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Article History:  Abstract. The growing accessibility of satellite imagery and the rapid evolution of machine 
learning (ML) techniques have significantly advanced land use classification for environmental 
monitoring. However, challenges such as cloud coverage, varying image resolutions, and sea-
sonal changes continue to hinder classification accuracy and consistency. This study aims to 
improve land use classification by proposing an integrated cloud interpolation, vegetation in-
dices and ML based approach for classification of Sentinel-2 (S2) satellite data across the Bal-
tic States. Specifically, a spatiotemporal interpolation module is introduced that reconstructs 
cloud-obscured pixels using multi-temporal coherence and derives optimized vegetation-in-
dex composites to enhance class separability under varying seasonal conditions. In order to 
achieve this aim and to choose the best ML algorithm for land use classification, we compare 
the performance of three classification algorithms, i.e., Random Forest (RF), K-Nearest Neigh-
bours (KNN), and Support Vector Machines (SVM), and evaluate their effectiveness in handling 
noisy and incomplete data. Our experimental results show that all three methods achieve 
strong classification accuracy, with RF exceeding 90%, while KNN and SVM also demonstrate 
competitive results. These methodological enhancements have been demonstrated to reduce 
cloud-induced misclassification and provide a scalable, transferable framework for operational 
land-use mapping in challenging atmospheric and seasonal contexts. These findings highlight 
the robustness of the proposed approach and provide valuable insights for future applications 
of ML in land use classification and environmental analysis.
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1. Introduction

The rapid advancement of remote sensing technologies, coupled with the increasing avail-
ability of high-resolution satellite imagery, has greatly enhanced the potential for efficient 
monitoring and management of land resources. However, land use classification remains a 
significant challenge due to the variability of spectral signatures, seasonal dynamics, and 
frequent cloud cover, which often obscure satellite imagery (Anandakrishnan et al., 2024; 
Rodríguez-Puerta et al., 2024). Conventional classification techniques often struggle to main-
tain high accuracy under such dynamic and uncertain conditions, thereby necessitating the 
adoption of more sophisticated approaches based on artificial intelligence (Marchetti et al., 
2022). Among the various machine learning techniques applied to land use classification, RF, 
SVM, and KNN have emerged as widely used and empirically validated algorithms due to 
their respective strengths in handling complex, high-dimensional, and often noisy remote 
sensing data.
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RF, an ensemble-based method, has been widely used in a variety of geographic contexts 
and has been praised for its robustness, interpretability, and ability to integrate multi-source 
data such as Sentinel-1 SAR and Sentinel-2 optical imagery (Dobrinić et al., 2021). Its effec-
tiveness in dealing with heterogeneity and partial cloud cover has been demonstrated in 
numerous studies through strategies such as cloud masking, multi-temporal compositing, 
and spectral index fusion (Y. Wang et al., 2024; Xue et al., 2023). SVM, a margin-based clas-
sifier, has gained recognition for its strong performance in high-dimensional feature spaces, 
particularly when class distributions are non-linear or unbalanced. Research has shown that 
SVM can deliver competitive results, especially when used in conjunction with object-ori-
ented classification and cloud segmentation methods. Its ability to construct optimal deci-
sion boundaries with limited training samples makes it particularly useful in remote sensing 
applications where labelled data may be scarce or unevenly distributed (Flohr et al., 2021; 
Hejmanowska & Kramarczyk, 2025). While conceptually simpler, KNN remains a valuable 
baseline in remote sensing due to its non-parametric nature and adaptability to different 
data distributions. Although often more sensitive to noise and computationally demanding 
on large datasets, KNN has shown solid performance when combined with effective preproc-
essing steps, including spectral filtering and cloud interpolation (Bebie et al., 2022; Pokhariya 
et al., 2023; Souza & Rodrigues, 2023).

Since each of these algorithms has distinct advantages and limitations when dealing with 
cloudy imagery and varying land cover types, a comparative analysis is essential to determine 
their relative effectiveness under real-world remote sensing conditions. This study, therefore, 
focuses on evaluating and comparing RF, SVM, and KNN for land use classification using 
Sentinel-2 imagery over Lithuania, a region characterised by diverse land use categories, 
seasonal variability, and persistent cloud presence. By systematically investigating their classi-
fication accuracy and robustness in the presence of cloud-related data challenges, the current 
study aims to identify the most reliable approach for practical applications in environmental 
monitoring.

Consequently, this paper presents a hybrid approach that integrates machine learning, 
cloud interpolation, and vegetation indices to improve land cover classification. Focusing on 
Lithuania as a case study, we have developed a robust classification pipeline that includes 
satellite data acquisition, data pre-processing (e.g., cloud interpolation and spectral index 
calculation), and classification using ML algorithms.

The main contributions and novelties of this work are:
1. A refined pre-processing workflow that improves classification under cloudy conditions.
2. Improved feature selection using vegetation indices for better separation of land use 

classes.
3. An evaluation of the accuracy results obtained by different classification algorithms to 

determine their respective strengths and limitations.
The rest of the paper is structured as follows. Section 2 (Related works) provides a de-

tailed review of recent studies that using ML algorithms for land cover classification, high-
lighting the effectiveness of the RF, SVM, and KNN algorithms in different contexts. Section 
3 (Methodology) outlines the proposed hybrid approach to land use classification using 
Sentinel-2 imagery. This section is divided into data acquisition, pre-processing, classifica-
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tion, and post-processing stages, with each step in the pipeline described in detail. Section 4 
(Experimental results) presents the results of applying the proposed approach to Sentinel-2 
data over Lithuania. Section 5 (Discussion) examines the results, discussing the effectiveness 
and limitations of the approach. Section 6 (Conclusions and future works) summarises the 
main findings and contributions of the study.

2. Related works

The utilization of ML techniques in remote sensing has increasingly gained traction, with 
scholars concentrating on diverse facets of land cover and landscape pattern analysis to 
tackle challenges related to ecology and urban growth. Recent scholarly work underscores 
the adaptability and strength of these techniques in managing intricate spatial data across 
varied environments. The following discussion presents an analysis of pertinent studies on 
land cover classification.

For instance, in snow cover detection, Sentinel-2 imagery excels over Landsat, particular-
ly in monitoring the dynamics of snow in mountainous areas like Switzerland, thanks to its 
superior spatial and temporal resolutions (Poussin et al., 2025). Moreover, in the northern 
Congo Republic, Sentinel-2 demonstrated outstanding performance in land use and cover 
mapping, achieving an overall accuracy of 93.80% and a Kappa coefficient of 0.89, which 
surpasses the 91.60% accuracy and 0.85 Kappa achieved by Landsat 9 (Bill Donatien et al., 
2024). Additionally, the finer spatial resolution of Sentinel-2 mitigates mixed pixel issues 
and shows greater consistency with in-situ spectral measurements during field comparisons 
(Trevisiol et al., 2024). This finding indicates that Sentinel-2 satellite data is more appropriate 
for use in the classification task.

In addressing this issue, it is imperative to ascertain the provenance of the data. In many 
cases, erroneous choices in the initial step can have a direct negative impact on the results. 
Drawing upon the authors’ extensive experience in this domain, it is evident that the utilisa-
tion of Sentinel-2 satellite data consistently yields more accurate results. Consequently, the 
subsequent literature analysis will be grounded in sources that evaluate the outcomes of 
classification algorithms when utilizing Sentinel-2 satellite imagery (Asmiwyati et al., 2025; 
Chanev et al., 2025; Chi et al., 2025; Rynkiewicz et al., 2025).

Cloud interpolation in remote sensing is crucial for filling data gaps in satellite imagery 
due to clouds. Recent methods like the spatial-spectral random forest (SSRF) use adjacent and 
similar pixels to effectively remove cloud interference by integrating spatial and spectral data. 
Additionally, deep learning techniques like partial convolution in a U-Net architecture have 
notably enhanced land surface temperature data interpolation, achieving a 44% decrease in 
root mean square error over traditional methods. These innovations are vital for improving 
the accuracy of satellite-derived environmental data (Patel et al., 2024; Q. Wang et al., 2022; 
Zhou et al., 2022).

For a more comprehensive overview of the used methods and outcomes from various 
studies employing ML algorithms in remote sensing, some relevant related works are com-
pared below in Table 1. A general review of the literature was conducted to identify which 
machine-learning algorithms and accuracy metrics are most commonly applied to Sentinel-2 
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imagery. The selection of articles was based on prevailing methodological trends and their 
direct relevance to the research objectives of the study, ensuring the inclusion of studies 
that offer significant empirical and conceptual contributions. Table 1 provides an organized 
comparison of the algorithms used, the accuracy metrics evaluated, and the most accurate 
algorithm of investigation.

Following a thorough analysis of the articles selected for the literature review, which were 
found to be highly correlated with the topic under consideration, it was observed that the 
classification algorithms (RF, KNN, and SVM) selected for the study (see column 2 of Table 1) 
were often grouped similarly in other scientific studies (Aliabad et al., 2022; Pokhariya et al., 
2023; Ren et al., 2023; Souza & Rodrigues, 2023; Yu et al., 2023). Notwithstanding, the most 
accurate algorithm (in accordance with the results presented in the comparative articles) 
was identified as RF (see column 4 of Table 1), which was most efficient in six out of eleven 

Table 1. Comparison of the related works found on land use classification

Reference Algorithm Accuracy metrics Most Accurate 
Algorithm

(1) (2) (3) (4)
Souza and Rodrigues (2023) KNN*, DT*, SVM*, RF* KIC*, OA* KNN
Pokhariya et al. (2023) DT, KNN, ANN*, SVM, 

BDT*, RF
KIC, OA RF

Aliabad et al. (2022) KNN, SVM, DT, RF KIC, OA KNN
Bebie et al. (2022) RF, KNN, BR* RMSE*, R2* RF
Kycko et al. (2022) SVM, RF OA, KIC, F1* RF
Ren et al. (2023) SVM, RF, KNN, LR* RMSE, R2, MAE* RF
Kluczek et al. (2023) RF, SVM F1 RF
Yu et al. (2023) RF, KNN, SVM, ANN KIC, F1 ANN
Kamenova et al. (2024) SVM, RF F1 SVM
Kluczek et al. (2024) RF, SVM, XGB* OA RF
Zhang et al. (2023) KNN, SVM, RF KIC, OA KNN

Note: * K-Nearest Neighbour (KNN), Decision Trees (DT), Random Forest (RF), Support Vector Machine (SVM), 
Boosted Decision Trees (BDT), Boosting Regressions (BR), Artificial Neural Network (ANN), Lasso Regression (LR), 
XGBoost (XGB), Overall Accuracy (OA), Kappa Index/Coefficient (KIC), Determination Coefficient (R2), Root Mean 
Square Error (RMSE), F1-Score (F1), Mean Absolute Error (MAE).

Figure 1. Accuracy metrics employed by the authors
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analysed articles (Bebie et al., 2022; Kluczek et al., 2023, 2024; Kycko et al., 2022; Pokhariya 
et al., 2023; Ren et al., 2023) Conversely, KNN in a superior position was successful in three 
out of eleven cases (Aliabad et al., 2022; Souza & Rodrigues, 2023; Zhang et al., 2023), while 
SVM laureate was only once (Kamenova et al., 2024). It has also been observed that the au-
thors utilise a variety of reliability metrics. A review of the accuracy metrics employed by the 
authors is presented in Figure 1, which illustrates the popularity of the metrics.

As demonstrated in Figure 1, the examined sources demonstrated a predominant reliance 
on the OA and KIC accuracy metrics. On the other hand, the least popular accuracy metrics 
were RMSE, R2 and MAE, while the F1 accuracy metric is classified as moderately used.

3. Materials and methods

This section outlines the proposed hybrid ML, cloud interpolation, and vegetation index-based 
approach for classifying S2 satellite imagery (Figure 2). The process is divided into three main 
stages: data acquisition, pre-processing, and classification. In the data acquisition stage, S2 
images are collected and filtered based on cloud cover and resolution parameters. The pre-pro-
cessing stage prepares the data for analysis, including image merging, cloud removal, cloud 
interpolation and calculation of spectral indices to improve feature representation. At the clas-
sification stage, RF, KNN, and SVM models are used to assign land use classes using training 
datasets created from accurately labelled reference data. Each step in this approach is designed 
to improve the accuracy and reliability of the classification results (Stachura et al., 2024).

Figure 2. A schema of the hybrid ML, cloud interpolation, and vegetation indices-based 
approach

Each subprocess denoted by a plus symbol (+) in Figure 2 is elaborated upon in the 
following subsections.

3.1. Satellite data acquisition

The initial stage of our approach entails the acquisition of Sentinel-2 satellite imagery. Man-
aged by the European Space Agency (ESA), Sentinel-2 provides multi-spectral data with res-
olutions ranging from 10 meters to 60 meters. To ensure optimal classification accuracy, 
Level-2A data, which is atmospherically corrected and pre-processed to minimize noise, was 
utilized. The study concentrated on the territory of Lithuania, with Sentinel-2 data spanning 
from 2022 to 2024. To enhance the quality of data for classification purposes, stringent filter-
ing criteria were applied, selecting only images with cloud coverage below 5%.

The process of downloading satellite data is ensured by using the developed download 
script and receiving search criteria requested from the user. The request returns the metadata 
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of the S2 satellite images, which is then displayed to the user, conveying the territorial cover-
age of the selected images. If the selected images are deemed suitable, the logic transitions 
to the request processing stage.

The download of the data is performed in four threads, which means that four different 
satellite images are sent simultaneously. Upon completion of the download process, the 
images are then prepared for pre-processing, which involves archiving the received files and 
deleting unnecessary layers of satellite images. The bands utilised are enumerated in Table 2.

Table 2. Sentinel-2 bands

Sentinel-2 band Resolution

Band 1 (B1) – Coastal aerosol 60 m
Band 2 (B2) – Blue 10 m
Band 3 (B3) – Green 10 m
Band 4 (B4) – Red 10 m
Band 5 (B5) – Vegetation Red Edge 20 m
Band 6 (B6) – Vegetation Red Edge 20 m
Band 7 (B7) – Vegetation Red Edge 20 m
Band 8 (B8) – NIR 10 m
Band 8A (B8A) – Vegetation Red Edge 20 m
Band 9 (B9) – Water vapour 60 m
Band 10 (B10) – SWIR - Cirrus 60 m
Band 11(B11) – SWIR 20 m
Band 12 (B12) – SWIR 20 m

As indicated from Table 2, this study uses only 10- and 20-meters resolution layers. This de-
cision was made in light of the desired data accuracy and the analysis performed, which demon-
strated that 60 m. resolution layers did not contribute to the study’s classification accuracy.

3.2. Satellite data pre-processing

Pre-processing is performed to enhance the quality of the images as follows:
 ■ Image Integration: Sentinel-2 bands were amalgamated into a single multi-band com-
posite to facilitate comprehensive spectral analysis (Fan et al., 2022; Lemenkova, 2022; 
Ole Ørka et al., 2013; Schürz et al., 2023).

 ■ Background Cleaning: NoData pixels and irrelevant background noise were removed 
using a thresholding approach (Juhász et al., 2023; Logan et al., 2024).

 ■ Compression: To optimize memory resources, the DEFLATE compression method is 
applied to pre-processed images (Gonzalez et al., 2024; Jeromel & Žalik, 2020; Kai & 
Yuxiang, 2024).

 ■ Cloud Removal & Interpolation: An advanced cloud detection algorithm utilizing the 
Scene Classification Layer (SCL) was employed to identify and mask cloud-covered ar-
eas. Subsequently, interpolation techniques were applied to reconstruct missing data, 
thereby ensuring the continuity and integrity of the classification process (Liu et al., 
2021; Psychalas et al., 2023; Shao & Zou, 2021; Shepherd et al., 2020). 
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 ■ Spectral Index Calculation: Three spectral indices – Normalized Difference Tillage In-
dex (NDTI), Normalized Difference Vegetation Index Red-Edge (NDVIre), and Modified 
Normalized Difference Water Index (MNDWI) – were computed to enhance feature 
differentiation (Belayhun et al., 2024; Casamitjana et al., 2020; Farhadi et al., 2024; Io-
annou, 2023; Lee et al., 2024; Niazmardi et al., 2018; Sankaran et al., 2023; Terzi Türk 
& Balçik, 2023).

In order to elucidate the modus operandi of cloud interpolation in greater detail, the 
process is initiated through the iteration of each S2 tile (territorial unit). It is important to 
note that from the available satellite images of the selected period (less than a month), it is 
known to which tile each satellite image belongs. Within the later iteration, for each territorial 
unit, the lowest cloud cover image is selected (cloud cover information is obtained from the 
satellite image metadata) and read as the parent image. A new iteration cycle is initiated, 
marking the onset of a second iteration. This cycle traverses the remaining tile images (child 
images), meticulously checking if the parent image contains NoData pixels that could poten-
tially be filled by the child images.

Adding, in the context of working with Sentinel-2 imagery, it is not uncommon to encoun-
ter tiles from multiple Universal Transverse Mercator (UTM) zones, particularly in instances 
where the area of interest traverses’ longitudinal boundaries. Each S2 tile is assigned a label 
using the Military Grid Reference System (MGRS), where the initial first tile digits (e.g., 34 
and 35) correspond to specific UTM zones. These zones utilize distinct Coordinate Reference 
Systems (CRS), with UTM Zone 34N employing European Petroleum Survey Group (EPSG) 
EPSG:32634 and Zone 35N utilising EPSG:32635, to name but two examples. Consequently, 
spatial misalignment may occur when attempting to merge, compare, or analyse tiles across 
different zones. To ensure spatial consistency, it is imperative that all tiles are reprojected 
into a common CRS prior to any processing. This can be achieved in one of two ways: either 
by projecting all data into a single UTM zone or by converting all tiles to a global reference 
system such as World Geodetic System (WGS) WGS 84 (EPSG:4326). Reprojection is a crucial 
pre-processing step that ensures accurate geospatial analysis, classification, and visualization 
across tile boundaries (Roy et al., 2016). It is imperative to note that this step is incorporated 
within the overall process of image merging.

Upon completion of the aforementioned steps, the satellite images are deemed suitable 
for classification. This ensures that the input data is spatially consistent, radiometrically 
corrected, and aligned to a uniform coordinate reference system, thereby minimizing clas-
sification errors and enhancing the reliability of analytical results.

3.3. Satellite data classification

In this study, classification models such as RF, SVM, and K-Means are used and trained on 
labelled datasets obtained from Sentinel-2 imagery to classify land use categories. 

The models will undergo configuration and extensive parameter testing to facilitate a 
comparative analysis of the results generated by different classifiers. The preparation of the 
training dataset utilises government-provided land use records, thereby enhancing the accu-
racy of land use class identification across various plots within the Republic of Lithuania, and 
potentially minimising classification errors across different temporal periods.



8 J. Jancevičius. Enhancing land use classification with hybrid machine learning and satellite imagery

The accuracy of the classification is measured using reliability metrics such as: Cohen’s 
Kappa (CK) (Dobrinić et al., 2021; Y. Wang et al., 2024; Z. Wang, 2023), precision and recall 
(Eisfelder et al., 2024; Farhadiani et al., 2024), F1-score (Albertini et al., 2024; Farhadiani et al., 
2024; Flohr et al., 2021), and finally Overall Accuracy (OA) (Albertini et al., 2024; Farhadiani 
et al., 2024; Xue et al., 2023). Each metric is expressed as a percentage ranging from 0 to 
100. It is imperative to acknowledge that the primary emphasis will be directed towards the 
outcomes derived from the OA, CK and F1 metrics.

4. Results

This section delineates the experimental results achieved through the application of the pro-
posed method for Sentinel-2 data classification. To facilitate the experiment, a prototype was 
developed, ensuring the method’s procedural steps were systematically executed. The find-
ings are segmented and presented in accordance with each procedural step of the method.

4.1. Satellite data acquisition

During this stage, around 100 GB of S2 satellite data were methodically collected from ESA 
packages, which included satellite images in JPEG2000 (.jp2) file format. It is evident that the 
study utilised a total of 30 to 40 satellite images, which pixels were employed for the training 
of the machine learning (ML) algorithms. For the purpose of classification, 5 satellite images 
from different seasons (spring, summer or autumn) were selected, which have the largest 
coverage of the Republic of Lithuania and is characterised by land use change.

Each of the Sentinel-2 bands was individually downloaded and securely stored on a local 
storage system. After the successful completion of the download, all archives were extracted, 
and superfluous files were eliminated to refine the dataset.

The dataset comprises observations from the year 2023, effectively capturing seasonal 
variations across the Lithuanian territory. The analysed Sentinel-2 tiles were systematically 
categorized into the ethnographic regions of Lithuania, facilitating more precise territorial 
traceability. The details of the analysed tiles are presented in Table 3.

Table 3. Sentinel-2 tiles used in the experiment

Region Sentinel-2 Tiles

Žemaitija 34UDG, 34VDH, 34UEG, 34VEH
Aukštaitija 34VFH, 34UFG, 35VLC, 35ULB, 35UMB, 35VMC
Suvalkija 34UFF, 34UFE, 35ULA, 34UGE
Dzūkija 35ULV, 35UMA, 35UMV

As demonstrated in Table 3, a combination of 17 tiles is required for comprehensive 
coverage of the Republic of Lithuania. It is important to note that Lithuania falls within two 
satellite orbits, which are otherwise called UTM zones (see section 2.2). Specifically, the sat-
ellite images (to cover Lithuania’s territory) obtained originate from zones 34 and 35. For 
illustrative purposes, a 35VLD tile instance has been provided, which depicts the capital of 
Latvia, Riga (see Figure 3).
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4.2. Satellite data pre-processing

The outcomes of the pre-processing stage are inherently difficult to quantify through direct 
testing or measurement. However, several key enhancements are implemented during this 
stage, including the integration of individual satellite bands into a composite image, the calcula-
tion of spectral indices, the removal of cloud-covered pixels using the Sentinel-2 Scene Classifi-
cation Layer (SCL), and subsequent interpolation to fill cloud-related gaps. These procedures are 
designed to maximize image quality and ensure data continuity across temporal observations.

Conversely, it can be inferred that the applied compression techniques on the merged sat-
ellite data are effective. The original multi-band satellite images, comprising all 13 Sentinel-2 
bands, consistently require approximately 3.13 GB of storage. However, following compres-
sion, the memory footprint is significantly reduced – by nearly half for a full, pixel-covered 
image – demonstrating the efficiency of the applied method. A detailed comparison of the 
compression results is presented in Figure 4.

Figure 3. Cropped 35VLD tile B04 band (red) image (2024-09-05)

a) b)

Figure 4. The outcome of satellite image compression: a – original satellite image sizes prior to 
compression; b – satellite image sizes post-compression
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An example of a pre-processed satellite image prepared for classification, corresponding 
to tile 35ULA – which encompasses the capital city of Lithuania, Vilnius – is presented in 
Figure 5.

Given these comprehensive measures, it can be concluded that the pre-processing out-
puts are of high quality and effectively align with the initial goals established at the onset 
of the project.

4.3. Satellite data classification

A notable outcome of the study was the observation that incorporating cloud interpolation 
markedly enhanced the consistency of classification results in regions frequently affected by 
cloud cover. By leveraging temporal information to reconstruct missing data, the model was 
able to sustain high levels of accuracy despite adverse atmospheric conditions. This approach 
enhancement effectively mitigated the impact of cloud obstruction, thereby increasing the 
robustness and operational applicability of the classification process for land monitoring 
purposes.

Note that within the context of this study, cloud interpolation served solely as a supple-
mentary pre-processing technique to enhance data quality prior to classification. The primary 
objective is to evaluate classification algorithms, identify the most accurate model, and de-
termine the optimal set of hyperparameters that maximize performance.

The hyperparameters themselves, for each algorithm, were identified based on a literature 
review, where the hyperparameter values were identified in a test study using GridSearchCV, 
where possible combinations of hyperparameters are presented and the best combination is 
selected (Ahmad et al., 2022; Alshammari, 2024; Vazirani et al., 2024).

The optimal hyperparameters for each classification algorithm are presented in Table 4.

Figure 5. Cropped 35ULA tile merged satellite image (2024-08-28)
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Table 4. Optimal hyperparameters for each classification algorithm

Classifier Optimal hyperparameters

RF n_estimators = 100, max_depth = 20, min_samples_leaf = 4, min_samples_split = 2
SVM C = 0.1, gamma = scale, kernel = rbf
KNN n_neighbors = 10, weights = uniform, p = 2

The hyperparameter optimization process yielded distinct optimal configurations for each 
classification algorithm. For the KNN model, the most effective setup involved using 10 neigh-
bours, uniform distance weighting, and the Euclidean distance metric, corresponding to p = 2. 
This configuration suggests that the classifier benefits from considering a moderately sized 
local neighbourhood while treating all neighbours equally, regardless of their proximity. In 
the case of the RF algorithm, the optimal parameters included the use of 100 decision trees, 
a maximum depth of 20, a minimum of four samples required at each leaf node, and a min-
imum of two samples required to split an internal node. Bootstrapping was enabled, and 
no additional class weighting was applied, indicating a preference for a moderately deep, 
unweighted ensemble structure. The SVM achieved its best configuration using a radial basis 
function (RBF) kernel, with a regularization parameter C set to 0.1 and gamma set to “scale”, 
suggesting a relatively soft margin and automatic adjustment of the kernel coefficient based 
on the input data. These parameter selections reflect the specific modelling characteristics 
required to effectively capture the patterns within the dataset for each algorithm.

The classification accuracy achieved by each evaluated algorithm is summarized in Table 5.

Table 5. Classification performance metrics for evaluated algorithms

Classifier Cohen’s Kappa F1-score Recall Precision

RF 89.23% 90.53% 90.86% 90.21%
SVM 86.23% 87.93% 88.16% 87.71%
KNN 84.73% 85.08% 85.36% 84.81%

The classification results (see Table 5) revealed distinct performance differences among 
the evaluated algorithms, reflecting the influence of both model architecture and optimized 
hyperparameter configurations. The RF classifier achieved the highest validation performance, 
demonstrating its robustness and ability to capture complex, non-linear relationships within 
the feature space through ensemble learning and deep tree structures. The SVM, employ-
ing an RBF kernel with a soft margin configuration, performed comparably well, indicating 
its effectiveness in handling high-dimensional data and separating classes with non-linear 
boundaries. While the KNN algorithm exhibited slightly lower performance, its simplicity and 
reliance on local neighbourhood structures still enabled it to deliver competitive results. Over-
all, the findings suggest that ensemble-based approaches, particularly RF, are well-suited for 
land cover classification tasks involving multi-spectral satellite imagery, while SVM and KNN 
remain valuable alternatives depending on the computational constraints and complexity of 
the data.
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The land use classes identified are summarized in Figure 6. It should be noted that not 
all classes are identified during the relevant periods.

Figure 6. Identified land use classes

Examples of the classification result (using RF classifier) are shown in Figures 7 and Figure 8.

a) b)

Figure 7. Cropped tile (35ULA) example of classification result (2024-09-05): a – pre-processed 
input satellite image; b – output satellite image of classification algorithm

a) b)

Figure 8. Cropped tile (35ULA) example of classification result (2024-09-05): a – pre-processed 
input satellite image; b – output satellite image of classification algorithm
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5. Discussion

This study primarily aimed to evaluate the efficacy of different machine learning algorithms in 
improving land use classification, using Sentinel-2 satellite imagery augmented by a sophisti-
cated pre-processing framework that included cloud interpolation and the use of vegetation 
indices. The focus was to ascertain which algorithm among RF, KNN, and SVM performs best 
under the enhanced conditions provided by our hybrid approach.

Our analysis revealed distinct advantages and limitations of each algorithm, tailored by 
the pre-processing enhancements that were part of our hybrid approach. Random Forest 
emerged as the most effective, achieving superior classification accuracy. This outcome can 
be attributed to RF’s inherent ability to handle large and complex datasets with high-di-
mensional features, making it particularly suited to the spectral diversity and the variabilities 
introduced by cloud cover and seasonal changes in satellite imagery.

Support Vector Machines demonstrated strong performance in scenarios with clear dis-
tinctions between classes due to its effective handling of high-dimensional space. However, 
its performance was slightly behind RF, suggesting that while SVM is robust, the RF’s en-
semble method provides a more adaptable and error-tolerant approach in the complex and 
varied environments typical of land use classification tasks.

K-Nearest Neighbours, while generally less robust in noisy environments like satellite data 
affected by cloud interference, benefited significantly from the preprocessing steps, particularly 
cloud interpolation which reduced noise in the input data. This preprocessing allowed KNN to 
perform competitively, highlighting its utility when conditions are optimized for its operation.

5.1. Limitations of the research

The study focused on a predefined set of well-known ML algorithms, potentially overlooking 
newer or unconventional methods that might offer improved results in land use classification. 
Additionally, while the pre-processing enhancements significantly improved algorithm perfor-
mance, they also increased the computational load. This could be a constraint in operational 
settings where speed and efficiency are critical. Future research should explore more efficient 
pre-processing methods to balance accuracy with computational demands.

6. Conclusions and future works

The findings from this study support the hypothesis that preprocessing enhancements, cou-
pled with robust machine learning algorithms, can significantly improve the accuracy of land 
use classification. Random Forest, in particular, stood out as the most effective algorithm 
under the conditions tested. These results not only reinforce the importance of choosing the 
right algorithm but also underscore the value of a comprehensive preprocessing regime that 
aligns with the specific strengths and weaknesses of the chosen classifiers.

Looking forward, it would be beneficial to expand this analysis by incorporating addi-
tional machine learning models, such as deep learning architectures, which might offer fur-
ther improvements in classification accuracy. Additionally, exploring the integration of these 
algorithms in a real-time analysis framework could potentially enhance the applicability of 
this research in operational settings.
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