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ability is important, nevertheless, in order to fully comprehend how the model generates its
predictions. It enables users to pinpoint which traits have aided the model’s ability to learn
and comprehend the data. A practical approach for evaluating the contribution of input attrib-
utes to model learning has evolved in the form of SHAP (SHapley Additive exPlanations offer
an index for evaluating the influence of each feature on the forecasts made by the model.
In this paper, it is demonstrated that the contribution of features to model learning may be
precisely estimated when utilizing SHAP values with decision tree-based models, which are
frequently used to represent tabular data.
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Introduction

Machine learning models have gained a lot of popularity recently since they give us insightful
predictions. Yet, the predictions generated by these models can be difficult to comprehend,
making it difficult for us to understand why a certain prediction was made. Although the
decision trees used by the well-known machine learning algorithm XGBoost for classification
and regression tasks are complicated, it might be difficult to grasp their results. SHapley
Additive exPlanations (SHAP) value plays a role in this.

A technique called SHAP can be used to explain the predictions that a machine learning
model makes. Each component of the model is given a numerical number to indicate how
much it contributed to a certain prediction. These numbers can make it easier and more
accurate for us to comprehend how the model generates its predictions.

Let's look at an example to see how SHAP values operate. Imagine that we have a dataset
of property prices and that our goal is to estimate the cost of a house depending on its size
and the number of bedrooms. This dataset can be utilized to train an XGBoost model, which
predicts a price of $500,000 for a three-bedroom, 2,000-square-foot home. We now need to
know why the model made this forecast.
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The contributions of the various features can be separated into the prediction using SHAP
values. In this instance, $300,000 and $200,000, respectively, might be the SHAP values for
square footage and bedroom count. This suggests that the square footage, rather than the
number of bedrooms, is the factor that has the most impact on the price estimate.

Another type of visualization known as a SHAP summary plot can be made using SHAP
values (Mitchell et al., 2022). This graph displays the average SHAP value for each feature
across all dataset instances. It can be used to determine which elements are most crucial for
the model’s predictions and how each one affects the forecasts as a whole.

The SHAP dependence plot is an additional helpful tool for analyzing XGBoost forecasts
with SHAP values. This plot displays the appropriate SHAP values and illustrates the rela-
tionship between a single character and the model’s predictions. It can be used to spot any
non-linear interactions between the features and the predictions as well as to see how the
model’s predictions change as a feature's value varies (Covert & Lee, 2021).

SHAP values can be used for feature engineering and model debugging, in addition to
explaining to users why a model predicts certain things (Chen et al., 2021). Users can deter-
mine which elements are most important to the model’s predictions by looking at the SHAP
values for those features, as well as which features might be unnecessary or even harmful to
the model’s performance. The model or dataset can then be improved using this knowledge,
potentially leading to an increase in accuracy and readability (Wang et al., 2022).

Overall, SHAP values are an effective tool that can aid in our understanding of the XGBoost
models’ predict simply and understandably model’s decision-making process in a simple and
understandable way, and they may also be utilized for feature engineering and model debug-
ging. Understanding the output of these models will become increasingly critical as machine
learning plays an increasingly significant part in decision-making. Tools like SHAP values will
be crucial for gaining this knowledge (Gebreyesus et al., 2023).

In this study, it is investigated how to interpret XGBoost model predictions using SHAP
(SHapley Additive exPlanations) values. When utilizing sophisticated models like XGBoost,
SHAP values offer a thorough and understandable manner to comprehend the contribution
of each feature to the model’s prediction. By analyzing SHAP values, it may be learned how
the model generates its predictions and which attributes are responsible for them.

It is shown that the contribution of features to model learning may be correctly quantified
by using SHAP values with decision tree-based models, which are often used to represent
tabular data (Rozemberczki et al., 2022). This enables users to see the characteristics that
have improved the model’s capacity to learn from and understand the data, offering deeper
insights into the variables that influence KPIs and how they do so.

Overall, this study emphasizes the significance of interpretability in machine learning and
shows how to use SHAP values with decision tree-based models to present a realistic method
for assessing the contribution of input variables to model learning.

The novelty of the research described in the passage is as follows:

= The study highlights the problem of interpretability in machine learning when it comes

to understanding the underlying mechanisms.

= The study focuses on using machine learning to anticipate and model spatial phenom-

ena, which is a growing area of research.
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= The study gives comprehensive recent developments in local interpretation techniques
that are opening the black box of machine learning models and enabling analysts to
explain how a prediction is made for each observation.

= The study specifically tests the precision of the SHAP value method for assessing the

contribution of features to decision tree-based model learning.

= The results of the study confirm that the SHAP value method can accurately evaluate the

contribution of features to model learning when the model is used. This finding suggests
that the SHAP value method can be a useful tool for understanding the mechanisms of
machine learning models in spatial data modeling.

= Finally, it is emphasized the importance of assessing the effectiveness of the SHAP value

method as a trustworthy analysis technique through comparable verification. This high-
lights the need for ongoing research to ensure that the methods used in spatial data
modeling are reliable and accurate.

The paper is organized as follows: Section 1 presents the related works. Basic concepts
of SHAP Value are outlined in Section 2. Section 3 presents the experimental part, including
results from both “Experiments on data without the difference in resolution” and "Experiments
on data with the difference in resolution”. The last Section provides the conclusion and out-
lines the outlook for future research.

1. Related works

In this section, it is presented the importance of features in the data and what kind of meth-
ods can be used for that with the help of related works from the literature.

To find out the importance of features in the data, various methods can be used. Some
of the commonly used methods are:

Univariate Feature Selection: This method involves evaluating each feature independently
using statistical tests or other criteria, and selecting the most important features based on
their individual performance (Jain & Saha, 2022; Fagrou et al,, 2022; Fayaz et al., 2022).

Recursive Feature Elimination (RFE): This method involves iteratively removing the least
important features from the dataset until the desired number of features is obtained. The
importance of features is determined by their contribution to the performance of a ma-
chine-learning algorithm (Lee et al., 2022; Kilincer et al., 2023; Kumari et al., 2023).

Principal Component Analysis (PCA): This method involves transforming the data into
a new set of uncorrelated variables, called principal components, which capture the most
significant information in the data. The importance of features is determined by the amount
of variance explained by each principal component (Liu et al.,, 2023; Dargaud et al., 2023;
Serrdo et al.,, 2023).

Feature Importance using Tree-Based Models: This method involves using decision tree-
based models such as Random Forest, XGBoost, or Gradient Boosting, to determine the
importance of each feature in the model. The importance of features is measured based on
their contribution to reducing impurity or error in the model (Liu & Aldrich, 2023; Kim et al,,
2023; Awotunde et al., 2023).

SHAP values: This method involves computing the contribution of each feature to a ma-
chine learning model's prediction using game theory. SHAP values provide an intuitive way
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Figure 1. Subject areas of SHAP value

to understand the contribution of each feature to the model's prediction (Mangalathu et al.,
2020; Rozemberczki et al., 2022; Merrick & Taly, A 2020).

Overall, the choice of method depends on the nature of the data and the specific problem
being addressed. It is often advisable to use multiple methods to obtain a more comprehen-
sive understanding of the importance of features in the data.

Considering the subject areas of 913 publications scanned in Scopus and using SHAP
Value, the fields of computer science, engineering, and medicine are in the first three plac-
es except for another field. Figure 1 shows the main subject areas of SHAP value in these
publications.

XGBoost is used in 243 of these studies. It is demonstrated that the SHAP value may
typically accurately assess the contribution of features to model learning using an experi-
ment in which the SHAP value is derived for a model trained by XGBoost using table data
produced in an XGBoost model.

The selected papers which are examined for this study are presented in Table 1 in detail.

2. Basic concept of SHAP value

SHAP Value explains the output of any machine learning model by providing an explanation
for every feature's contribution to the model's score for a specific instance (Bowen & Ung-
ar, 2020). The SHAP Value approach is based on game theory and connects optimal credit
allocation with local explanations using the classic Shapley values and their extensions. The
input for SHAP Value is a training model f and the specific instance x, and the output is the
contribution of each feature to the model score f(x). The SHAP Value is additive, and the sum
of all contributions is exactly f(x).

Cooperative game theory (Chalkiadakis et al.,, 2011; Alparslan Gok et al., 2010) is used
in the concept of SHAP Value to quantify the level of contribution a member has made in a
partnership. SHAP Value's foundation is based on the Shapley value, which has been exten-
sively studied in cooperative game theory literature (Futagami et al., 2021). The SHAP Value
approach is helpful when the distinct values that each feature can take vary significantly
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between features, or when a feature’s variance in values is lower than that of other features,
as demonstrated in our experiments. By providing an explanation for each feature’s contri-
bution to the model’s output, SHAP Value enables us to interpret the model's behavior and
identify important features for better decision-making.

When the number of features is M, the input x' e {O,1}M, which is a simplified input vec-
tor x, is locally linearly approximated by the model f.

Using f,, the contribution of feature i ¢; to model f is calculated as follows:

Z'\(M—|Z'|-1)!
o (f.x)= Z| | ( M|' | ) [fx(z’)—fx(z'\iﬂ. M
Z'cx'

Then, z' € x' is the whole subset of x’ nonzero elements and |z’| represents the number
of nonzero elements in the feature vector Zz'.

For all input combinations that can be compared with and without feature i, take the aver-
age of the differences f, (z’) -1, (z’ \ [). Omitting the details of the simplification process and
input formulation can be focused on the conditions that the simplified model needs to satisfy.
These include local accuracy, which ensures that the model performs well on specific subsets
of data, as well as missingness, which ensures that the model can handle missing data appro-
priately. Additionally, consistency is important to ensure that the model produces consistent
and reliable results across different subsets of data. These conditions are critical to ensuring
that the simplified model is effective and can be used to generate reliable predictions.

3. Experiment

In order to assess the usefulness of the SHAP value in situations where the distinct values
that each feature can take vary significantly, it is conducted two experiments and present the
process and results below. Specifically, it is interested in cases where certain features had a
lower variance in values compared to others or where the resolution of a feature was low, as
is the case with XGBoost based on metric gain (Li, 2022). In such scenarios, default Feature
Importance settings may not be sufficient as they only provide an average improvement
evaluation criterion for a trained model (Chen & Guestrin, 2016).

To test the efficacy of the SHAP value in such cases, we replicated the difference in resolu-
tion between features and calculated the SHAP value. Our experiments demonstrate that the
SHAP value can be a valuable tool in identifying important features even in scenarios where
there is significant variance in the number of distinct values that each feature can take. These
findings suggest that the SHAP value can be a useful technique for analyzing and interpreting
machine learning models in various real-world applications.

3.1. Experiments on data without the difference in resolution

Let us consider the case where there is no difference in resolution between features.

For training purposes, an artificial dataset of 10,000 rows is generated in this study. The
dataset consists of five features, denoted as x;(i = 1,2,3,4,5) which are modeled by a normal
distribution N(0,302) with a mean of 0 and a standard deviation of 30. An error term b is also
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incorporated, which follows a normal distribution N(0,102) with a mean of 0 and a standard
deviation of 10. The training data is then generated using the following formula:

¥ =15x;+10x, +5x3 +x, +0.3x; +b. 2)

To ensure consistency, it is necessary to generate each feature as a random number
sequence with the same distribution, resulting in a roughly equal number of unique values
for each feature. Table 2 shows the hyperparameter settings used by the XGBoost package
to train the artificially generated dataset as a regression problem using the package mind.

Table 2. The hyperparameter settings

learning_rate 0.01
colsample_bytree 0.3
max_depth 5

alpha 10

Figure 2 displays the output of the SHAP value package (Mitchell et al., 2022), which
computes and presents values that are relevant to the analysis at hand. These values provide
important insights into the influence of specific features on the model’s prediction and can
be used to identify potential areas of improvement or to validate the model’s performance.

The x; coefficient in Eqg. (2) is thought to accurately reflect the genuine feature importance
in this situation since the five characteristics, x;(i = 1,2,3,4,5), are generated with an equal
mean and variance. The SHAP value calculated in Figure 2 is xq : 334.1, x, : 206.6, x3: 93.3,
X4 1 18.6, x5 : 9.6. However, since the ratio is about the same as each term’s coefficient in
Eq. (2), it appears that the feature value importance can be roughly and fairly precisely cal-
culated.

For comparison, the default Feature Importance of the XGBoost package is also calculated
and presented in Figure 3.

The feature value of x5 in the XGBoost default is greater than x3, and x,, and virtually equal
to x,, which runs counter to how Eq is generated (2).

When taking this into account and comparing Figures 2 and 3, it appears that SHAP can
more properly determine the feature relevance.

X1

X2

X3
X4 -
Xs l

[ 1 1 1 1
50 100 150 200 250 300 350

o

mean (|]SHAP value|) (average impact on model output magnitude)

Figure 2. SHAP value of Experiment 3.1
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Figure 3. XGBoost feature importance of Experiement 3.1

3.2. Experiments on data with the difference in resolution

Let us consider the case where there is a difference in resolution between features. For sim-
plicity, we generated the feature x;(i = 1,2,3,4,5) in the same way as in Section 4.1, and then
rounded the feature x, to the tenths to lower the resolution. In addition, the training data y
is generated by the following formula:

y =10x; +10x, +5x3 +x, +0.3x; +b . (3)

The XGBoost model was trained on a dataset, with a focus on two features, x; and x,,
which share the same coefficient but have different resolutions. The resulting SHAP value
and default feature importance of XGBoost are visualized in Figures 4 and 5, respectively.
These figures provide valuable insights into how the model weights the importance of each
feature and how it affects the outcome. By analyzing these visualizations, one can gain a
better understanding of how the model makes predictions and identify any potential biases
or shortcomings.

Xq

X2

X3
«
Xs .

I 1 1 1 1
0 50 100 150 200 250

mean (|SHAP value|) (average impact on model output magnitude)

Figure 4. SHAP Value of Experiement 3.2
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Figure 5. XGBoost feature importance of Experiement 3.2

Conclusions

This study investigates the effectiveness of the SHAP value method for feature importance
analysis in spatial data modeling. The findings demonstrate that SHAP value is a reliable and
accurate technique for assessing the contribution of features to decision tree-based model
learning in spatial data analysis. This enables spatial analysts to identify spatial correlations
and visualize them on maps in applications using geocoded spatial data.

It is emphasized that a more accurate data set is essential to assess the SHAP function
effectively. Furthermore, a comparable verification is carried out to determine the effective-
ness of SHAP value as a trustworthy analysis technique, and reliable results are obtained.

The study makes a significant contribution to addressing the significant problem of in-
terpretability in spatial data modeling and highlights the potential of local interpretation
techniques such as SHAP value for overcoming this challenge. In summary, valuable insights
into the practical application of SHAP value for spatial data modeling are obtained, and new
avenues for further research in this area are opened up.

In conclusion, while creating machine learning prediction models for KPIs, interpretability
is crucial. By offering information on the contribution of each feature to the model’s learning,
SHAP values provide a mechanism to accomplish this. In fields where data is essential, SHAP
values are a useful tool for analyzing machine learning models since they can precisely assess
the impact of each attribute.

Outlook

Future works could address a number of topics pertaining to how to understand XGBoost
forecasts using SHAP values.

First off, even though the focus of this article is decision tree-based models, SHAP values
can also be applied to other machine learning model types, like neural networks and random
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forests. The application of SHAP values to these models and how their interpretations differ
from those of decision tree-based models could be the subject of future study.

Second, the usage of SHAP values for interpretability is the main focus of this guide.
Nevertheless, feature engineering and feature selection can also be done with SHAP values.
Future research could look into how SHAP values can be utilized to discover which charac-
teristics are most crucial and eliminate unimportant or harmful features in order to enhance
the performance of machine learning models.

Thirdly, even though SHAP values are an effective tool for understanding machine learn-
ing models, calculating them can be computationally expensive. Future research might look
into ways to speed up the calculation of SHAP values so that users can access them more
quickly.

Last but not least, even though this article offers a thorough overview of reading XGBoost
predictions with SHAP values, other techniques or tools might be utilized in addition to SHAP
values to increase interpretability. Future studies could examine these techniques and how
they can be applied to shed more light on how machine learning models function.

Overall, the topic of using SHAP values to interpret machine learning models is one that is
rapidly emerging, and there are a lot of promising areas that need to be further investigated.

It can be enhanced the interpretability, performance, and accessibility of machine learning
models in a variety of applications by further developing and broadening our understanding
of SHAP values.
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