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virtual environments. However, a comprehensive framework for efficiently testing, training, 
and deploying robots in these environments remains underexplored. This study introduces 
a standardized, open-source framework designed specifically for the Webots simulation en-
vironment. Supported by a robust methodology, the framework integrates innovative design 
patterns and the digital twin (DT) concept with three distinct design patterns for structuring 
agent-environment interaction, notably including a novel pattern aimed at improving sim-to-
real transferability, to enhance RL workflows. The proposed framework is validated through 
experimental studies on both a model the inverted pendulum and a production-grade Pioneer 
3-AT robotic platform. The experiments highlight the framework’s ability to bridge the gap be-
tween virtual training and real-world implementation. All resources, including the framework, 
methodology, and experimental configurations, are openly accessible on GitHub. 
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1. Introduction 

Reinforcement learning (RL) is changing how robots learn and behave. It’s a type of machine 
learning where robots improve their actions by interacting with their surroundings and learning 
from their experiences. RL uses rewards to guide the robots in choosing better actions over 
time. Virtual environments make this process safer and cheaper because robots can practice 
and learn without risks. These virtual spaces also speed up the development of smarter robots 
by giving them a flexible and controlled place to test and train (Ayala et al., 2020).

The utilization of virtual environments in robotics provides a crucial advantage: the ability 
to simulate complex real-world scenarios without the risks and constraints associated with 
physical experimentation. From dynamic navigation in cluttered spaces to precise manipula-
tion of objects, virtual environments can replicate a diverse array of challenges that robots 
may encounter in the real world. These settings are particularly beneficial for training tasks 
that involve high levels of uncertainty or potential hazards, such as disaster response robotics 
or autonomous driving systems. Moreover, advancements in simulation technologies now 
enable the creation of hyper-realistic environments, bridging the gap between synthetic 
training and practical deployment.
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This study investigates methodologies, development paradigms, and persistent challenges 
inherent in applying RL within virtual environments. We present a comprehensive analysis 
of fundamental principles, recent technological advancements, and examples that show the 
practical benefits of this approach. Furthermore, we carefully look at the limitations and 
suggest future research to improve the accuracy and reliability of simulated training environ-
ments. By studying these topics, we aim to show how RL can significantly change robotics, 
helping to build more adaptable, efficient, and practical machines.

The remainder of this paper is organized as follows: Section 2 provides a comprehensive 
review of related work, outlining existing methodologies and tools relevant to RL in virtual 
environments. Section 3.1 introduces the framework, detailing its design patterns and com-
paring it to current RL approaches. Section 3.2 describes the methodology, focusing on the 
implementation of RL algorithms within the Webots simulation platform and the digital twin 
(DT) creation process. Section 4 presents the experimental results obtained using the pro-
posed framework and methodology, demonstrating their effectiveness through the inverted 
pendulum task. Finally, the Conclusion summarizes the key findings, discusses the implica-
tions of the work, and outlines potential directions for future research and development.

2. Related work

RL (Tang et al., 2024) is a branch of machine learning focused on enabling agents to learn 
optimal behaviors by interacting with their environment through trial and error. RL leverages 
a system of rewards and penalties to encourage learning through feedback, allowing agents 
to make decisions that maximize cumulative rewards (Kilinc & Montana, 2022) . A cornerstone 
of this methodology is the Markov Decision Process (MDP), which formalizes the interaction 
between an agent and its environment in terms of states, actions, transition probabilities, and 
rewards (Jonban et al., 2024).

A key feature of RL is the balance between exploration and exploitation. Exploration refers 
to testing new actions to discover potentially better strategies, while exploitation focuses on 
leveraging known strategies to maximize immediate rewards. Modern RL employs advanced 
algorithms like Proximal Policy Optimization (PPO) (Zhang et al., 2022), Deep Q-Networks 
(DQN), and Advantage Actor-Critic (A2C) (Talaat, 2020), which allow agents to tackle complex, 
high-dimensional tasks effectively.

RL applications in virtual environments have already demonstrated significant potential 
across industries. Robots trained via RL in simulation have been successfully deployed in 
manufacturing for precision assembly tasks, in healthcare for automated assistance, and even 
in space exploration for autonomous navigation. However, the transition from virtual to real-
world scenarios remains a formidable challenge, primarily due to discrepancies in dynamics, 
noise levels, and environmental variability. Addressing these challenges necessitates robust 
techniques for domain adaptation and transfer learning to ensure the seamless applicability 
of policies learned in simulation.

The OpenAI Gym (now Gymnasium) framework has emerged as a vital tool in the de-
velopment and testing of RL algorithms (Brockman et al., 2016). It provides a standardized 
interface for a diverse range of simulated environments, from simple tasks like CartPole 
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to intricate robotic control simulations. Gym supports both discrete and continuous action 
spaces, enabling researchers and practitioners to benchmark their RL models under consistent 
conditions. By offering ready-to-use environments, it accelerates experimentation, promotes 
reproducibility, and fosters innovation in the RL community (Towers et al., 2024).

The Gym framework’s modularity extends its usability, allowing developers to create cus-
tom environments tailored to specific applications. For instance, robotic RL, tools like Gym’s 
robotics suite, which integrate simulated tasks with physics engines like MuJoCo (Todorov 
et al., 2012), enable training of manipulation or navigation policies in virtual settings before 
deploying them in real-world scenarios. This ability to simulate environments mitigates risks 
and reduces costs during the training phase, making Gym a pivotal resource for RL research.

Deep reinforcement learning (DRL) (Ladosz et al., 2022), which combines RL with deep 
neural networks, has further enhanced the scope of Gym applications. Frameworks like Stable-
Baselines3 (Raffin et al., 2021) and Ray’s RLlib (Liang et al., 2017) build on Gym to provide 
robust RL algorithm implementations, simplifying the process of training agents in Gym-com-
patible environments. These integrations underscore Gym’s flexibility and its role in advancing 
state-of-the-art RL techniques. In summary, RL principles, bolstered by frameworks like Ope-
nAI Gym, continue to drive progress in artificial intelligence and robotics. By providing acces-
sible, standardized environments, Gym empowers researchers and practitioners to push the 
boundaries of what autonomous agents can achieve in simulated and real-world scenarios.

As RL problems increase in complexity, simulation environments become essential for de-
velopment and testing. Simulation reduces the need for direct experimentation with physical 
systems, which is particularly critical for tasks with high degrees of freedom, such as autono-
mous driving. Consequently, simulation platforms like Webots (Michel, 2004) are increasingly 
important, especially those that are open-source.

Alternatives to Webots include Gazebo (Uslu et al., 2017), RoboDK (Garbev & Atanassov, 
2020), CoppeliaSim, OpenRave, and Unity (Tseeva et al., 2024), all of which support the in-
tegration of DRL algorithms. This paper focuses on Webots due to its capability to create 
robots from scratch, its realistic graphics, and its compatibility with the Robot Operating 
System (ROS). However, many aspects of the proposed framework can be adapted to other 
simulation environments.

A key distinction between environments like Gymnasium and simulation platforms like 
Webots is the fidelity of actuator and sensor modeling. In Webots, actuators and sensors, 
such as robotic arms and LiDAR, are designed to closely resemble their physical counterparts. 
Webots allows robot programming via controllers in multiple languages, including C, Python, 
and MATLAB. For DRL implementations, Python is preferred due to its ease of use and the 
straightforward translation of C examples.

Several projects aim to facilitate RL in robotic simulators. Gym-Ignition (Ferigo et al., 2020) 
provides an OpenAI Gym interface for Gazebo, supporting reproducible robot environments, 
external software integration, multiple physics and rendering engines, and ROS compatibility. 
Zamora et al. (2016) extends the Gym interface with ROS compatibility for Gazebo. Lopez 
et al. (2019) offers ROS 2 compatibility and is applied in real-world scenarios. NVIDIA Isaac 
ROS (NVIDIA, 2025) provides a comprehensive framework for DRL and robotics, featuring 
photorealistic rendering and parallelization. While Deepbots (Kirtas et al., 2020) aimed to 
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facilitate DRL in Webots, its current implementation suffers from bugs and compatibility is-
sues due to its reliance on the older OpenAI Gym. Beyond the choice of specific libraries or 
simulator interfaces, the architectural design patterns governing agent-environment interac-
tion within the simulation significantly impact RL workflow efficiency and, crucially, the po-
tential for sim-to-real transfer. Many conventional setups in robotic simulation environments, 
including some earlier approaches for Webots, tend to rely heavily on centralized supervisor 
entities that possess global knowledge and control capabilities unavailable in physical robots. 
While such configurations can simplify certain aspects of simulation management (e.g., envi-
ronment resets or complex reward calculations), this reliance often leads to policies that are 
difficult to deploy on physical systems constrained by their onboard sensors and actuators. 
Recognizing this critical gap, the present study systematically investigates three distinct de-
sign patterns for RL in Webots. These patterns, detailed in Section 3.1, range from simpler 
integrated approaches reflective of common practices to a novel decoupled architecture 
specifically engineered to minimize simulator-specific dependencies and thereby enhance 
the real-world applicability of trained agents (Behrens et al., 2012). This research presents the 
first generic interface for Webots using the updated OpenAI Gymnasium, standardizing and 
simplifying the application of modern RL algorithms.

3. Method

This section outlines the framework and methodology developed to facilitate RL within the 
Webots simulation environment. We first introduce the core design patterns that underpin 
the proposed framework, highlighting their capabilities and limitations in bridging the gap 
between virtual training and real-world deployment. Next, we detail the DT creation process, 
demonstrating how it enables safe and efficient testing of RL algorithms.

3.1. Design patterns of reinforcement learning in virtual environments

RL within virtual environments is facilitated through a dynamic interplay of simulation tools, 
RL frameworks, and machine learning algorithms. At the core of presented architecture lies 
the need for a simulated environment capable of accurately modeling real-world dynamics, 
providing a controlled and risk-free setting for robotic training. Tools like Webots, Gazebo, 
and Unity play a pivotal role by offering physics engines that replicate the physical world, 
including gravity, friction, and collisions, alongside providing sensory feedback such as visual, 
tactile, or distance-based data. 

The WebotsRL system presented in this paper incorporates three design patterns used for 
experimentation. The first two patterns follow the RL loop commonly found in frameworks 
like Gymnasium or Deepbots. In these frameworks, the environment receives an action from 
the robot at each step and returns a pair of observations and rewards. This process is re-
peated until the robot either achieves its goal or an exception terminates the loop. While this 
approach is effective for testing RL in virtual environments, we identified a need for a more 
complex strategy when transferring RL-trained models and processes to real-world robots. To 
address this, we developed a third design pattern that builds upon the first two, eliminating 
the Supervisor concept to better facilitate the transition to physical robots.
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Figure 1 illustrates two design patterns comparable to those introduced for Webots in 
Kirtas et al. (2020). The pattern shown on the left side of Figure 1 represents the simplest 
approach for testing RL algorithms in the Webots virtual robot simulation environment. This 
pattern is composed of two key classes: RLRobot and RLModel. The RLRobot class defines the 
robots to be trained and is responsible for gathering observations from the environment, 
executing actions, and resetting the environment to its initial state once the robot either 
achieves its goal or encounters a failure during the learning process.

A significant drawback of this design pattern arises when attempting to transfer RL mod-
els from simulated environments to real-world applications. This limitation stems from its 
reliance on inheriting functionality from the Supervisor class. In many RL implementations, 
the Supervisor class is used to provide the robot with a comprehensive understanding of the 
simulated environment. This includes access to information well beyond the capabilities of 
the robot’s sensors, such as repositioning objects, calculating precise distances to targets, or 
retrieving detailed speed values for multiple objects by Webots built-in libraries.

While these advanced capabilities streamline simulation tasks, they are entirely impractical 
in real-world scenarios. Physical robots are inherently constrained, relying solely on data from 
their onboard sensors or external information supplied by collaborating robots or external 
computational systems, such as servers. The reliance on the Supervisor class introduces an 
unrealistic dependency that undermines the applicability and reliability of RL-trained models 
when transitioning from virtual simulations to real-world deployments. Addressing this dis-
crepancy is critical to ensuring that RL systems are not only effective in simulation but also 
viable and robust in practical use cases.

To address these limitations, the design pattern illustrated on the right side of Figure 1 
is proposed. This pattern adheres more closely to real-world constraints and aligns with the 
recommendations of Webots systems and previous work by Kirtas et al. (2020).

The second design pattern introduces two robot classes: SupervisorRobot and SlaveRobot. 
Additionally, it incorporates the Emitter and Receiver classes provided by the Webots system 
to simulate communication between robots using string messages over virtual radio waves. 
In the proposed WebotsRL system, the Emitter and Receiver are used for communication 

a) b)

Figure 1. a – Simple design pattern with integrated Supervisor for robot RL implementation; 
b – Design pattern with separated Supervisor using Emitter-Receiver interface
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between the SupervisorRobot and SlaveRobot, with the Emitter broadcasting messages and 
the Receiver receiving them.

Instances of SupervisorRobot are typically not typical robots and usually lack mass or physical 
properties in the simulation. For example, they can represent a computational device, such as 
a PC, that transmits actions to robots without interacting with the scene. Similarly, the Emitter 
and Receiver components could be simulated wireless devices, like Wi-Fi or Bluetooth modules.

In this design pattern, the RL framework operates as follows: the virtual environment is 
first reset to its initial state. Then, one or more SlaveRobot instances collect initial observa-
tions from the environment and use their Emitter to send the data to the SupervisorRobot. 
The SupervisorRobot, through its Receiver, gathers these observations and passes them to 
the RLModel instance. Additionally, the SupervisorRobot can augment the observations with 
extra information from the Webots Supervisor class, such as distances, absolute positions, and 
object speeds, which are inaccessible to the SlaveRobot through its sensors.

The RLModel generates an action based on these observations, which is transmitted back 
to the SlaveRobot using the Emitter. The SlaveRobot then executes the action through its 
actuators. This process is repeated iteratively until the SlaveRobot achieves its objective or a 
termination condition, such as reaching the maximum episode count or violating predefined 
constraints, is met.

A significant drawback of the second RL design pattern is its reliance on the Supervisor-
Robot class, which inherits from the Webots Supervisor class. While this inheritance simplifies 
the implementation of methods such as reset() –intended to reset the environment to its 
initial state – it renders the design impractical for real-world applications. The functionality 
provided by the Supervisor class violates physical constraints inherent in real-world scenarios, 
making it infeasible to transfer these capabilities from simulation to reality. This limitation 
underscores the intermediate nature of virtual robot simulations, which ultimately serve as a 
stepping stone toward physical implementations of RL systems.

Figure 2. Proposed design pattern to facilitate the transfer of RL models from virtual simulations 
to real-world applications
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To overcome this constraint, we propose a third RL design pattern that eliminates all 
references to the Webots Supervisor class within the simulation code. Instead of utilizing a Su-
pervisorRobot class instance, this pattern introduces the concept of an external server, referred 
to as the RobotServer, which is accessed through internet-based communication, such as URL 
links. As shown in Figure 2, the RobotServer handles RL tasks for robots lacking the compu-
tational capacity to process complex tasks, such as object detection during visual processing.

Additionally, this design pattern introduces two types of robots: (1) RLRobot instances, 
which possess the computational power to perform RL tasks, and (2) Robot instances, which 
rely solely on their sensors and actuators. These Robot instances communicate with the Ro-
botServer via the Communicator class over the internet or interact with other robots using the 
Emitter and Receiver classes. This approach ensures a more realistic alignment with physical 
constraints while maintaining the flexibility required for RL experimentation.

3.2. Digital twin development process 

The DT concept has emerged as a transformative innovation, particularly in the field of indus-
trial automation, where it is revolutionizing how robots are designed, tested, and optimized. 
This research introduces a generalized methodology aimed at guiding the development and 
application of DT to facilitate robot testing, especially in scenarios involving RL techniques.

At its core, the process emphasizes the creation of a precise and fully functional virtual 
representation of a physical robot, replicating its operational environment and interactions. 
The DT acts as a robust testing framework, allowing RL algorithms to be developed and re-
fined in a safe, simulated setting. This approach empowers researchers and industry profes-
sionals to evaluate and optimize robotic systems while significantly reducing the risks, costs, 
and challenges associated with real-world experimentation.

To achieve this, the methodology leverages advanced software tools and cutting-edge 
frameworks to seamlessly integrate the robot’s structural, functional, and sensory charac-
teristics into a cohesive simulation. By incorporating these elements into a unified digital 
environment, the process ensures that the virtual twin mirrors the behavior and dynamics of 
the physical counterpart with high accuracy.

Consider the process of developing a DT for a robot as an example. Initially the robot’s 
movements were programmed manually. However, adapting to changes in the environment 
required reprogramming, which often proved costly and error prone. To address this chal-
lenge and minimize the risk of damage to the robot or its surroundings, a digital representa-
tion of the robot and its environment was created. This DT environment could be modelled 
using any cad software like Fusion 360, with critical components subsequently transferred 
to the Webots simulation platform. A robot model was integrated into this simulation. The 
approach outlined in this study enabled the testing of various RL algorithms in a virtual set-
ting, eliminating the potential hazards associated with using the physical robot. Once optimal 
movement strategies were identified, the trained deep learning models were transferred to 
the physical robot via ROS tools available within Webots.The advantages of digital twins are 
particularly evident in RL applications, where algorithms require iterative testing and fine-
tuning. Through simulation, a wide range of algorithms can be explored under controlled 
conditions, free from the hazards and limitations of physical trials. Once optimal policies and 
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behaviors are established in the virtual realm, the trained models can be effectively deployed 
onto the physical robot for additional training in the physical environment, ensuring compat-
ibility, efficiency, and real-world readiness. This streamlined workflow not only accelerates 
the robot development cycle but also bridges the gap between virtual experimentation and 
practical deployment, enabling the creation of smarter, more adaptable robotic solutions.

The creation of a DT begins with designing an RL-compatible environment, following 
standard APIs like OpenAI Gym to ensure compatibility with RL libraries such as Stable-Base-
lines3 and TensorFlow Agents. The RL agent perceives the environment through simulated 
sensor data, selects actions from a predefined action space, and receives rewards based on 
task performance. The reward structure is designed to align with training objectives, guiding 
the agent toward optimal behavior.

To enhance real-world applicability, domain randomization introduces variations in tex-
tures, lighting, and physical parameters, improving generalization. After training, learned 
policies are validated in simulation and refined for real-world deployment. This approach 
accelerates robotic development while reducing costs and risks.

In this study, Webots is integrated with Stable-Baselines3 to provide a structured RL testing 
environment. Stable-Baselines3 offers scalable RL algorithms, facilitating efficient communica-
tion between the agent and simulation. This integration supports iterative optimization, task 
design, and real-world readiness. Figure 3 presents the workflow for developing and deploy-
ing a DT in a production environment, involving key roles such as the Production Company, 
Simulation Engineer, and RL Engineer. The following section details the steps of this process.

1. Defining Requirements for the DT. The Production Company first defines the digital 
twin’s requirements, which are communicated to the Simulation Engineer. This includes 
specifying the robot’s tasks (e.g., pick-and-place, welding), operational constraints 

Figure 3. The sequence diagram of the generalized DT creation process
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(speed, payload, workspace limits), and necessary precision. Key data requirements 
for RL include Computer-Aided Design (CAD) models, sensor data, and historical op-
erational data. Data fusion integrates information from sources like robot controllers 
and industrial protocols. Effective data management ensures accuracy and reliability, 
enabling the DT to replicate real-world conditions for training and validation. The fol-
lowing Table 1 summarizes these data requirements. 

Table 1. Summary of the key data requirements for a DT of a robot designed for RL

Data Category Specific Data Points Importance for RL

Robot Model 
Data

CAD models (geometry, mass, inertia), 
kinematic and dynamic parameters (joint 
limits, motor characteristics).

Accurate representation of the robot’s 
physical properties and movement 
capabilities is crucial for realistic 
simulation and effective RL training.

Environment Data CAD models of the production line 
layout, machinery, fixtures, and objects 
the robot interacts with.

Enables the creation of a realistic 
virtual environment where the 
robot can learn to interact with its 
surroundings.

Operational Data Robot controller data (joint positions, 
velocities, accelerations, torques), sensor 
data (proximity, force, vision), PLC data, 
system logs.

Provides real-time data on the robot’s 
behaviour and the state of the 
production line, which can be used to 
validate the DT and inform the reward 
function for RL.

Task Definition 
Data

Specific goals and constraints of the task 
the robot needs to learn (e.g., target 
positions, assembly sequences, cycle 
times).

Defines the objective for the RL agent 
and helps in designing an appropriate 
reward function.

Performance Data Metrics for evaluating the robot’s 
performance (e.g., success rate, cycle 
time, energy consumption).

Used to assess the effectiveness of 
the RL training in the simulation and 
to evaluate the performance of the 
deployed robot in the real world.

Communication 
Data

Details of communication protocols and 
data links between the DT, the physical 
robot, sensors, and other systems (e.g., 
UR-RTDE, ROS/ROS2).

Enables the transfer of trained 
models to the physical robot and the 
potential for real-time synchronization 
and monitoring.

2. Creating the Detailed Robot and Environmental Model in Webots. The Simulation En-
gineer develops a detailed robot and environment model within Webots. The robot 
model includes kinematics, dynamics, actuators, sensors, and an end-effector, ensuring 
accurate simulation of motion and interactions. The environment model replicates the 
production layout, including objects, obstacles, and sensor placements. Balancing mod-
el fidelity and computational efficiency is essential. While high-detail models improve 
realism, they increase computational cost. The appropriate level of detail depends on 
task complexity, ensuring effective RL training without unnecessary overhead resource.

3. Simulation and Performance Bottleneck Identification. Once the DT is created in Webots, 
the Production Company runs simulations to test different layouts, optimize workflows, 
and identify bottlenecks. By analyzing robot performance under varying conditions, 
such as speed, load, and potential failure scenarios, engineers can detect inefficiencies, 
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reachability issues, and collision risks before physical deployment. Simulation data, 
including cycle times, trajectory analysis, and energy consumption, provides insights 
for refining system design and improving operational efficiency. This virtual testing 
approach reduces costs and minimizes disruptions to the production process.

4. Formulating Training Goals for the RL Engineer. The Production Company defines train-
ing objectives based on simulation analysis and provides the DT to the RL Engineer. 
These objectives specify tasks, such as pick-and-place or path planning, along with 
performance metrics like success rate and cycle time. Constraints, including safety 
limits and operational boundaries, are established to ensure feasibility in real-world 
deployment.

5. RL Training with DT. The RL Engineer utilizes the DT in Webots to define the reward 
function, select training algorithms, and train the robot. The reward function guides 
learning by assigning positive rewards for task completion and penalties for undesired 
actions. The choice of algorithm, such as Soft Actor-Critic, depends on task complexity 
and learning stability. Through iterative trial and error, the RL agent refines its policy to 
maximize cumulative rewards. DT enables safe, cost-effective training, allowing multiple 
simulations to accelerate learning without risks to physical equipment or production.

6. Delivery of the Trained Robot Model and Performance Metrics. The RL Engineer delivers 
the trained robot model and performance metrics to the production company. The 
model, typically a control policy or neural network weights, represents the learned 
behavior. Performance metrics, such as cumulative reward progression, policy stabil-
ity, task completion rate, and cycle time, assess training effectiveness. These metrics 
help determine if the learned policy meets operational requirements before real-world 
deployment.

7. Deployment of the Trained Robot and Real-World Connection. The production com-
pany deploys the trained model on the physical robot, ensuring compatibility be-
tween simulation and hardware. The robot then executes tasks autonomously based 
on the learned policy. Optionally, real-time integration with the DT allows continuous 
monitoring, performance evaluation, and further refinement of the control policy using 
real-world data.

This sequence showcases the importance of collaboration and the utility of tools like We-
bots and Stable-Baselines3 in developing efficient, well-trained robotic systems. The diagram 
also highlights how virtual environments, such as Webots, are indispensable for bridging 
simulation and real-world applications in a controlled and iterative manner.

4. Results

To evaluate the RL patterns from Section 3 and the DT method from Section 3.2, we selected 
two Webots environments, as shown in Figure 4. These experiments were designed not only 
to demonstrate the learning efficacy within the proposed WebotsRL framework but also to 
highlight its comparative strengths and practical advantages over existing approaches, par-
ticularly in standardizing Webots for modern RL libraries and improving the pathway to re-
al-world deployment. Both environments involve the inverted pendulum problem (Barto et al., 
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1970). The first (Figure 4, left) replicates the Deepbots RL framework for Webots (Kirtas et al., 
2020). It consists of a cart with a one-meter pole attached via a free hinge, equipped with a 
sensor to measure the pole’s angle. The task requires maintaining the pole in a vertical posi-
tion by moving the cart forward or backward, using a discrete PPO algorithm (Schulman et al., 
2017). The observation space includes the cart’s position and velocity, the pole’s angle, and 
its angular velocity. The agent selects between two actions – moving forward or backward – 
and receives a reward of +1 per step, including the termination step. Episodes terminate after 
1950 steps or when the pole falls or the cart moves beyond ±0.4 meters. A task is considered 
solved if the agent achieves an average score above 1950 over 100 consecutive episodes.

We used this environment to validate the consistency of our framework against results 
from Kirtas et al. (2020) and to assess the impact of Webots’ “speed-up simulation” mode on 
learning efficiency. The PPO agent, implemented with a two-layer neural network (10 ReLU 
neurons per layer), successfully solved the problem within approximately 3.5 hours of simu-
lated time, consistent with prior work. However, running the simulation in “speed-up” mode 
reduced execution time to less than 10 minutes without affecting performance. The learning 
curve (Figure 5, left) confirms alignment with previous results. This result not only validates 
the core functionality of our framework but also demonstrates an immediate advantage: 
compatibility with the updated OpenAI Gymnasium standard, allowing seamless integration 
with current RL libraries like Stable-Baselines3. This contrasts with the original Deepbots 
framework, which was developed for the older, now deprecated, OpenAI Gym. Furthermore, 

Figure 4. Two Webots environments used to test methods presented in this paper

Figure 5. The learning curves for both inverted pendulum environments
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the successful use of Webots’ “speed-up” mode underscores the framework’s ability to cap-
italize on simulator features for efficient experimentation.

The second environment utilizes a Webots model of the Pioneer 3-AT, a four-wheel, skid-
steer robot. This platform is selected for its suitability in RL experiments due to its well-de-
fined action space (skid-steer drive with motor control), sensor availability (wheel encoders), 
and robust physical characteristics (12 kg weight, 0.7 m/s max speed, 35% max traversable 
grade). The robot’s microcontroller and I/O capabilities, including digital and analog inputs, 
allow for diverse sensor integration and control. These features facilitate the development and 
testing of RL algorithms for tasks involving navigation and manipulation in varied terrains.

Figure 6. The learning curves of Pioneer 3-AT after 32 million steps 

The Pioneer 3-AT Webots model closely replicates its physical counterpart. This study 
evaluates whether an RL algorithm can achieve stable inverted pendulum control, similar to 
the toy cart example. Figure 5 (right) shows the learning curve over the first 1 million steps, 
where the model required approximately 30,000 training episodes but achieved only around 
60 cumulative reward per episode, indicating slower learning compared to the simpler system. 
To test long-term learning potential, we extended training to 32 million steps, randomizing 
the initial pendulum angle for each episode to enhance realism. We observed faster conver-
gence when initial conditions matched the toy cart experiment but by randomizing the initial 
pendulum angle in each episode we noticed significant drop in learning curve convergence. 
Figure 6 presents results using the trained model, where the average cumulative reward 
reached 500. However, occasional low rewards persisted, highlighting the challenge of RL in 
complex environments and the potential for errors in learned policies.

The observed challenges with the Pioneer 3-AT namely the slower convergence compared 
to the simpler cart-pole system, the significant drop in learning curve convergence when 
randomizing initial pendulum angles, and the persistence of occasional low rewards despite 
extensive training warrant a more detailed consideration. These issues are likely attributable 
to several factors inherent in more complex robotic systems. The Pioneer 3-AT platform, 
with its skid-steer dynamics and increased degrees of freedom compared to the basic cart, 
presents a substantially harder control problem. This complexity amplifies the difficulty of 
effective exploration in a larger state-action space and can exacerbate the credit assignment 
problem for the RL agent. Furthermore, while randomizing initial conditions enhances realism 
and the potential for generalization, it also greatly expands the state space the agent must 
learn to master, thereby slowing down the learning process.
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To address these convergence and performance issues, several advanced DRL strategies 
could be explored. Curriculum learning, for instance, would involve initially training the agent 
in simpler scenarios perhaps by starting with less randomization in the pendulum’s initial 
angle (like the initial conditions of the toy cart experiment where faster convergence was 
noted), a restricted range of cart movement, or even a temporarily stabilized pendulum and 
gradually increasing the complexity. This staged approach could allow the agent to develop 
foundational control policies before tackling the full difficulty of the task.

5. Conclusions 

This study introduced an open-source system and novel reinforcement learning (RL) design 
patterns for training and evaluating robotic models in Webots. By integrating RL frameworks 
with a structured digital twin methodology, we demonstrated an efficient approach for sim-
ulating and optimizing robot behavior before deployment in real-world environments. We 
analyzed three RL design patterns, highlighting the limitations of traditional Supervisor-based 
implementations and proposing an alternative that removes reliance on Webots’ Supervi-
sor class. This new approach, centered around an external robot server for task processing, 
improves transferability by ensuring a more realistic framework that aligns with physical 
constraints.

The broader implications of this work are significant for the field of robotics. The proposed 
methodology and framework are intended to facilitate a more seamless adaptation from vir-
tual training to real-world execution, potentially streamlining the development workflow for 
roboticists and engineers. The emphasis on the third design pattern directly contributes to 
addressing the persistent sim-to-real challenge by minimizing reliance on simulator-specific 
information often unavailable in physical robots. Furthermore, we demonstrated the digital 
twin process, detailing the steps required for creating an RL-compatible simulation environ-
ment. Through techniques like domain randomization and iterative training, the digital twin 
approach enhances the robustness of RL models, allowing them to generalize better across 
varying conditions. The effective integration of Webots with Stable-Baselines3 for structured 
RL experimentation supports scalable and efficient learning, paving the way for more complex 
DRL investigations within this environment. This structured approach can also yield economic 
benefits by reducing development time, minimizing risks to physical hardware, and acceler-
ating the deployment of robotic solutions.

Our experiments with the inverted pendulum and Pioneer 3-AT robot models provided 
insights into the impact of environment complexity on RL training efficiency. While the toy 
cart example achieved rapid convergence, the more realistic Pioneer 3-AT scenario required 
significantly longer training durations. The introduction of randomized initial conditions fur-
ther slowed convergence, emphasizing the challenges inherent in applying RL to complex 
systems. Despite prolonged training, the persistence of occasional low rewards in the Pioneer 
3-AT experiments highlighted the potential for errors in learned policies and underscored that 
current RL methodologies still require refinement for robust real-world applications.

Reflecting on these findings, several limitations of the current approach also warrant dis-
cussion. Firstly, while the third design pattern with an external robot server is proposed for 
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better real-world transferability, it introduces architectural complexity compared to simpler 
integrated patterns. The setup, management, and potential communication overhead of this 
server were not deeply explored and could present challenges. Secondly, the experimental 
validation, while covering a classic problem and a production-grade robot, was primarily 
focused on single-agent inverted pendulum tasks. The framework’s scalability and the digital 
twin methodology’s robustness in more complex scenarios, such as multi-agent RL or intricate 
manipulation tasks, require further investigation. Thirdly, the effectiveness of our approach 
heavily relies on the fidelity of the digital twin; creating and maintaining this accuracy, while 
balancing computational costs, remains a non-trivial challenge that can directly impact sim-
to-real transfer success. The observed difficulties in the Pioneer 3-AT training also point to the 
broader limitations of current DRL algorithms in terms of generalization and sample efficiency 
when applied to complex, high-dimensional systems. Finally, while the framework is tailored 
for Webots, its direct adaptability and the transfer of all its benefits to other simulation plat-
forms may be limited without significant modification.
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