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1. Introduction

This paper is an extension of work initially presented at the conference 1ISC2024". It presents
the interim result of an ongoing PhD thesis, which will be completed by the end of 2024 (Es-
chemann et al.,, 2024). This paper introduces an artificial intelligence (Al) framework designed
to replace traditional simulation methods for evaluating factory layouts. The objective of the
current research is to incorporate a trained artificial neural network (ANN) into metaheuristic
algorithms, where simulations are typically employed used to evaluate factory layouts. This
research also builds on a previous study, which focused on optimising a single factory layout
(Eschemann et al., 2021). To extend the approach, the present study trains an ANN across
layouts with different configurations in terms of number of included units to be located. The
selection of an appropriate learning method is of paramount importance for the delivery of
precise and dependable evaluations. The three main categories of learning, namely super-
vised, unsupervised, and reinforcement learning, offer distinctive advantages contingent on
the characteristics of the dataset and objectives. Supervised learning is identified as the most
suitable due to its effectiveness in handling regression problems and its compatibility with the
structured dataset, which is derived from a layout generator and discrete event simulation,
resulting in a substantial amount of data.
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For this study, a random layout generator was developed to produce a wide variety
of layouts automatically. These layouts include a number of variables, such as the number
of machines, types of machines, buffer sizes, manufacturing times, layout dimensions, and
loading and unloading times and capacities. In contrast to the generation of optimal layouts,
which involves the strategic placement of facilities to enhance throughput and reduce ma-
terial handling costs, this generator produces random configurations by placing operational
entities (OE) that represent machines, storage areas, and logistics elements as squared black
boxes. The challenge of determining the optimal composition of the OE within the bounda-
ries of a layout is known as the Facility Layout Problem (FLP). As more constraints are added,
the NP-complete problem becomes increasingly complex, leading to exponential growth in
computational time.

Given the NP-complete nature of the FLP, it is common practice to employ metaheuristic
solution methods in order to optimise layouts. In the current research landscape, the majority
of approaches rely on genetic algorithms (GA), with simulated annealing and tabu search
methods also being popular. These conventional metaheuristic techniques have been pivotal
in addressing complex optimisation challenges in factory layout design, as noted in a review
study (Hosseini-Nasab et al.,, 2018).

However, as we move away from these established methods, it is a noticeable gap in
the use of advanced Al-based techniques in factory layout optimisation. Despite the proven
success of metaheuristic algorithms, there is still limited exploration and application of ad-
vanced Al methods like deep learning. This gap is particularly evident when we consider the
potential and demonstrated benefits of Al in other research areas. Unfortunately, Al-driven
methods are not yet extensively explored in the context of the FLP. This presents a significant
opportunity to utilize Al's strengths in generalising and tackling complex problems, such as
those encountered in the FLP (Burggraef et al., 2021).

Several factors might explain the limited use of Al in this area, including insufficient train-
ing data, a lack of interdisciplinary expertise to integrate Al with traditional manufacturing
methods, and the complexity of Al algorithms, which poses challenges in implementation and
optimization for specific industrial applications (Burggraef et al., 2021, p. 15). Furthermore, the
high costs associated with developing and implementing Al solutions, along with concerns
about their reliability and predictability in critical production environments, may further im-
pede widespread adoption in factory layout optimization.

In order to overcome the difficulties presented by the FLP and the limited use of Al in
this field, this paper proposes a concept focused on developing an ANN to evaluate lay-
outs, which would replace the traditional event-driven simulation approach. In the following
chapter (Section 2) reviews related work, after which the FLP is introduced (Section 3). The
following Section 4 explains concept, which includes three main components: a factory layout
generator capable of creating numerous layouts, a simulator for evaluating these layouts,
and a supervised learning-based neural network trained to mimic the simulation process
and estimate throughput. The fourth section (Section 5) presents the results of experiments
conducted to evaluate the effectiveness of the network win learning and predicting the effi-
ciency of various layouts for five different factory configurations, ranging from four to eight
machines, to effectively learn and predict the efficiency of various layouts without relying on
conventional simulation techniques. Section 6 concludes the paper.
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2. Related work

This section provides a review of the literature on factory layout optimization, focusing on
the application of Al to solve the FLP. A comprehensive literature search was conducted in
ResearchGate and Google Scholar using a variety of search terms in both English and Ger-
man. The search strategy combined specific and broad keywords, covering various terms and
translations related to the aforementioned field, and focused on engineering and computer
science literature following Ball and Tunger (2005) and Brocke et al. (2009) guidelines (Ball &
Tunger, 2005; Brocke et al., 2009).

The literature search was further cross-referenced with the findings of a recent study
by (Burggraef et al,, 2021), which specifically investigated the use of Al in addressing the
FLP. Burggraef et al. examined 1,290 articles, meticulously selected from an initial pool of
11,851 articles across nine databases, and supplemented this with 134 articles identified
through snowball sampling. Their analysis revealed 22 articles that specifically discussed the
application of Al techniques to solve FLP, meeting the inclusion criteria for relevance to this
review. Among these 22 publications, nine employed supervised learning, eleven utilized
unsupervised learning, and two focused on reinforcement learning as the primary techniques
for tackling FLP challenges.

2.1. Machine learning for solving the FLP

Jaber et al. (2007) pointed out a potential pitfall of GAs: their tendency to get stuck in evo-
lutionary dead ends, much like a species can evolve into an unfavourable niche in nature
(Jaber et al., 2007). As they put it:

"While the great advantage of GA is the fact that they find a solution through
evolution, this is also the biggest disadvantage. Evolution is inductive; in nature
life does not evolve towards a good solution but it evolves away from bad
circumstances. This can cause a species to evolve into an evolutionary dead
end (Jaber et al., 2007)."

To overcome this limitation, they augmented their GA with a learning module called KEP
(Keeping Efficient Population). This module acts like a guide, comparing past and future
generations of solutions to steer the GA towards more promising areas of the solution space,
enabling a more effective and balanced exploration.

In a different vein, Rummukainen et al. (2018) proposed a novel approach to the FLP that de-
parts from traditional mathematical modelling in favour of ML (Rummukainen et al., 2018). Their
algorithm learns from expert-designed layouts of similar factories, using a “similarity model” to
assess how closely a proposed layout resembles these proven examples. This approach frames
the target layout as a Multi-Floor Layout Problem (MFLP), drawing on the wisdom embedded
in expert layouts. While their approach proved successful for small-scale datasets, the authors
emphasized the need for more extensive data to train more accurate and robust models.

2.2. Deep learning for solving the FLP

Tsuchiya et al. presented a pioneering effort using an artificial ANN to solve the Quadratic As-
signment Problem (QAP), a key challenge in optimizing facility distributions on a grid (Tsuchiya
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et al., 1996). Their approach involved minimizing a defined “energy” function through gradient
descent, where each network node, representing a grid position, is assigned weights based on
the Manhattan distance to facilitate lower transportation costs for closer facilities.

Tam and Tong introduced a hybrid approach, combining a ANN with a GA to optimize the
positioning of tower cranes and supply points by predicting lift times to minimize transport
durations (Tam & Tong, 2003). Their method demonstrated how Al could enhance traditional
optimization techniques in construction logistics.

Garcia-Hernandez et al. (2018) explored a GA for generating factory layout solutions,
which were then evaluated by experts (Garcia-Hernandez et al., 2018). The results from this
human-expert evaluation were used to train an artificial neural network, effectively digitizing
expert knowledge to assess new layout instances. This approach emphasized the integration
of human expertise into the Al-driven optimization process, showcasing a blend of human
intuition and machine efficiency.

Fast forward to 2022 publication "A Study of Throughput Prediction using CNN over Fac-
tory Environment”, Hou et al. (2022) introduced an approach to predict factory throughput
using Convolutional Neural Networks (CNNs) (Hou et al., 2022). Focusing on overcoming the
challenges associated with the centralized distribution of data, which can hinder prediction
accuracy, they propose a target vectorization technique within the CNN framework. This
methodology significantly enhances prediction accuracy, providing valuable insights for the
integration of ML in smart manufacturing and IoT applications, especially in improving the
reliability of wireless communication for factory productivity.

Also in 2022, Ikeda et al. published “Towards Automatic Facility Layout Design Using Rein-
forcement Learning”, which introduces a mechanism for optimizing the arrangement of OEs by
accurately representing their physical characteristics (Ikeda et al., 2022). Their Reinforcement
Learning (RL) algorithm exhibited a preference for placing larger units before smaller ones
during experiments. Furthermore, they observed that the algorithm learned more effectively
with a continuous influx of new information, rather than being repeatedly fed the same data.

The reviewed literature aligns with a 2021 analysis by Burggraef et al. (2021), which high-
lights the underrepresentation of ML in FLP research. Their study found only nine studies
employing supervised learning, and none utilizing it as a direct solution for FLPs. This short-
age may be attributed to the difficulty in obtaining appropriate labeled data, as FLPs often
involve unstructured and incomplete information. Additionally, the inherent complexity and
unstructured nature of FLPs, coupled with the subjective nature of layouts determined by
expert judgment, make suitable training data challenging to identify. The primary challenge
lies in the NP-hardness of FLPs, which restricts optimal solutions for layouts with more than
15 units. However, this limit may be pushed further with future advances in computational
power, as noted in Burggraef's et al. analysis.

The relevance of the aforementioned research for this study highlights the importance of
combining metaheuristics and ML approaches for approaching FLPs. GA's ability to generate
layouts, paired with ANN's predictive capacity, opens opportunities for supervised learning
approaches. A major challenge in this context is the availability of labeled data, which can be
addressed through event-driven simulation to generate training datasets, including metrics
like throughput. Despite factory layouts being inherently represented as images CNN have
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not been widely applied. They could offer further analytical methods by identifying patterns
such as material flows or bottlenecks, by detecting local and spatial patterns. Furthermore,
CNNs' translational invariance enables them to recognize identical patterns regardless of
their position in the layout. Unlike multilayer perceptron (MLP) architectures, CNNs are not
restricted to fixed input vectors, making them adaptable to various layout configurations.

3. Facility layout problem

The Facility Layout Problem (FLP) involves determining the most efficient arrangement of op-
erational units within a designated space. FLP is a complex process that is divided in different
levels of planning (Bochmann, 2018):

1. General Layout Planning: At this high-level stage, the overall concept of the facility’s
spatial structure is developed. It includes defining the major production areas and
support zones, with a focus on the strategic distribution of space without diving into
specific details.

2. Macro Layout Planning (also known as Block Layout Planning): Here, the facility’s gen-
eral areas are divided into distinct blocks, organizing major functional units such as
departments or production sections. The aim is to optimize the proximity of units to
ensure efficient material flow between them.

3. Detailed Layout Planning: At this stage, precise decisions are made regarding the place-
ment of individual machines, workstations, and transportation pathways within the
defined blocks.

Facilities can be classified as uniform or non-uniform in shape. Non-uniform layouts in-
troduce added complexity, as they must adhere to specific geometric constraints—namely, at
least one corner must form an angle of 270 degrees or more (Drira et al., 2007). Beyond the
shape of the layout, the complexity increases further when considering different material flow
types. These flows can vary based on the spatial arrangement and transport systems. Com-
mon material flows include linear, looped, or grid-based movement patterns, which influence
how efficiently goods and materials are transported across the facility used (Hosseini-Nasab
et al., 2018). This study focuses on a specific layout category known as the Open Field Layout
Problem (OFLP), which is characterized by an absence of predefined material flows such as
circular or linear patterns, see Figure 1.

20

Figure 1. Exemplary layout with 20 factory units
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4. Conceptual formulation

Figure 2 shows the concept overview regarding the Al supported layout optimization.

The end-to-end overview consists of three main stages which are explained in more
detail in the following subsections. The first stage is the data creation, utilizing a layout
generator that can produce arbitrary layout variations. Further components of this stage are
a transport matrix that reflects the interconnections of the factory units and an event-driven
simulation, designed to estimate the theoretical throughput of each generated layout. The
second stage involves training the ANN, which is structured as a combination of a CNN for
processing image data and an MLP for handling tabular data. The final stage integrates the
trained network into a metaheuristic optimization algorithm (genetic algorithm in this case).
A related approach utilizing reinforced learning was recently published by Klar et al. in 2023
(Klar et al., 2024).

Figure 2. Conceptual overview for the framework end-to-end

4.1. Random layout creation

In previous research GA were used to generate layout data (Azimi & Soofi, 2017; Garcia-
Hernandez et al., 2014). While GAs explore a broad search space, they tend to focus on areas
with previously successful solutions, neglecting less efficient layouts that are required for a full
comprehensive problem representation. The underrepresented “bad” layouts are important
for training ANNs, as they enhance the model’'s generalization ability. The datasets used in
related studies were small — Garcia-Hernandez et al. used only 365 samples, and Azimi and
Soofi used 24 samples — leading to a high risk of overfitting (Azimi & Soofi, 2017; Garcia-Her-
nandez et al., 2018). For this study, access to a larger dataset of layout variations is prioritized.
A study by Sun et al. (2017) demonstrated that ANN accuracy improves with the size of the
training dataset, even when model architecture and optimization techniques remain constant
(Sun et al,, 2017). With this in mind, a Monte Carlo-based layout generator was developed to
create representative data by randomly sampling from a probability distribution, see Figure 3.
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» Monte-Carlo-Simulation

» Genetic Algotihm

Figure 3. Monte Carlo simulation versus genetic algorithm

Unlike heuristic approaches like GA, Monte Carlo simulation covers a broader range of
the solution space, generating independent layouts without relying on previous iterations.
Factory layouts are typically proprietary and time-intensive to digitize for simulation or dig-
ital processing. Since supervised learning requires a large volume of data, a random layout
generator was implemented. Each generated layout includes at least three types of facilities:
an input stock, output stock, and one machine. For layouts with more than three units, the
generator can create various combinations of machine types and numbers. Dependencies
between machines are established using a random transport matrix. In addition to generating
layouts, the layout generator produces supplementary data for each layout, including:

= Number of OE X and Y positions of OE centres.

= Number of transport units and transport matrix.

= Number of OEs.

4.2. Discrete event simulation

The generated factory layouts must be labeled for use in training the ANN. This process is
accomplished through the use of an event-driven simulation. Figure 4 illustrates the simu-
lation model.

Figure 4. Simulation graph
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The simulation graph models a factory layout focused on the material flow between
sources (q1, g2), machines (m1, m2, m3), and sinks (s1). The sources and sinks model the
input and output storage areas of a factory. In this layout, each machine serves as a primary
processing unit, material flows from the sources to the machines and finally to the sinks. The
nodes in the graph are color-coded: orange for sources and sinks, cyan for machines, and
light gray for the Manufacturing Execution System (MES) and Transport System (TS). In the
simplest example, there is one source (q1) providing material to machine m1. After process-
ing, the material is transported to a sink (s1). The flow of material between the components
is represented by directed edges indicating the flow rate. The flow is governed by predefined
recipes and the buffer capacities. Each machine processes material from its respective input
buffer to its output buffer. The MES coordinates the process by monitoring the buffer levels
and generating transport requests (tr-req) when full output buffers need to be emptied. These
transport requests are directed to the Transport System (TS), which executes the transport
job. For example, in the current setup, machine m1 processes an input of quantity 2 com-
ing from g1 and produces an output of quantity 1, for example through a welding process.
The material flow is illustrated by the arrows, with the input buffers receiving material from
sources and the output buffers supplying material to subsequent processes or sinks. The
system dynamically adjusts to different layouts by scaling the number of machines, stocks,
and buffers, as well as the recipes.

The simulation tracks key performance metrics such as throughput, which represents the
total material processed, the driven distance by the transport system, and simulation duration.

4.3. Neural network architecture

The second stage of the conceptual formulation, as depicted in Figure 2, integrates two
distinct components: a convolutional neural network (CNN) for processing image data and a
multi-layer perceptron (MLP) for handling tabular data. This structure enhances the network’s
ability to generalize across various layout configurations. The CNN is designed to accept
image data of flexible sizes, meaning the input layer adjusts based on the image format, al-
lowing it to process layouts with differing numbers of machines. As long as the input image
adheres to the correct format, it can be effectively processed by the CNN, making the model
adaptable to diverse layout scenarios.

In contrast, the MLP portion has a fixed-dimensional input layer by design, which requires
a structured approach to handle varying amounts of tabular data. To address this, placehold-
ers are introduced in the MLP's input layer, enabling the model to account for configurations
with different machine quantities. For instance, in a layout with eight machines, all placehold-
ers are used, while in a layout with fewer machines, such as five, the remaining placeholders
are left empty. This setup ensures that the ANN maintains its capacity to generalize effec-
tively, even when the number of machines varies.

By leveraging this architecture, the network can replace traditional simulation methods to
perform layout evaluations. Figure 5 provides a visualization of the training process.

The inner red circle, starting with layout generation followed by simulation and pre-
processing create a subset of labeled training data. As part of preprocessing, the data is
checked for integrity, duplicates, outliers, distribution and then split into training, validation,
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Figure 5. Training Process of the neural network

and evaluation datasets. For example, layouts designed in a way that they could not generate
any throughput were removed. The resulting data is used as both input and output in the
ANN's supervised learning framework, indicated by the green arrows. The outer blue arrows
represent an additional loop, signifying the use of transfer learning, where the aforemen-
tioned process is repeated with different factory configurations. Initially, the ANN is trained
on a dataset containing layouts with four machines. Afterward, the pre-trained network is
progressively refined using additional generated datasets, gradually increasing the complex-
ity. For this study, this process was repeated five times, culminating in a dataset that includes
layouts with up to eight machines over a total of 150000 layouts.

To support this methodology, a custom dataset class was developed within the PyTorch
framework. This class consolidates input images, supplementary tabular data, and labels into
a unified dataset, simplifying the process of feeding information into the ANN during train-
ing. Additionally, Bayesian hyperparameter optimization was used to find an optimized ANN
configuration. An early stopping mechanism was integrated to control the number of training
epochs and prevent overfitting. It is triggered once the validation loss does not improve for
five consecutive epochs; a threshold known as “patience”. This value was determined exper-
imentally.

5. Evaluation and validation

In the study, traditional validation methods such as dataset splitting, ensuring dataset distri-
bution and integrity, duplicate checks, and K-Fold cross-validation were rigorously applied
to guarantee the robustness and reliability of the ANN'’s performance in evaluating layouts.
Additionally, the model was compared with other regression techniques, including ensemble
learning methods, to benchmark its effectiveness. These assessments were successful, forming
the foundation for the hypothesis that guided this research:

“The developed neural network is capable of replicating the simulation and is
more performant in doing so.”
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To assess the validity of this hypothesis, the following sub questions were formulated:

= Is the ANN suitable for use in layout optimization, specifically concerning the research

questions?

= Can permutation analysis, baseline comparisons, and feature analysis support the net-

work’s reliability compared to other Al methods?

= How does the model scale when applied to realistic factory sizes?

It was also investigated whether the architecture of the ANN offers inherent advantages
over existing simulation-based methods for layout evaluation. One major benefit associated
with this model, particularly in the context of NP-completeness and limited resources, is its
performance. If proven, this performance advantage could significantly contribute to the
broader research on the FLP by enabling the consideration of more constraints while reducing
computation times.

5.1. Evaluation

After transfer learning with five different layout configurations across 150000 layouts, the
model achieved an R2-score of ~0.9 on test data, see Figure 6 (Eschemann et al., 2024).

The scatter plot presents a comparison between the actual values, normalized within the
range [0, 1] on the x-axis, and the predicted values by the ANN on the y-axis. The results
demonstrate that the network is capable of accurately predicting the simulation outcomes
across the entire value spectrum, with no significant outliers. The blue line serves as a refer-
ence, representing the baseline results of a mean value estimator. Figure 7 further visualizes
how effectively the network predicts the simulated throughput based on the different layout
configurations within the dataset (Eschemann et al., 2024).

The results demonstrate that the ANN consistently performs well across the entire range
of layout complexities. However, as the complexity of the layouts increases, there is a notice-
able decline in the R%-score. This indicates that more training data and prolonged training
sessions may be required to maintain performance at higher levels of complexity. To further
assess the importance of different input types for the model, a permutation analysis was
conducted. The datasets were deliberately modified in two separate runs: in one, only the

1.0 Baseline estimations
Model estimations

0.8

0.6

Network estimations

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0
Actual values of the test data

Figure 6. Actual simulations values vs. network and baseline estimations
(Eschemann et al., 2024)
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Figure 7. Prediction accuracy over all layout configurations
(Eschemann et al., 2024)

image data was permuted, and in the other, the additional tabular data was permuted. For
the images, permutation was performed at the channel level. For each image in the batch, one
channel was randomly selected, and the pixel positions within that channel were randomly
shuffled both vertically and horizontally. This disrupts the spatial structure within the select-
ed channel, while the other channels remain unchanged. Such a permutation distorts visual
patterns, which negatively impacts the model’s performance, especially when it has learned to
recognize specific visual features or structures. For the additional data, the permutation was
applied at the dataset level. Each feature in the additional data for every entry in the batch
was randomly shuffled, breaking the connection between the data and the corresponding
images and labels. This results in a loss of meaningful alignment between the additional data
and the images. Consequently, the ANN is left to rely solely on the unchanged image data to
make accurate predictions. The result is shown in Figure 8 (Eschemann et al., 2024).

A more significant drop in the R%-score following the permutation of a specific data
type indicates that this data type plays a more critical role in the model's performance. With
non-permuted data, the model achieves an R%-score of ~0.91 (blue bar), highlighting its
strong ability to account for the variability in the test data. When the image data is permut-
ed, the R%-score decreases to ~0.69 (orange bar), demonstrating the importance of images
for the network’s accuracy in making predictions. However, the fact that the score remains
relatively high suggests that the model still retains considerable predictive capability due to
the unaltered additional data. Conversely, when the additional data is permuted, the R*-score
drops more sharply to ~0.36 (green bar). This more substantial decline, compared to the per-
mutation of image data, reveals the greater significance of the additional data in determining
the model’s performance.

1
g 0.91
f=
8 0.8 0.69
o
g 0.6
_g 0.4 0.36
=]
©
Zoz2

0

Original With permuted images  With permuted tabular data

Figure 8. Permutation analysis of the input types (Eschemann et al., 2024)
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Overall, these findings indicate that while both image and tabular data are important for
the model’s predictive success, the additional data exerts a stronger influence. This justifies
the decision to use an ANN architecture that combines a CNN (to process image data) and
an MLP (for tabular data), affirming that this design choice enhances the model's accuracy
and generalization.

To further demonstrate the specific influence of each feature within the additional data,
a relative importance analysis was conducted, differing from the prior approach. In this con-
text, relative importance refers to how much the model’s performance declines when a par-
ticular feature is permuted. It is measured by the difference in the R®-score between the
original model and the one with the permuted feature. A greater difference indicates higher
importance of that feature. This method helps quantify the specific contribution of each fea-
ture and allows for an assessment of how permuting the feature affects the ANN's prediction
accuracy, as illustrated in Figure 9.

The analysis revealed that the most critical feature is the number of operational elements
(machines) in the layout. This parameter appears to be a key factor for the model in accurately
calculating throughput. Notably, the model assigns greater importance to the coordinates of
machines in the later stages of the production process (machines 5-8) compared to those in
the earlier stages (machines 1-4). This is not a random observation, as the machines seem to
form pairs that are either important or less relevant for the model. It is also noteworthy that
the coordinates appear in pairs in terms of their importance.

Several factors could explain this pattern:

1. Complexity of the Production Process: The latter stages of production may involve more

complex or critical processes, which have a stronger impact on the target variable. As
a result, the model might be more sensitive to changes in these areas.

2. Relation to the Transport System: The positions of the final machines could have
a greater effect on throughput compared to the positions of the initial machines.
An optimized arrangement of these later machines might positively influence through-
put more than the arrangement of the earlier machines.

3. Data Structure: There may be particular characteristics in the data causing variations

in the coordinates of the later machines to correlate more strongly with the target
variable. This could be due to specific patterns or relationships in the training data.
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Figure 9. Relative importance of individual features in the additional data
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4. Model Characteristics: The model’s architecture or training process may favor certain
features. For example, the later coordinate features might be considered more relevant
due to their position in the dataset or their relationship to other variables.

Since the positions of the machines can also be considered as a single collective feature,
the individual coordinate features were aggregated to provide an overall evaluation of the
importance of the spatial arrangement compared to the other features. This was done to
assess the general significance of the machine coordinates, beyond the analysis of each
individual position’s influence, see Figure 10.
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Figure 10. Cumulated importance of the coordinates in comparison

Two approaches were applied to determine the significance of the OE coordinates: sum-
mation and averaging of the importance of all coordinate features. In the summation ap-
proach (shown in blue), the importance of all coordinate features is added together, re-
vealing the greatest impact of the spatial arrangement on prediction accuracy. In contrast,
the averaging approach (shown in red) calculates the mean importance of each individual
coordinate feature. This analysis indicated that, on average, individual coordinate features
have less influence on prediction accuracy compared to other features, such as the number of
OEs. Furthermore, it suggests that while the overall spatial arrangement of the OEs is highly
significant for the model’s predictions, the specific positions of individual elements carry less
weight. The model seems particularly sensitive to changes in the collective layout rather than
to variations in the location of single OEs.

5.2. Validation

The network can only be considered validated with respect to the hypothesis if, beyond
demonstrating prediction accuracy, it also shows a performance advantage. This involves
comparing the time it takes to simulate a layout with the time required for the ANN to
estimate throughput. In the experiments conducted, a linear and proportional relationship
between simulation duration and simulated time was observed, allowing for extrapolation
and thus making longer simulations unnecessary. For comparison with the ANN, this finding
implies that the simulation duration must serve as a benchmark, where a similarly linear in-
crease in throughput begins to emerge in relation to simulated time. This point represents
the minimum required simulation duration. To determine this threshold, an experiment was
conducted showing the throughput over the simulation time. The results of this experiment
are shown in Figure 11 (Eschemann et al., 2024).
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Figure 11. Development of the throughput over the simulation duration
(Eschemann et al.,, 2024)

The evaluation reveals that throughput at the output warehouse is first measured after
~2500 seconds, with linearity emerging between 2500 and 3500 seconds. To account for fluc-
tuations, a simulation duration of around 3500 seconds is set as the minimum necessary time
for accurate results. For the performance comparison, the factory configurations with the low-
est and highest complexity are considered. On the same hardware, the trained ANN achieves
an average prediction speed of 0.026 milliseconds per layout. Under the most favourable con-
ditions, and based on prior investigations, the factory simulation requires ~30 milliseconds
per layout at the minimum possible simulation duration. This makes the ANN ~1,154 times
faster than an event-driven simulation.

While it is theoretically possible to optimize and accelerate the simulation for parallel
processing and more efficient hardware utilization, such optimizations would come with sig-
nificant costs, development efforts, and uncertain outcomes. It is unlikely that these optimiza-
tions would fully bridge the substantial performance gap. Additionally, the ANN results were
obtained from a dataset featuring five different factory configurations, whereas the simulation
result reflects the most favourable value from a single configuration.

Therefore, this evaluation demonstrates that the Al-based approach has a systematic ad-
vantage over conventional event-driven simulations in terms of speed and applicability across
multiple factory configurations. To further assess the model's generalization capabilities, two
experiments were conducted. In the first experiment, the ANN was tasked with predicting
the simulated throughput for a factory configuration with eight OEs. The dataset was divided
into five batches, with each batch simulated for a different duration, ranging from 5,000 to
15,000 simulated seconds. This analysis revealed that the model performs better for layouts with
longer simulation times, likely because these allow for a more extended period in the steady-
state phase. In contrast, shorter simulations, especially for more complex configurations, tend
to display higher variability in the initial stages, leading to less accurate predictions.

In the second experiment the ANN was trained on a factory configuration containing
20 OFE, see Figure 1. A dataset of 100,000 layouts was created and used for training following
the same procedure as before. In the first step, each OE was assigned a unique colour to
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help the ANN distinguish its role in the production flow. After generating the layouts, the
time required for the factory configuration to reach a steady-state throughput was examined,
showing that the more complex layout configuration requires on average 9,000 seconds until
the first products reach the output warehouse. Based on this analysis, the simulation is reset
after 10,000 seconds to capture throughput, with the total necessary simulation time for a
factory configuration with 20 OEs determined to be 12,000 seconds. Using this benchmark,
throughput simulations were carried out for all 100,000 layouts. The distribution of the mod-
el's predictions compared to the actual test data in the setup for 20 OE appeared similar to
that shown in Figure 6. On the training data, the ANN achieved an R2-score of ~0.97, with a
validation score of ~0.95. The result on the test dataset was ~0.92, demonstrating the model's
ability to predict simulated throughput for a complex factory configuration. The denormalized
throughput values to be predicted ranged from a global minimum of 1 to a global maximum
of 11,454. The confidence band indicates homoscedasticity, showing that the model maintains
consistent performance across the entire range of throughput values.

6. Conclusions and final remarks

This study explored the application of Al to the FLP, an area that has seen extensive research
since the 1960s but has only recently begun to incorporate Al. Historically, Al approaches
in this field have been considered less advantageous, which is why there has been limited
exploration. Three research questions were formulated and addressed to utilize Al for finding
optimized factory layouts. Literature reviews revealed that while many Al-based techniques
offer different methods for layout optimization, no comprehensive or directly applicable sys-
tem currently exists. The main challenge lies in the lack of data and models that are suitable
for optimizing layouts. The conclusion highlighted those integrative approaches, combining
metaheuristic techniques with Al, tend to lead to improved layouts.

In this study, an event-driven simulation was integrated with a concatenated ANN archi-
tecture, consisting of both MLP and CNN models, allowing a supervised learning approach.
The simulation was employed to generate labeled training data. The Al model processed
visual layout representations and tabular data to predict the simulated throughput.

The evaluation demonstrated that the ANN was accurate in predicting simulated throughput
and ~1,154 times faster than simulation. While the simulation time increased linearly with more
complex layouts, the ANN maintained its speed advantage. A feature analysis revealed that the
ANN benefited primarily from the additional tabular data, which contributed to approximately
60% of its accuracy. Among these data, the model heavily relied on coordinate information.
One limitation of this approach is its dependence on an initial dataset generated via simulation.

In summary, the study showed that an ANN can be optimized with self-generated data
to solve specific problems. This suggests that, in theory, an Al platform with programming
capabilities could train itself on automatically generated data to specialize in specific prob-
lem-solving tasks. Future developments are expected to focus more on the integration of
large language models (LLMs) and generative adversarial networks (GANs). These approaches
could, unlike the current method, generate layout options that meet predefined throughput
goals, potentially eliminating the need for a metaheuristic algorithm. This would represent a
fully Al-based solution to the FLP.
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