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Article History:  Abstract. The increase in software complexity, driven by technological developments and user 
demands, has created major challenges for companies in Software Quality Assurance. Com-
panies seek efficient ways to identify and mitigate defects, recognizing that they cause high 
financial costs and other problems with negative impacts on business. Among defect pre-
diction approaches, Just-In-Time Software Defect Prediction has received increased attention 
from software industry professionals in recent years. This technique aims to identify and treat 
defects early, to improve the quality of the software development cycle. This study proposes 
a Deep Learning-based approach for Just-In-Time Software Defect Prediction using a large 
dataset of historical data from several popular software projects. The Deep Learning model 
was trained to identify defects by analyzing the software metrics provided by the dataset. The 
model achieved an accuracy of 82.08% in its predictions, and it was possible to determine 
the most relevant metrics for its conclusions through interpretability techniques. The results 
obtained demonstrate the potential of Just-In-Time Software Defect Prediction as a tool for 
improving software quality and encouraging the development of new studies and improve-
ments in this area of   research. 
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1. Introduction 

Software Quality Assurance (SQA) is a topic that has received increasing attention from com-
panies in recent years. Software has become increasingly complex to keep up with techno-
logical developments and meet user demands, and this increase in complexity has created 
several challenges for companies to ensure that their products reach high levels of quality. 
Although there have been many advances in tools, methodologies, and processes for moni-
toring and managing quality during the software development lifecycle, companies still face 
a high occurrence of defects in their systems. The existence of many defects in software can 
generate user dissatisfaction, increased costs related to corrective maintenance, commitment 
of resources that could be directed to improvements and developments in the product, and 
a negative impact on the company’s reputation.

According to Krasner (2022), concern about the high financial costs generated by software 
quality problems has increased in recent years and this fact highlights the need for compa-
nies to increasingly invest in standards, practices, and tools aimed at mitigating the factors 
generators of this problem. One of the recommendations highlighted by Krasner (2022) for 
improving software quality is the investment in tools based on Artificial Intelligence (AI) 
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for automatic detection of defects to improve the productivity of software engineers and 
mitigate the occurrence of defects. The author highlights the concern with the productivity 
of software engineers because his research has shown that a significant percentage of the 
current costs of software projects are spent on corrective activities rather than creation ac-
tivities, and it is estimated that software developers have on average 30% of their working 
time committed to software quality problems. AI-based analysis and monitoring tools have 
the potential to assist in the rapid detection and diagnosis of defects, contributing to the 
reduction of efforts and costs spent on SQA activities.

This study proposes an approach based on Deep Learning for predicting defects in soft-
ware. The objective is to evaluate the potential of using Deep Learning models as tools to 
help improve software quality. The study is focused on product metrics, that is, the metrics 
associated with the software artifacts produced. The scope of the study covers advanced 
defect prediction techniques and large software projects that are widely popular in the mar-
ket. The use of popular projects aims to reproduce realistic scenarios and contribute to the 
dissemination of the studied practices in the software industry.

2. Literature review

SQA is the set of practices and processes carried out to ensure that the software meets 
established quality standards. According to Rathore and Kumar (2019), SQA activities are 
performed during all phases of the software development process and aim to monitor and 
control resources, costs, and deadlines related to the process. The activities commonly car-
ried out in SQA are quality audits, requirements management, formal technical reviews, code 
inspections, configuration management, performance and usability assessments, software 
testing, and software defect prediction.

Software Defect Prediction (SDP) has been one of the most covered research topics in   
Software Engineering in the last two decades and, according to Mahbub et al. (2023), one 
of the reasons for this is the fact that companies recognize the importance of detecting and 
correcting software defects before releasing them to end users. According to Li et al. (2018), 
the increase in attention focused on the topic of SDP in recent years can be seen in the 
number of research articles published. SDP is used during the initial phases of the software 
development process to identify the software artifacts most likely to present defects and 
to enable the prioritization of tests and validations of these artifacts and the correction of 
possible defects as soon as possible.

SDP is used as a tool to help improve software quality. According to Sirshar et al. (2019), 
one of the expected benefits of using SDP is that, by identifying which software artifacts are 
most likely to present defects, the development team can focus its efforts on testing and 
validating these artifacts to direct resources available for validation of software modules 
considered most critical. It is also expected that the prediction and fixing of defects in the 
early phases of the software development process will provide cost reduction as practical 
experience shows that these costs become greater when defects are identified in later phases 
of the process or when the software is already in production.

Software quality is normally assessed through metrics that represent aspects of its intrinsic 
complexity and the complexity of its development process. SDP is carried out through the 
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analysis of metrics generated from historical data on defects. According to Thota et al. (2020), 
the data for generating metrics is obtained from software versioning control systems and 
issue-tracking systems. According to Rathore and Kumar (2019), several works have explored 
the use of different types of metrics to identify which type provides better performance in 
predicting defects, but the results have varied between the different works due to the differ-
ences between the different contexts in which the studies were carried out.

Several studies have proposed the use of Machine Learning (ML) techniques for SDP in 
recent years. These works used ML models to predict defects through learning patterns in 
datasets composed of metrics collected from historical data from software projects. Accord-
ing to Rathore and Kumar (2019), these studies have explored and evaluated several aspects 
that can influence the performance of defect prediction and the results observed allow us 
to conclude that there are still several opportunities for improvements and challenges to be 
overcome in this area of   research.

Table 1 presents some studies carried out in recent years. The authors evaluated several 
ML models for SDP on several open datasets. The results obtained show that there is no sin-
gle model with the best performance in all scenarios and that the results may vary depending 
on the characteristics of each dataset.

Table 1. Studies about software defect prediction

Authors Trained models Datasets Best model

Shah e Pujara (2020) Logistic Regression, Random 
Forest, Naïve Bayes, Gradient 
Boosting, Support Vector Machine, 
and Artificial Neural Network

7 datasets from the 
NASA Promise project 
(binary classification)

Artificial Neural 
Network (93% 
accuracy)

Goyal and Sinha 
(2023)

Logistic Regression, Random 
Forest, Support Vector Machine, 
Naive Bayes, and Artificial Neural 
Network

5 datasets from the 
NASA Promise project 
(binary classification)

Artificial Neural 
Network (93.8% 
accuracy)

Kaur et al. (2023) Decision Tree Regression and 
K-nearest Neighbor

A dataset from the 
Promise Software 
Engineering project 
(binary classification)

Decision Tree 
Regression 
(99.37% 
accuracy)

Santos et al. (2020) Logistic Regression, Naive Bayes, 
K-Nearest Neighbor, Artificial 
Neural Network, Decision Tree, 
Support Vector Machine, Random 
Forest, and XGBoost

9 datasets from the 
NASA Promise project 
(binary classification)

XGBoost (91.7% 
Area Under the 
Curve)

Khalid et al. (2023) K-means, Support Vector Machine, 
Naive Bayes, and Random Forest

A dataset from the 
NASA Promise project 
(binary classification)

Support Vector 
Machine (99.8% 
accuracy)

Nevendra and Singh 
(2021)

Support Vector Machine, 
K-Nearest Neighbor, AdaBost, and 
Convolutional Neural Network

19 datasets from the 
tera-Promise project 
(binary classification)

Convolutional 
Neural Network 
(79% accuracy)

Lamba et al. (2019) Linear Regression, Random Forest, 
Artificial Neural Network, Support 
Vector Machine, Decision Tree, and 
Decision Stump

9 datasets from 
Apache Software 
Foundation projects 
(clustering)

Support Vector 
Machine (88% 
accuracy)
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Cross-Project Defect Prediction (CPDP) is an issue that has sparked the interest of software 
industry professionals. According to Thota et al. (2020), CPDP consists of using metrics from 
different software projects to build datasets and prediction models capable of generalizing 
pattern learning so that it is possible to predict defects in new projects distinct from those 
used in model training. An advantage of using CPDP cited by the author is that companies 
with insufficient historical project data to create prediction models can benefit from pre-
trained models on their previous projects or projects from other companies.

Among the various approaches already proposed for SDP, Just-In-Time Software Defect 
Prediction (JIT-SDP) has received a lot of attention from researchers in recent years. According 
to Zhao et al. (2023), JIT-SDP is a technique to determine whether a change is potentially 
defect-inducing when the change is registered in versioning control systems. According to 
Cabral et al. (2023), what differs JIT-SDP from other traditional SDP approaches is the level 
of granularity of the artifacts considered in the predictions, since while traditional SDP ap-
proaches consider artifacts at the file or module level, JIT-SDP considers artifacts at the source 
code level (fine granularity). According to Mahbub et al. (2023), JIT-SDP has offered the most 
accurate predictions among the various approaches to SDP proposed in recent years.

According to Zhao et al. (2023), the JIT-SDP approach has the following advantages over 
traditional SDP approaches: reducing efforts for code review and correction activities because 
it always considers smaller artifacts (fine granularity); the possibility for predictions to be 
made incrementally and defects to be identified earlier, which is more in line with continu-
ous deployment practices used in modern software development; facilitate the attribution 
of Quality Assurance activities (corrections and tests) to the responsible specialists since fine 
granularity changes are more specific and punctual.

3. Methods

3.1. Dataset description

The dataset used in this study is called ApacheJIT. This dataset was derived from the work 
developed by Keshavarz and Nagappan (2022) and the main motivation for its creation is 
the scarcity of large public datasets focused on CPDP. The authors made the dataset publicly 
available for use in research related to CPDP that requires large amounts of data for training 
Machine Learning and Deep Learning models. 

ApacheJIT was built from information obtained from 14 Java projects maintained by the 
Apache Foundation. The projects used were ActiveMQ, Camel, Cassandra, Flink, Groovy, HDFS, 
HBase, Hive, Ignite, MapReduce, Kafka, Spark, Zeppelin, and Zookeeper. Initially, the authors 
identified issues that were reported as bugs in the issue-tracking systems of these projects. 
Using techniques recommended in the literature, the commits associated with these issues 
were retrieved from the project repositories and classified into defective commits or de-
fect-free commits. Additionally, change metrics associated with each commit were collected 
and included in the dataset. The dataset has 106,674 samples that represent the verified 
commits, of which 28,239 are defective commits and 78,435 are defect-free commits. Table 2 
presents the description of the features included in the dataset.
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Table 2. ApacheJIT features

Feature Description Type

COMMIT_ID Commit hash String
PROJECT Project name String
BUGGY Commit classification (True = defective, False = defect-free) String
FIX Is fixing any previous bug? (True = yes, False = no) String
YEAR Year of registration String
AUTHOR_DATE Change date String
LA Number of lines added int
LD Number of deleted lines int
NF Number of files changed int
ND Number of directories changed int
NS Number of modules changed int
ENT Distribution of changed code across each file (Entropy) float
NDEV Number of developers who participated in the change float
AGE Average time interval between last commit and current commit on 

affected files
float

NUC Number of unique commits to modify each file float
AEXP Developer experience level measured by the number of changes the 

developer made previously
int

AREXP Developer experience level measured by the number of recent 
changes the developer made

float

ASEXP Developer experience level is measured by the number of changes 
the developer made in the module affected by the commit

float

3.2. Preprocessing

The features LA, LD, NF, ND, NS, ENT, NDEV, AGE, NUC, AEXP, AREXP, and ASEXP were 
selected for use in this study because they represent metrics about software changes. The 
COMMIT_ID, PROJECT, FIX, YEAR, and AUTHOR_DATE features were disregarded because they 
do not represent metrics.

Normalization techniques were used on the features because their values   were on dif-
ferent scales and their distribution was asymmetric. Another reason for using normalization 
techniques was to minimize negative impacts on the model’s performance that could be 
caused by the presence of outliers that were verified in all features.

The dataset samples are divided into 2 classes: defect-free (class 0) and defective (class 1). 
The dataset was a little unbalanced as 74% of the samples belonged to class 0 and 23% of 
the samples belonged to class 1. The Synthetic Minority Over-sampling (SMOTE) technique 
was used to balance the dataset and the total number of samples became 156,870 with 50% 
of the samples belonging to each class.

3.3. Model training

A Multilayer Perceptron model was developed to predict software defects using ApacheJIT. 
Figure 1 shows the architecture of the proposed model. This architecture was the one that 
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achieved the best accuracy among several tested configurations. The architecture is com-
posed of 3 hidden layers with 512, 2048, and 512 neurons. The model was implemented 
with the TensorFlow framework and the Keras library. The dataset was stratified into 80% 
of training samples and 20% of testing samples. The training was carried out in 500 epochs 
with a learning rate of 0.001 (default value in Keras library), batch size of 32 (default value in 
Keras library), and “he_normal” kernel initializer. The “he_normal” kernel initializer was chosen 
because it provides better results in layers that use the Rectified Linear Activation Unit (ReLU) 
activation function.

The model has an input layer with 12 neurons that receive the values   of the 12 features 
used. The hidden layers (with 512, 2048, and 512 neurons, respectively) use the ReLU activa-
tion function. ReLU was chosen because it is a function that presents simplicity of execution 
and computational efficiency when compared to other popular functions. Furthermore, the 
use of ReLU aims to reduce the possibility of the vanishing gradient problem, which can cause 
problems of slowness or stagnation in model training.

4. Results and discussion

The Multilayer Perceptron Model achieved an accuracy of 82.08% on the test set. The accura-
cy achieved was considered satisfactory due to the complexity of dealing with a large dataset 
that has 156,870 samples and encompasses a variety of defects from different projects. Ta-
ble 3 and Figure 2 show the detailed metrics and the training confusion matrix, where it can 
be seen that the model achieved similar performance in identifying the 2 classes.

Table 3. Detailed training metrics

Class Precision Recall F1-Score

0 0.84 0.79 0.82
1 0.80 0.85 0.83

Figure 1. Multilayer perceptron architecture



New Trends in Computer Sciences, 2024, 2(2), 91–100 97

The SHapley Additive exPlanation (SHAP) technique was applied to the model to deter-
mine the contribution of each feature to the predictions. SHAP is a technique proposed by 
Lundberg and Lee (2017) for the interpretability of Machine Learning model predictions. This 
technique determines the contribution of each feature to the model prediction based on 
game theory concepts. The values calculated by SHAP determine the contribution of each 
feature to an individual prediction (local interpretation) and the average of the values   makes 
it possible to determine the feature’s contribution to the entire data set (global interpreta-
tion). In this study, the SHAP technique was applied to the test set using all 31,374 samples. 
Figure 3 shows the importance of each feature according to the values calculated by SHAP. 
The features that contributed most to the model predictions were LA, AEXP, and NUC.

Figure 2. Confusion matrix of training

Figure 3. SHAP explanation for multilayer perceptron predictions
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The LA, AEXP, and NUC metrics are widely covered in Software Engineering and, although 
it cannot be said that these are the most relevant metrics in all contexts, the model’s conclu-
sions can be considered coherent with what is observed in many real cases. The LA metric 
represents the number of lines added in a change and, in certain contexts, adding many lines 
can increase code complexity and introduce new defects. The AEXP metric represents the 
experience level of the software engineer, and although experience is not a guarantee of the 
absence of defects, more experienced engineers are typically expected to introduce fewer 
defects. The NUC metric represents the number of different areas of the software that are 
being changed, and a high number for this metric may be an indication that the changes are 
dispersed throughout the code and there is a greater risk of introducing defects. Therefore, 
these 3 metrics have recognized importance in real scenarios.

The use of interpretability techniques such as SHAP adds the characteristic of transpar-
ency to the proposed model, as it allows the understanding of how the model makes its 
predictions and this increases software engineers’ confidence in its results. An explanation 
of the contribution level of each feature makes it possible to identify metrics that contribute 
little or are irrelevant to the predictions, and these metrics could be discarded to simplify 
the model and improve its performance. SHAP results can also be useful for the continuous 
improvement of the software development process because software engineers can focus 
their efforts on improving the metrics identified by SHAP as most relevant.

Identifying which metrics contribute most to discovering which factors most influence the 
introduction of defects in software allows software engineers to focus on critical issues and 
improve their development techniques, and development teams can adjust their processes 
to mitigate these factors in future projects. On the other hand, identifying that a certain 
metric does little to discover these factors allows development teams to stop collecting or 
monitoring it and save efforts and resources. Identifying relevant and irrelevant metrics helps 
refine the defect prediction process, making it more accurate and aligned with the factors 
that impact software quality.

5. Limitations and future direction

The model uses 2,107,394 trainable parameters (weights and biases of artificial neural net-
work) and can be considered a model of moderate complexity. This characteristic can be 
considered a trade-off of the proposed solution because it demands greater computational 
cost and more time for training. A suggestion for future work is the evaluation of other types 
of artificial neural networks for training with ApacheJIT to find a model that achieves a better 
balance between performance and computational costs.

Another approach for executing JIT-SDP is to consider changes in the source code itself 
to determine how syntactic and semantic aspects of the source code can influence the oc-
currence of defects. ApacheJIT does not provide features containing the source code of the 
commits made, but there are other public datasets with this feature. A suggestion for future 
work is to train a Deep Learning model with a dataset containing source code to evaluate 
whether this approach allows for better performance than the metrics-based approach used 
in this study.
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6. Conclusions

The use of defect prediction techniques is a very desirable alternative for improving software 
quality. Techniques based on Machine Learning and Deep Learning are considered promising 
in this scenario due to the possibility of automating analyses and reducing efforts and costs 
spent in the process. Reusing historical data from other software projects through CPDP is 
an approach that can mitigate difficulties that could arise and prevent a certain company 
from adopting defect prediction in its projects. The early discovery and treatment of defects 
generate the opportunity to improve the execution of the phases of the software develop-
ment cycle, as it allows for greater predictability and control over the allocation of resources 
involved in the process.
The use of interpretability techniques to generate transparency and a better understanding 
of how Machine Learning models reach their conclusions should become an increasing trend 
given the need to increase users’ confidence in model decisions. This characteristic is consid-
ered a requirement mainly in domains in which decisions made are considered critical due to 
the consequences they can cause or in domains in which decisions must comply with strict 
regulations. The interpretability of models can also be useful for discovering insights into the 
data or for mitigating possible biases present in the data. 

The task of predicting defects in modern software represents a great challenge for the 
following reasons: there are different types of defects such as functional bugs, performance 
problems, and security flaws, which generates a greater variety of situations to be predicted; 
software has millions of lines of code spread across different modules and integrations, which 
increases the difficulty of predicting the location of defects; there are several technologies 
and tools used together to develop software, which increases the difficulty of detecting 
patterns in the characteristics of artifacts. The use of advanced pattern prediction techniques 
such as Deep Learning and the assertive choice of software metrics are essential to achieve 
good performance and overcome these challenges.
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