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Article History:  Abstract. The application of machine learning algorithms has become widespread particularly 
in fields such as medicine, business, and commerce. However, achieving accurate classifica-
tion results with these algorithms often relies on large-scale training datasets, making data 
collection a lengthy and complex process. This paper reviews the current utilization of gener-
ative adversarial network (GAN) architectures and discusses recent scientific research on their 
practical applications. The study emphasizes the significance of addressing data scarcity in the 
process of training the machine learning algorithms and highlights the potential of advanced 
GAN architectures, in particular StyleGAN2-ADA, to mitigate this challenge. The findings con-
tribute to ongoing efforts aimed at enhancing the efficiency and applicability of artificial in-
telligence across diverse domains by presenting a viable solution to the constraint of limited 
training data for image classification tasks.
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1. Introduction

The rapid growth of machine learning has had a significant impact on the modern technology 
market, where increasing hardware capabilities have led to more efficient machine learning 
algorithms. These tools of automation are substituting human labor in industries, medicine, 
and business. However, the accuracy of these models is greatly influenced by the quantity 
and quality of training data (Alzubaidi et al., 2021). The collection of data remains a complex 
process, taking considerable time, financial resources, and collaboration between specialists 
in various fields. Both the commercial and scientific sectors often face a lack of such data. To 
address this issue, image augmentation methods are often employed, but its impact is not 
always substantial (Y. Chen et al., 2022).

Today, one of the main challenges in the field of artificial intelligence is to train models 
using limited datasets (Ahmed et al., 2023). In many cases, it is impossible to create sufficient 
datasets, which could ensure the quality of the image classification systems. Recently, there 
has been notable interest in generative adversarial networks (GAN) as a promising solution 
for addressing data scarcity. Images created through generative adversarial network models 
showcase exceptional quality and distinctive features (Salimans et al., 2016). GAN technology 
stands out as a top method for crafting synthetic images, capable of generating new visuals 
from limited existing datasets. The implementation of this technology has the potential to 
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improve the effectiveness of classification tasks. This approach has garnered considerable 
attention due to ongoing research and multiple modifications in recent years (Saxena & 
Cao, 2021).

2. Synthetic image generation

The process of image generation involves manipulating signals to extract desired information 
through various operations. Images can be subjected to a variety of filters and transforma-
tions to isolate specific values corresponding to the features of objects captured in them. 
Humans can effortlessly categorize real-world objects based on their features, but it is a 
challenging task for artificial intelligence. To overcome this, it is crucial to provide diverse 
variations of the same object to train precise classifiers. Generative adversarial networks serve 
this purpose by generating synthetic images that showcase potential variations of objects.

GAN is an unsupervised deep learning method comprised of two artificial convolutional 
neural networks: a generator and a discriminator. These components engage in continuous 
competition, with the generator learning from real and previously generated images, while 
the discriminator tries to distinguish between real and synthetic images. The discriminator’s 
architecture consists of a fully connected neural network classifying images into two classes: 
real or synthetic. The generative part employs the inverse architecture, reconstructing an 
image from training data and a random noise vector. This progressive cycle continues until 
the discriminator accurately classifies the images, recognizing synthetic images as authentic 
(Goodfellow et al., 2020). The GAN architecture is illustrated in Figure 1.

However, another issue arises when evaluating the quality of the generated images. 
In the generation of images with GANs it can be difficult to assess the image quality due 
to the lack of a precise evaluation methodology (Iglesias et al., 2023). Common criteria 
include average log-likelihood, classification, and visual inspection, each with pros and 
cons (Borji, 2019). Qualitative assessment is based on human judgement, but this is not 
practical in large datasets, and it presents time and cost challenges. In addition, experts 
can comprehend images differently. Therefore, many researchers have improved the initial 
GAN architecture by incorporating various elements that enhance the generated image 
quality (Wang et al., 2021).

Figure 1. GAN architecture
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3. An analytical review on deep learning methods for synthetic image 
generation

In recent years, many researchers have modified the conventional framework of generative 
adversarial networks by adapting various network architectures, loss functions, and evolution-
ary methods. As a result, the GAN architecture significantly improved and generated images 
became more realistic. Synthetic GAN generated images can be used to solve imbalanced 
datasets, data leakage, feature extraction, data shortage, inaccurate data labeling, and other 
challenges. This paper reviews the currently used GAN architectures and discusses scientific 
research on the practical use of GAN.

3.1. DCGAN network

The architecture of the Deep Convolutional Generative Adversarial Network (DCGAN) re-
places the multilayered perception network with the deep convolutional artificial neural 
network, ensuring stable training of the generative component (Dash et al., 2023). The 
methodology is designed to project the input of the generator as a high-dimensional tensor 
and uses convolutional operations to generate the output image. In the generator, these 
convolutional layers manipulate the image, thus expanding and increasing its resolution 
(Radford et al., 2015). 

This approach is suitable for applications with low-resolution color images. An illustration 
of the change in the dimension of the tensor (from 14×14×6 to 28×28×1) can be observed 
in Figure 2.

Figure 2. DCGAN model architecture
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3.2. CGAN network

The Conditional Generative Adversarial Network (CGAN) is a widely used model in the realm 
of Generative Adversarial Networks, falling under the category of expansionary GAN archi-
tectures. Structured upon the standard GAN network architecture, CGAN incorporates an ad-
ditional input layer in both its generator and discriminator, including conditional information 
such as class labels (Mirza & Osindero, 2014), as illustrated in Figure 3.

Figure 3. CGAN model architecture

The main objective of this method is to generate realistic images based on specific labels 
associated with each image in the dataset. The role of the discriminator goes beyond the 
distinction between real images and false ones; it also ensures that appropriate labels are 
assigned to the images. This extra information conditions the generation process, allowing 
for more controlled and targeted image generation (Mert, 2023).

3.3. InfoGAN network

Another widely used model is the Information Maximizing Generative Adversarial Network 
(InfoGAN), which falls into the category of expanded GAN architectures. InfoGAN addresses 
the unconstrained usage of noise vectors in the generative part by proposing a division into 
two parts: an uninterpretable noise source and a latent code (X. Chen et al., 2016). The struc-
tural design of this approach is illiustrated in Figure 4.

The InfoGAN network is a fully unsupervised method capable of learning representations 
of both interpretable and uninterpretable aspects within complex datasets. It is well suited for 
generating various 3D images, faces, and objects. Furthermore, InfoGAN training is relatively 
straightforward and requires minimal financial resources during the implementation process 
(Feng et al., 2023). 
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3.4. StackGAN network

The accumulated generative adversarial network, StackGAN (Stacked Generative Adversarial 
Network), is designed to generate images from text employing hierarchically stacked condi-
tional GAN models. However, generating realistic lifelike images through this method is highly 
complex. The structure proposed by Zhang et al. (2017), addresses the complexity of gener-
ating realistic images from text. This modified GAN employs hierarchically stacked conditional 
GAN models to overcome training instability and nonsensical results encountered in previous 
attempts. The StackGAN (Figure 5) divides the image generation process into two stages. 

Figure 4. InfoGAN model architecture

Figure 5. StackGAN model architecture
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In the first stage, a low-resolution image is generated based on text criteria, and in the 
second stage, high-resolution images are produced using the original text and the low-reso-
lution image from the first stage. This two-stage approach allows the second stage to refine 
and enhance details within the generated objects, utilizing the results of the first stage. Spe-
cifically, the second stage of StackGAN combines the low-resolution image and the original 
text description as conditioning input for the generator, enabling the network to capture 
more nuanced features and produce higher-resolution, more realistic images compared to 
using text alone as the sole input (Thamotharan et al., 2023).

3.5. Pix2Pix network

The Pix2Pix generative adversarial network is a method designed to train a deep convolu-
tional neural network to perform image-to-image translation transformations. The generated 
output image is conditionally transformed based on the initial input image. Both the input 
and output images are fed into a discriminator that evaluates whether the resulting image 
is suitably transformed from the original input. Adversarial loss guides the training of the 
generator, ensuring credible output, and an L1 loss coefficient updates the generator based 
on the disparity between the synthetic and desired output images (Dash et al., 2023).

This versatile GAN model, illustrated in Figure 6, has successfully tackled tasks such as con-
verting map images to satellite photos, grayscale images to color, and transforming sketches 
into product photographs using either U-Net or ResNet architecture (Henry et al., 2021).

Figure 6. Pix2Pix model architecture

3.6. CycleGAN network

The CycleGAN network belongs to the advanced category of generative adversarial networks 
(GANs) and is widely used for image transformations. Unlike Pix2Pix, CycleGAN utilizes two 
unrelated datasets, addressing the difficulty and costs associated with assembling paired 
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training data (Son et al., 2023). For example, in tasks such as semantic image segmentation, 
only a few combined datasets currently exist, and even these datasets often lack sufficient 
data (Zhu et al., 2017). 

The network comprises two generators and discriminators, each focused on converting 
images between domains, employing an encoder-decoder architecture with convolutional 
layers and skip connections. The key innovation is the introduction of cycle consistency loss 
(Zhu et al., 2017), ensuring that translated images maintain resemblance to the originals 
through forward and backward transformations. This model’s applications include generating 
high-quality images without inherent correlations, simplifying dataset construction for GAN 
training, and excelling in medical imaging and photo quality enhancement. The architecture 
of this approach is shown in Figure 7.

Such network is well suited for medical imaging, the manipulation of objects within im-
ages, and the improvement of photo quality. However, challenges arise in modifying video 
geometry, and the generated images often closely resemble the originals, limiting diverse 
transformations (Son et al., 2023).

3.7. Progressive GAN network

The Progressive Growing Generative Adversarial Network described in Karras et al. (2017), propos-
es a concept of the progressive expansion of both the network generator and the discriminator.

Beginning with low-resolution images, the model undergoes incremental augmentation 
with new layers during subsequent training stages, enhancing synthesized image details. This 
synchronous growth of the generator and discriminator ensures seamless integration of newly 
generated layers, depicted in Figure 8 of the architecture. The approach strategically focuses on 
refining smaller details as additional network layers are added, leading to efficient and stable 
training with significant time savings compared to traditional methods (Pérez & Ventura, 2023).

Figure 7. CycleGAN model architecture
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Figure 8. Progressive GAN model architecture

3.8. StyleGAN network

The Style-Based Generative Adversarial Network (StyleGAN) enhances control over image 
generation by modifying the generator without altering the discriminator. The network’s gen-
erator embeds a latent algorithmic code along with a noise vector as input at various loca-
tions within the model, which as a result significantly influences the code’s behavior (Iglesias 
et al., 2023). As described by Karras et al. (2019), the StyleGAN training process begins with a 
learned constant and progressively adjusts the images styles generated in each convolutional 
layer according to the transmitted latent code. This capability allows the algorithm to have 
direct control over the intensity of visual features in different zones as illustrated in Figure 9.

This model has demonstrated the ability to generate realistic images of faces with vari-
ous accessories (such as eyeglasses, etc.). The realism achieved in the images generated by 
StyleGAN surpasses that of its predecessors and traditional GAN models. However, its training 
requires substantial computational resources.

Figure 9. StyleGAN model architecture
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3.9. Comparative analysis of Generative Adversarial Network architectures

The advancement of Generative Adversarial Networks (GANs) has led to the development of 
various architectural frameworks, each with a specific purpose to address challenges in image 
generation and manipulation. This section provides a comparative analysis of prominent GAN 
architectures in Table 1.

Table 1. Comparative analysis of Generative Adversarial Network architectures

Input Generator / Discriminator Architecture

DCGAN Only noise vector Traditional* Traditional
CGAN Noise vector and class 

information
Traditional Traditional

InfoGAN Noise vector and latent 
code

Traditional Traditional

StackGAN Noise vector and 
embedded text description

Traditional Two stages

Pix2Pix Real image Generator based on 
encoder-decoder 
architecture

Traditional

CycleGAN Real image in Stage I and 
synthetic image in Stage2

Generator based on 
encoder-decoder 
architecture

Two stages

Progressive GAN Only noise vector Progressively growing gen-
erator and discriminator

Traditional

StyleGAN Noise vector and 
algorithmic latent code-
based style information

Progressively growing 
generator and 
discriminator

Has adaptive instance 
normalization for image 
style adjustment

Note: * – GAN network has only one generator and one discriminator. ** – GAN network has only one stage for 
image generation process.

A summary of the unique features, benefits and limitations of these architectures is pre-
sented in Table 2.

Table 2. Comparative analysis of Generative Adversarial Network unique features, advantages 
and limitations

Unique features Advantages Limitations 

DCGAN Traditional GAN 
architecture based on deep 
convolution and serves 
as the foundation for the 
subsequent architectures.

Demonstrates stable 
convergence and 
produces coherent 
images.

Suitable only for low- 
resolution color image 
applications and has limited 
control over the attributes 
of generated images.

CGAN Continuation of the DCGAN, 
incorporating additional 
feature (class information).

Enables precise control 
over the generated image 
content by conditioning 
on auxiliary information 
such as class labels or 
attributes.

Requires labeled data and 
additional conditioning 
variables, increasing com-
plexity and computational 
requirements for training.
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Unique features Advantages Limitations 

InfoGAN Continuation of the CGAN, 
incorporating one or 
more additional features 
(control variables) and 
mutual information from an 
auxiliary model.

Learns interpretable 
latent representations 
through unsupervised 
training, capturing key 
image features without 
labeled data.

Requires labeled datasets 
for training.
May require careful tuning 
of hyperparameters for 
optimal performance.
Limited interpretability of 
the learned latent codes.

StackGAN Has a hierarchical stack of 
conditional GAN models.

Produces high-quality 
images with fine-grained 
details from textual 
descriptions.

Can result in training 
instability and nonsensical 
results.
Two-stage process may 
increase computational 
requirements.

Pix2Pix U-Net or ResNet generator 
architecture. 

Effective for image-to-
image translation tasks.
Provides a direct 
mapping between input 
and output domains, 
resulting in precise image 
translations.

Requires paired training 
data for effective training.
Sensitive to variations 
in input data and may 
struggle with diverse 
transformations.

CycleGAN  Utilizes cycle consistency 
loss to enforce unpaired 
image-to-image translation 
between two domains 
without requiring 
corresponding pairs during 
training.

Removes the need for 
paired training data, 
allowing for more flexible 
and diverse image 
translation tasks.

May not guarantee one-
to-one mapping between 
input and output domains.
Performance heavily 
depends on the quality and 
diversity of the training 
datasets, leading to 
potential mode collapse or 
suboptimal translations.

Progressive 
GAN 

The training process is 
divided into multiple stages 
of different resolutions.
Has a minibatch standard 
deviation layer.
Employs pixel-wise feature 
vector normalization.

Produces high-quality 
images with fine details 
and textures, achieving 
state-of-the-art results in 
image synthesis.

Requires significant 
computational resources 
and prolonged training 
times due to the 
incremental growth of 
network complexity and 
resolution.

StyleGAN Style-based modification of 
the generator.
Includes mapping network 
to transform input latent 
code into intermediate style 
vectors. 
Employs stochastic noise 
injection at various stages 
of the generator. 

Enables precise 
manipulation of image 
attributes and generation 
of diverse and high-
quality images with 
realistic details.

Complex architecture 
and training procedure, 
demanding substantial 
computational resources 
and expertise in 
hyperparameter tuning.

End of Table 2
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4. Experimental comparison of Generative Adversarial Networks results

To address the issue of limited datasets, three generative adversarial network architectures 
were investigated: Conditional GAN (CGAN), Deep Convolutional GAN (DCGAN), and Style-
GAN2-ADA. The first two models were chosen to explore the capability of fundamental GAN 
models in generating representative images of cable faults. These networks use less compu-
tational resources compared to more advanced ones. Other widely used models mentioned 
in the scientific literature review, such as StackGAN or Pix2Pix, designed for image generation 
from text description or image-to-image translation tasks, were considered unsuitable for ad-
dressing the specific problem of the cable dataset. Upon reviewing the latest innovative GAN 
architectures, StyleGAN2-ADA was selected for investigation due to its distinctive features and 
capabilities. This architecture is designed for generating high-resolution synthetic images with 
a minimum amount of data, addressing the challenges posed by the limited cable dataset.

4.1. Limited dataset

A limited dataset of industrial images was selected to conduct experimental research, specifi-
cally images depicting cable defects. The selection of this dataset was based on its insufficient 
size and the type of images, which allowed the dataset to be evaluated without the need 
for professional expertise. The MVTEC AD Dataset includes 5069 high-resolution images of 
objects from different classes. The dataset images are categorized into 15 different classes, 
each containing a specific number of images with and without defects. All images are of size 
1024×1024 pixels. The available classes in the dataset include bottles, cables, pills, carpets, 
grids, nuts, leather, metal, capsules, screws, tiles, toothbrushes, transistors, wood, and zippers.

Among all possible classes, the cable class was chosen because of the greater variety 
of object defects within this class. The cable subset of the dataset consists of 316 colorful 
images, with 92 containing various defects and 224 without defects. The original images 
are illustrated in Figure 10, with images of cables without defects at the top and those with 
various damages at the bottom. Also, it is crucial to note that arrangement of cable strands 
is significant: a green strand must always be at the top, followed by blue and gray strands at 
the bottom (from left to right). Otherwise, the image belongs to the defect class. The dataset 
was partitioned into training and testing subsets, the latter consisting of 15% of the images 
from the original dataset.

Figure 10. The MVTEC AD Dataset cable class images



12 G. Vdoviak, H. Giedra. Review and experimental comparison of generative adversarial networks for synthetic image...

4.2. Metrics for evaluating synthetic images

Two metrics are widely used to evaluate GAN-generated images: Fréchet Inception Distance 
(FID) and Kernel Inception Distance (KID). The first is based on the distance between the 
distributions of feature vectors obtained from real and synthetic images using the trained 
Inception-v3 network. The second metric is based on the maximum mean deviation between 
the feature vectors of the real and synthetic images. These vectors are determined similarly 
to FID, but additionally apply the gram activation matrix at each network layer. (Karras et al., 
2020) conducted an additional study with small datasets and found that the KID metric is a 
more suitable measure for assessing GAN results with smaller datasets. This is because, unlike 
FID, the KID metric is independent of selection bias and better accounts for the distribution 
of image data. Due to this reason, only KID metric was calculated during the experiment.

4.3. CGAN and DCGAN networks experimental results

In the initial experiment, the CGAN and DCGAN models were investigated to expand the 
dataset. These models were chosen to explore whether traditional GAN models suffice for 
limited dataset expansion. KID metric was calculated for evaluation of the quality of synthetic 
images after training, as their calculation during training process greatly extends the net-
work’s training duration. The decision when to stop training was based on visual inspection 
of the generated images at intervals of 20 epochs. The DCGAN and CGAN architectures are 
designed to process relatively small image input, with the convolutional layer filters optimized 
to extract meaningful features from small image tensors. Typically, the image sizes processed 
by DCGAN and CGAN are 32×32, 64×64, and 128×128 pixels. However, these networks can 
be adapted to generate images with larger resolutions by adding more convolutional layers 
in both the discriminator and generator. In the research, images of size 256×256 pixels were 
used as inputs and outputs for both networks. The chosen image resolution was found to be 
suitable for a thorough examination of details in the generated synthetic images, ensuring 
that the images are large enough for an effective evaluation by the human eye. An increase 
in network layers also required more computational resources.

Figure 11. CGAN model generated synthetic images: a – 500 epochs;  
b – 800 epochs; c) – 1400 epochs

a)

b)

c)



New Trends in Computer Sciences, 2024, 2(1), 1–18 13

The models were trained from scratch for approximately 6-8 hours. Images generated 
by the CGAN model at 500, 800, and 1400 epochs, with a fixed learning rate of 51 10−⋅ are 
illustrated in Figure 11. Similarly, images generated by the DCGAN model using the same 
parameters are shown in Figure 12. 

The experiment with both models was carried out by iteratively adjusting the learning 
rate from 41 10−⋅  to 61 10−⋅ , however no significant results were obtained, and the quality of 
generated images remained similar. After evaluating KID metric (Table 3), it is evident that 
1400 epochs are insufficient for both models to generate images of adequate quality, and the 
improvement in quality stops with continued training. It is hypothesized that such results are 
achieved due to limited dataset as several studies have found the CGAN and DCGAN models 
to excel with large-scale datasets such as ImageNet (Chakraborty et al., 2024). In such cases, 
the application of transfer learning technique, specifically fine-tuning, could be considered. 
However, since CGAN and DCGAN networks are not capable of generating high-resolution 
and high-quality images, the transfer learning technique was not further explored for these 
networks. It is crucial to ensure that various cable faults are clearly visible in the generated 
images. Therefore, it was concluded that the CGAN and DGAN models are not suitable for a 
limited dataset expansion.

Table 3. KID Metric Evaluation for CGAN and DCGAN

500 epochs 800 epochs 1400 epochs

CGAN good class 1.207 0.792 0.684
defect class 0.996 0.964 0.628

DCGAN good class 1.275 1.146 1.081
defect class 0.922 1.033 0.813

a)

b)

c)

Figure 12. DCGAN model generated synthetic images:  
a – 500 epochs; b – 800 epochs; c – 1400 epochs
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4.4. StyleGAN2-ADA networks experimental results

During the second experiment, the investigation focused on StyleGAN2-ADA, which utilizes 
PyTorch framework. This model incorporates advanced architectural solutions, resulting in 
enhanced image quality, increased control over generated images, and improved network 
stability during training. The authors of StyleGAN2-ADA publicly released the implementation 
of their method on the Github platform, and this open-source software has been employed 
in subsequent experiments (Karras et al., 2020).

During the experiment, the decision was made to adapt the StyleGAN2-ADA model to 
inputs of 512×512 image resolution. This decision was made because:

 ■ The 512×512 resolution allows for a robust visual assessment of image quality.
 ■ Higher-resolution images convey a greater amount of useful information.
 ■ The StyleGAN2 model is designed to generate high-resolution synthetic images, and 
processing at 512×512 input did not require high computational resources (within the 
Colab environment).

Under this condition, the data preparation and processing stage was performed. The 
implementation code of StyleGAN2-ADA provides a script tailored to automatically process 
the desired dataset and save it in a suitable format. Consequently, the prepared dataset is 
optimized to facilitate an efficient network training process.

StyleGAN2-ADA was chosen to employ transfer learning due to several key reasons:
 ■ Training this model from scratch can take several days or even months. Transfer learn-
ing allows to lessen the amount of needed computer resources and achieve desired 
results faster.

 ■ A pre-trained network has already learned to appropriately discern useful image fea-
tures, enhancing model performance when trained on a limited-sized dataset. This 
proves particularly beneficial in refining the model’s performance with entirely new 
data and reducing overfitting.

 ■ Images from the trained network and the available dataset may be related, albeit vis-
ually different. In such cases, utilizing transfer learning allows the network to generalize 
better and learn more efficiently on a new dataset.

The authors of the StyleGAN2-ADA model trained the network on several large datasets 
and made their models weights publicly available. Among the options provided, the network 
trained on 512×512 resolution animal face images were selected (AFHQWild).

The selected network was trained to 512×512 animal face images (AFHQWild). It was 
observed that these images bear characteristics similar to the chosen cable dataset images, 
therefore, influencing the selection of network weights.

The network was trained with a “kimg” parameter set to 300, indicating the number 
of thousands of real images presented to the discriminator during network training. This 
parameter is frequently used in GAN models to track the network’s learning progress and 
provide a reference point for different training stages. It aids in analyzing the model’s evo-
lution throughout the learning process, especially when comparing various experiments or 
adjusting training parameters. Using a single Nvidia Tesla V100 GPU, the network training 
took approximately 5–8 hours. The duration of model training depends on factors such as the 
size of the dataset, image resolution, GPU quantity, the desired image quality for generation, 
and the selection of hyperparameters.
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Figure 13. StyleGAN2-ADA samples during training: a – 16 kimg;  
b – 40 kimg; c – 136 kimg

a) b)

c)

Figure 14. KID metric evaluation for synthetic images

During StyleGAN2-ADA training, examples of generated images with and without defects 
are depicted in Figure 13. The KID metric was not evaluated during the training process, as 
their calculation almost doubles the time of the training process. The metrics were evaluated 
separately after network training (Figure 14). From the obtained results, it is evident that 
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employing transfer learning and a reduced volume of data prompts a faster convergence of 
the network. Nearing 100 kimg, the network generates images of sufficiently high quality, 
which is represented with low KID value of 0.02. The accelerated convergence can be attrib-
uted to the similarity in features present within the photographs of cables and animal faces. 
For these reasons, it was decided to stop the training at 104 kimg. If training continued, 
there was a risk that the synthetic images produced by the network would be identical to 
the images used for training.

5. Conclusions

The research aimed to address the challenge of limited dataset availability when training 
machine learning algorithms. In particular, it focused on the use of generative adversarial 
networks (GANs) to generate synthetic images of sufficient visual quality as a solution to this 
dataset problem. The study delved into the architectural advances of GANs, including models 
such as Deep Convolutional GAN, Conditional GAN, InfoGAN, StackGAN, Pix2Pix, CycleGAN, 
Progressive GAN, and StyleGAN. Each model showcased unique features and capabilities in 
generating synthetic images; however, not all methods were applicable in augmentation of 
limited datasets for CNN training.

Experimental comparisons were conducted using three GAN architectures: Conditional 
GAN (CGAN), Deep Convolutional GAN (DCGAN), and StyleGAN2-ADA. The investigation 
involved a limited dataset of cable defects and the results indicated that traditional GAN 
models such as CGAN and DCGAN were not suitable to effectively expand the dataset due 
to their limitations in generating high-resolution and high-quality images. Further research 
focused on the StyleGAN2-ADA model, leveraging transfer learning from a pre-trained net-
work on animal face images. The experiments demonstrated that this approach led to faster 
convergence of the network, producing synthetic images of sufficiently high quality even with 
a limited amount of data. For generated image quality evaluation KID metric were calculated.

The findings contribute to ongoing efforts to improve the efficiency and appli-
cability of artificial intelligence in diverse domains by providing a viable solution to 
the challenge of limited training data for image classification tasks. Future work could 
explore the use of GAN generated synthetic images to expand the training dataset of 
machine learning algorithms like Convolutional Neural Networks.
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APPENDIX

Notations
Abbreviations

CNN – Convolutional Neural Network.
GAN – Generative Adversarial Network.
ADA – Adaptive Discriminator Augmentation.
GPU – Graphics Processing Unit.
FID – Fréchet Inception Distance.
KID – Kernel Inception Distance.
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