Mathematical simulation and numerical method for solving geomigration problem

    G. Gromyko Info
    G. Zayats Info

Abstract

In the present paper a two‐dimensional boundary value problem of geomigration taking into account convection transfer, hydrodynamic dispersion, molecular diffusion and absorption is considered. The problem is described by the system of two differential equations for the level of ground water [3] and the concentration of the contaminant in ground water [4]. For numerical solving we used the finite difference schemes taking into account the characteristic properties of the problem. The calculations were produced in conformity with concrete hydro‐geological conditions. The obtained solutions are used for prognosis of contaminant migration in ground water.

Geomigracijos uždavinio matematinis modeliavimas ir skaitiniai metodai

Santrauka. Straipsnyje nagrinėjamas dvimatis kraštinis geomigracijos uždavinys, kai atsižvelgiama į konvekcinį pernešimą, hidrodinaminę dispersiją, molekulinę difuziją. Šis uždavinys aprašomas dviejų diferencialiniu lygčių sistema grunto vandeniui ir užterštumo koncentracijai vandenyje. Šiam uždaviniui spręsti taikomas baigtinių skirtumų metodas atsižvelgiant į uždavinio charakteristines savybes. Skaičiavimai buvo atlikti su konkrečiomis hidrogeologinėmis sąlygomis. Gauti sprendiniai gali būti naudojami prognozuojant užterštumo judėjimą gruntiniame vandenyje.

First Published Online: 14 Oct 2010

Keywords:

mathematical simulation, numerical methods, geomigrtation problem, finite difference schemes

How to Cite

Gromyko, G., & Zayats, G. (2003). Mathematical simulation and numerical method for solving geomigration problem. Mathematical Modelling and Analysis, 8(2), 121-130. https://doi.org/10.3846/13926292.2003.9637217

Share

Published in Issue
June 30, 2003
Abstract Views
463

View article in other formats

CrossMark check

CrossMark logo

Published

2003-06-30

Issue

Section

Articles

How to Cite

Gromyko, G., & Zayats, G. (2003). Mathematical simulation and numerical method for solving geomigration problem. Mathematical Modelling and Analysis, 8(2), 121-130. https://doi.org/10.3846/13926292.2003.9637217

Share