
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/
licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source
are credited.

Copyright © 2024 The Author(s). Published by Vilnius Gediminas Technical University

eISSN 2783-6851

NEW TRENDS in
COMPUTER SCIENCES

2024

Volume 2

Issue 2

Pages 91–100

https://doi.org/10.3846/ntcs.2024.22274

JUST-IN-TIME SOFTWARE DEFECT PREDICTION USING A DEEP
LEARNING-BASED MODEL

Rodrigo Alexandre DOS SANTOS

Department of Software Development, CPQD Foundation, Campinas, SP, Brazil

Article History: Abstract. The increase in software complexity, driven by technological developments and user
demands, has created major challenges for companies in Software Quality Assurance. Com-
panies seek efficient ways to identify and mitigate defects, recognizing that they cause high
financial costs and other problems with negative impacts on business. Among defect pre-
diction approaches, Just-In-Time Software Defect Prediction has received increased attention
from software industry professionals in recent years. This technique aims to identify and treat
defects early, to improve the quality of the software development cycle. This study proposes
a Deep Learning-based approach for Just-In-Time Software Defect Prediction using a large
dataset of historical data from several popular software projects. The Deep Learning model
was trained to identify defects by analyzing the software metrics provided by the dataset. The
model achieved an accuracy of 82.08% in its predictions, and it was possible to determine
the most relevant metrics for its conclusions through interpretability techniques. The results
obtained demonstrate the potential of Just-In-Time Software Defect Prediction as a tool for
improving software quality and encouraging the development of new studies and improve-
ments in this area of research.

 ■ received 22 September 2024
 ■ accepted 6 December 2024

Keywords: software defect prediction, machine learning, deep learning.

      Corresponding author. E-mail: rodrigoasantos1981@gmail.com

1. Introduction

Software Quality Assurance (SQA) is a topic that has received increasing attention from com-
panies in recent years. Software has become increasingly complex to keep up with techno-
logical developments and meet user demands, and this increase in complexity has created
several challenges for companies to ensure that their products reach high levels of quality.
Although there have been many advances in tools, methodologies, and processes for moni-
toring and managing quality during the software development lifecycle, companies still face
a high occurrence of defects in their systems. The existence of many defects in software can
generate user dissatisfaction, increased costs related to corrective maintenance, commitment
of resources that could be directed to improvements and developments in the product, and
a negative impact on the company’s reputation.

According to Krasner (2022), concern about the high financial costs generated by software
quality problems has increased in recent years and this fact highlights the need for compa-
nies to increasingly invest in standards, practices, and tools aimed at mitigating the factors
generators of this problem. One of the recommendations highlighted by Krasner (2022) for
improving software quality is the investment in tools based on Artificial Intelligence (AI)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3846/ntcs.2024.22274
https://orcid.org/0000-0001-6688-0803
mailto:rodrigoasantos1981@gmail.com

92 R. A. dos Santos. Just-In-Time Software Defect Prediction using a deep learning-based model

for automatic detection of defects to improve the productivity of software engineers and
mitigate the occurrence of defects. The author highlights the concern with the productivity
of software engineers because his research has shown that a significant percentage of the
current costs of software projects are spent on corrective activities rather than creation ac-
tivities, and it is estimated that software developers have on average 30% of their working
time committed to software quality problems. AI-based analysis and monitoring tools have
the potential to assist in the rapid detection and diagnosis of defects, contributing to the
reduction of efforts and costs spent on SQA activities.

This study proposes an approach based on Deep Learning for predicting defects in soft-
ware. The objective is to evaluate the potential of using Deep Learning models as tools to
help improve software quality. The study is focused on product metrics, that is, the metrics
associated with the software artifacts produced. The scope of the study covers advanced
defect prediction techniques and large software projects that are widely popular in the mar-
ket. The use of popular projects aims to reproduce realistic scenarios and contribute to the
dissemination of the studied practices in the software industry.

2. Literature review

SQA is the set of practices and processes carried out to ensure that the software meets
established quality standards. According to Rathore and Kumar (2019), SQA activities are
performed during all phases of the software development process and aim to monitor and
control resources, costs, and deadlines related to the process. The activities commonly car-
ried out in SQA are quality audits, requirements management, formal technical reviews, code
inspections, configuration management, performance and usability assessments, software
testing, and software defect prediction.

Software Defect Prediction (SDP) has been one of the most covered research topics in
Software Engineering in the last two decades and, according to Mahbub et al. (2023), one
of the reasons for this is the fact that companies recognize the importance of detecting and
correcting software defects before releasing them to end users. According to Li et al. (2018),
the increase in attention focused on the topic of SDP in recent years can be seen in the
number of research articles published. SDP is used during the initial phases of the software
development process to identify the software artifacts most likely to present defects and
to enable the prioritization of tests and validations of these artifacts and the correction of
possible defects as soon as possible.

SDP is used as a tool to help improve software quality. According to Sirshar et al. (2019),
one of the expected benefits of using SDP is that, by identifying which software artifacts are
most likely to present defects, the development team can focus its efforts on testing and
validating these artifacts to direct resources available for validation of software modules
considered most critical. It is also expected that the prediction and fixing of defects in the
early phases of the software development process will provide cost reduction as practical
experience shows that these costs become greater when defects are identified in later phases
of the process or when the software is already in production.

Software quality is normally assessed through metrics that represent aspects of its intrinsic
complexity and the complexity of its development process. SDP is carried out through the

New Trends in Computer Sciences, 2024, 2(2), 91–100 93

analysis of metrics generated from historical data on defects. According to Thota et al. (2020),
the data for generating metrics is obtained from software versioning control systems and
issue-tracking systems. According to Rathore and Kumar (2019), several works have explored
the use of different types of metrics to identify which type provides better performance in
predicting defects, but the results have varied between the different works due to the differ-
ences between the different contexts in which the studies were carried out.

Several studies have proposed the use of Machine Learning (ML) techniques for SDP in
recent years. These works used ML models to predict defects through learning patterns in
datasets composed of metrics collected from historical data from software projects. Accord-
ing to Rathore and Kumar (2019), these studies have explored and evaluated several aspects
that can influence the performance of defect prediction and the results observed allow us
to conclude that there are still several opportunities for improvements and challenges to be
overcome in this area of research.

Table 1 presents some studies carried out in recent years. The authors evaluated several
ML models for SDP on several open datasets. The results obtained show that there is no sin-
gle model with the best performance in all scenarios and that the results may vary depending
on the characteristics of each dataset.

Table 1. Studies about software defect prediction

Authors Trained models Datasets Best model

Shah e Pujara (2020) Logistic Regression, Random
Forest, Naïve Bayes, Gradient
Boosting, Support Vector Machine,
and Artificial Neural Network

7 datasets from the
NASA Promise project
(binary classification)

Artificial Neural
Network (93%
accuracy)

Goyal and Sinha
(2023)

Logistic Regression, Random
Forest, Support Vector Machine,
Naive Bayes, and Artificial Neural
Network

5 datasets from the
NASA Promise project
(binary classification)

Artificial Neural
Network (93.8%
accuracy)

Kaur et al. (2023) Decision Tree Regression and
K-nearest Neighbor

A dataset from the
Promise Software
Engineering project
(binary classification)

Decision Tree
Regression
(99.37%
accuracy)

Santos et al. (2020) Logistic Regression, Naive Bayes,
K-Nearest Neighbor, Artificial
Neural Network, Decision Tree,
Support Vector Machine, Random
Forest, and XGBoost

9 datasets from the
NASA Promise project
(binary classification)

XGBoost (91.7%
Area Under the
Curve)

Khalid et al. (2023) K-means, Support Vector Machine,
Naive Bayes, and Random Forest

A dataset from the
NASA Promise project
(binary classification)

Support Vector
Machine (99.8%
accuracy)

Nevendra and Singh
(2021)

Support Vector Machine,
K-Nearest Neighbor, AdaBost, and
Convolutional Neural Network

19 datasets from the
tera-Promise project
(binary classification)

Convolutional
Neural Network
(79% accuracy)

Lamba et al. (2019) Linear Regression, Random Forest,
Artificial Neural Network, Support
Vector Machine, Decision Tree, and
Decision Stump

9 datasets from
Apache Software
Foundation projects
(clustering)

Support Vector
Machine (88%
accuracy)

94 R. A. dos Santos. Just-In-Time Software Defect Prediction using a deep learning-based model

Cross-Project Defect Prediction (CPDP) is an issue that has sparked the interest of software
industry professionals. According to Thota et al. (2020), CPDP consists of using metrics from
different software projects to build datasets and prediction models capable of generalizing
pattern learning so that it is possible to predict defects in new projects distinct from those
used in model training. An advantage of using CPDP cited by the author is that companies
with insufficient historical project data to create prediction models can benefit from pre-
trained models on their previous projects or projects from other companies.

Among the various approaches already proposed for SDP, Just-In-Time Software Defect
Prediction (JIT-SDP) has received a lot of attention from researchers in recent years. According
to Zhao et al. (2023), JIT-SDP is a technique to determine whether a change is potentially
defect-inducing when the change is registered in versioning control systems. According to
Cabral et al. (2023), what differs JIT-SDP from other traditional SDP approaches is the level
of granularity of the artifacts considered in the predictions, since while traditional SDP ap-
proaches consider artifacts at the file or module level, JIT-SDP considers artifacts at the source
code level (fine granularity). According to Mahbub et al. (2023), JIT-SDP has offered the most
accurate predictions among the various approaches to SDP proposed in recent years.

According to Zhao et al. (2023), the JIT-SDP approach has the following advantages over
traditional SDP approaches: reducing efforts for code review and correction activities because
it always considers smaller artifacts (fine granularity); the possibility for predictions to be
made incrementally and defects to be identified earlier, which is more in line with continu-
ous deployment practices used in modern software development; facilitate the attribution
of Quality Assurance activities (corrections and tests) to the responsible specialists since fine
granularity changes are more specific and punctual.

3. Methods

3.1. Dataset description

The dataset used in this study is called ApacheJIT. This dataset was derived from the work
developed by Keshavarz and Nagappan (2022) and the main motivation for its creation is
the scarcity of large public datasets focused on CPDP. The authors made the dataset publicly
available for use in research related to CPDP that requires large amounts of data for training
Machine Learning and Deep Learning models.

ApacheJIT was built from information obtained from 14 Java projects maintained by the
Apache Foundation. The projects used were ActiveMQ, Camel, Cassandra, Flink, Groovy, HDFS,
HBase, Hive, Ignite, MapReduce, Kafka, Spark, Zeppelin, and Zookeeper. Initially, the authors
identified issues that were reported as bugs in the issue-tracking systems of these projects.
Using techniques recommended in the literature, the commits associated with these issues
were retrieved from the project repositories and classified into defective commits or de-
fect-free commits. Additionally, change metrics associated with each commit were collected
and included in the dataset. The dataset has 106,674 samples that represent the verified
commits, of which 28,239 are defective commits and 78,435 are defect-free commits. Table 2
presents the description of the features included in the dataset.

New Trends in Computer Sciences, 2024, 2(2), 91–100 95

Table 2. ApacheJIT features

Feature Description Type

COMMIT_ID Commit hash String
PROJECT Project name String
BUGGY Commit classification (True = defective, False = defect-free) String
FIX Is fixing any previous bug? (True = yes, False = no) String
YEAR Year of registration String
AUTHOR_DATE Change date String
LA Number of lines added int
LD Number of deleted lines int
NF Number of files changed int
ND Number of directories changed int
NS Number of modules changed int
ENT Distribution of changed code across each file (Entropy) float
NDEV Number of developers who participated in the change float
AGE Average time interval between last commit and current commit on

affected files
float

NUC Number of unique commits to modify each file float
AEXP Developer experience level measured by the number of changes the

developer made previously
int

AREXP Developer experience level measured by the number of recent
changes the developer made

float

ASEXP Developer experience level is measured by the number of changes
the developer made in the module affected by the commit

float

3.2. Preprocessing

The features LA, LD, NF, ND, NS, ENT, NDEV, AGE, NUC, AEXP, AREXP, and ASEXP were
selected for use in this study because they represent metrics about software changes. The
COMMIT_ID, PROJECT, FIX, YEAR, and AUTHOR_DATE features were disregarded because they
do not represent metrics.

Normalization techniques were used on the features because their values were on dif-
ferent scales and their distribution was asymmetric. Another reason for using normalization
techniques was to minimize negative impacts on the model’s performance that could be
caused by the presence of outliers that were verified in all features.

The dataset samples are divided into 2 classes: defect-free (class 0) and defective (class 1).
The dataset was a little unbalanced as 74% of the samples belonged to class 0 and 23% of
the samples belonged to class 1. The Synthetic Minority Over-sampling (SMOTE) technique
was used to balance the dataset and the total number of samples became 156,870 with 50%
of the samples belonging to each class.

3.3. Model training

A Multilayer Perceptron model was developed to predict software defects using ApacheJIT.
Figure 1 shows the architecture of the proposed model. This architecture was the one that

96 R. A. dos Santos. Just-In-Time Software Defect Prediction using a deep learning-based model

achieved the best accuracy among several tested configurations. The architecture is com-
posed of 3 hidden layers with 512, 2048, and 512 neurons. The model was implemented
with the TensorFlow framework and the Keras library. The dataset was stratified into 80%
of training samples and 20% of testing samples. The training was carried out in 500 epochs
with a learning rate of 0.001 (default value in Keras library), batch size of 32 (default value in
Keras library), and “he_normal” kernel initializer. The “he_normal” kernel initializer was chosen
because it provides better results in layers that use the Rectified Linear Activation Unit (ReLU)
activation function.

The model has an input layer with 12 neurons that receive the values of the 12 features
used. The hidden layers (with 512, 2048, and 512 neurons, respectively) use the ReLU activa-
tion function. ReLU was chosen because it is a function that presents simplicity of execution
and computational efficiency when compared to other popular functions. Furthermore, the
use of ReLU aims to reduce the possibility of the vanishing gradient problem, which can cause
problems of slowness or stagnation in model training.

4. Results and discussion

The Multilayer Perceptron Model achieved an accuracy of 82.08% on the test set. The accura-
cy achieved was considered satisfactory due to the complexity of dealing with a large dataset
that has 156,870 samples and encompasses a variety of defects from different projects. Ta-
ble 3 and Figure 2 show the detailed metrics and the training confusion matrix, where it can
be seen that the model achieved similar performance in identifying the 2 classes.

Table 3. Detailed training metrics

Class Precision Recall F1-Score

0 0.84 0.79 0.82
1 0.80 0.85 0.83

Figure 1. Multilayer perceptron architecture

New Trends in Computer Sciences, 2024, 2(2), 91–100 97

The SHapley Additive exPlanation (SHAP) technique was applied to the model to deter-
mine the contribution of each feature to the predictions. SHAP is a technique proposed by
Lundberg and Lee (2017) for the interpretability of Machine Learning model predictions. This
technique determines the contribution of each feature to the model prediction based on
game theory concepts. The values calculated by SHAP determine the contribution of each
feature to an individual prediction (local interpretation) and the average of the values makes
it possible to determine the feature’s contribution to the entire data set (global interpreta-
tion). In this study, the SHAP technique was applied to the test set using all 31,374 samples.
Figure 3 shows the importance of each feature according to the values calculated by SHAP.
The features that contributed most to the model predictions were LA, AEXP, and NUC.

Figure 2. Confusion matrix of training

Figure 3. SHAP explanation for multilayer perceptron predictions

98 R. A. dos Santos. Just-In-Time Software Defect Prediction using a deep learning-based model

The LA, AEXP, and NUC metrics are widely covered in Software Engineering and, although
it cannot be said that these are the most relevant metrics in all contexts, the model’s conclu-
sions can be considered coherent with what is observed in many real cases. The LA metric
represents the number of lines added in a change and, in certain contexts, adding many lines
can increase code complexity and introduce new defects. The AEXP metric represents the
experience level of the software engineer, and although experience is not a guarantee of the
absence of defects, more experienced engineers are typically expected to introduce fewer
defects. The NUC metric represents the number of different areas of the software that are
being changed, and a high number for this metric may be an indication that the changes are
dispersed throughout the code and there is a greater risk of introducing defects. Therefore,
these 3 metrics have recognized importance in real scenarios.

The use of interpretability techniques such as SHAP adds the characteristic of transpar-
ency to the proposed model, as it allows the understanding of how the model makes its
predictions and this increases software engineers’ confidence in its results. An explanation
of the contribution level of each feature makes it possible to identify metrics that contribute
little or are irrelevant to the predictions, and these metrics could be discarded to simplify
the model and improve its performance. SHAP results can also be useful for the continuous
improvement of the software development process because software engineers can focus
their efforts on improving the metrics identified by SHAP as most relevant.

Identifying which metrics contribute most to discovering which factors most influence the
introduction of defects in software allows software engineers to focus on critical issues and
improve their development techniques, and development teams can adjust their processes
to mitigate these factors in future projects. On the other hand, identifying that a certain
metric does little to discover these factors allows development teams to stop collecting or
monitoring it and save efforts and resources. Identifying relevant and irrelevant metrics helps
refine the defect prediction process, making it more accurate and aligned with the factors
that impact software quality.

5. Limitations and future direction

The model uses 2,107,394 trainable parameters (weights and biases of artificial neural net-
work) and can be considered a model of moderate complexity. This characteristic can be
considered a trade-off of the proposed solution because it demands greater computational
cost and more time for training. A suggestion for future work is the evaluation of other types
of artificial neural networks for training with ApacheJIT to find a model that achieves a better
balance between performance and computational costs.

Another approach for executing JIT-SDP is to consider changes in the source code itself
to determine how syntactic and semantic aspects of the source code can influence the oc-
currence of defects. ApacheJIT does not provide features containing the source code of the
commits made, but there are other public datasets with this feature. A suggestion for future
work is to train a Deep Learning model with a dataset containing source code to evaluate
whether this approach allows for better performance than the metrics-based approach used
in this study.

New Trends in Computer Sciences, 2024, 2(2), 91–100 99

6. Conclusions

The use of defect prediction techniques is a very desirable alternative for improving software
quality. Techniques based on Machine Learning and Deep Learning are considered promising
in this scenario due to the possibility of automating analyses and reducing efforts and costs
spent in the process. Reusing historical data from other software projects through CPDP is
an approach that can mitigate difficulties that could arise and prevent a certain company
from adopting defect prediction in its projects. The early discovery and treatment of defects
generate the opportunity to improve the execution of the phases of the software develop-
ment cycle, as it allows for greater predictability and control over the allocation of resources
involved in the process.
The use of interpretability techniques to generate transparency and a better understanding
of how Machine Learning models reach their conclusions should become an increasing trend
given the need to increase users’ confidence in model decisions. This characteristic is consid-
ered a requirement mainly in domains in which decisions made are considered critical due to
the consequences they can cause or in domains in which decisions must comply with strict
regulations. The interpretability of models can also be useful for discovering insights into the
data or for mitigating possible biases present in the data.

The task of predicting defects in modern software represents a great challenge for the
following reasons: there are different types of defects such as functional bugs, performance
problems, and security flaws, which generates a greater variety of situations to be predicted;
software has millions of lines of code spread across different modules and integrations, which
increases the difficulty of predicting the location of defects; there are several technologies
and tools used together to develop software, which increases the difficulty of detecting
patterns in the characteristics of artifacts. The use of advanced pattern prediction techniques
such as Deep Learning and the assertive choice of software metrics are essential to achieve
good performance and overcome these challenges.

References

Cabral G. G., Minku, L. L., Oliveira, A. L. I., Pessoa, D. A., & Tabassum, S. (2023). An investigation of online
and offline learning models for online just-in-time software defect prediction. Empirical Software
Engineering, 28(1), Article 121. https://doi.org/10.1007/s10664-023-10335-6

Goyal, J., & Sinha, R. R. (2023). Machine learning-based defect prediction for software efficiency. Interna-
tional Journal of Intelligent Systems and Applications in Engineering, 11(6s), 257–266.

Kaur, G., Pruthi, J., & Gandhi, P. (2023). Machine learning based software fault prediction models. Karbala
International Journal of Modern Science, 9(2), Article 9. https://doi.org/10.33640/2405-609X.3297

Keshavarz, H., & Nagappan, M. (2022). ApacheJIT: A large dataset for just-in-time defect prediction.
In Proceedings of the 19th International Conference on Mining Software Repositories (pp. 191–195).
Association for Computing Machinery. https://doi.org/10.1145/3524842.3527996

Khalid, A., Badshah, G., Ayub, N., Shiraz, M., & Ghouse, M. (2023). Software defect prediction analysis using
machine learning techniques. Sustainability, 15(6), Article 5517. https://doi.org/10.3390/su15065517

Krasner, H. (2022). The cost of poor software quality in the US: A 2022 report. CISQ. https://www.it-cisq.org
Lamba, T., Kavita, & Mishra, A. K. (2019). Optimal machine learning model for software defect prediction.

International Journal of Intelligent Systems and Applications, 11(2), 36–48.
https://doi.org/10.5815/ijisa.2019.02.05

https://doi.org/10.1007/s10664-023-10335-6
https://doi.org/10.33640/2405-609X.3297
https://doi.org/10.1145/3524842.3527996
https://doi.org/10.3390/su15065517
https://www.it-cisq.org
https://doi.org/10.5815/ijisa.2019.02.05

100 R. A. dos Santos. Just-In-Time Software Defect Prediction using a deep learning-based model

Li, Z., Jing, X.-Y., & Zhu, X. (2018). Progress on approaches to software defect prediction. IET Software,
12(3), 161–175. https://doi.org/10.1049/iet-sen.2017.0148

Lundberg S. M., & Lee S. (2017). A unified approach to interpreting model predictions. arXiv.
https://doi.org/10.48550/arXiv.1705.07874

Mahbub, P., Shuvo, O., & Masudur Rahman, M. (2023). Defectors: A large, diverse Python dataset for
defect prediction. In 2023 IEEE/ACM 20th International Conference on Mining Software Repositories (pp.
393–397). IEEE. https://doi.org/10.1109/MSR59073.2023.00085

Nevendra, M., & Singh, P. (2021). Software defect prediction using deep learning. Journal of Applied
Sciences, 18(10), 173–189. https://doi.org/10.12700/APH.18.10.2021.10.9

Rathore, S. S., & Kumar, S. (2019). A study on software fault prediction techniques. Artificial Intelligence
Review, 51(1), 255–327. https://doi.org/10.1007/s10462-017-9563-5

Santos, G., Figueiredo, E., Veloso, A., Viggiato, M., & Ziviani, N. (2020). Predicting software defects with
explainable machine learning. In 19th Brazilian Symposium on Software Quality (Article 18). Association
for Computing Machinery. https://doi.org/10.1145/3439961.3439979

Shah, M., & Pujara, N. (2020). Software defects prediction using machine learning. arXiv.
https://doi.org/10.48550/arXiv.2011.00998

Sirshar, M., Mir, H., Amir, K., & Zainab, L. (2019). Comparative analysis of software defect prediction tech-
niques. Preprints. https://www.preprints.org/manuscript/201912.0075/v1

Thota, M. K., Shajin, F. H., & Rajesh, P. (2020). Survey on software defect prediction techniques. Interna-
tional Journal of Applied Science and Engineering, 17(4), 331–344.
https://doi.org/10.6703/IJASE.202012_17(4).331

Zhao, Y., Damevski, K., & Chen, H. (2023). A Systematic survey of just-in-time software defect prediction.
ACM Computing Surveys, 55(10), Article 201. https://doi.org/10.1145/3567550

https://doi.org/10.1049/iet-sen.2017.0148
https://doi.org/10.48550/arXiv.1705.07874
https://doi.org/10.1109/MSR59073.2023.00085
https://doi.org/10.12700/APH.18.10.2021.10.9
https://doi.org/10.1145/3439961.3439979
https://doi.org/10.48550/arXiv.2011.00998
https://www.preprints.org/manuscript/201912.0075/v1
https://doi.org/10.6703/IJASE.202012_17(4).331
https://doi.org/10.1145/3567550

