elSSN 2783-6851

2024
'1 VILNIUS NEW TRENDS in VOE::?
i B COMPUTER SCIENCES bages 57-68

https://doi.org/10.3846/ntcs.2024.21305

IDENTIFICATION OF SOFTWARE QUALITY ATTRIBUTES FROM CODE
DEFECT PREDICTION: A SYSTEMATIC LITERATURE REVIEW
Lukas RUMBUTIS, Asta SLOTKIENE (¥, Biruté PLIUSKUVIENE

Department of Information Systems, Faculty of Fundamental Sciences, Vilnius Gediminas Technical University,
Vilnius, Lithuania

Article History: Abstract. Identifying and understanding reasons for deriving software development defects
= received 10 April 2024 is crucial for ensuring software product quality attributes such as maintainability. This paper
=accepted 31 May 2024 presents a systematic literature review and the objective is to analyze the suggestions of other

authors regarding software code defect prediction using machine learning, deep learning, or
other artificial intelligence methods for the identification of software quality. The systemic lit-
erature review reveals that many analyzed papers considered multiple software code defects,
but they were analyzed individually. However, more is needed to identify software quality
attributes. The more profound analysis of code smells indicates the significance when con-
sidering multiple detected code smells and their interconnectedness; it helps to identify the
software quality sub-attributes of maintainability.

Keywords: code smell, machine learning, software quality attribute, systematic literature review.

=Corresponding author. E-mail: asta.slotkiene@vilniustech.lt

1. Introduction

Code smells are an implementation and design defect of the software source code that
has an essential effect on the efficiency of software development processes. For this issue,
the developers catalog and describe code defects and code smells with suggestions for
their solutions to maintain and evolve the application throughout its life cycle. Nowadays,
programming environments and static code analyzers use manual and automatic methods
to identify potential code smells. The results of Al Hilmi et al. (2023) research shows a sub-
jective understanding and low agreement between code defect detectors, applicability to
limited contexts and unbalanced datasets, limited developer knowledge, unclear priorities,
and unclear thresholds. This determines the complexity of the process for detecting code
smells in two aspects. First are the developers’ subjective perceptions of potential code
smell because these scents may not be harmful (Fowler, 2002). The second aspect that im-
pacts the process is the need for more consensus in the detection process and the difficulty
in setting appropriate detection thresholds. Di Nucci et al. (2018) research confirms that
working experience influences the results of code defect detection, while developers use
semi-automatic or automatic detectors, where developers can provide valuable information
for refactoring judgments and enhancing confidence in smell detection. This demonstrates
the need for more sophisticated approaches, which help to indicate code smells more
objectively based on the data and experiences. In this paper, we analyze the proposed

Copyright © 2024 The Author(s). Published by Vilnius Gediminas Technical University

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/
licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source
are credited.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-9252-0326
mailto:asta.slotkiene@vilniustech.lt
https://orcid.org/0000-0002-9030-503X
mailto:asta.slotkiene@vilniustech.lt
https://doi.org/10.3846/ntcs.2024.21305

“ L. Rumbutis et al. Identification of software quality attributes from code defect prediction: a systematic literature review

methods of researchers, which suggest that machine learning could help decide to avoid
the subjective identification of code smells for software quality evaluation. In this analysis,
we are looking for the answer to this scientific question: What code smells are predicting
for software quality identification? This paper presents a systematic literature (SLR), review
to answer the questions raised. The paper is structured as follows. Section 2 introduces the
background of software code defects and their relations with software quality attributes
and sub-attributes. Section 3 presents the review methodology. Section 4 shows the results
obtained from the SLR. Other sections discuss the results obtained in the paper, and finally,
we present future works and conclusions.

2. Background of the relationship between software quality attributes
and code defects

In the 1990s, Kent Beck described the importance of design quality in developing software
and popularized the word code smell. This word grew into a universal term in coding when
it was introduced in the book Refactoring: Improving the Design of Existing Code by Fowler
et al. (1990). The initial list has grown over the years and is described more in detail by Fowler
(2002). As defined by Fowler (2002), most of the code smells affect more than one external
software quality attribute, such as maintainability, which consists of reusability, testability,
analyzability, and modularity based on standard ISO/IEC 25010:2023 (International Organ-
ization for Standardization, 2023). Therefore, some quality attributes have more influence
than others.

Nowadays, different approaches are suggested to detect code smells: manual or au-
tomatic detection methods. The types of automatic detectors are classified, according to
the algorithms used, into search-based techniques (Kaur & Kaur, 2017) and metric-based
techniques (Di Nucci et al., 2018). In contrast, metric-based techniques (Kaur et al., 2016)
are classified into software development process and product metrics.

According to recent research (Paiva et al., 2017; Albuquerque et al., 2023), some limita-
tions were noticed in code smell different types of detectors:

1. Code smells are subjective and dependent on interpretations of their definitions and

experiences of developers;

2. Automatic detectors of code smell have different static code analysis rules, different
measurement algorithms of metrics, and thresholds of these metrics. This impacts the
number of detected code smells;

3. Code smell detectors can get false positives, not representing real problems, because
these detectors depend on information related to the subject domain and the context.
However, they need to pay more attention to the information related to the system
design;

4. Detecting individual code smells does not fully identify the code quality because code
smells are interrelated and influence each other. Their combinations determine soft-
ware quality attributes such as maintainability.

New Trends in Computer Sciences, 2024, 2(1), 57-68

Table 1. Code smells explanation and relations with software quality sub-attributes

Code Smell's

Impacts on Quality

functionality to justify its existence.

Code Smell Code Smell Explanation Type Sub-attributes

Long Method The method is excessively lengthy, Composite Reusability, Testability,
hindering comprehension. Analyzability,

Modifiability

God Class To maintain clarity and manageability, a Composite Reusability, Testability,
class should ideally be focused on a single Analyzability,
responsibility. Complexity arises when a Modifiability,
class attempts to handle more than one. Modularity

Long Parameter | Excessive parameters in methods violate Simple Analyzability,

List SRP, reducing clarity and maintainability. Testability

Feature Envy The method relies heavily on another Composite Reusability, Testability,
class’s functionalities, suggesting poor Analyzability,
design. Modifiability

Message Chains | Sequences exceeding three method calls Composite Testability,
can become clearer, hindering code flow Analyzability,
and readability. Modifiability

Data Class The class primarily serves as a container Simple Reusability
for data, needing more substantial
functionality.

Duplicated Code | Identical code structures are found Composite Analyzability
in multiple locations, increasing the
maintenance burden.

Spaghetti Code | Inconsistent code structure, lacking Composite Reusability, Testability,
adherence to established patterns and Analyzability,
conventions, hinders understanding and Modifiability
maintenance.

Functional Every function becomes a class, Composite Reusability, Testability,

Decomposition | disregarding object-oriented principles. Analyzability,

Modifiability,
Modularity
Lazy Class The class lacks sufficient value or Simple Reusability

Researchers apply different types of machine learning-based techniques to overcome the
previous limitations because of their ability to detect the severity of code smell, construct
code smell detection rules, and evaluate any new candidates by building the learning models.

In this paper, we suggest reviewing and identifying current methods for code smell detection
using machine-learning techniques. In this review, we decided to analyze 10 code smells
important to software quality and impact quality attributes such as maintainability and their
sub-attributes: reusability, testability, modifiability, and analyzability. Reusability describes the
possibility of a part of code being used in multiple places to build other code. Analyzability
and modifiability are quality sub-attributes that make it possible to understand what and
where should be modified and whether it is possible to modify without affecting the quality
of the software product. Testability indicates that it is possible to cover code with test cases
and determine whether they pass.

“ L. Rumbutis et al. Identification of software quality attributes from code defect prediction: a systematic literature review

In Table 1, we describe the code smells with explanations, which will be used in the review,
and the type of code smells assigned to software quality sub-attributes of maintainability
quality attributes based on ISO/IEC 25010:2023 standard.

3. Methodology of the systematic literature review

The review methodology was developed and executed according to the guidelines and
hints provided by Kitchenham and Brereton (2013), Kitchenham et al. (2009) and Dyba and
Dingsgyr (2008) respectively, and presented in Table 2 as a review protocol.

Table 2. Systematic literature review protocol

Question formulation

Question Focus: code-smells, smell-based defect, quality attributes, machine learning, detection
system, defect prediction.

Main Scientific Question: "What code smells are predicted for software quality identification?”
Research Question (RQ1): "What kind of code smells are predicted or detected?”

Research Question (RQ2): "What can be used for code smell detection or prediction?”
Research Question (RQ3): "How does code smell prediction impact software quality attribute
maintainability?”

Keywords and Synonyms: code-smells, qualit*, machine learning, detect*, defect*

Effect: What are the different quality attributes considered for defect prediction in code?

Field/Scope/Confines: Scientific papers regarding machine learning and code smells.

Application: Computer Science (CS)

Sources Selection

Studies Language: English.

Search string: (“code* smell*" OR “code* defect*") AND (“qualit*”) AND (“machine learning” OR
"deep learning” OR “artificial intelligen*")

Sources list: Web of Science (WoS), https://apps.webofknowledge.com/

Studies Selection

Studies Inclusion Criteria (IC):

IC1: Studies that analyze quality attributes to focus on code defect predictions using machine learning.
IC2: Papers must be available to download.

Studies Exclusion Criteria (EC):

EC1: Exclude papers that contain relevant keywords, but utilization of machine learning methods for
code defect prediction is not the main topic of the paper.

EC2: Exclude relevant sources that repeat ideas described in earlier works.

EC3: Exclude papers with less than ten pages since such short papers can present only a general idea
but not describe the overall approach.

EC4: If there are several papers of the same authors with a similar abstract, i.e., one paper is an
extension of another, the less extended (i.e., containing fewer pages) paper is excluded.

Studies Type Definition: Journal publications (research papers)

Information Extraction

Information Inclusion and Exclusion Criteria Definition: The extracted information from papers
must contain an analysis of code quality attributes for code smell detection.

Synthesis of findings: The information extracted from the papers was tabulated and plotted to
present basic information about the research process.

New Trends in Computer Sciences, 2024, 2(1), 57-68 “

End of Table 2

Studies Selection

Procedures for Papers Selection (PPS):

PPS-1. Run the search strings at the selected source. A primary list of papers is obtained.

PPS-2. Extract the title, abstract, and keywords of papers for the primary set.

PPS-3. Evaluate a primary list of papers (the title, abstract, and keywords) according to inclusion and
exclusion criteria. A secondary list of papers is obtained.

PPS-4. The eligibility step was applied to avoid papers that do not include experimentation to
predict code defects using machine learning or deep learning.

For the analysis, scientific papers were chosen based on the search strategy, and the valid-
ity of the results was performed by applying the following selections: PPS-2, PPS-3, and PPS-4
(see Table 2). To begin, PPS-1 must perform search queries on academic databases. PPS-2
needs to analyze the complete content of articles comprehensively, but reviewing 2016 pa-
pers (after PPS-1) is time-intensive. PPS-2 is the list of papers by extracting the title, abstract,
and keywords. Reading the abstract and the title of the papers introduces a threat because
the abstract and the title allow for excluding non-relevant papers at first glance (lvarsson
& Gorschek, 2010). Using these fields and based on predetermined criteria, it is possible to
determine if they meet the requirements for inclusion or exclusion. This process eliminates
papers that should be sufficiently suitable for the general research idea and scope. PPS-3, we
get a more concentrated list of analyzed papers. The final eligibility step filters out papers
(PPS-4) that do not apply the application of machine learning or deep learning methods or
algorithms for predicting code defects. The number of papers after each selection procedure
is presented in Table 3.

Table 3. Number of papers for each PPS

Years PPS-1 PPS-2 PPS-3 PPS-4
2014-2023 2016 119 77 21

The chronological distribution of the papers found in WoS is presented in Figure 1. They
were published in the period from 2014 to 2023.

The chart in Figure 1 illustrates the research patterns in software engineering, with a par-
ticular emphasis on code smells. The blue columns, “PPS-2", represent the cumulative number
of papers obtained yearly from the Web of Science database. These papers were selected

Figure 1. Chronological distribution between the primary set of papers (PPS-2)
and after evaluation with IC and EC criteria (PPS-3)

“ L. Rumbutis et al. Identification of software quality attributes from code defect prediction: a systematic literature review

based on the presence of keywords from the search string and the perceived relevance of
their abstracts to the issue. This graph demonstrates a significant surge in publications, be-
ginning with an insignificant figure in 2014 and escalating to 25 publications by 2023. The
increased interest in the topic might be attributed to the rising significance of software code
quality and the need for efficient defect prediction systems.

In contrast, the orange columns, "PPS-3", reflect the relevant papers after a more thor-
ough evaluation. This approach included reading the papers to verify that quality standards
were examined and debated. Including these papers in the Review Protocol indicates their
direct significance to the subject. The trajectory for "PPS-3" exhibits slight variation, with the
yearly publication count fluctuating between 8 and 14, ultimately reaching eight publications
in 2023. This suggests that many scientific papers are being published, and only a few re-
search studies have analyzed how the quality attributes and code defects are related.

From chronological distribution (see Figure 1) could indicate that although there is a
significant overall interest in the topic, as shown by the "PPS-2" trend, the number of papers
comprehensively examining software code defect prediction using machine learning is signifi-
cantly smaller. It is only PPS-4 = 21 papers. This highlights the need for a deeper investigation
and debate on the software code defect and software quality attributes.

4. Results of systematic literature review

The answer to the first research question (RQ1) is presented in Table 4 and Figure 2. It consists
of twelve columns, ten presenting the code smells for software code defect prediction found
in the papers. They are as follows: references (authors of papers), year (year of papers), and
code smells (long method, god class, long parameter list, feature envy, message chains, data
class, duplicated code, spaghetti code, functional decomposition, lazy class). All these code
smell explanations are described in Table 1.

From Table 4, it can be noticed that 2022 had the highest number of papers on code
smell prediction using machine learning, and our SRL has identified only one or two papers
every year that performed research on the analyzed topic from 2014 to 2019. The analyzed
code distribution by years is shown in Figure 2, where the size of the bubbles indicates the
number of papers analyzing each code smell.

The colours of the bubble (see Figure 2) represent different code smells (each code smell
description in Table 1). For example, the blue bubble indicates the “Long Method” code smell,
the orange bubble represents the “God Class” code smell, and so on. The size of each colored
bubble indicates the relative number of papers in that kind of code smells for a given year.
More giant bubbles mean more scientific papers that apply Al to predict code smells, while
smaller bubbles signify less research on the analyzed topic. The numbers within each coloured
bubble show the count of papers per year.

The result of the review indicated that certain code defects, such as feature envy and
data class, were continuously relevant from 2014 to 2023. These code defects are crucial in
software engineering and are often scrutinized in literature. Conversely, the significance of the
lengthy method and God class code smell has escalated since 2018, suggesting a heightened
recognition of these concerns in recent years. In the recent year 2023, the code smells such

New Trends in Computer Sciences, 2024, 2(1), 57-68

Table 4. The set of papers after the PPS-4 procedure (1 — code smell was analyzed in the paper,
0 - not analyzed).

C

] S

32 k=
— [wn © — v wn
[J] i %] (7] =} T O]
References 2 o | S o | e 2 S 2| =
£l 5 |gel 9|8 < = E| O

. o 2 |2El o |E9|ODQ|C 0O
© cll B |9z |2 |2c|aT|c ol B
(] o ®© 0] < o 3 0|0l 9 ©
> a0 [>0 o NUlunuu|lL A —

[1] | Sandouka and Aljamaan | 2023
[2] | Luburi¢ et al.

[3] | Albuquerque et al.
[4] | Dewangan et al. 2022
[5] | Oliveira et al.

[6] | Alkharabsheh et al.
[7] | Kovacevi¢ et al.

[8] | Liu et al. 2021
[9] | Boutaib et al.
[10] | Draz et al.
[11] | Agnihotri and Chug 2020
[12] | Guggulothu and Moiz
[13] | Mhawish and Gupta

[14] | Sousa et al. 2019
[14] | Singh et al.

[15] | Hozano et al. 2018
[16] | Sae-Lim at al.

[17] | Mansoor et al. 2017
[18] | Tufano et al.

[19] | Fontana et al. 2016
[20] | Sahin et al. 2014

OO—‘OOO—‘O—‘—‘—‘—‘—‘O—‘—‘O—‘—‘—‘—‘OLOngMethOd
olo|=|o|lo|=|-|=|o|-|o|lo|o|o|o|=|=|=a|=|=a|o|o| God Class

s|a|lo|lo|lo|lo|=|o|o|o|o|o|=|=|o|o|o|o|o|o|o| -
s|ala|lol=lol=a|lola|ala|aala|m|lolo|=|-|oc|o| =
o|lo|lo|lo|o|=|~|o|lo|lo|lo|o|o|o|o|o|o|=|o|lo|o|o
alalalola|a|alofalm|lo| a2 =|lolo|of=|=|o|lo| -
o|lo|lo|lo|o|lo|~|o|lo|lo|lo|o|lo|o|o|o|o|o|o|o|o|o
s|a|o|=m|m|o|lo|o|o|o|o|o|=|=|o|o|o|o|o|o|o| -
s|ao|lo|l=|=m|o|lo|o|o|o|o|o|=|=|o|lo|o|o|o|o|o| -
w|o|o|lo|o|lo|o|o|o|o|o|o|=|=|o|o|o|o|o|o|o| -

[21] | Kessentini et al.

Figure 2. Found software code smells in the papers according to years

L. Rumbutis et al. Identification of software quality attributes from code defect prediction: a systematic literature review

as message chains and duplicate code are not predicted using machine learning and are
not analyzed in the papers. Nevertheless, it was noted that defects, such as message chains,
duplicated code, and extensive parameter lists, should be explicitly acknowledged since they
are often analyzed in combination with other problems.

The code smells could be identified, detected, or predicted using manual/semi-automated
or automated ways of artificial intelligence. Manual/semi-automated way are used for anno-
tation code chunks based on developers’ experiences (Hozano et al.,, 2018; Singh et al., 2019;
Albuquerque et al., 2023; Luburi¢ et al,, 2023) or identification code defects based on code
quality metrics such as coupling, size of methods, cohesion, or complexity (Tufano et al.,, 2017;
Sousa et al., 2019; Alkharabsheh et al., 2022). The automated way uses detection from meas-
ured metrics of code (complexity, coupling, lines of code, depth of inheritance tree, weighted
method count, etc.) often using machine or deep learning methods: various kind of Neural
Networks (Dewangan et al., 2022; Liu et al., 2021), Support Vectors Machines (Sandouka &
Aljamaan, 2023; Kovacevic et al., 2022; Oliveira et al., 2022; Mhawish & Gupta, 2020; Fontana
et al, 2016) Random Forrest (Sandouka & Aljamaan, 2023; Kovacevi¢ et al., 2022; Fontana
et al,, 2016), Naive Bayes (Oliveira et al., 2022; Fontana et al., 2016), Decision Tree (Sandouka
& Aljamaan, 2023; Oliveira et al., 2022; Mhawish & Gupta, 2020; Fontana et al., 2016). In this
SRL, the detection or prediction ways were classified into four groups, presented in Table 5.

For the last research question (RQ3), we analyzed the software quality that could be iden-
tified from code smells. We are looking for an answer to this question through an analysis of
each selected paper of PPS-4. What is the primary purpose of software quality for code defect
annotation/detection/prediction? Many analyzed papers use software code quality metrics to
identify code quality and anticipate that there may be a software bug that impacts software
quality overall. Scientific papers published in 2019 highlight software quality attributes, such
as maintainability, difficulty maintaining, and issues with repairing the detected bug. The au-
thors (Luburi¢ et al., 2023; Dewangan et al., 2022; Alkharabsheh et al., 2022; Kovacevi¢ et al,,
2022; Liu et al,, 2021; Boutaib et al,, 2021; Sousa et al., 2019) noticed that left code defects
strongly impacted software maintainability (see Table 6).

Table 5. Answer to RQ2: "What can be used for code smells detecting or predicting using Al?"

Ways of using artificial

. . References

intelligence
Prediction using machine Fontana et al. (2016), Mhawish and Gupta (2020), Guggulothu and
learning (ML) Moiz (2020), Boutaib et al. (2021), Dewangan et al. (2022), Oliveira et al.

(2022), Kovacevic et al. (2022), Sandouka and Aljamaan (2023)

Prediction using deep Mhawish and Gupta (2020), Liu et al. (2021), Dewangan et al. (2022).
learning
Prediction using search- Kessentini et al. (2014), Sahin et al. (2014), Tufano et al. (2017)
based approaches (empirical investigation), Mansoor et al. (2017), Draz et al. (2021)
Other ML processes, Sae-Lim et al. (2018), Hozano et al. (2018), Sousa et al. (2019), Singh
such as annotation or et al. (2019), Alkharabsheh et al. (2022), Albuquerque et al. (2023),

classification code, smell by |Luburi¢ et al. (2023)
code quality metrics.

New Trends in Computer Sciences, 2024, 2(1), 57-68

Table 6. Software quality aspects identification

Software quality
assurance purpose

References

Software code quality
metrics are used for code
smell detection

Sandouka and Aljamaan (2023), Luburi¢ et al. (2023), Dewangan et al.
(2022), Oliveira et al. (2022), Alkharabsheh et al. (2022), Kovacevi¢

et al. (2022), Liu et al. (2021), Boutaib et al. (2021), Draz et al. (2021),
Guggulothu and Moiz (2020), Mhawish and Gupta (2020), Sousa et al.
(2019), Singh et al. (2019), Hozano et al. (2018), Tufano et al. (2017),
Fontana et al. (2016)

Software quality
improvement based on
code smell detection

Sandouka and Aljamaan (2023), Albuquerque et al. (2023), Oliveira et al.
(2022), Draz et al. (2021), Guggulothu and Moiz (2020), Mhawish and
Gupta (2020), Singh et al. (2019), Hozano et al. (2018), Sae-Lim et al.
(2018), Mansoor et al. (2017), Tufano et al. (2017), Fontana et al. (2016),
Sahin et al. (2014), Kessentini et al. (2014)

Software quality
attribute — maintainability
improvement based on

Luburi¢ et al. (2023), Dewangan et al. (2022), Alkharabsheh et al. (2022),
Kovacevic et al. (2022), Liu et al. (2021), Boutaib et al. (2021), Sousa et al.
(2019)

code smell detection

The answer to the main scientific question (MRQ) is more complicated because to detect
or predict code smell separately and does not consider possible connections between them,
the impacts on software quality identification should be more accurate. Code smells often
occur together, and their collective influence on quality attributes and sub-attributes, such as
testability, analyzability, reusability, modifiability, and modularity, may be substantial. Knowing
the connections between various code smells helps the ability to evaluate their influence on
defect prediction accurately. Identifying “message chains” alone may not be enough without
considering additional concurrent concerns such as duplicated code. That way, the described
relation between code smells and software quality attributes and sub-attributes allows us to
more deeply understand that recognizing individual code smells does not help developers
perceive the reason and more effectively refactor the place of code to improve software
maintenance.

The answer to the main research question we found when we summarized by code smells
relations with software quality sub-attributes. From the data on the prediction of code smell,
we noticed that software quality attributes such as testability and analyzability were continu-
ously the most focused from 2014 to 2023, with a significant rise in attention over the latter
years. Reusability and modifiability were consistently emphasized during the analyzed period;
while modularity gained more attention with time, it remained the least explored quality
attribute by code smells god class and functional decomposition.

Therefore, future research should consider the interplay between code smells and their
combined effect on external quality attributes. This would provide a comprehensive knowl-
edge of how code smells impact software maintainability and predict potential failures for
end-users. The limitation of this analysis is that we do not analyze the identified code smell
impact via all levels of defect from bug to failure, from developers’ mistakes to end-users’
usability.

“ L. Rumbutis et al. Identification of software quality attributes from code defect prediction: a systematic literature review

5. Discussion

The performed systematic literature review allows us to analyze what kind of code smells
are predicted using machine learning. A deeper analysis of the nature of code smells shows
that some code smells are composite from other code smells. For example, the long method
might be a part of a god class. Researchers might study them together to understand the
compound effect or propose comprehensive refactoring strategies that address multiple is-
sues simultaneously. Common root causes, where multiple code smells may stem from the
same underlying design or implementation issues. Analyzing them together, the root causes
and how they manifest can be better understood. Also, refactoring code to address one smell
might impact or introduce other smells.

Therefore, code smells should be analyzed in groups to achieve better results regarding
defect prediction and code refactoring. Moreover, this review offers insights into how predict-
ed code smells influence the software quality attribute — maintainability and its sub-attributes.
However, it is essential to note that the study’s conclusions are derived only from a survey of
existing literature, which imposes limitations regarding the range and reliability of the studies
covered. Future studies will be enhanced by conducting empirical studies investigating code
defects’ influence on internal and external quality attributes.

6. Future works

The systematic literature review has provided a thorough comprehension of code defect pre-
diction and their relevancy for identifying software quality attributes — maintainability. Never-
theless, there is a significant need for this research area to continue developing. First, for re-
lation identification between code smells, it is necessary to create an ontology or knowledge
base. Through systematic documentation of code defects and their relations, researchers and
developers may better understand how different categories of code smells impact different
attributes of software quality. This knowledge base would be very beneficial in determining
the impact of the different levels of software defect: from code to failure for end-users, from
the requirement to software code, or the database structure. This knowledge and relations
allow more effective quality assurance of the software development process and avoid various
software defects, which influence internal and external software quality attributes.

7. Conclusions

The systemic literature review reveals that many analyzed papers considered more than one
software code defect: the minimum two code smells for predicting software code using machine
learning. The researchers analyzed for prediction code smells, often left via a programming pro-
cess, but quality identification is not enough for the software. This indicates multiple justifications
for analyzing a set of code smells rather than individual code smells to identify quality attributes.
A deeper analysis of selected papers shows the limitations of analyzed papers: researchers should
study code smells and predict software defects by interrelated code smells to understand the
compound effect or propose comprehensive refactoring strategies that address multiple issues si-
multaneously and, at the same time, to improve several sub-attributes of software maintainability.

New Trends in Computer Sciences, 2024, 2(1), 57-68

References

Agnihotri, M., & Chug, A. (2020). A systematic literature survey of software metrics, code smells, and
refactoring techniques. Journal of Information Processing Systems, 16(4), 915-934.
https://doi.org/10.3745/jips.04.0184

Albuquerque, D., Guimaraes, E., Perkusich, M., Rique, T, Cunha, F., Almeida, H., & Perkusich, A. (2023).
On the assessment of interactive detection of code smells in practice: A controlled experiment. IEEE
Access, 11, 84589-84606. https://doi.org/10.1109/access.2023.3302260

Al Hilmi, M. A,, Puspaningrum, A., Darsih, Siahaan, D. O., Samosir, H. S., & Rahma, A. S. (2023). Research
trends, detection methods, practices, and challenges in Code Smell: SLR. /EEE Access, 11, 129536—
129551. https://doi.org/10.1109/access.2023.3334258

Alkharabsheh, K., Alawadi, S., Ignaim, K., Zanoon, N., Crespo, Y., Manso, E., & Taboada, J. A. F. (2022). Pri-
oritization of god class design smell: A multi-criteria based approach. Journal of King Saud University —
Computer and Information Sciences, 34(10), 9332-9342. https://doi.org/10.1016/j.jksuci.2022.09.011

Boutaib, S., Bechikh, S., Palomba, F., Elarbi, M., Makhlouf, M., & Said, L. B. (2021). Code smell detection
and identification in imbalanced environments. Expert Systems with Applications, 166, Article 114076.
https://doi.org/10.1016/j.eswa.2020.114076

Dewangan, S., Rao, R. S., Mishra, A., & Gupta, M. (2022). Code smell detection using ensemble machine
learning algorithms. Applied Sciences, 12(20), Article 10321. https://doi.org/10.3390/app122010321

Di Nucci, D., Palomba, F., Tamburri, D. A, Serebrenik, A., & De Lucia, A. (2018). Detecting code smells
using machine learning techniques: Are we there yet? In 2078 IEEE 25th International Conference on
Software Analysis, Evolution and Reengineering (SANER). https://doi.org/10.1109/saner.2018.8330266

Draz, M. M., Salah, M., Abdulkader, S. N., & Gamal, M. (2021). Code smell detection using a whale opti-
mization algorithm. Computers, Materials & Continua, 68(2), 1919-1935.
https://doi.org/10.32604/cmc.2021.015586

Dyba, T., & Dingsgyr, T. (2008). Empirical studies of agile software development: A systematic review.
Information & Software Technology, 50(9-10), 833-859. https://doi.org/10.1016/j.infsof.2008.01.006

Fontana, F. A, Mantyla, M., Zanoni, M., & Marino, A. (2016). Comparing and experimenting machine
learning techniques for code smell detection. Empirical Software Engineering, 21(3), 1143-1191.
https://doi.org/10.1007/s10664-015-9378-4

Fowler, M., Beck, K., Brant, J.,, Opdyke, W., & Roberts, D. (1990). Refactoring: Improving the design of
existing code. Addison Wesley.

Fowler, M. (2002). Refactoring: improving the design of existing code. In D. Wells & L. Williams (Eds.),
Lecture notes in computer science (p. 256). Springer. https://doi.org/10.1007/3-540-45672-4_31

Guggulothu, T., & Moiz, S. A. (2020). Code smell detection using a multi-label classification approach.
Software Quality Journal, 28(3), 1063-1086. https://doi.org/10.1007/s11219-020-09498-y

Hozano, M., Garcia, A., Fonseca, B., & De Barros Costa, E. (2018). Are you smelling it? Investigating how
similar developers detect code smells. Information & Software Technology, 93, 130-146.
https://doi.org/10.1016/j.infsof.2017.09.002

International Organization for Standardization. (2023). Systems and software engineering Systems and
software Quality Requirements and Evaluation (ISO Standard No. ISO/IEC 25010:2023).
https://www.iso.org/standard/78176.html

Ivarsson, M., & Gorschek, T. (2010). A method for evaluating rigor and industrial relevance of technology
evaluations. Empirical Software Engineering, 16(3), 365-395. https://doi.org/10.1007/s10664-010-9146-4

Kaur, K., & Kaur, P. (2017). Evaluation of sampling techniques in software fault prediction using metrics
and code smells. In International Conference on Advances in Computing, Communications, and Infor-
matics, (pp. 1377-1387). IEEE. https://doi.org/10.1109/icacci.2017.8126033

Kaur, A, Kaur, K., & Jain, S. (2016). Predicting software change-proneness with code smells and class
imbalance learning. International Conference on Advances in Computing, Communications and Infor-
matics. |IEEE. https://doi.org/10.1109/icacci.2016.7732136

https://doi.org/10.3745/jips.04.0184
https://doi.org/10.1109/access.2023.3302260
https://doi.org/10.1109/access.2023.3334258
https://doi.org/10.1016/j.jksuci.2022.09.011
https://doi.org/10.3390/app122010321
https://doi.org/10.32604/cmc.2021.015586
https://doi.org/10.1016/j.infsof.2008.01.006
https://doi.org/10.1007/s10664-015-9378-4
https://doi.org/10.1007/3-540-45672-4_31
https://doi.org/10.1007/s11219-020-09498-y
https://doi.org/10.1016/j.infsof.2017.09.002
https://www.iso.org/standard/78176.html
https://doi.org/10.1007/s10664-010-9146-4
https://doi.org/10.1109/icacci.2017.8126033
https://doi.org/10.1109/icacci.2016.7732136

“ L. Rumbutis et al. Identification of software quality attributes from code defect prediction: a systematic literature review

Kessentini, W., Kessentini, M., Sahraoui, H., Bechikh, S., & Ouni, A. (2014). A cooperative parallel Search-
Based software engineering approach for Code-Smells detection. /EEE Transactions on Software Engi-
neering, 40(9), 841-861. https://doi.org/10.1109/tse.2014.2331057

Kitchenham, B., & Brereton, P. (2013). A systematic review of systematic review process research in soft-
ware engineering. Information & Software Technology, 55(12), 2049-2075.
https://doi.org/10.1016/j.infsof.2013.07.010

Kitchenham, B., Brereton, O. P., Budgen, D., Turner, M., Bailey, J., & Linkman, S. (2009). Systematic liter-
ature reviews in software engineering — A systematic literature review. Information & Software Tech-
nology, 51(1), 7-15. https://doi.org/10.1016/j.infsof.2008.09.009

Kovacevi¢, A., Slivka, J., Vidakovi¢, D., Gruji¢, K., Luburi¢, N., Proki¢, S., & Sladi¢, G. (2022). Automatic de-
tection of Long Method and God Class code smells through neural source code embeddings. Expert
Systems with Applications, 204, Article 117607. https://doi.org/10.1016/j.eswa.2022.117607

Liu, H., Jin, J., Xu, Z,, Zou, Y., Bu, Y., & Zhang, L. (2021). Deep learning-based code smell Detection. IEEE
Transactions on Software Engineering, 1. https://doi.org/10.1109/tse.2019.2936376

Luburi¢, N., Proki¢, S., Gruji¢, K., Slivka, J., Kovacevi¢, A, Sladi¢, G., & Vidakovi¢, D. (2023). Towards a
systematic approach to manual annotation of code smells. Science of Computer Programming, 230,
Article 102999. https://doi.org/10.36227/techrxiv.14159183

Mansoor, U., Kessentini, M., Maxim, B. R, & Deb, K. (2017). Multi-objective code-smells detection using
good and bad design examples. Software Quality Journal, 25(2), 529-552.
https://doi.org/10.1007/s11219-016-9309-7

Mhawish, M. Y., & Gupta, M. (2020). Predicting code smells and analysis of predictions: using machine
learning techniques and software metrics. Journal of Computer Science and Technology, 35(6), 1428-
1445. https://doi.org/10.1007/s11390-020-0323-7

Oliveira, D., Assuncédo, W. K. G., Garcia, A., Fonseca, B., & Ribeiro, M. (2022). Developers’' perception
matters machine learning to detect developer-sensitive smells. Empirical Software Engineering, 27(7),
Article 195. https://doi.org/10.1007/s10664-022-10234-2

Paiva, T., Damasceno, A., Figueiredo, E., & Sant’Anna, C. (2017). On the evaluation of code smells and
detection tools. Journal of Software Engineering Research and Development, 5(1), Article 7.
https://doi.org/10.1186/s40411-017-0041-1

Sae-Lim, N., Hayashi, S., & Saeki, M. (2018). Context-based approach to prioritize code smells for refactor-
ing. Journal of Software: Evolution and Process, 30(6), Article e1886. https://doi.org/10.1002/smr.1886

Sahin, D., Kessentini, M., Bechikh, S., & Deb, K. (2014). Code-Smell detection as a bilevel problem. ACM
Transactions on Software Engineering and Methodology, 24(1), 1-44. https://doi.org/10.1145/2675067

Sandouka, R, & Aljamaan, H. (2023). Python code smells detection using conventional machine learning
models. PeerJ, 9, Article e1370. https://doi.org/10.7717/peerj-cs.1370

Singh, R, Bindal, A. K., & Kumar, A. (2019). A user feedback centric approach for detecting and mitigat-
ing god class code smell using frequent usage patterns. Journal of Communications Software and
Systems, 75(3). https://doi.org/10.24138/jcomss.v15i3.720

Sousa, B. L, Bigonha, M. a. S., & Ferreira, K. a. M. (2019). An exploratory study on cooccurrence of design
patterns and bad smells using software metrics. Software: Practice and Experience, 49(7), 1079-1113.
https://doi.org/10.1002/spe.2697

Tufano, M., Palomba, F., Bavota, G., Oliveto, R, Di Penta, M., De Lucia, A., & Poshyvanyk, D. (2017). When
and why your code starts to smell bad (and whether the smells go away). IEEE Transactions on Software
Engineering, 43(11), 1063-1088. https://doi.org/10.1109/tse.2017.2653105

https://doi.org/10.1109/tse.2014.2331057
https://doi.org/10.1016/j.infsof.2013.07.010
https://doi.org/10.1016/j.infsof.2008.09.009
https://doi.org/10.1016/j.eswa.2022.117607
https://doi.org/10.1109/tse.2019.2936376
https://doi.org/10.36227/techrxiv.14159183
https://doi.org/10.1007/s11219-016-9309-7
https://doi.org/10.1007/s11390-020-0323-7
https://doi.org/10.1007/s10664-022-10234-2
https://doi.org/10.1186/s40411-017-0041-1
https://doi.org/10.1002/smr.1886
https://doi.org/10.1145/2675067
https://doi.org/10.7717/peerj-cs.1370
https://doi.org/10.24138/jcomss.v15i3.720
https://doi.org/10.1002/spe.2697
https://doi.org/10.1109/tse.2017.2653105

