep learn-
ing models (i.e., LSTM, BiLSTM, and BiLSTM+Attention) used to predict Uber and Lyft fares. 
These metrics were calculated for both training and testing datasets. Our results showed 

a) b)

Figure 10. Average fare of Uber (a) and Lyft (b) car type

Table 3. Evaluation metric comparison of LSTM, BiLSTM, and BiLSTM + Attention models used in 
this study 

Data/Model
MAE MSE R2 

Train Test Train Test Train Test

LSTM model
Uber 1.2075 1.2207 3.6777 3.8316 0.9498 0.9475
Lyft 1.0872 1.1232 2.2263 2.4633 0.9778 0.9755

BiLSTM model
Uber 1.1914 1.1893 3.6022 3.8003 0.9512 0.9479
Lyft 1.0582 1.0978 2.3506 2.3242 0.9783 0.9769

BiLSTM + Attention
Uber 1.1814 1.1749 3.6621 3.7166 0.9499 0.9516
Lyft 1.0196 1.0149 2.2013 2.1441 0.9804 0.9796
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that the BiLSTM+Attention model consistently outperformed the LSTM and BiLSTM models 
across all metrics, with the lower MAE and MSE values coupled with higher R² scores. This 
result highlighted the effectiveness of integrating the attention mechanism with BiLSTM for 
improving prediction accuracy in complex and time-series fare data, such as Uber and Lyft 
fares. Moreover, the prediction of Lyft fares slightly outperformed that of Uber, which may 
result from a combination of several factors such as lower fare variability, fewer outliers, and 
clearer feature correlations.

Figure 11 presents a comparison between actual and predicted fares using three models: 
LSTM, BiLSTM, and BiLSTM with an attention mechanism, evaluated independently on Uber 
and Lyft datasets. The red diagonal line represents the ideal prediction line (y = x), where 
predicted values align perfectly with actual values. Overall, the predictions for Uber data 
exhibited lower accuracy across all models compared to Lyft data, as the points representing 

a) b)

c) d)

e) f)

Figure 11. Scatter plots of actual and predicted fares of LSTM for Uber (a), LSTM for Lyft (b), 
BiLSTM for Uber (c), BiLSTM for Lyft (d), BiLSTM with attention mechanism for Uber (e), and 
BiLSTM with attention mechanism (f)
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actual and predicted fares for Lyft data showed less deviation from the ideal prediction line. 
Notably, the BiLSTM with Attention model demonstrated significant performance improve-
ments for both Uber and Lyft fare predictions. This improvement was evident in the reduced 
spread of predicted values around the ideal prediction line (Figure 11e and Figure 11f), indi-
cating that the attention mechanism effectively enhanced prediction accuracy by capturing 
essential patterns and dependencies within the data.

Figures 12 and 13 illustrate the comparison between the training and validation perfor-
mance of these models (i.e., LSTM, BiLSTM, and BiLSTM + Attention) for predicting Uber 
and Lyft fares. The performance of each model was evaluated based on the MAE and Loss 
corresponding to multiple epochs. In general, the LSTM model achieved rapid convergence 
with minimal fluctuations in MAE and loss values. However, the BiLSTM model demonstrated 
instability in its validation MAE and exhibited signs of overfitting, which was indicated by the 
periodic spikes (Figures 12c and 13c). The BiLSTM model with attention outperformed both 

Figure 12. Training MAE, validation MAE, training loss, and validation loss of LSTM, BiLSTM, and 
BiLSTM + Attention mechanism models used for the prediction of Uber fares

a) b)

c) d)

e) f)
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a) b)

c) d)

e) f)

Figure 13. Training MAE, validation MAE, training loss, and validation loss of LSTM, BiLSTM, 
and BiLSTM + Attention mechanism models used for the prediction of Lyft fares

alternatives, achieving consistently lower MAE values and stable loss profiles, suggesting 
the attention mechanism would effectively enhance the model learning by prioritizing key 
features in the input data. 

In the initial training phase (epochs 1 to 5), the LSTM model demonstrated a rapid learn-
ing rate, indicated by a significant reduction in both MAE and loss values. This rapid decline 
suggested that the model effectively captured core data characteristics during early training 
stages. However, beyond the fifth epoch, the learning rate decelerated, with the model ex-
hibiting slight fluctuations in performance. While the LSTM model showed some degree of 
overfitting during the early epochs, its stability improved as training progresses. 

The BiLSTM model similarly demonstrated strong initial learning capabilities, character-
ized by a sharp reduction in MAE and loss values during the first five epochs. However, after 
this point, the model exhibited noticeable instability, with an increased risk of overfitting on 
both Uber and Lyft datasets. This overfitting tendency was more pronounced with Uber data, 
likely due to the bidirectional architecture of BiLSTM, which inherently increased the model 
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complexity and the number of trainable parameters. Given that Uber’s dataset might lack 
sufficient richness to support this complexity, the model’s susceptibility to overfitting was 
heightened.

The BiLSTM with Attention model demonstrated efficient learning during the initial train-
ing epochs, characterized by a rapid decline in both MAE and loss values. As training pro-
gressed, the model’s performance remained stable, with evaluation metrics showing only 
moderate fluctuations. Notably, the model did not exhibit signs of overfitting or underfitting, 
suggesting strong generalization capabilities. However, this enhanced performance came at 
the cost of increased training time.

5.2.2. Comparison of training time of the models

Regarding training efficiency, the LSTM model required 1,193 seconds (approximately 
19.88 minutes) to train on the Uber dataset and 1,071 seconds (approximately 17.85 min-
utes) for the Lyft dataset as shown in Table 4. These findings indicated that LSTM model 
was relatively efficient., however, it still required a considerable amount of time to train the 
model. The BiLSTM model required 1,442 seconds (approximately 24.03 minutes) for the Uber 
dataset and 1,579 seconds (approximately 26.32 minutes) for the Lyft dataset. The increased 
training time was attributed to bidirectional structure of the model, which inherently required 
additional computations for processing large datasets.

Table 4. Training time for the prediction of Uber and Lyft fares

Uber fare prediction Lyft fare prediction

LSTM 19.88 min 17.85 min
BiLSTM 24.03 min 26.31 min
BiLSTM-Attention 77.31 min (~ 1 h, 17 min, 9 s) 62.63 min (~ 1h, 2 min, 38 s)

Additionally, the BiLSTM with Attention model required 4,639 seconds (approximately 
1 hour, 17 minutes, and 9 seconds) for the Uber dataset and 3758 seconds (approximately 
1 hour, 2 minutes, and 38 seconds) for the Lyft dataset. The prolonged training duration of 
BiLSTM + Attention model (i.e., approximately 2–4 times greater than that of the other mod-
els) was largely attributed to the model’s complexity, which combines bidirectional learning, 
attention weight computation, and evaluation of interactions between sequence time steps. 
Nevertheless, the BiLSTM + Attention model achieved the most stable and accurate perfor-
mance, albeit with significantly longer training durations due to its intricate architecture. This 
trade-off would highlight the importance of model selection based on both performance 
needs and computational resources.

6. Conclusions

This study highlights the promising potential of deep learning models for fare prediction in 
ride-sharing services and emphasizes the need for further improvements to ensure practical 
applicability in real-world environments. We utilized a dataset containing fares for Uber and 
Lyft services in Boston during the winter of 2018. Our analysis identified several key factors that 
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influence the ride-hailing fares, including distance, travel time, and vehicle types. Additionally, 
we provided an overview of the underlying principles of deep learning models, particularly 
LSTM and BiLSTM, and introduced an enhanced BiLSTM model incorporating an attention 
mechanism to improve predictive accuracy. Experimental results revealed that all three mod-
els achieved strong predictive performance, with R² values exceeding 94% for Uber and 97% 
for Lyft, along with MAE values slightly above 1 and MSE values slightly above 3. The BiLSTM 
model with attention mechanism achieved the best results, however, its prolonged training 
time limits its suitability for time-sensitive applications. Conversely, the LSTM model provided 
the best balance between performance and efficiency, making it well-suited for stable en-
vironments. In the future, we will focus on improving model robustness through enhanced 
regularization and optimized architectures to strengthen generalization capabilities and ensure 
consistent performance across diverse datasets. Furthermore, integrating real-time data sourc-
es – such as live traffic and weather feeds – may enhance prediction accuracy and adaptability. 
We also plan to explore methods from explainable AI (XAI) to improve model transparency 
and increase user trust. Additionally, the integration of hybrid and transformer-based models 
may offer improved spatial-temporal learning and greater scalability.
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