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Article History:  Abstract. Machine learning (ML) algorithms are more and more widely applied in various 
types of systems, so the research related to them is also increasing. One of the areas of 
research under consideration is the classification of non-functional requirements (NFRs) us-
ing ML algorithms. This area of research is important because the automatic classification 
of NFRs using high-performance ML algorithms and corresponding features helps require-
ments engineers classify non-functional requirements more accurately. This paper examines 
ML algorithms suitable for solving classification problems and their effectiveness in classifying 
non-functional requirements. Based on the described stages of the research methodology ML 
algorithms models were compared using the accuracy, precision, recall, and F-score metrics. A 
majority voting classifier model was created using Support Vector Machine, Naïve Bayes and K 
Nearest Neighbor Algorithm algorithms. After K-Fold cross validation were obtained these re-
sults: accuracy – 0.710 (scale from 0 to 1), precision – 0.845, recall – 0.814 and F-score – 0.815.
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1. Introduction 

Machine learning (ML) is a branch of artificial intelligence (AI) and computer science that uses 
large amounts of data to create complex predictions and decision-making systems that would 
otherwise be difficult to achieve. Decision-making systems based on ML are increasingly be-
ing used in decisions about bank loans (Karthiban et al., 2019), employment (Imam & Ananda, 
2022), clinical trials (Miller et al., 2023) and in many other areas. The success of ML-enabled 
systems depends on the properties of the ML solutions (like performance, transparency, main-
tainability, interoperability, etc.), which are known as non-functional properties in the domain 
of requirements engineering. In addition, ML systems’ non-functional requirements (NFRs) 
may differ in their definition, measurement, scope and importance in comparative meaning 
(Habibullah & Horkoff, 2021). Our understanding of these aspects is inadequate compared 
to our knowledge of NFRs in traditional domains.

In addition, the task of classifying requirements is distinguished in software engineer-
ing because the manual process of classifying non-functional requirements is subjective, 
potentially erroneous, complex, and time-consuming. With ML, this process would reduce 
these disadvantages. This area of research is relevant because the automatic classification of 
NFRs using high-performance ML algorithms and corresponding features helps requirements 

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3846/ntcs.2024.21574
https://orcid.org/0000-0003-1237-3499
mailto:milda.maciejauskaite@stud.vilniustech.lt


New Trends in Computer Sciences, 2024, 2(1), 46–56 47

engineers classify non-functional requirements more accurately (Khurshid et al., 2022). There-
fore, this study shows a comparison of ML algorithms to the problem of non-functional re-
quirements classification to answer the question: “Which works best for classifying software 
requirements into non-functional requirements?” and “Which Machine Learning Algorithm 
provides the best performance for the requirements classification task?”. 

The purpose of this work is to explore the performance of ML algorithms for classification 
of non-functional requirements and to propose a solution to improve the accuracy of the 
classifier. This work result is to suggest a more accurate method for NRF classification based 
on ML. The novelty of the research is as follows:

 ■ The study highlights the need and problem of classification of non-functional require-
ments using ML algorithms. 

 ■ The study focuses on using machine learning algorithms to classify non-functional re-
quirements, a growing research area.

 ■ The results of the study show a more accurate non-functional requirement classification 
method based on ML.

The rest of this paper is structured as follows. Section 2 presents the related works on the 
topic of classification of non-functional requirements by ML algorithms. Section 3 presents 
preliminaries related to the research topic. Section 4 shows the methodology and use case. 
Section 5 presents model accuracy improvement. Finally, Section 6 provides the conclusion 
and the outlines for future works. 

2. Related works

This section presents related work on ML algorithms for classifying non-functional require-
ments. The aim of this section is to determine which ML algorithms researchers consider suita-
ble for the classification of NFRs. The work on the classification of non-functional requirements 
using AI techniques relevant to this analysis is summarized in Table 1. The content of this table 
consists of the following columns: 1) reference (Ref.) of the scientific paper; 2) ML algorithm that 
showed the highest accuracy; 3) data set from which the requirements for the analyses were 
taken; 4) instruments used in the research; 5) results, i.e. best ML algorithm for NFR classifica-
tion; 6) accuracy obtained with the best ML algorithm for NFR classification.

Analyzing the data in Table 1 shows that the authors reported these ML methods as the 
most accurate for the classification of NFRs: Support Vector Machine (SVM), Naïve Bayes (NB), 
K Nearest Neighbor Algorithm (KNN).

Table 1. Analysis of studies on NFR classification by ML algorithms

Ref. (1)
ML algorithm 
with highest 
accuracy (2)

Data set 
(3)

Instruments 
(4)

Findings 
(5)

Accuracy 
(6)

Kurtanović 
et al. 
(2017)

Support Vector 
Machine (SVM)

625 
requirements 
data set

Natural language 
(NL) toolkit 
NLTK 1, Stanford 
Parser 2 and ML 
library SciKit 3

A supervised ML 
approach using 
metadata, lexical 
and syntactic 
features based on 
the SVM algorithm.

up to ~92%.
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Ref. (1)
ML algorithm 
with highest 
accuracy (2)

Data set 
(3)

Instruments 
(4)

Findings 
(5)

Accuracy 
(6)

Baker et al. 
(2019)

Convolutional 
Neural Network 
(CNN)

914 
requirements 
from 
Conference, 
“PROMISE” 
data set

NL toolkit NLTK, 
“NumPy” library, 
“TensorFlow” 
library, 
“TensorFlow 
Adam Optimizer”

Convolutional 
Neural Network 
model.

Accuracy 
82–94%, 
recall 76–97%, 
F-score 
ranging 
82–92%.

Abad et al. 
(2017)

Naïve Bayes 
(NB)

“PROMISE” 
data set

LingPipe NLP 
Toolkit

The Naïve Bayes 
classifier is the best 
in classifying NFRs 
into subcategories.

up to 90%

Alashqar 
(2017)

SVM “PROMISE” 
data set

Python 
programming

ML classifier 
determines the 
performance 
using NFR 
classifications. The 
SVM outperforms 
classifiers in results.

With all data 
set: precision 
71.5%,
recall 72.2%, 
F-score 
ranging 
71.3%.

Binkhonain 
and Zhao 
(2019)

SVM and 
Multinomial NB

“Science 
Direct”, 
“IEEExplore”, 
“Springer 
Link”, “ACM”.

Excel SVM and 
Multinomial NB – 
shows the best 
classification results 
among supervised 
ML classifiers.

–

Khurshid 
et al. 
(2022)

K Nearest 
Neighbor 
Algorithm (KNN)

“PROMISE” 
data set; 
set of 104 
requirements

Anaconda Tool The hybrid 
KNN Algorithm 
rule-based ML 
algorithm for 
classification .

up to 75.9% 
with authors 
data set.

Haque 
et al. 
(2019)

Stochastic 
Gradient 
Descent Support 
Vector Machines

“PROMISE” 
data set

“Intel core i7”, 32 
GB RAM, “Ubuntu 
16.06”

The Stochastic 
Gradient Descent 
SVMs classifier 
achieves the best 
results.

Precision 
66%, recall 
61%, F-score 
61%, accuracy 
76%.

3. Preliminaries

3.1. ML algorithms

ML systems aim to learn from data (Mahesh, 2020) to automate the process of creating an 
analytical model and solving related tasks (Janiesch et al., 2021). However, the researchers 
emphasize that there is no single ML algorithm that can best solve different problems. The 
algorithm used depends on the problem to be solved, its type, the number of variables, the 
most appropriate model, and other factors (Mahesh, 2020).

ML algorithms are divided into two types of learning: supervised and unsupervised 
learning (Carta, 2022). The fundamental difference between these two learning algorithms is 
whether the examples given to the learning algorithm are labelled or not (Bao et al., 2022).

End of Table 2
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According to Sarker et al. (2020), supervised learning occurs when specific goals are to 
be achieved with a given set of inputs, i.e., a task-driven approach. In this paper, supervised 
learning is best suited for NRF classification as a labelled dataset is provided for research. 
Table 2 lists the ML algorithms that are further used to evaluate the performance of the ML 
algorithms in NFR classification. These algorithms were selected after analyzing the scientific 
literature related to the subject area. After various research was analyzed, the conclusion was 
that these algorithms perform well in NFR classification tasks. Also, in the process of choosing 
algorithms, one of the most important properties was the algorithms that are characterized 
by accuracy.

Table 2. Supervised ML algorithms for classification.

ML algorithm Properties Solved problems

Decision Tree (DT) A decision tree models decision logic 
(Uddin et al., 2019) 

Regression and classification 
problems (Rajaguru & Chakravarthy, 
2019)

Random Forest 
(RF)

Considered a reliable algorithm that 
provides accurate predictions  
(Mohd et al., 2019) 

Classification and regression 
problems (Sruthi, 2023)

Support Vector 
Machine (SVM)

It is considered a powerful tool to make 
accurate predictions (Ho et al., 2021) 

Regression and classification 
problems (Yang & Shami, 2020)

Naïve Bayes (NB) Its simplicity allows all functions to 
contribute equally to the final solution 
(Ibrahim & Abdulazeez, 2021) 

Popular statistical method for 
spam filtering (Wickramasinghe & 
Kalutarage, 2021)

K Nearest 
Neighbor 
Algorithm (KNN)

A simple ML algorithm used to classify 
data points by calculating distances 
between different data points  
(Yang & Shami, 2020)

This algorithm is used to solve 
classification and regression problems 
(Ibrahim & Abdulazeez, 2021)

Logistic 
regression (LR)

Logistic regression is classified as a 
statistical ML method (Rymarczyk et al., 
2019)

Binary classification tasks by 
predicting the probability  
(Kanade, 2022)

Thus, each ML algorithm has its own characteristics and is best suited to tackling certain 
problems listed in Table 2. Next, models are developed with the analyzed ML algorithms to 
verify the suitability of the algorithms for NFR classification.

3.2. Measurement metrics

Below, you will find the metrics against which the study results are measured. 
Accuracy shows the number of correctly classified data units out of the total number of 

data units (Harikrishnan, 2019). The accuracy calculation formula is given (Silwal, 2022), (1):

   TP TNAccuracy
TP TN FP FN

+
=

+ + +
,  (1)

where TP – is the number of correctly classified requirements, TN – is the number of true 
negative results, FP – is the number of falsely recognized as correct requirements, and FN – is 
the number of incorrectly classified requirements.
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Precision is defined as the number of correctly identified true positives divided by the 
sum of the number of correctly identified true and false positive results (Koehrsen, 2018). The 
precision calculation formula is presented (Binkhonain & Zhao, 2019), (2):

     TPPrecision
TP FP

=
+

, (2)

where TP – is the number of correctly classified requirements and FP – is the number of falsely 
recognized correct requirements.

Recall measures the percentage of correctly classified NFRs (Binkhonain & Zhao, 2019) 
and can be considered the ability of a model to find all data points of interest in that data 
set (Koehrsen, 2018). The formula for calculating recall is presented (Binkhonain & Zhao, 
2019), (3):

   TPRecall
TP FN

=
+

,  (3)

where TP – is the number of correctly classified requirements, and FN – is the number of 
incorrectly classified requirements.

F-score considers both precision and recall, it is the harmonic mean of precision and recall 
(Ghoneim, 2019), and it is calculated according to the formula (Shung, 2018), (4):

 -    2 Precision RecallF score
Precision Recall

×
= ×

+
. (4)

4. Methodology and use case for Classifying Non-Functional 
Requirements

Based on Haque et al. (2019), Figure 1 shows a principal schema for analyzing ML models. 
The models are created using ML algorithms for NFR classification.

The steps involved in analyzing and fitting ML models are as follows:
 ■ Data processing. As with most ML projects with big data, data preprocessing is a nec-
essary first step (Baker et al., 2019). This is the preparation of the Kaggle platform data 
set for further classification. Used Kaggle data set consists of 976 requirements, 346 of 
which are non-functional and divided into 11 categories (Shukla, 2023). This data set 
was last modified in February 2023. The requirements for the Kaggle data set consist 

Figure 1. Principal schema of analyzing ML models
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of fault tolerance (10 requirements), maintainability (17 requirements), performance (54 
requirements), portability (2 requirements), scalability (21 requirements), security (56 
requirements), usability (63 requirements), legal and licensing (10 requirements), avail-
ability (21 requirements), look and feel (34 requirements), operability (58 requirements) 
NRF classes. Special characters are removed, as well as uppercase letters are converted 
to lowercase to classify the data set as simply as possible, words that complicate the 
algorithm are removed (such as “a”, “an”, etc.) and tokenization is performed – this 
divides the text into smaller parts (Haque et al., 2019). Python programming language, 
a Google Colab software tool, were used for data processing.

 ■ Converting a list of essential words into a set of features. This is changing the text so that 
it can be understood by ML algorithms. The data is divided into groups and used for 
model training and requirements classification. The data is automatically partitioned as 
follows: 80% of the data set is for training, and 20% of the data set is for testing. The 
data divided into training and testing sets are further vectorized using Term Frequency 
and Inverse document Frequency (TF-IDF). Other vectorization techniques such as Bi-
directional Encoder Representations from Transformers (BERT) have been tried, but the 
best results have been obtained using TF-IDF.

 ■ Creating models. By applying DT (Decision Tree), RF (Random Forest), SVM (Support 
Vector Machine), NB (Naïve Bayes), KNN (K Nearest Neighbor) and LR (Logistic Regres-
sion) ML algorithms for data classification, ML models are created, which are trained to 
classify NFRs, and their results are tested.

 ■ Comparison of results. All the results of the obtained models were compared according 
to accuracy, precision, recall and F-score results. Table 3 compares the achieved models 
results.

Table 3. Comparisons of the accuracy, precision, recall and F-score results of the models

Accuracy Precision Recall F-score

DT 0.529 0.539 0.529 0.512
RF 0.7 0.738 0.7 0.696
SVM 0.814 0.77 0.814 0.788
NB 0.786 0.811 0.786 0.785
KNN 0.743 0.769 0.743 0.735
LR 0.757 0.717 0.757 0.727

The model of the support vector method provided the best accuracy results, while the ac-
curacy of the decision tree reached only 0.529, which was the lowest among those examined. 
The best precision results were obtained using the simple Naïve Bayes classifier – 0.811. The 
rest of the models gave similar rates, except for the decision tree model, which only had a 
rate of 0.539. Analysing recall results, the model of the support vector method achieved the 
best results. The best F-score was obtained using the support vector method (0.788). Also, 
the simple Naïve Bayes classifier gave a similar F-score of 0.785. The decision tree model 
produced the worst F-score.

Summarizing the results of all models, the model of the support vector method achieved 
the best indicators, but the results of other models, except for the decision tree model, can be 
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considered good. By industry standards, results are considered good when they are between 
70% and 90%. Anything above 70% is acceptable as valuable data output for the model 
(Hendricks, n.d.). Meanwhile, the indicators of the decision tree model do not fall within the 
specified range.

5. Improvement of ML model accuracy

To create a more accurate method for NRF classification, it is worth considering combining 
ML algorithms. Ensemble models can be used for this. Combining different sets of individual 
ML models can improve the stability of the overall model, resulting in more accurate pre-
dictions (Nelson, 2020). One of the ensemble ML techniques is majority voting classifier. To 
make a final prediction, voting classifier combines the predictions of several individual clas-
sifiers (Kumar, 2023). Majority voting classifier is commonly used for classification problems 
(Singh, 2023). The advantage of majority voting is that it reduces the prediction error rate 
(Bajaj, 2023).

In order to improve the accuracy of the NFR classification, it was found that the best 
results were achieved with the SVM, NB and KNN algorithms using majority voting classifier. 
Figure 2 shows the obtained model classification report.

Figure 2. The majority voting classifier model classification report

The results of the majority voting classifier provided better indicators and ML algorithms 
in precision and F-score. However, when analysing precision and recall, the SVM model pro-
duced the same results as the majority voting classifier. Overall, the model showed better 
results in the classification of NFR. In order to determine the stability of the model, K-Fold 
cross validation of the model was performed. 10 subsets were used for model stability as-
sessment. Table 4 shows the results of each of the subsets and their average. 

Results: accuracy between 0.559 and 0.829 (from 0 to 1), precision between 0.617 and 
0.861, recall between 0.559 and 0.829 and F-score between 0.525 and 0.817. Figure 3 presents 
an average of 10 subsets confusion matrix of majority voting classifier model after K-Fold 
cross validation.
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Table 4. Model subsets results

Accuracy Precision Recall F-score

1 subset 0.771 0.815 0.771 0.751
2 subset 0.686 0.749 0.686 0.644
3 subset 0.800 0.861 0.800 0.806
4 subset 0.743 0.800 0.743 0.739
5 subset 0.657 0.712 0.657 0.654
6 subset 0.829 0.845 0.829 0.817
7 subset 0.559 0.617 0.559 0.525
8 subset 0.647 0.736 0.647 0.636
9 subset 0.676 0.709 0.676 0.645
10 subset 0.735 0.772 0.735 0.722
Average 0.710 0.762 0.710 0.694

Figure 3. The majority voting classifier model confusion matrix

Confusion matrix presents how many classes were predicted as actual. In order to com-
pare the results of the new majority model with the results of the best performing SVC 
algorithm model, after cross-validation, Table 5 is presented.

Table 5. Model results after cross-validation.

Accuracy Precision Recall F-score

Majority voting classifier 0.710 0.762 0.710 0.694
SVC 0.693 0.683 0.693 0.661
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Comparing the majority voting classifier model to the best-performing SVC model up to 
that point, we see a 1.7% increase in accuracy, a 7.9% increase in precision, a 1.7% increase 
in recall, and a 3.3% increase in F-score.

6. Conclusions 

After analyzing the articles on the topic of ML algorithms for classifying non-functional re-
quirements, it was found that one of the research directions is the classification of NFRs using 
ML algorithms. After deeper analyzing this, it is found that most researchers use SVM as the 
most accurate algorithm for classifying NFRs, but the opinions of researchers differ.

With the selected Kaggle data set and suitable tools, the development of ML methods 
was carried out, and performance indicators of models were obtained, based on which the 
accuracy of ML algorithms in classifying NFRs was compared. Among the ML algorithms 
used, the best results were provided by SVM, where model accuracy – 0.814 (on a scale 
from 0 to 1), precision – 0.770, recall – 0.814 and F-score – 0.788 were achieved.

After conducting experiments combining a ML algorithm, a more accurate NFRs classi-
fication method based on ML was obtained. The best results were obtained using majority 
voting classifier with SVM, NB, KNN algorithms, where accuracy – 0.814 (on a scale from 
0 to 1), precision – 0.845, recall – 0.814 and F-score – 0.815. K-Fold cross validation for 
majority voting classifier with SVM, NB, KNN were performed. Model accuracy – 0.710, 
precision – 0.845, recall – 0.814 and F-score – 0.815.

The future research direction of this paper can be improving the results achieved by 
the non-functional requirements classification model by using hybrid algorithm or explore 
solutions contributed from other perspectives and AI techniques, such as Search-based 
Software Engineering.
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